25 research outputs found

    Medical infrared thermal image based fatty liver classification using machine and deep learning

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) causes accumulation of excess fat in the liver affecting people who drink little to no alcohol. Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease (inflammation in the liver), may progress to cirrhosis and liver failure. Liver function tests, ultrasound (US) and magnetic resonance imaging (MRI) are used to help diagnose and monitor liver disease or damage. In this study, the feasibility of medical infrared thermal imaging (MITI) in automatic detection of NAFLD was investigated, and 167 MITI images (44 positive) from 32 patients (7 positive) were evaluated using image processing and classification methods. Convolutional neural network (CNN) architectures and texture analysis methods were used in the feature selection phase. After feature selection and binary classification, the highest values from different setups for recall, f-score, specificity, accuracy, and area-under-curve (AUC) were 1.00, 1.00, 0.83, 1.0, 0.94, and 0.92, respectively. The highest values were achieved by CNN based methods on different datasets, however, texture analysis method performed lower. Here, it is shown that some of the CNN architectures have high potential on extracting features from thermal images. Finally, machine and deep learning approaches can be combined in detecting NAFLD using infrared thermal images

    Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm

    Get PDF
    PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage

    Automatic classification of white regions in liver biopsies by supervised machine learning

    Get PDF
    Automated assessment of histological features of non-alcoholic fatty liver disease (NAFLD) may reduce human variability and provide continuous rather than semiquantitative measurement of these features. As part of a larger effort, we perform automatic classification of steatosis, the cardinal feature of NAFLD, and other regions that manifest as white in images of hematoxylin and eosin-stained liver biopsy sections. These regions include macrosteatosis, central veins, portal veins, portal arteries, sinusoids and bile ducts. Digital images of hematoxylin and eosin-stained slides of 47 liver biopsies from patients with normal liver histology (n = 20) and NAFLD (n = 27) were obtained at 20× magnification. The images were analyzed using supervised machine learning classifiers created from annotations provided by two expert pathologists. The classification algorithm performs with 89% overall accuracy. It identified macrosteatosis, bile ducts, portal veins and sinusoids with high precision and recall (≥ 82%). Identification of central veins and portal arteries was less robust but still good. The accuracy of the classifier in identifying macrosteatosis is the best reported. The accurate automated identification of macrosteatosis achieved with this algorithm has useful clinical and research-related applications. The accurate detection of liver microscopic anatomical landmarks may facilitate important subsequent tasks, such as localization of other histological lesions according to liver microscopic anatomy

    Implementation of combinational deep learning algorithm for non-alcoholic fatty liver classification in ultrasound images

    Get PDF
    Background: Nowadays, fatty liver is one of the commonly occurred diseases for the liver which can be observed generally in obese patients. Final results from a vari-ety of exams and imaging methods can help to identify and evaluate people affected by this condition. Objective: The aim of this study is to present a combined algorithm based on neural networks for the classification of ultrasound �images from fatty liver affected patients. Material and Methods: In experimental research can be categorized as a diagnostic study which focuses on classification of the acquired ultrasonography images for 55 patients with fatty liver. We implemented pre-trained convolutional neural networks of Inception-ResNetv2, GoogleNet, AlexNet, and ResNet101 to extract features from the images and after combining these resulted features, we provided support vector machine (SVM) algorithm to classify the liver images. Then the results are compared with the ones in implementing the algorithms independently. Results: The area under the receiver operating characteristic curve (AUC) for the introduced combined network resulted in 0.9999, which is a better result compared to any of the other introduced algorithms. The resulted accuracy for the proposed network also caused 0.9864, which seems acceptable accuracy for clinical application. Conclusion: The proposed network can be used with high accuracy to classify ultrasound images of the liver to normal or fatty. The presented approach besides the high AUC in comparison with other methods have the independence of the method from the �user or expert interference. © 2021, Shriaz University of Medical Sciences. All rights reserved

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Automated Characterisation and Classification of Liver Lesions From CT Scans

