
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Of rodents and primates: Time-variant gain in drift-diffusion decision models

Asadpour, A., Tan, H., Lenfesty, B., & Wong-Lin, K. (2024). Of rodents and primates: Time-variant gain in drift-
diffusion decision models. Computational Brain & Behavior, 1-12. Advance online publication.
https://doi.org/10.1007/s42113-023-00194-1

Link to publication record in Ulster University Research Portal

Publication Status:
Published online: 11/01/2024

DOI:
10.1007/s42113-023-00194-1

Document Version
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 29/01/2024

https://doi.org/10.1007/s42113-023-00194-1
https://pure.ulster.ac.uk/en/publications/34392147-15eb-4eb9-981c-ce761a43ca54
https://doi.org/10.1007/s42113-023-00194-1


Vol.:(0123456789)1 3

Computational Brain & Behavior 
https://doi.org/10.1007/s42113-023-00194-1

ORIGINAL PAPER

Of Rodents and Primates: Time‑Variant Gain in Drift–Diffusion 
Decision Models

Abdoreza Asadpour1  · Hui Tan1,2 · Brendan Lenfesty1 · KongFatt Wong‑Lin1 

Accepted: 10 December 2023 
© Crown 2024

Abstract
Sequential sampling models of decision-making involve evidence accumulation over time and have been successful in captur-
ing choice behaviour. A popular model is the drift–diffusion model (DDM). To capture the finer aspects of choice reaction 
times (RTs), time-variant gain features representing urgency signals have been implemented in DDM that can exhibit slower 
error RTs than correct RTs. However, time-variant gain is often implemented on both DDM’s signal and noise features, 
with the assumption that increasing gain on the drift rate (due to urgency) is similar to DDM with collapsing decision 
bounds. Hence, it is unclear whether gain effects on just the signal or noise feature can lead to a different choice behaviour. 
This work presents an alternative DDM variant, focusing on the implications of time-variant gain mechanisms, constrained 
by model parsimony. Specifically, using computational modelling of choice behaviour of rats, monkeys, and humans, we 
systematically showed that time-variant gain only on the DDM’s noise was sufficient to produce slower error RTs, as in 
monkeys, while time-variant gain only on drift rate leads to faster error RTs, as in rodents. We also found minimal effects 
of time-variant gain in humans. By highlighting these patterns, this study underscores the utility of group-level modelling 
in capturing general trends and effects consistent across species. Thus, time-variant gain on DDM’s different components 
can lead to different choice behaviours, shed light on the underlying time-variant gain mechanisms for different species, and 
can be used for systematic data fitting.

Keywords Perceptual decision-making · Time-variant gain · Urgency signal · Cognitive computational modelling · Drift–
diffusion model

Introduction

Choice accuracy and response times, especially in per-
ceptual decision-making, have often been mathematically 
modelled by the drift–diffusion process (Ratcliff et al., 
2016). There is neural evidence (Roitman & Shadlen, 
2002) and underlying computational principles (e.g. 
Bogacz et al. (2006) and Gold and Shadlen (2007)) that 
support noisy temporal accumulation of evidence over time 

during decision formation. In this context, the drift–diffu-
sion model (DDM) has emerged as a popular framework 
for describing decision-making dynamics (Ratcliff et al., 
2016). In reaction time (RT) tasks, in which participants 
report their choices freely, the DDM is commonly used to 
account for the observed choice accuracy (psychometrics) 
and RTs (chronometrics). While the standard DDM has 
been extensively applied and studied, there is an ongoing 
need for alternative models that can capture more nuanced 
aspects of decision-making behaviour.

The standard DDM can be described by a stochastic dif-
ferential equation (Wiener process) (Ratcliff, 1978; Ratcliff 
et al., 2016):

where X denotes some internal decision variable, � is some 
drift rate (velocity), � is a random variable that follows a 

(1)dX = �dt +
√
dt��
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Gaussian distribution with a mean of 0 and standard devia-
tion of 1, � is the noise size (standard deviation), and t  is 
the time with time step dt . External stimulus or signal is 
encoded in the drift rate �, while the noise term ( �� ) can 
be due to external stimulus (Ratcliff et al., 2016) or noise 
within the brain (Faisal et al., 2008), or both (Wang, 2002).

