19,368 research outputs found

    Soft Textured Shadow Volume

    Get PDF
    International audienceEfficiently computing robust soft shadows is a challenging and time consuming task. On the one hand, the quality of image-based shadows is inherently limited by the discrete property of their framework. On the other hand, object-based algorithms do not exhibit such discretization issues but they can only efficiently deal with triangles having a constant transmittance factor. This paper addresses this limitation. We propose a general algorithm for the computation of robust and accurate soft shadows for triangles with a spatially varying transmittance. We then show how this technique can be efficiently included into object-based soft shadow algorithms. This results in unified object-based frameworks for computing robust direct shadows for both standard and perforated triangles in fully animated scenes

    Interactive removal and ground truth for difficult shadow scenes

    Get PDF
    A user-centric method for fast, interactive, robust, and high-quality shadow removal is presented. Our algorithm can perform detection and removal in a range of difficult cases, such as highly textured and colored shadows. To perform detection, an on-the-fly learning approach is adopted guided by two rough user inputs for the pixels of the shadow and the lit area. After detection, shadow removal is performed by registering the penumbra to a normalized frame, which allows us efficient estimation of nonuniform shadow illumination changes, resulting in accurate and robust removal. Another major contribution of this work is the first validated and multiscene category ground truth for shadow removal algorithms. This data set containing 186 images eliminates inconsistencies between shadow and shadow-free images and provides a range of different shadow types such as soft, textured, colored, and broken shadow. Using this data, the most thorough comparison of state-of-the-art shadow removal methods to date is performed, showing our proposed algorithm to outperform the state of the art across several measures and shadow categories. To complement our data set, an online shadow removal benchmark website is also presented to encourage future open comparisons in this challenging field of research

    Insignificant shadow detection for video segmentation

    Get PDF
    To prevent moving cast shadows from being misunderstood as part of moving objects in change detection based video segmentation, this paper proposes a novel approach to the cast shadow detection based on the edge and region information in multiple frames. First, an initial change detection mask containing moving objects and cast shadows is obtained. Then a Canny edge map is generated. After that, the shadow region is detected and removed through multiframe integration, edge matching, and region growing. Finally, a post processing procedure is used to eliminate noise and tune the boundaries of the objects. Our approach can be used for video segmentation in indoor environment. The experimental results demonstrate its good performance

    Spin-isospin textured excitations in a double layer at filling factor Μ=2\nu =2

    Full text link
    We study the charged excitations of a double layer at filling factor 2 in the ferromagnetic regime. In a wide range of Zeeman and tunneling splittings we find that the low energy charged excitations are spin-isospin textures with the charge mostly located in one of the layers. As tunneling increases, the parent spin texture in one layer becomes larger and it induces, in the other layer, a shadow spin texture antiferromagnetically coupled to the parent texture. These new quasiparticles should be observable by measuring the strong dependence of its spin on tunneling and Zeeman couplings.Comment: 4 pages, 4 figure

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Transmission electron microscopy and x-ray diffraction investigation of the microstructure of nanoscale multilayer TiAlN/VN grown by unbalanced magnetron deposition

    Get PDF
    Cubic NaCl-B1 structured multilayer TiAlN/VN with a bi-layer thickness of approximately 3 nm and atomic ratios of (Ti+Al)/V = 0.98 to 1.15 and Ti/V = 0.55 to 0.61 were deposited by unbalanced magnetron sputtering at substrate bias voltages between -75 and -150 V. In this paper, detailed transmission electron microscopy and x-ray diffraction revealed pronounced microstructure changes depending on the bias. At the bias -75 V, TiAlN/VN followed a layer growth model led by a strong (110) texture to form a T-type structure in the Thornton structure model of thin films, which resulted in a rough growth front, dense columnar structure with inter-column voids, and low compressive stress of -3.8 GPa. At higher biases, the coatings showed a typical Type-II structure following the strain energy growth model, characterized by the columnar structure, void-free column boundaries, smooth surface, a predominant (111) texture, and high residual stresses between -8 and -11.5 GPa

    In-space fabrication of thin-film structures

    Get PDF
    A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission
    • 

    corecore