    Get PDF
    Cancer is a general term for a wide range of diseases that can affect any part of the body due to the rapid creation of abnormal cells that grow outside their normal boundaries. Liver cancer is one of the common diseases that cause the death of more than 600,000 each year. Early detection is important to diagnose and reduce the incidence of death. Examination of liver lesions is performed with various medical imaging modalities such as Ultrasound (US), Computer tomography (CT), and Magnetic resonance imaging (MRI). The improvements in medical imaging and image processing techniques have significantly enhanced the interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. Moreover, CAD systems can help physician, as a second opinion, in characterising lesions and making the diagnostic decision. Thus, CAD systems have become an important research area. Particularly, these systems can provide diagnostic assistance to doctors to improve overall diagnostic accuracy. The traditional methods to characterise liver lesions and differentiate normal liver tissues from abnormal ones are largely dependent on the radiologists experience. Thus, CAD systems based on the image processing and artificial intelligence techniques gained a lot of attention, since they could provide constructive diagnosis suggestions to clinicians for decision making. The liver lesions are characterised through two ways: (1) Using a content-based image retrieval (CBIR) approach to assist the radiologist in liver lesions characterisation. (2) Calculating the high-level features that describe/ characterise the liver lesion in a way that is interpreted by humans, particularly Radiologists/Clinicians, based on the hand-crafted/engineered computational features (low-level features) and learning process. However, the research gap is related to the high-level understanding and interpretation of the medical image contents from the low-level pixel analysis, based on mathematical processing and artificial intelligence methods. In our work, the research gap is bridged if a relation of image contents to medical meaning in analogy to radiologist understanding is established. This thesis explores an automated system for the classification and characterisation of liver lesions in CT scans. Firstly, the liver is segmented automatically by using anatomic medical knowledge, histogram-based adaptive threshold and morphological operations. The lesions and vessels are then extracted from the segmented liver by applying AFCM and Gaussian mixture model through a region growing process respectively. Secondly, the proposed framework categorises the high-level features into two groups; the first group is the high-level features that are extracted from the image contents such as (Lesion location, Lesion focality, Calcified, Scar, ...); the second group is the high-level features that are inferred from the low-level features through machine learning process to characterise the lesion such as (Lesion density, Lesion rim, Lesion composition, Lesion shape,...). The novel Multiple ROIs selection approach is proposed, in which regions are derived from generating abnormality level map based on intensity difference and the proximity distance for each voxel with respect to the normal liver tissue. Then, the association between low-level, high-level features and the appropriate ROI are derived by assigning the ability of each ROI to represents a set of lesion characteristics. Finally, a novel feature vector is built, based on high-level features, and fed into SVM for lesion classification. In contrast with most existing research, which uses low-level features only, the use of high-level features and characterisation helps in interpreting and explaining the diagnostic decision. The methods are evaluated on a dataset containing 174 CT scans. The experimental results demonstrated that the efficacy of the proposed framework in the successful characterisation and classification of the liver lesions in CT scans. The achieved average accuracy was 95:56% for liver lesion characterisation. While the lesion’s classification accuracy was 97:1% for the entire dataset. The proposed framework is developed to provide a more robust and efficient lesion characterisation framework through comprehensions of the low-level features to generate semantic features. The use of high-level features (characterisation) helps in better interpretation of CT liver images. In addition, the difference-of-features using multiple ROIs were developed for robust capturing of lesion characteristics in a reliable way. This is in contrast to the current research trend of extracting the features from the lesion only and not paying much attention to the relation between lesion and surrounding area. The design of the liver lesion characterisation framework is based on the prior knowledge of the medical background to get a better and clear understanding of the liver lesion characteristics in medical CT images

    Optical Diagnostics in Human Diseases

    Get PDF
    Optical technologies provide unique opportunities for the diagnosis of various pathological disorders. The range of biophotonics applications in clinical practice is considerably wide given that the optical properties of biological tissues are subject to significant changes during disease progression. Due to the small size of studied objects (from μm to mm) and despite some minimum restrictions (low-intensity light is used), these technologies have great diagnostic potential both as an additional tool and in cases of separate use, for example, to assess conditions affecting microcirculatory bed and tissue viability. This Special Issue presents topical articles by researchers engaged in the development of new methods and devices for optical non-invasive diagnostics in various fields of medicine. Several studies in this Special Issue demonstrate new information relevant to surgical procedures, especially in oncology and gynecology. Two articles are dedicated to the topical problem of breast cancer early detection, including during surgery. One of the articles is devoted to urology, namely to the problem of chronic or recurrent episodic urethral pain. Several works describe the studies in otolaryngology and dentistry. One of the studies is devoted to diagnosing liver diseases. A number of articles contribute to the studying of the alterations caused by diabetes mellitus and cardiovascular diseases. The results of all the presented articles reflect novel innovative research and emerging ideas in optical non-invasive diagnostics aimed at their wider translation into clinical practice
    corecore