It should be noted in Eq. (1) the additive influence of 
signal and noise on the integrative process. During deci-
sion formation in a two-choice task, the decision variable 
X  has to be integrated over time in Eq. (1) such that it 
reaches either a prescribed upper or lower decision bound 
or threshold, symbolising one of the two choices being 
made (assuming that the initial decision variable X lies 
between these two bounds or thresholds). It is immediately 
clear that error choices in the model arise purely from the 
noise term. Moreover, the simplicity of the model is con-
ducive to elegant closed-form analytical solution deriva-
tions or approximations (e.g. Broderick et al., 2009; Mur-
phy et al., 2016; Ratcliff, 1978; Smith & Ratcliff, 2022).

Averaging across trials, the standard DDM is known 
to produce equal mean correct and error RTs for the same 
signal-to-noise ratio (e.g. for the same task difficulty) (Rat-
cliff, 1978). Long-tailed RT distributions are also typical. 
Hence, standard DDM cannot account for experimental 
data with slower or faster error RTs or shorter tail RT dis-
tributions (Ratcliff et al., 2016). These could potentially 
be caused by some sense of urgency, i.e. urge to make a 
choice (e.g. forced to report a choice in the presence of 
a set time deadline) (Harris & Hutcherson, 2022). Thus, 
additional features are required to be incorporated into the 
basic DDM, leading to various DDM variants.

An approach to account for faster error RTs than correct 
RTs is to vary the starting point of the DDM across trials 
(Nguyen & Reinagel, 2022; Ratcliff & Rouder, 1998), akin 
to some prior noisy initial bias. To enable slower error 
RTs than correct RTs, one route is to have the DDM’s drift 
rate vary across trials such that the overall error RTs are 
slower than that of correct RTs (Nguyen & Reinagel, 2022; 
Ratcliff & Rouder, 1998). Alternatively, by decreasing the 
DDM’s decision bound or threshold over time (collaps-
ing bound or threshold) within a trial, slower error than 
correct RTs and shorter tail RT distributions can be pro-
duced—this mimics a form of urgency signal (Ditterich, 
2006; Drugowitsch et al., 2012; Hawkins et al., 2015).

Another intuitively equivalent approach is to increase 
the drift rate over time via a time-variant gain modula-
tion mechanism (Ditterich, 2006; Smith & Ratcliff, 2009; 
Standage et al., 2011; Zhou et al., 2009). In such models, 
the variance grows faster than the drift rate such that later 
choices are more inaccurate. Mathematically, the urgency 
signal can be implemented either as a time-variant mul-
tiplicative factor on the signal and noise (e.g. Ditterich, 
2006) or as an additive time-variant input signal (e.g. 

Kelly et al., 2021; Murphy et al., 2016). Multiplicative 
time-variant gain modulation can also be considered a 
form of gating, attentional, or arousal enhanced signal 
(e.g. Cisek et al., 2009; Niyogi & Wong-Lin, 2013; Smith 
& Ratcliff, 2009; Thura et al., 2012).

In many instances, time-variant gain modulation is imple-
mented on both the drift rate and noise term of a DDM (e.g. 
Ditterich, 2006). Therefore, it is unclear what the behav-
ioural consequences would be if time-variant gain exclu-
sively affects the DDM’s drift rate or noise. Based on a fitted 
time-dependent gain DDM (model 4) in Ditterich (2006), we 
have previously observed, using computational simulations, 
that time-variant gain only in the noise term of this DDM 
leads to slower error RTs, while time-variant gain only in the 
drift rate (i.e. signal) of the DDM leads to faster error RTs 
(Tan et al., 2023) (illustrated in Fig. 1A). However, as this 
was based on modifications of a model in Ditterich (2006) 
with parameters originally fitted to monkey data (Roitman 
& Shadlen, 2002), further evidence is needed to validate 
those results.

To address this, in this study, we aimed to contribute to 
introducing an alternative parsimonious model with the abil-
ity of capturing general trends and effects of decision-mak-
ing behaviour consistent across subjects in different species. 
We used different time-variant gain DDMs, optimally and 
separately fitted to choice behavioural data of three species 
(rats, monkeys, and humans) performing the same visual 
motion direction discrimination task. In particular, we dem-
onstrated that, indeed, time-variant gain just on the drift rate 
could account for rat data with faster error RTs, but applying 
this gain only to the noise term might be suitable to account 
for slower error RTs (as in monkey data). For human data, 
time-variant gain might have minimal effects.

