11,540 research outputs found

    Hierarchical spin-orbital polarisation of a giant Rashba system

    Get PDF
    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids, and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarisation. Here, combining polarisation-dependent and resonant angle-resolved photoemission measurements with density-functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a re-interpretation of spin splitting in Rashba-like systems, and opens new possibilities for controlling spin polarisation through the orbital sector.Comment: 11 pages including supplemental figures, accepted for publication at Science Advance

    Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings

    Get PDF
    High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.

    Geometric phases in semiconductor spin qubits: Manipulations and decoherence

    Get PDF
    We describe the effect of geometric phases induced by either classical or quantum electric fields acting on single electron spins in quantum dots in the presence of spin-orbit coupling. On one hand, applied electric fields can be used to control the geometric phases, which allows performing quantum coherent spin manipulations without using high-frequency magnetic fields. On the other hand, fluctuating fields induce random geometric phases that lead to spin relaxation and dephasing, thus limiting the use of such spins as qubits. We estimate the decay rates due to piezoelectric phonons and conduction electrons in the circuit, both representing dominant electric noise sources with characteristically differing power spectra.Comment: 17 pages, 8 figures, published versio

    Magnetization precession due to a spin polarized current in a thin nanoelement: numerical simulation study

    Full text link
    In this paper a detailed numerical study (in frames of the Slonczewski formalism) of magnetization oscillations driven by a spin-polarized current through a thin elliptical nanoelement is presented. We show that a sophisticated micromagnetic model, where a polycrystalline structure of a nanoelement is taken into account, can explain qualitatively all most important features of the magnetization oscillation spectra recently observed experimentally (S.I. Kiselev et al., Nature, vol. 425, p. 380 (2003), namely: existence of several equidistant spectral bands, sharp onset and abrupt disappearance of magnetization oscillations with increasing current, absence of the out-of-plane regime predicted by a macrospin model and the relation between frequencies of so called small-angle and quasichaotic oscillations. However, a quantitative agreement with experimental results (especially concerning the frequency of quasichaotic oscillations) could not be achieved in the region of reasonable parameter values, indicating that further model refinement is necessary for a complete understanding of the spin-driven magnetization precession even in this relatively simple experimental situation.Comment: Submitted to Phys. Rev. B; In this revised version figure positions on the page have been changed to ensure correct placements of the figure caption

    LANDSAT-D investigations in snow hydrology

    Get PDF
    Work undertaken during the contract and its results are described. Many of the results from this investigation are available in journal or conference proceedings literature - published, accepted for publication, or submitted for publication. For these the reference and the abstract are given. Those results that have not yet been submitted separately for publication are described in detail. Accomplishments during the contract period are summarized as follows: (1) analysis of the snow reflectance characteristics of the LANDSAT Thematic Mapper, including spectral suitability, dynamic range, and spectral resolution; (2) development of a variety of atmospheric models for use with LANDSAT Thematic Mapper data. These include a simple but fast two-stream approximation for inhomogeneous atmospheres over irregular surfaces, and a doubling model for calculation of the angular distribution of spectral radiance at any level in an plane-parallel atmosphere; (3) incorporation of digital elevation data into the atmospheric models and into the analysis of the satellite data; and (4) textural analysis of the spatial distribution of snow cover

    Electro-Optic Effects in Colloidal Dispersion of Metal Nano-Rods in Dielectric Fluid

    Full text link
    In modern transformation optics, one explores metamaterials with properties that vary from point to point in space and time, suitable for applications in devices such as an "optical invisibility cloak" and an "optical black hole". We propose an approach to construct spatially varying and switchable metamaterials that are based on colloidal dispersions of metal nano-rods (NRs) in dielectric fluids, in which dielectrophoretic forces, originating in the electric field gradients, create spatially varying configurations of aligned NRs. The electric field controls orientation and concentration of NRs and thus modulates the optical properties of the medium. Using gold (Au) NRs dispersed in toluene, we demonstrate electrically induced change in refractive index on the order of 0.1.Comment: 27 pages, 23 figure
    corecore