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Abstract

Cancer is a general term for a wide range of diseases that can affect any part of the body
due to the rapid creation of abnormal cells that grow outside their normal boundaries.
Liver cancer is one of the common diseases that cause the death of more than 600,000
each year. Early detection is important to diagnose and reduce the incidence of death.
Examination of liver lesions is performed with various medical imaging modalities
such as Ultrasound (US), Computer tomography (CT), and Magnetic resonance imag-
ing (MRI). The improvements in medical imaging and image processing techniques
have significantly enhanced the interpretation of medical images. Computer-Aided
Diagnosis (CAD) systems based on these techniques play a vital role in the early de-
tection of liver disease and hence reduce liver cancer death rate. Moreover, CAD sys-
tems can help physician, as a second opinion, in characterising lesions and making the
diagnostic decision. Thus, CAD systems have become an important research area. Par-
ticularly, these systems can provide diagnostic assistance to doctors to improve overall
diagnostic accuracy.

The traditional methods to characterise liver lesions and differentiate normal liver
tissues from abnormal ones are largely dependent on the radiologists experience. Thus,
CAD systems based on the image processing and artificial intelligence techniques
gained a lot of attention, since they could provide constructive diagnosis suggestions
to clinicians for decision making. The liver lesions are characterised through two
ways: (1) Using a content-based image retrieval (CBIR) approach to assist the radi-
ologist in liver lesions characterisation. (2) Calculating the high-level features that de-
scribe/characterise the liver lesion in a way that is interpreted by humans, particularly
Radiologists/Clinicians, based on the hand-crafted/engineered computational features
(low-level features) and learning process. However, the research gap is related to the
high-level understanding and interpretation of the medical image contents from the
low-level pixel analysis, based on mathematical processing and artificial intelligence
methods. In our work, the research gap is bridged if a relation of image contents to
medical meaning in analogy to radiologist understanding is established.

This thesis explores an automated system for the classification and characterisa-
tion of liver lesions in CT scans. Firstly, the liver is segmented automatically by using
anatomic medical knowledge, histogram-based adaptive threshold and morphological
operations. The lesions and vessels are then extracted from the segmented liver by
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applying AFCM and Gaussian mixture model through a region growing process re-
spectively. Secondly, the proposed framework categorises the high-level features into
two groups; the first group is the high-level features that are extracted from the im-
age contents such as (Lesion location, Lesion focality, Calcified, Scar, ...); the second
group is the high-level features that are inferred from the low-level features through
machine learning process to characterise the lesion such as (Lesion density, Lesion
rim, Lesion composition, Lesion shape,...). The novel Multiple ROIs selection ap-
proach is proposed, in which regions are derived from generating abnormality level
map based on intensity difference and the proximity distance for each voxel with re-
spect to the normal liver tissue. Then, the association between low-level, high-level
features and the appropriate ROI are derived by assigning the ability of each ROI to
represents a set of lesion characteristics. Finally, a novel feature vector is built, based
on high-level features, and fed into SVM for lesion classification. In contrast with most
existing research, which uses low-level features only, the use of high-level features and
characterisation helps in interpreting and explaining the diagnostic decision.

The methods are evaluated on a dataset containing 174 CT scans. The experimental
results demonstrated that the efficacy of the proposed framework in the successful char-
acterisation and classification of the liver lesions in CT scans. The achieved average
accuracy was 95.56% for liver lesion characterisation. While the lesion’s classification
accuracy was 97.1% for the entire dataset.

The proposed framework is developed to provide a more robust and efficient le-
sion characterisation framework through comprehensions of the low-level features to
generate semantic features. The use of high-level features (characterisation) helps in
better interpretation of CT liver images. In addition, the difference-of-features using
multiple ROIs were developed for robust capturing of lesion characteristics in a reli-
able way. This is in contrast to the current research trend of extracting the features
from the lesion only and not paying much attention to the relation between lesion and
surrounding area. The design of the liver lesion characterisation framework is based on
the prior knowledge of the medical background to get a better and clear understanding
of the liver lesion characteristics in medical CT images.
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Chapter 1

Introduction

The liver is an important organ that performs vital functions such as detoxification
of hormones, drugs, filters the blood from waste products and production of proteins
required for blood clotting (Kumar et al., 2011). Therefore, liver diseases have to
be considered seriously. However, diseases can occur without warning or symptoms.
Cancer is a leading cause of death and liver cancer is the second leading cause of
cancer death worldwide (Ferlay et al., 2015). The earliest possible detection of such a
disease becomes critical to successful treatment. Therefore, Early detection will help
to reduce the cancer death.