Methods

Data Description

This study utilised three separate datasets from three different 
species. All three datasets involved the standard random-dot 
kinematogram in which the species had to visually discrimi-
nate the direction of coherent motion of stochastic moving 
dots. Task difficulty was controlled such that with lower 
percentage of dots moving coherently (i.e. lower motion 
strength) in the same direction, the task became more dif-
ficult. Both choice accuracy and RT were recorded for each 
motion strength (pseudo-randomly presented across trials).

The first dataset was obtained from the classic study 
by Roitman and Shadlen (2002), in which two macaque 
monkeys were used. Although both single neuronal activi-
ties were recorded, we only considered the choice behav-
ioural data. This was also the dataset used by Ditterich 
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(2006). The second and third datasets were from Shevin-
sky and Reinagel (2019) in which 51 humans and 11 rats 
performed the same motion discrimination task as in Roit-
man and Shadlen (2002). For further details, refer to the 
original papers.

Description of Models

The parameter values of the one-dimensional DDM used 
were directly based on a model in Ditterich (2006), which 
readily accounted for the behaviour and (selected time sec-
tions of the) neuronal activity time course of non-human 
primates in a classic two-alternative, forced-choice RT task 
(Roitman & Shadlen, 2002). In our investigation, we aim to 
extend this model by focusing on time-variant gain mech-
anisms as an alternative modelling approach to explore 
the implications of time-variant gain on decision-making 
while maintaining model parsimony. In particular, we only 
focused on model 4 in Ditterich (2006), in which the deci-
sion bounds or thresholds are constant and time-variant 

gain modulation multiplied both the drift rate and noise 
term of the DDM.

In the presence of an urgency signal, �(t) , the model is 
modified such that

where �initial = kc , and c is the motion strength (coher-
ence) ( c = 1 for fully coherent motion), while k is some 
proportional constant. The noise level (standard deviation), 
�initial = �0

√
1 + �c� , for some constant �0 . The time-vari-

ant gain function was described by a logistic function, con-
strained to be 1 at time 0, but with an additional parameter 
allowing scaling of the gain range (Ditterich, 2006):

where d , sx , and sy are model parameters. Figure 1B illus-
trates how the parameters affect the shape of this function.

(2)dX =
�
�initial�(t)

�
dt +

√
dt
�
�(t)�initial

�
�

(3)�(t) =
syexp(sx(t − d))

1 + exp(sx(t − d))
+

1 +
(
1 − sy

)
exp(−sxd)

1 + exp
(
−sxd

)

Fig. 1  Schematic diagram to 
illustrate the different effects on 
DDM’s choice behaviour with 
time-variant gain on drift rate 
or noise. A Blue: increasing 
only signal strength over time 
leads to more correct decisions 
at a later time—slower correct 
choices than error choices. Red: 
increasing only noise level over 
time causes errors at a later 
time to be more likely—slower 
error choices than correct 
choices. Dashed lines: decision 
thresholds in which a choice is 
committed upon reaching one 
of them. B Time-variant gain 
function �(t) evolving over time 
for different parameter sets
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Note that the variance was assumed to increase with 
the absolute value of the motion strength c , with twice the 
variance for a fully coherent stimulus as compared to a pure 
noise stimulus. If this dependency is removed, the model 
could still readily fit the experimental data of Roitman and 
Shadlen (2002), albeit not as well (Ditterich, 2006). Hence, 
for clarity of argument, we later removed from the noise 
term this dependency of c such that the noise term only 
depended on �0 , as follows:

The decision formation process for the standard DDM starts 
with an initial value of 0. The upper threshold for a correct choice 
(for positive drift rates) is when X reaches some decision thresh-
old, Z = 1 , while the lower threshold for an error choice (for 
positive drift rates) is when X reaches Z = −1 . Once a threshold 
is reached, the integration process is ceased, and the time dura-
tion from stimulus onset is defined as the decision time, tdecision . 
The response time RT , which has been measured by Roitman 
and Shadlen (2002), is given by RT = tdecision + tresidual . In Dit-
terich (2006), tresidual is assumed to be normally distributed with 
mean tresidual and standard deviation �residual.

