42 research outputs found

    The “conscious pilot”—dendritic synchrony moves through the brain to mediate consciousness

    Get PDF
    Cognitive brain functions including sensory processing and control of behavior are understood as “neurocomputation” in axonal–dendritic synaptic networks of “integrate-and-fire” neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic–dendritic gap junctions, forming transient syncytia (“dendritic webs”) in input/integration layers oriented sideways to axonal–dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The “conscious pilot” is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation

    Tinkering with the Unbearable Lightness of Being: Meditation, Mind-Body Medicine and Placebo in the Quantum Biology Age

    Get PDF
    There are empirical indications that mind-body therapies have a nonlocal quantum component, in addition to the psychoneuroimmunological pathways that have been the focus of the predominant experimental paradigm.  The discussion below addresses the evidence and proposed theoretical mechanisms supporting this conclusion, and makes the case that there should be a convergence of research agendas between mind-body interventions (including placebo),  photomedicine and quantum biology.  Specifically, the role of endogenously generated biophotons in the regulation of genetic expression and the apparent ability of mental intent to direct biophoton emissions to specifically targeted tissues needs to be further evaluated from the perspective of photobiomodulation mechanisms, with a special focus on the spectroscopy and dosimetry of these emissions. Finally, the possible role of long-term meditation in enhancing quantum biological effects has to be further investigated at the level of cellular and macromolecular remodeling, both in the brain and the body

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Sensor Fusion in the Perception of Self-Motion

    No full text
    This dissertation has been written at the Max Planck Institute for Biological Cybernetics (Max-Planck-Institut fĂŒr Biologische Kybernetik) in TĂŒbingen in the department of Prof. Dr. Heinrich H. BĂŒlthoff. The work has universitary support by Prof. Dr. GĂŒnther Palm (University of Ulm, Abteilung Neuroinformatik). Main evaluators are Prof. Dr. GĂŒnther Palm, Prof. Dr. Wolfgang Becker (University of Ulm, Sektion Neurophysiologie) and Prof. Dr. Heinrich BĂŒlthoff.amp;lt;bramp;gt;amp;lt;bramp;gt; The goal of this thesis was to investigate the integration of different sensory modalities in the perception of self-motion, by using psychophysical methods. Experiments with healthy human participants were to be designed for and performed in the Motion Lab, which is equipped with a simulator platform and projection screen. Results from psychophysical experiments should be used to refine models of the multisensory integration process, with an mphasis on Bayesian (maximum likelihood) integration mechanisms.amp;lt;bramp;gt;amp;lt;bramp;gt; To put the psychophysical experiments into the larger framework of research on multisensory integration in the brain, results of neuroanatomical and neurophysiological experiments on multisensory integration are also reviewed

    Activation of the pro-resolving receptor Fpr2 attenuates inflammatory microglial activation

    Get PDF
    Poster number: P-T099 Theme: Neurodegenerative disorders & ageing Activation of the pro-resolving receptor Fpr2 reverses inflammatory microglial activation Authors: Edward S Wickstead - Life Science & Technology University of Westminster/Queen Mary University of London Inflammation is a major contributor to many neurodegenerative disease (Heneka et al. 2015). Microglia, as the resident immune cells of the brain and spinal cord, provide the first line of immunological defence, but can become deleterious when chronically activated, triggering extensive neuronal damage (Cunningham, 2013). Dampening or even reversing this activation may provide neuronal protection against chronic inflammatory damage. The aim of this study was to determine whether lipopolysaccharide (LPS)-induced inflammation could be abrogated through activation of the receptor Fpr2, known to play an important role in peripheral inflammatory resolution. Immortalised murine microglia (BV2 cell line) were stimulated with LPS (50ng/ml) for 1 hour prior to the treatment with one of two Fpr2 ligands, either Cpd43 or Quin-C1 (both 100nM), and production of nitric oxide (NO), tumour necrosis factor alpha (TNFα) and interleukin-10 (IL-10) were monitored after 24h and 48h. Treatment with either Fpr2 ligand significantly suppressed LPS-induced production of NO or TNFα after both 24h and 48h exposure, moreover Fpr2 ligand treatment significantly enhanced production of IL-10 48h post-LPS treatment. As we have previously shown Fpr2 to be coupled to a number of intracellular signaling pathways (Cooray et al. 2013), we investigated potential signaling responses. Western blot analysis revealed no activation of ERK1/2, but identified a rapid and potent activation of p38 MAP kinase in BV2 microglia following stimulation with Fpr2 ligands. Together, these data indicate the possibility of exploiting immunomodulatory strategies for the treatment of neurological diseases, and highlight in particular the important potential of resolution mechanisms as novel therapeutic targets in neuroinflammation. References Cooray SN et al. (2013). Proc Natl Acad Sci U S A 110: 18232-7. Cunningham C (2013). Glia 61: 71-90. Heneka MT et al. (2015). Lancet Neurol 14: 388-40

    Centrality in the structure of built environment: a study in the structural transformation of society and space

    Get PDF
    Born out of a long term interest in thought and social values and nearly ten years of involvement in space and design as a student of architecture and urban design, this dissertation aims to make a contribution to both the structural theory of the transformation of society and space and to our knowledge of the principle of centrality in the structure of built environment. It looks at the concept of centrality in the Iranian city of Meshed. However, this is not intended as a study of a unique experience. Rather the spatial and temporal co- ordinates of the text, Islam and Iran, and the historical period of Modernist thought, offer a framework within which theoretical and principal questions of a more general nature concerning the structural character of society and space can be explored.The emphasis throughout is on the concept of the social production of the built environment at the centre of which lies the ideal process, understood in its most general sense as purposeful human activity. The dissertation seeks to show how changes in the relations between the elements and actors of production, the physical and mental means by which the built environment is created, and the relation between moment and totality within which the production process occurs, are central to an understanding of the structural transformation of human society, the form of city and the organization of space
    corecore