Medical imaging plays an important role in the diagnosis process through providing
visual information of the body organs. There are various imaging modalities such as
Computed tomography (CT) scan, Ultrasound, Positron Emission Tomography (PET),
and Magnetic Resonance Imaging (MRI) used to diagnose liver lesions. The CT scan
is often preferred for diagnosing liver diseases, as it is considered to be of higher
accuracy and cheaper than MRI (Arakeri et al., 2011; Dankerl et al., 2013). However,
doctors rely on their experience for the final diagnosis (Krupinski, 2011). The growing
disparity of imaging protocols and producing a huge volume of image data daily is a
challenge to image interpretation, even for experienced doctors (Andriole et al., 2011).
As a consequence, errors and inconsistencies in interpretation of medical images now
represent the weakest side of clinical imaging (Robinson, 1997; Berlin, 2007; Sabih
et al., 2011).

Computer-aided classification and characterisation for interpreting images have
been considered one of the major research subjects. Particularly, these systems can pro-
vide diagnostic assistance to clinicians for the improvement of diagnosis and increase
the accuracy (Kumar et al., 2012). Hence, the success of medical image interpretation
depends on two main processes: (1) visual perception by determining important visual
patterns and (2) potential linking of image content, clinical context, and diagnostic
decision which needs a deep understanding of clinical aspects of diseases (Tourassi
et al., 2013). The majority of unsuccessful interpretation of medical images is due to
misinterpretation of perceptual perception (Berlin, 1996; Taylor, 2017). This reflects
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Chapter 1. Introduction

upon the importance of working on medical images interpretation for better charac-
terising liver lesions that could support radiologists to describe lesions. Nevertheless,
the automated lesion characterisation is a challenging task, due to the semantic annota-
tion problem of mapping between high-level features (semantic annotation), low-level
features and selecting the appropriate of the region of interest (ROI). This problem
requires imposing new methods that could effectively address these challenges and
improve the interpretation of medical images.

This thesis presents an efficient framework for characterising and classifying liver
lesions based on CT images. For a better capturing of the lesion characteristics, the
framework is proposing multiple ROIs (inside, border and surrounding lesion) to cal-
culate the high-level features by considering the ability of each ROI that represents a
set of lesion characteristics, which tackles the challenge of medical image interpreta-
tion. This is in contrast with traditional work that relied only on the lesion area itself,
as a single ROI, to predict the characterisation without considering the relation be-
tween the lesion, margin and surrounding area. In addition, this work enhances lesion
classification accuracy by using high-level features to classify the respective lesions
and interpret the diagnosis decision. In contrast, the current traditional researches use
low-level features only (black box) to classify liver lesions, which can not interpret the
diagnosis decision.

1.1 Motivation

Liver cancer is one of the major death factors in the world. Global Cancer Statistics
(Jemal et al., 2011) reported that, liver cancer was the fifth most commonly diagnosed
and the second-leading cause of cancer death for the men. While in women, it is the
seventh most frequently diagnosed and the sixth most common cause of cancer death,
as presented in Figure 1.1. Moreover, incidence statistic’s rate of liver cancer was
increasing across many parts of the world where most patients who are diagnosed with
liver cancer die within six months of diagnosis. Early detection will help to reduce the
cancer death and becomes critical to successful treatment.

Using computer-aided systems for medical diagnosis field and treatment proce-
dures is a rapidly growing research area at present. Computer-based interpretation and
analysis of medical images help the radiologists to diagnose disease faster and more
accurate. The CAD systems play an important role in the diagnosis processes related to
liver lesions by providing doctors with fully automated or semi-automated computing
tools to assist them in diagnosis and treatment tasks.