Based on this model, we explored the following four 
cases: (i) time-variant gain on both drift rate and noise term 
with noise depending on c (to act as the control condition); 
(ii) time-variant gain on both drift rate and noise term with 
noise independent of c ; (iii) time-variant gain only on noise 
term (independent of c ); and (iv) time-variant gain only on 
drift rate (with noise term independent of c).

Model Fitting and Statistical Analyses

For model fitting, we opted for group-level analysis. This 
approach was chosen to effectively capture general trends 
and effects consistent across participants within each spe-
cies. By focusing on group-level patterns, we aim to identify 
broad behavioural trends in decision-making that are com-
mon across rats, monkeys, and humans.

To feed real data into PyDDM (Shinn et al., 2020) for model 
4 in Ditterich (2006), we converted RTs and other time-related 

(4)dX =
�
�initial�(t)

�
dt +

√
dt
�
�(t)�0

�
�

parameters from milliseconds to seconds. Then, utilising the 
monkey dataset from Roitman and Shadlen (2002), we selected 
epochs with RTs between 0.1 and 1.65 s, as considered in Huk 
and Shadlen (2005). For the human and rat datasets from 
Shevinsky and Reinagel (2019), we chose the best unbiased 
epochs with RTs between 0.1 and 2.5 s.

In our analyses, we employed the ‘LossRobustLikeli-
hood’ function from the PyDDM package for model fit-
ting. This function calculates the negative log likelihood 
of the probability distribution functions (PDFs) in the data, 
thereby incorporating robustness to outliers. Contrary to 
approaches that focus solely on mean RT and accuracy, 
this likelihood-based approach assesses the probability 
of the entire observed dataset given the parameters of the 
model. This methodology ensures that our fitting procedure 
accounts for the entire distribution of RTs and choices, 
rather than just their summary statistics.

For each dataset, we fitted all four cases of the time-vari-
ant gain DDM for a trial duration of 5 s and dt = 0.01 s using 
the PyDDM solver, a flexible and user-friendly software 
for simulating and fitting generalised DDMs (Shinn et al., 
2020). Due to the stochastic nature of the PyDDM solver and 
the possibility of different estimated parameters for each run, 
we executed the code 18 times using a robust negative log 
likelihood as the loss function. For the next step, we gener-
ated a model squared error distribution for each case. Using 
the Kruskal–Wallis test (Kruskal & Wallis, 1952) as well as 
the pairwise comparisons with Tukey’s honestly significant 
difference (HSD) procedure (Tukey, 1949) and assuming 
the same squared error distribution for all cases, we then 
determined if there were statistically significant differences 
in the cases’ squared errors. The case with the lowest mean 
squared error over all runs was considered the best-fitted 
case. For further analysis in each case, we selected the fit-
ted model with the smallest squared error among the runs. 
Since we have seven parameters for all cases, to investigate 
the models’ complexity cost, we calculated Akaike informa-
tion criterion (AIC) (Akaike, 1974) for each case using the 
following equation:

For RT PDFs, motion strengths of 3.2% and 12.8% for mon-
keys, 2% and 12% for humans, and 10% and 50% for rats were 
selected to represent the relatively difficult and easy tasks, 
respectively, with a sufficient number of trials to generate 
smooth RT distributions.

Hardware, Software, and Codes and Data 
Accessibility

For model fitting, we used Python 3, PyCharm 2023.1.2, and 
PyDDM 0.7.0, whereas for statistical analyses and plots, we 

(5)AIC = 14 − 2 × (log likelihood)

Fig. 2  Time-variant gain on both drift rate and noise fits monkey data 
best. Estimated models for four cases based on monkey choice behav-
ioural data (choice accuracy and reaction time (RT) distributions) in 
Roitman and Shadlen (2002). A Insets: absolute differences between 
the fitted and actual mean RTs. B Cases in the same order as in A. 
Inset: absolute differences between the fitted and actual choice accu-
racies. C Probability density functions (PDFs) of the correct and error 
RTs for selected motion strengths. D Model squared error and model 
AIC for each case. E Normalised values of the model parameters for 
the four cases. Legend order based on ranking of model fitting in D, 
best at the top. Inset: timecourse of fitted time-variant gain function 
for each case. Time from stimulus onset

◂
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used MATLAB version 2023a. Windows machines with 14 
CPU cores, Intel i9-13900H, and 64-GB RAM were used.

