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Summary

Automated assessment of histological features of non-alcoholic fatty liver disease (NAFLD) may 

reduce human variability and provide continuous rather than semiquantitative measurement of 

these features. As part of a larger effort, we perform automatic classification of steatosis, the 

cardinal feature of NAFLD, and other regions that manifest as white in images of hematoxylin 

and eosin–stained liver biopsy sections. These regions include macrosteatosis, central veins, portal 

veins, portal arteries, sinusoids and bile ducts. Digital images of hematoxylin and eosin–stained 

slides of 47 liver biopsies from patients with normal liver histology (n = 20) and NAFLD (n = 27) 

were obtained at 20× magnification. The images were analyzed using supervised machine learning 

classifiers created from annotations provided by two expert pathologists. The classification 

algorithm performs with 89% overall accuracy. It identified macrosteatosis, bile ducts, portal veins 

and sinusoids with high precision and recall (≥82%). Identification of central veins and portal 

arteries was less robust but still good. The accuracy of the classifier in identifying macrosteatosis 

is the best reported. The accurate automated identification of macrosteatosis achieved with this 

algorithm has useful clinical and research-related applications. The accurate detection of liver 

microscopic anatomical landmarks may facilitate important subsequent tasks, such as localization 

of other histological lesions according to liver microscopic anatomy.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in children 

and adults in the United States [1,2]. NAFLD has a spectrum that starts with a mild 

phenotype simple steatosis where only steatosis is present, and ends with a severe phenotype 

non-alcoholic steatohepatitis where steatosis is present with hepatic necro-inflammation 

and fibrosis [3]. Accurate distinction of mild from severe phenotypes of the disease is 

essential because simple steatosis rarely progresses, whereas non-alcoholic steatohepatitis 

can progress to cirrhosis, liver failure, and hepatocellular carcinoma [4-7]. Phenotyping of 

NAFLD is currently based on a pathologist’s evaluation of the “gold standard” diagnostic 

test, liver biopsy [3].

The state-of-the-art scoring system of liver biopsies performed for NAFLD is based on 

manual pathologist assessment and semi-quantification of four key histological features: 

steatosis grade, lobular inflammation, fibrosis stage and degree of hepatocyte ballooning [8]. 

It is therefore critical that these features of injury are reliably and reproducibly recognized.

Our group and others [8-15] have demonstrated that there is intra- and inter-observer 

variability in pathologists’ assessment of NAFLD histological features and assignment of 

a final disease diagnosis / phenotype. Automation of this assessment may reduce variability, 

increase accuracy, and offer a continuous rather than semi-quantitative grading of these 

histological features of NAFLD.

The overall aim of our ongoing project is to test the hypothesis that decision support 

systems for pathologists, which include computational methods for quantification of the key 

histological features of NAFLD, will lead to continuous, more accurate and less variable 

scores and ultimately better phenotyping and improved patient outcome. Key liver biopsy 

features—including macrosteatosis, central veins (CV), portal veins (PV), portal arteries 

(PA), sinusoids (SN) and bile ducts (BD)—oftentimes contain a white region, or manifest 

entirely as white regions, in liver biopsies when stained with a hematoxylin-eosin (H&E) 

stain as shown in Fig. 1. In this paper, we present an important subtask of our project—the 

accurate categorization of the white regions in liver biopsy images.

2. Materials and methods

This research protocol was reviewed and approved by the Internal Review Board of the 

Medical College of Wisconsin. A dataset consisting of 59 unique liver biopsy scans is 

included in our dataset and represents patients with a full range of different diagnosis and 

steatosis grades. Of our 59 patients, pathologist steatosis grading was available from two 

different pathologists for 47 patients (20 with normal liver histology and 27 with NAFLD 

of varying severity). Using a custom-built, Web-based Java Applet, our study pathologists 

manually annotated biopsy images and categorized 1969 different white regions.

Supplementary Table 1 provides counts for the total number of annotations for each feature 

type in our dataset, and Supplementary Fig. 1 shows the count of patients in our study by 

steatosis grade. There is overall good agreement between pathologists on the grade for each 
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patient with D.E.K. having a slightly lower threshold for calling small degrees of steatosis as 

grade 1 than R.K. (Supplementary Fig. 1).

We carried out the following steps to classify white regions (Fig. 2):

1. Obtain Image: liver biopsy samples are obtained and stained with a H&E stain. 

They are then scanned at 20× magnification using a NanoZoomer scanner 

(Hamamatsu) and stored as RGB images with 8 bits per color channel.

