77 research outputs found

    The Cost of Accumulating Evidence in Perceptual Decision Making

    Get PDF
    Decision making often involves the accumulation of information over time, but acquiring information typically comes at a cost. Little is known about the cost incurred by animals and humans for acquiring additional information from sensory variables due, for instance, to attentional efforts. Through a novel integration of diffusion models and dynamic programming, we were able to estimate the cost of making additional observations per unit of time from two monkeys and six humans in a reaction time (RT) random-dot motion discrimination task. Surprisingly, we find that the cost is neither zero nor constant over time, but for the animals and humans features a brief period in which it is constant but increases thereafter. In addition, we show that our theory accurately matches the observed reaction time distributions for each stimulus condition, the time-dependent choice accuracy both conditional on stimulus strength and independent of it, and choice accuracy and mean reaction times as a function of stimulus strength. The theory also correctly predicts that urgency signals in the brain should be independent of the difficulty, or stimulus strength, at each trial

    Active inference, evidence accumulation, and the urn task

    Get PDF
    Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one that is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding of information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical letter, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behavior--in this case, that they will make informed decisions. Normative decision making is then modeled using variational Bayes to minimize surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step toward understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference and may cast light on why this process is disordered in psychopathology

    Seeing into Darkness: Scotopic Visual Recognition

    Get PDF
    Images are formed by counting how many photons traveling from a given set of directions hit an image sensor during a given time interval. When photons are few and far in between, the concept of `image' breaks down and it is best to consider directly the flow of photons. Computer vision in this regime, which we call `scotopic', is radically different from the classical image-based paradigm in that visual computations (classification, control, search) have to take place while the stream of photons is captured and decisions may be taken as soon as enough information is available. The scotopic regime is important for biomedical imaging, security, astronomy and many other fields. Here we develop a framework that allows a machine to classify objects with as few photons as possible, while maintaining the error rate below an acceptable threshold. A dynamic and asymptotically optimal speed-accuracy tradeoff is a key feature of this framework. We propose and study an algorithm to optimize the tradeoff of a convolutional network directly from lowlight images and evaluate on simulated images from standard datasets. Surprisingly, scotopic systems can achieve comparable classification performance as traditional vision systems while using less than 0.1% of the photons in a conventional image. In addition, we demonstrate that our algorithms work even when the illuminance of the environment is unknown and varying. Last, we outline a spiking neural network coupled with photon-counting sensors as a power-efficient hardware realization of scotopic algorithms.Comment: 23 pages, 6 figure

    Decision-making after continuous wins or losses in a randomized guessing task: implications for how the prior selection results affect subsequent decision-making

    Get PDF
    BACKGROUND: Human decision-making is often affected by prior selections and their outcomes, even in situations where decisions are independent and outcomes are unpredictable. METHODS: In this study, we created a task that simulated real-life non-strategic gambling to examine the effect of prior outcomes on subsequent decisions in a group of male college students. RESULTS: Behavioral performance showed that participants needed more time to react after continuous losses (LOSS) than continuous wins (WIN) and discontinuous outcomes (CONTROL). In addition, participants were more likely to repeat their selections in both WIN and LOSS conditions. Functional MRI data revealed that decisions in WINs were associated with increased activation in the mesolimbic pathway, but decreased activation in the inferior frontal gyrus relative to LOSS. Increased prefrontal cortical activation was observed during LOSS relative to WIN and CONTROL conditions. CONCLUSION: Taken together, the behavioral and neuroimaging findings suggest that participants tended to repeat previous selections during LOSS trials, a pattern resembling the gambler’s fallacy. However, during WIN trials, participants tended to follow their previous lucky decisions, like the ‘hot hand’ fallacy

    Of rodents and primates: Time-variant gain in drift-diffusion decision models

    Get PDF
    Sequential sampling models of decision-making involve evidence accumulation over time and have been successful in capturing choice behaviour. A popular model is the drift-diffusion model (DDM). To capture the finer aspects of choice reaction times (RTs), time-variant gain features representing urgency signals have been implemented in DDM that can exhibit slower error RTs than correct RTs. However, time-variant gain is often implemented on both DDM’s signal and noise features, with the assumption that increasing gain on the drift rate (due to urgency) is similar to DDM with collapsing decision bounds. Hence, it is unclear whether gain effects on just the signal or noise feature can lead to different choice behaviour. This work presents an alternative DDM variant, focusing on the implications of time-variant gain mechanisms, constrained by model parsimony. Specifically, using computational modelling of choice behaviour of rats, monkeys and humans, we systematically showed that time-variant gain only on the DDM’s noise was sufficient to produce slower error RTs, as in monkeys, while time-variant gain only on drift rate leads to faster error RTs, as in rodents. We also found minimal effects of time-variant gain in humans. By highlighting these patterns, this study underscores the utility of group-level modelling in capturing general trends and effects consistent across species. Thus, time-variant gain on DDM’s different components can lead to different choice behaviour, shed light on the underlying time-variant gain mechanisms for different species, and can be used for systematic data fitting
    • …
    corecore