The source codes, generated data, and analyses that sup-
port the findings of this study are available at https:// github. 
com/ abasa dpour/ Urgen cyDDM onSpe cies. The PyDDM 
solver is available via Shinn et al. (2020). The original data-
sets of the monkeys, humans, and rats are openly available via 
the original studies (Roitman & Shadlen, 2002; Shevinsky & 
Reinagel, 2019).

Results

Our investigative approach focused on identifying the opti-
mal model parameters for time-variant gain DDM on the 
choice behavioural data of three different species. Specifi-
cally, we explored the following four types or cases of the 
model (model 4, in Ditterich (2006)). Case (i) had time-
variant gain on both drift rate and noise term with noise 
depending on the motion coherence, c , of the stimulus, as 
in Ditterich (2006). This would act as the control condition. 
Case (ii) was a slight variation of Case (i), with time-variant 
gain on both drift rate and noise term, but with the noise 
independent of c . The latter eliminated a possible confound-
ing factor, while branching off into two other cases: Case 
(iii) had time-variant gain only on noise term (independent 
of c ), while Case (iv) had time-variant gain only on drift rate 
with noise term independent of c.

Next, we used the PyDDM optimisation algorithm (Shinn 
et al., 2020) to fit all of the above four cases separately to 
each behavioural dataset per species. In particular, we used 
the monkey data from Roitman and Shadlen (2002) and the 
human and rat data from Shevinsky and Reinagel (2019). 
Importantly, all three datasets made use of the same experi-
mental task paradigm, a visual motion discrimination task 
using standard random-dot kinematogram stimulus in a reac-
tion time setting. We shall discuss the model fitting results in 
the following species order: monkeys, humans, and then rats.

Time‑Variant Gain on Both Drift Rate and Noise 
Accounts for Monkey Data Best

Figure 2A shows the trend of the mean correct and error 
RTs across different motion strengths of the monkey data 
and all four cases of the model. By visual inspection, one 
could observe that Cases (i) and (ii) provided the best RT 
fit, with slower error than correct RTs. Case (iii) also had 

slower error RTs, albeit poorer fit. In particular, for inter-
mediate-motion strengths, the model had much higher error 
RTs compared to monkey data. Case (iv) gave the worst fit, 
with faster error RTs. These were also indicated in the insets 
in Fig. 2A, which show the absolute differences between the 
fitted and actual mean RTs.

In terms of choice accuracy, Cases (i)–(iii) readily fit-
ted the data, but Case (iv) performed more poorly for lower 
motion strengths (Fig. 2B). The inset in Fig. 2B clearly 
indicated this. By comparing the RT probability density 
functions (directly related to RT histograms) (Fig. 2C), one 
could see how Case (iv) struggled with the fitting—its RT 
PDFs were skewed leftward away from the data (Fig. 2C, 
bottom). If we consider time-variant gain on the DDM’s drift 
rate as increasing signal over time (within a trial), decisions 
made later within a trial are going to consist of more correct 
choices than errors. However, the monkey data generally has 
slower error RTs, which this model struggles to fit. This led 
to RT distributions, especially error RT distributions, not 
being properly fitted by Case (iv). This was observed in our 
previous work (Tan et al., 2023).

The model squared error and AIC for each case again 
showed that Cases (i) and (ii) provided the best fit, with Case 
(ii) perhaps gaining a slight advantage, whereas Cases (iii) and 
(iv) performed significantly worse (p < 0.05). Next, we com-
pared the normalised fitted model parameters for all cases. We 
found that the parameter Sy for Case (iv) attained too high a 
value as compared to those of the other cases while Sx reached 
near the fitting boundary (i.e. 0) (Fig. 2E). As the parameter 
Sy controls the amplitude of the gain function (Eq. (3)), one 
could see that for small Sx , the gain continued to rise linearly 
over a long period of time (Fig. 2E, inset).

Thus, the above results support our previous simulated 
results for the monkey data (Tan et al., 2023). Specifically, at 
least for the monkey data, time-variant gain only on drift rate 
enhances the signal at later times, leading to more correct 
but slower RTs, while time-variant gain only on noise term 
(with or without dependency on signal/stimulus c ) leads to 
opposite model correct-vs-error RT trend (Fig. 1A). We shall 
next further investigate the two other species.