2. Convert RGB image to gray scale: 2 separate 8-bit gray scale images are created. 

The first is used to distinguish between tissue sample and background. The 

second is created with higher contrast and used for identifying white regions 

within the tissue sample.

3. Conversion to black and white image: Otsu’s method [16] is used to determine 

a global threshold value from our first gray scale image. This threshold is then 

applied to convert the image to black and white.

4. Identify biopsy (image foreground versus background): a region growing 

algorithm is used to separate image foreground from image background. Any 

small artifacts outside of the primary biopsy tissue region are removed from the 

image foreground based on their small size.

5. Image Adjustment: the gray scale image created from the green channel is 

smoothed using a 3×3 average filter. The image is then darkened significantly 

using a gamma correction factor of 6 to increase contrast.

6. Identify White Regions of Interest: all foreground pixels are divided into 2 

classes using k-means clustering. Once assigned a class, adjacent pixels of the 

same class are grouped into either a white region or non-white region based 

on 4-neighborhood connectivity. White regions that are smaller than a chosen 

threshold are considered noise and eliminated for further analysis.

7. Feature vector representation: each white region is assigned a feature vector 

representation to be used in a classifier.

8. Supervised learning and classification: white regions that have been annotated by 

pathologists are used as training data for a supervised machine learning classifier. 

The models learned from annotated data are applied to entire images to classify 

all white regions.

Using the annotations provided by pathologists, a feature vector (a list of attributes specific 

to each white region) is created. One goal of this research is to compare the use of 

morphological features (as had been done in previous, non-machine learning based studies) 

with the use of additional region properties. For that reason, feature vectors are created 

using only the morphological properties of the white region itself for comparison with other 

feature vectors that contain additional information about the texture and statistical properties 

of the white region and surrounding pixels.

For attributes related to a white region’s surrounding pixels, features are extracted from two 

different surrounding regions (Fig. 3). The first is the bounding box enclosing the region 
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(Fig. 3C). Any features based on the bounding box are also inclusive of the white region 

itself. The second region type is the “band” of pixels surrounding the white region (Fig. 3D). 

Texture and statistical features are then extracted for pixels that fall just within this band. 

Features based on the surrounding band are motivated by the fact that many of our white 

regions, such as bile ducts and portal veins, have color regions surrounding the white region 

that are unique to that specific type of liver anatomy.

Texture and statistical features are created based on gray images with scale representation 

created using a Gaussian blur at varying sigma (σ) levels [17]. Scale representation is based 

on the fact that objects in the world appear in different ways depending on the scale of 

observation. All texture and statistical-based features are extracted for both the gray scale 

bounding box at a given sigma level, and the associated surrounding bands (Fig. 4).

The list below details the feature vectors used for analysis of white regions. Each white 

region is assigned three different feature vectors. The first includes just the morphological 

features below. The second contains all the features below; however, scaled representation 

was only used at sigma = 0. In other words, texture and statistical properties are only based 

on the original image with no blurring. The third is all features with scale representation 

occurring at sigma levels of 0, 1, 2, 4 and 8.

• Morphological Features: features based on the shape and size characteristics of 

the white region. Includes measures such as area, perimeter, eccentricity, axis 

lengths, etc.

• Texture: texture and histogram statistics are computed for the gray scale 

bounding box and surrounding pixel band at each sigma level. The features 

include measures such as mean intensity, statistical moments, entropy, etc.

• Gray level Co-Occurrence Matrix: the gray level co-occurrence matrix (GLCM) 

is computed for pixels in the surrounding band of each white region. GLCM’s 

are a measure of how often two different (or identical) pixel intensities occur 

next to each other in an image. For the GLCM, 8-bit gray scale images are 

converted to 3-bit images resulting in an 8 × 8 matrix. The GLCM matrix is 

created symmetrically. In other words, an occurrence of pixel intensity 2 to the 

left of intensity 1 is the same occurrence as a pixel intensity 1 to the left of 

intensity 2. This reduces our feature set from 64 to 36 for a 8 × 8 matrix. The 

GLCM itself is only used as a feature at sigma = 0.

• GLCM Statistics: at each scale level, GLCM statistics such as contrast and 

energy are used as features for both the horizontal and vertical GLCM.