The ultimate motivation of this work is to characterise the liver lesions, by cal-
culating the high-level features automatically. The high-level features are then used
to enhance the classification accuracy. The use of high-level features in classification
task helps in interpreting and explaining the diagnosis decision. Currently, there is
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Chapter 1. Introduction

a significant amount of research devoted to segmentation of the liver, lesion detec-
tion and classification, while the liver lesion characterisation is still relatively new and
challenging area. In addition, Most of the current classification-based techniques have
proposed and/or optimised the hand-crafted features. The traditional classification sys-
tems give the diagnosis without decision interpretation, due to the low-level features
lack the human perceptions and therefore cannot be directly interpreted by the humans.
Hence, the importance of this work is to characterise the liver lesion automatically and
using high-level features to classify the lesion with the advantage of interpreting the
diagnosis decision. The characterisation approach gives more information about the
lesion rather than simply classifying lesion into benign or malignant.

Figure 1.1: Estimated New Cancer Cases and Deaths Worldwide by Sex.

1.2 Aims and Objectives

More specifically, the main aim of this thesis is to address the liver lesion characteri-
sation (mainly) based on CT images, ultimately improve the performance of the lesion
classification. For characterisation of liver lesions in CT image, high-level features are
needed to be calculated. To achieve this aim a novel characterisation framework is
proposed. Furthermore, a novel feature vector is built, based on high-level features to
improve the lesion classification performance, which provides the understanding ex-
planation for classification through the lesion characterisation.
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Chapter 1. Introduction

The objectives that helped to build the framework and fulfil this aim are, as follows:

• To investigate different liver lesion characterisation frameworks that characterise
the lesion from CT images.

• To investigate different liver lesion classification frameworks that classify liver
lesions into benign and malignant where the classification task is used as a case
study to demonstrate how the characterisation could be used and useful in a
realistic task (classification/diagnose).

• To develop a better ROI selection approach that captures all the lesion charac-
teristics such as lesion morphology, brightness and patterns of contrast enhance-
ment.

• To overcome the CT image challenge issues such as the variation of intensity
and texture ranges between study cases due to the imaging devices settings such
as images resolution and spacing.

• To develop an efficient and more accurate framework for characterising liver le-
sions by combining medical prior-knowledge and Multiple ROIs with Difference-
of-features (DoF) technique to infer high-level features, and simulate radiologi-
cal observations for liver characterisation.

1.3 Challenges

This section discusses the main challenges and issues that were faced and addressed in
this thesis, which need to be overcome, to fulfil the work goals, as follows:

• The targeted liver lesion characterisation, as a high-level image understanding,
is challenging. However, this thesis proposed a automatic lesion characterisa-
tion framework to link the image content to visual and logical/semantic features
through mapping between quantitative imaging features, semantic features and
ROI selection.

• The second major challenge in lesion characterisation/ classification is to im-
prove the accuracy. Thus, selecting the appropriate region of interest to extract
the lesion features is important to better characterisation/ classification perfor-
mance. However, proposed Multiple ROIs area contribute different information
about the lesion, and particularly surrounding area (outside), because the Ma-
lignant lesion affects the surrounding area differently compared to, the Benign
lesion (Heiken, 2007). Utilising the features from inside, border, and outside le-
sion area supports in better differentiation between benign and malignant lesion.
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• The third major challenge is the variation of the CT images that were collected
from different institutes or machines which might use different settings in im-
age acquisitions. However, the proposed Difference-of-Features (DoF) helps
to overcome the challenge issues such as the variation of intensity and texture
ranges between study cases due to the imaging devices settings such as images
resolution and spacing.

1.4 Contributions

The primary contribution of this thesis is an effective liver lesion characterisation/
classification framework based on multiple ROIs and DoF that predicts radiological
observations related to the characteristics of the lesion. To achieve this, the technical
contributions are presented below:

• Characterising liver lesions with a large number of high-level features compared
to the related work. The high-level features are categorised into two groups; the
first group is the visual features from the image contents; the second group is
visual and logical/semantic features inferred from low-level features.