Minimal and Indistinguishable Time‑Variant Gain 
Effects for Human Data

In the human data of Shevinsky and Reinagel (2019), error 
RTs were generally slower than correct choices, as in the 
monkey (Roitman & Shadlen, 2002) data, albeit only slightly 
(Fig. 3A). Interestingly, for very high motion strengths, 
human error RTs increased with increasing motion strengths, 
unlike in the monkey data. This could be due to high inter-
participant variability.

Figure 3A shows the trend of the mean correct and error 
RTs across different motion strengths for all four cases of the 

Fig. 3  Minimal and indistinguishable time-variant gain effects for 
human data. Estimated models for four cases based on human choice 
behavioural data (choice accuracy and reaction time distributions) in 
Shevinsky and Reinagel (2019). Labels as in Fig. 2. **p < 0.01 in D

◂

https://github.com/abasadpour/UrgencyDDMonSpecies
https://github.com/abasadpour/UrgencyDDMonSpecies
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model. One could observe that none of the cases provides 
good RT fit (Fig. 3A). All cases struggled with exhibiting 
slower error RTs, specifically for higher motion strengths. In 
terms of choice accuracy, all cases performed more poorly 
at intermediate motion strengths (Fig. 3B). The RT PDFs 
showed that the RT PDFs for the higher motion strength 
(12% coherence) were not captured well by all the cases 
(Fig. 3C).

The model squared errors were very close to each 
other, with Case (iv) providing the best fit only mar-
ginally (Fig. 3D). However, the AIC analysis revealed 
a different aspect: even though Case (iv) had the low-
est squared error, it exhibited a significantly higher AIC 
value of 33,075 (p < 0.001), compared to the other cases 
(Cases (i) to (iii)), which hovered around 32,100, without 
any notable differences. When we compared the normal-
ised fitted model parameters for all cases, we found that 
the amplitude parameter Sy differed the most across all the 
cases (Fig. 3E), and this was further evidenced in the fit-
ted time-variant gain function timecourse (Fig. 3E, inset). 
Interestingly, the time-variant gain for Case (iv) was the 
smallest, very close to the value of 1, i.e. almost minimal 
gain influence. This was not surprising, given that the 
majority of error RTs were generally rather close to the 
correct RTs in the human data (except for high motion 
strengths, which had substantially fewer error trials).

Time‑Variant Gain on Drift Rate Accounts for Rat 
Data Best

In the rodent data of Shevinsky and Reinagel (2019), error 
RTs were generally faster than correct RTs as motion 
strengths increased, unlike the above primate data (Fig. 4A). 
One could observe that Case (iv) provided the best fit for 
correct RTs, error RTs, and choice accuracy (Fig. 4A–C). 
Further, Cases (i)–(iii) were unable to separate correct and 
error RTs, while Case (i) was unable to fit choice accuracy 
for high motion strengths.

The model squared error again showed that Case 
(iv) provided the best fit while Case (i) had the worst 
fit (p < 0.05) (Fig. 4D). Complementing this, the AIC 
analysis corroborated Case (iv)’s superior fitting, as it, 
alongside Case (ii), exhibited the lowest mean AIC val-
ues at around 34,260, significantly lower than those of 
Cases (i) and (iii) (p < 0.05). As in the other datasets, the 
normalised fitted model parameters for all cases revealed 
the amplitude parameter Sy differed the most across all 
the cases (Fig. 4E), and this was further supported in 

the fitted time-variant gain function timecourse (Fig. 4E, 
inset). Moreover, Case (i) showed substantial deviation of 
values for model parameters Sx (slope of gain function) 
and �0 (noise level). With Case (iv), we have provided an 
alternative cognitive model (time-variant gain on drift 
rate) for the rat data in Shevinsky and Reinagel (2019).

Discussion

In this work, with a focus on introducing an alternative 
parsimonious model, we investigated whether time-
variant gain only on the noise term of a DDM leads to 
slower error RTs than correct RTs, while time-variant 
gain only on the drift rate of a DDM generates faster 
errors (Fig. 1A). Importantly, our approach focused on 
identifying general trends and effects consistent across 
subjects in each species. This perspective was crucial 
for highlighting the utility of group-level modelling in 
revealing broad behavioural trends in decision-making 
processes. Intuitively, one can consider time-variant 
gain on the DDM’s noise term as increasing the noise 
over time (within a trial), causing some form of signal-
independent urgency to force a choice. Thus, decisions 
made at a later time (within a trial) are going to consist 
of more errors than correct ones, hence slower decisions 
(Fig. 1A). The effect is similar to the collapsing decision 
bound models (Ditterich, 2006; Drugowitsch et al., 2012; 
Hawkins et al., 2015).