• N-jet: for each sigma level in our scale representation we compute the first and 

second derivatives with respect to x and y, otherwise known as the 2-jet [18]. For 

the 2-jet at each sigma level, the four rotationally invariant descriptors below are 

generated: gradient magnitude, Laplacian, determinant of Hessian, rescaled level 

curve curvature. For each of the 4 descriptors, statistical measures are then taken 

for each pixel either within the white region itself or in its surrounding band.
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• Nuclei Density: nuclei density is a measure of the number of cell nuclei in a 

given radius. Though not discussed in detail herein, a method was developed 

as part of this research to threshold cell nuclei from stained biopsy sections for 

quantification.

All supervised machine learning tasks in this work are carried out with support vector 

machine. Various different classifiers including naive Bayes, logistic regression, decision 

trees, and neural networks were considered, but support vector machines routinely 

performed better or equivalent to other classifiers.

Supervised machine learning is carried out using the open-source Waikato Environment for 

Knowledge Analysis (Weka) data mining software (Weka Machine Learning Project, 2011). 

Weka’s implementation of sequential minimal optimization algorithm for training a support 

vector classifier using polynomial or RBF kernels [19] is used in learning experiments. This 

classifier is used with a linear kernel first order polynomial.

3. Results

The models shown here all use the feature vectors described in the previous section with the 

dataset. The result are based on the annotations provide by R.K., D.E.K., and a combined 

data set.

Three different types of feature vectors are created for comparison: the first is based on just 

the morphology of a white region (12 features), the second includes morphology as well 

as texture and statistical attributes from surrounding pixels (157 total features), and the last 

includes morphology as well as the texture and statistical attributes of surrounding pixels 

occurring at different scales (413 total features).

Table 1 gives the overall test-set accuracy of models using these feature vectors averaged 

over 10 folds. Evaluation of white region classification was carried out using a 10-fold 

cross-validation experiment, where in each experiment 10% of our data are withheld to serve 

as testing data and the remaining 90% is used for training a model.

As Table 1 shows, accuracy is improved by using more advanced and robust features that 

include not only information about the shape and size of a region but also information about 

the texture and statistical properties of surrounding pixels. In addition, examining texture 

and statistical features at different scales further improves model performance.

Table 2 shows the confusion matrix for each feature type in the model. Table 3 shows 

the precision and recall rates, as well as areas under the receiver operating characteristic 

(ROC) curve for each individual feature type. Precision is a measure of the preciseness of 

predictions. In other words, if the model predicts a region is of type X, then the precision 

for region type X is the percentage of times the model is correct. Recall is a measure of 

the percentage of the time a given feature type is correctly identified. The area under the 

ROC curve measures discrimination, that is, the probability the model will rank a randomly 

chosen region of type X, higher than a randomly chosen region that is not of type X.
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Examining the results, macrosteatosis shows very strong precision and recall rates across all 

models. BD, PV, and SN all show strong precision and recall rates as well. CV and PA do 

not perform as well but both still have relatively high ROC areas.

Models initially trained using the annotations provided by R.K. had an overall accuracy of 

93.5% and achieved the best overall model results. The model achieved 84.5% accuracy 

using the annotations provided by D.E.K. and 89.3% when combining the 2 pathologists’ 

annotations.

With a model and approach for white region classification, a method now exists for 

identifying all the macrosteatosis in a biopsy section. With that, a simple computation can be 

performed taking the total surface area of the steatosis versus the surface area of the biopsy 

section to compute a continuous measure of the overall percentage of steatosis in a biopsy 

sample. To obtain this percentage of steatosis, a different model was created for each patient 

using only training data from other patients, otherwise known as a leave-one-sample out 

approach.

To gauge the effectiveness of this approach and its ability to generalize, percentage steatosis 

grades were computed and correlated with steatosis grades provided by our two study 

pathologists. Fig. 5 shows the results of correlating the computed percentage steatosis 

with the average of the two study pathologists grades. Note that cases where the average 

pathologist grade ends in .5 indicates the pathologists disagreed by one grade level. The 

charts show a good relationship, with a spearman rank correlation of 90.8%, between 

average pathologist grade and overall percentage steatosis. This correlation drops to 83.3% 

or 88.6% when using just the scores provided by R.K. or D.E.K., respectively. This is in 

fact a desired result as the ability to correlate more closely with the average of the two 

pathologist grades, than to either pathologist individually, suggests cases where pathologists 

disagreed are truly on the border between two grade levels. The continuous nature of the 

percentage steatosis metric allows this to be captured.

4. Discussion

The results of this work demonstrate that automated classification of white regions in digital 

liver biopsy images is feasible and highly accurate. Our classifier has the best reported 

accuracy in the literature for detecting and quantifying steatosis, and the first to accurately 

identify multiple hepatic anatomy landmarks in images of liver biopsy. No bias was used 

when selecting the biopsy samples and images included in our study. This demonstrates the 

classifier’s robustness to typical variations in the appearance of the tissue sample, which can 

be caused by the strength and concentration of the H&E stain used on the tissue sample, 

as well as any other noise or artifacts introduced in the biopsy slide preparation process or 

image acquisition.

Mimicking steps followed by human pathologists, our classifier learns based on features 

related to a white region’s morphology, as well as the scaled representation of texture 

features of the immediate surrounding areas.

Accurate classification of all white regions has several direct and significant implications.
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First, it provides a direct road map to quantify steatosis in a biopsy image. Once all steatotic 

regions have been identified, a calculation can be carried out dividing the total area of 

steatotic regions by the total area of the biopsy sample to arrive at a continuous measure of 

the overall percentage steatosis. This metric can then be correlated with expert pathologist’s 

semiquantitative grading of hepatic steatosis. Automatic quantification of steatosis can aid 

in diagnosing and assessing the severity of NAFLD, determining donor liver suitability 

for transplantation, or response of NAFLD to interventions in clinical trials. Extending the 

application of this classifier to clinical practice will depend on validation of its performance 

in additional cohorts and availability of digital scanners in pathology practices in order to 

create the digital images from the glass liver biopsy slides.

The second direct implication is the identification of white regions that are liver anatomical 

landmarks to be used in subsequent tasks. Two of the key histological features associated 

with NAFLD are inflammation and fibrosis. Determining their presence as well as their 

location in a biopsy sample is important. Therefore, if we have a method for identifying 

PV, PA, and BD, all of which only occur in the portal triad area, or for CV which resides 

in the lobule, we have a method to determine if nearby inflammation or fibrosis should be 

excluded or included from further quantitative analysis.

Previous research has been done in the areas of quantification of hepatic steatosis, fibrosis, 

and hypertrophy. Fibrosis does not manifest as white in H&E-stained biopsy images, and its 

quantification is not closely related to the white region classification task, the subject of this 

paper.

The majority of other studies on white region classification have focused on the specific 

task of classifying white regions as either steatosis, or not-steatosis [20-27]. The primary 

challenge in the automated quantification of steatosis is to correctly identify all fatty cells, 

while being careful to not include other white features such as CV, PV, BD and others that 

are similar in appearance [20]. This research differs from past research on white regions 

classification in four ways:

1. Past researchers have set out to identify either just steatosis or central veins [21] 

in liver biopsy images. In contrast, this work aims to classify all types of white 

regions. This is the first research identifying BD, PA, PV, and SN.

2. Previous studies have relied on semi-quantitiative analysis or an interactive step 

[22,23]. In some cases, that work has relied on specific stains designed to 

simplify the identification of steatosis [24]. Our method is purely automated 

and does not rely on a stain with the singular purpose of identifying steatosis.

3. With the exception of the study by Foley et al [21] to identify CV, all 

other studies have relied on handcrafted rules or thresholds chosen by 

computational analysis or trial and error to identify white regions [20,24-27]. 

These computations have been found to generally correlate to a pathologist’s 

semiquantitative measure; however, because they lack labeled regions, their 

accuracy is unknown. This research uses a supervised machine learning approach 

that allows the overall accuracy of the classifier to be quantified directly rather 

than by surrogate measures.
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4. All previous methods for identifying steatosis have been based purely on 

the morphology of white regions. This research examined and utilized other 

attributes of a white region, such as the texture and statistical properties of 

adjacent regions, as beneficial attributes in classification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
White regions in liver biopsies.
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Fig. 2. 
Flow chart pictorially showing the steps taken to classify white regions.
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Fig. 3. 
A, A white region located at center. B, The mask applied to reveal just the white region. C, 

The rectangular bounding box around the white region. D, The surrounding band of pixels 

around the white region. Features are extracted from the regions visible in C and D for 

attributes related to the white region’s surrounding pixels.
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Fig. 4. 
Scale representation of a white region at the given sigma levels.
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Fig. 5. 
Correlation (A) and relationships (B) of computed percentage steatosis with the average of 

the two study pathologists’ grades.
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