In contrast, time-variant gain on the drift rate or signal 
effectively increases the signal strength over time, leading 
to improved accurate choices but at later times, as com-
pared to error choices with the same stimulus or signal 
(Fig. 1A). One may be tempted to consider time-variant 
gain only on drift rate as a form of temporal enhancement 
of sensory signals, e.g. via attentional or arousal mecha-
nisms (e.g. Smith & Ratcliff, 2009). However, one cannot 
associate its equivalence to collapsing bound DDM (Dit-
terich, 2006; Drugowitsch et al., 2012; Hawkins et al., 
2015) despite their intuitive similarity. This is due to the 
choice biases (towards correct decisions) already inbuilt 
within the drift rate.

In this study, these separate time-variant gain mechanisms, 
together with the original time-variant gain DDM (model 
4) of Ditterich (2006), were evaluated on monkey, human, 
and rat choice behavioural data performing the same motion 
discrimination task. Model parameter optimisation was con-
ducted separately on the datasets. For monkey behavioural 
data from Roitman and Shadlen (2002), we found DDM with 
time-variant gain on both drift rate and noise term (Cases (i) 
and (ii)) to fit the data the best (Fig. 2). Interestingly, with 
regard to behavioural data, we found that even when noise 
term was independent of motion strength, the model could 

Fig. 4  Time-variant gain on drift rate fits rat data best. Estimated 
models for four cases based on rat choice behavioural data (choice 
accuracy and reaction time distributions) in Shevinsky and Reinagel 
(2019). Labels as in Fig. 2

◂
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still capture the data almost equally well as the model (4) 
in Ditterich (2006), if not slightly better (Fig. 2D). We also 
found DDM with time-variant gain only on noise term (Case 
(iii)) could exhibit slower error RTs even though the fit was 
not as good, while time-variant on drift rate was unable to 
show that (Fig. 2A). This supported our earlier computational 
simulation observations (Tan et al., 2023).

For human behavioural data, our results showed that 
DDM with time-variant gain only on drift rate (Case 
(iv)) gave the best fit (Fig.  3). However, the fitting fit-
ness (squared error) was comparable across all the cases 
(Fig. 3D). Interestingly, the AIC analysis revealed that 
despite Case (iv) having the lowest squared error, it exhib-
ited a notably higher AIC, indicating a potential overfitting 
compared to Cases (i), (ii), and (iii), which had AIC values 
without significant differences. This suggests that while 
Case (iv) might provide a marginally better fit in terms of 
squared error, its complexity does not necessarily translate 
into a proportionally better model for the data. Further, the 
best-fitted case had minimal gain influence (with values 
near 1) (Fig. 3E). This lack of distinguishability across the 
cases and the minimal gain effects (of the best-fitted case) 
could be due to the relatively smaller difference between 
correct and error RTs, possibly caused by high variability 
among the human participants. Other human studies (e.g. 
Palmer et al., 2005; Smith & Ratcliff, 2022) also showed 
small differences in correct and error RTs, and that a stand-
ard DDM suffices to account for human choice behaviour. 
In other modelling studies such as in Nguyen and Rein-
agel (2022), response bias or across-trial variability in the 
drift rate is an alternative approach to account for the finer 
aspects of human behavioural data.

With regard to rat behavioural data, we found the model 
with time-variant gain only on drift rate provided the best 
fit (Fig. 4), consistent with our earlier observation on 
generating faster error RTs (Tan et al., 2023). This asser-
tion was further strengthened by the AIC analysis, which 
indicated that Cases (ii) and (iv), particularly Case (iv), 
had the most favourable balance between model complex-
ity and fit, as evidenced by their significantly lower AIC 
values compared to Cases (i) and (iii) (p < 0.05). Interest-
ingly, models with time-variant gain on both drift rate and 
noise (Cases (i) and (ii), especially Case (i)) were unable 
to replicate the data as well. This could perhaps be due 
to the equal modulatory factors on these two terms in the 
models, hence permitting less flexibility.

By comparing the best-fitted case for each species, we 
found substantial variability in the amplitudes of the time-
variant gain functions (Fig. S1). Specifically, the time-
variant gain amplitude decreases from rats, to monkeys 
and then humans. An interesting side observation was that 
the gain function for monkeys changed substantially only 
within a relatively short duration of time within a critical 

decision formation epoch. This duration was comparable 
to the modelled gain time constant (~ 190 ms) in Niyogi 
and Wong-Lin (2013), which used a more biologically 
based decision model to account for the data of Roitman 
and Shadlen (2002). Taken together, our results shed light 
on the possible different mechanisms or strategies during 
perceptual decision formation across the species.

Our work has focused on capturing choice behaviour in 
different species, but the neural network mechanism(s) to 
separately instantiate the gain modulation of either the net-
work’s signal or noise is still unclear, especially in more 
biologically based decision models (e.g. Wang, 2002; Wong 
& Wang, 2006) wherein signal and noise reside within neu-
ronal input–output functions. In particular, in more bio-
logical models of decision-making (e.g. Wong and Wang 
(2006)), the neural response (e.g. neural firing rate), f  is 
dependent on the input–output or transfer function F , gener-
ally some nonlinear function, such that f = F(Itotal) , where 
Itotal is the total input (current) to the neurons. Time-variant 
gain, �(t) , typically operates such that f = �(t)F(Itotal) , i.e. 
acting as a multiplicative gain factor on the input–output 
function (e.g. Niyogi and Wong-Lin (2013)).

Although F is generally nonlinear, the operating regime 
may span around the approximately linear part of the function 
(e.g. see Wong and Wang (2006)). For clarity of explanation, 
suppose this is the case, and that the noise is additive and 
separate from the signal, such that Itotal = Isignal + Inoise , then 
f = �(t)F

(
Itotal

)
= �(t)Isignal + �(t)Inoise , thus demonstrating 

the apparent difficulty in separate gains on the input signal 
and noise terms.

As mentioned above, noise in decision systems can be 
contributed by internal noise (in the brain) or external (stim-
ulus) noise, or both, i.e. I

noise
= Iinternal noise + Iexternal noise . If 

there is a time-variant gain acting on the sensory evidence 
signal, which may constitute the major source of noise (as 
possibly in non-human primates), then both decision signal 
(drift rate) and noise may be affected by this time-variant 
gain. In contrast, if there is a different internally gener-
ated major source of noise (as possibly in rats), then time-
variant gain may effectively not operate much on the noise. 
This still leaves us with the question on how time-variant 
gain only on drift rate may possibly arise.

From several neurophysiological studies, it is known 
that noise in neurons can be attributed to the barrage of 
balanced excitatory and inhibitory (E/I balance) synaptic 
currents such that the average synaptic input can be rela-
tively small while its variance (noise) is large (see e.g. 
Okun and Lampl (2009), and also references in Niyogi 
and Wong-Lin (2013)). Transient E/I imbalance, e.g. due 
to unequal (heterogeneous) chemical neuromodulation 
(e.g. Eckhoff et al., 2009; McBurney-Lin et al., 2019), 
may lead to larger proportional change in the average 
signal but smaller proportional change in its variance 
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(noise). This may effectively lead to time-variant gain 
on the DDM’s drift rate being affected more than on its 
noise. For example, transient activity of the neuromodula-
tor norepinephrine has been known to be associated with 
enhanced neural signal-to-noise ratio in perceptual tasks 
(Aston-Jones & Cohen, 2005).

In this work, we have focused on group-level analyses as 
our main aim was to explore how introducing time-variant 
gain parameters could impact the fit of decision-making mod-
els to empirical data, rather than seeking a generalised model 
to apply to new datasets. Future work can apply individual-
level modelling rather than group level to investigate the 
interplay of individual differences and varied strategies in 
decision-making. Additionally, further research could explore 
larger datasets, enhancing model robustness and validation. 
Implementing cross-validation methods would provide 
deeper insights into the generalisability of decision-making 
models. These directions, vital for advancing our understand-
ing, promise to address current limitations and broaden our 
comprehension of diverse choice behavioural dynamics. 
Taken together, from a cognitive computational science view-
point, we have shown that time-variant gain on the drift and 
noise term for a DDM can differently affect choice behaviour, 
account for different species’ choice behaviour, and can be 
useful for systematic fitting of choice behavioural data.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42113- 023- 00194-1.
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