• Proposing Multiple ROIs selection approach through generating abnormality
level map based on the intensity difference and the proximity distance for each
voxel with respect to the normal liver tissue. As well as, capturing the lesion
characteristics through multiple ROIs/ DoF to calculate the high-level features
by assigning the ability of each ROI to represent a set of lesion characteristics
such as assigning the surrounding lesion ROI to characterise lesion rim.

• Mapping between low-level, high-level features and ROI selection to build a ro-
bust characterisation framework for interpretable images to infer semantic fea-
tures and making a diagnostic decision with a human-interpretable explanation.

The proposed framework also has another benefit to enhance lesion classification
performance through utilising the high-level features to build a novel feature vector,
the use of lesion characterisation helps in interpreting and explaining the classification
and is more intuitive to clinicians.

1.5 Thesis Overview

The rest of this thesis is organised as follows:

• Chapter 2 provides an overview of the medical background. This chapter gives
the necessary information about liver and liver anatomy. It also presents the
diagnostic imaging and liver diseases types. Furthermore, presents the datasets
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and also elaborates all the metrics that were used to evaluate and validate the
proposed framework.

• Chapter 3 discusses review of key related literature work. The previous studies
are divided into two main categories: (1) liver lesion classification and (2) liver
lesion characterisation.

• Chapter 4 presents a general overview of liver lesion characterisation pre-processing,
with details about liver segmentation, lesion detection and vessels extraction pro-
posed method.

• Chapter 5 presents the proposed framework for liver lesion characterisation/classification,
with details of its components, the methods and the techniques that were adopted.

• Chapter 6 presents and discusses the experimental setup, extensive and compar-
ative evaluation, as well as benchmarking of the proposed framework against
related work. In addition, the statistical analysis is adopted to confirm the sig-
nificance of the proposed framework.

• Chapter 7 Concludes the thesis work, and presents some potential future work.

1.6 List of Publications

Published paper:

• Hussein Alahmer, and Amr Ahmed. "Computer-aided classification of liver le-
sions using contrasting features difference." In: ICMISC 2015 : 17th Interna-
tional Conference on Medical Image and Signal Computing, International Sci-
ence Index, Biomedical and Biological Engineering , 2(11), pp.398-405, 2015.

• Hussein Alahmer, and Amr Ahmed. "Hierarchical classification of liver tumor
from CT images based on difference-of-features (DOF)." International Confer-
ence of Signal and Image Engineering, InProceedings of the World Congress on
Engineering. pp.490-495, 2016. Best Student Paper Award WCE2016.

• Hussein Alahmer, Amr Ahmed. "Computer-aided Classification of Liver Le-
sions from CT Images Based on Multiple ROI." In Procedia Computer Science,
Volume 90, pp.80-86, ISSN 1877-0509, 2016.

Under Review Work:

• Hussein Alahmer, Amr Ahmed, and Xujiong Ye. "Automatic Liver Lesion Char-
acterisation: From Low-level Features to High-level Features in CT Scans".
journal of IEEE Transactions on Biomedical Engineering.
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• Hussein Alahmer, Amr Ahmed, and Xujiong Ye. "Liver Lesion Classification
through characterisation and comparison with low-level features in CT". journal
of Expert Systems With Applications.

• Hussein Alahmer, Amr Ahmed, and Xujiong Ye. "Liver Lesion Classification
through Combination of Multiple ROIs and Difference-of-Features". journal of
Computerized Medical Imaging and Graphics.
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Chapter 2

Research Background

This chapter presents the medical background related to the liver with an emphasis
on current facts. Section 2.1 displays general information about liver anatomies such
as location, internal structure and functions. Section 2.2 provides a short descriptions
about diagnostic imaging with a brief discussion about the imaging modalities used in
our work, while liver diseases types are presented in Section 2.3. Section 2.4 presents
the datasets and introduces the evaluation metrics that will be used to evaluate the
work. Finally, the chapter is concluded in Section 2.5.

2.1 Liver anatomy

The liver is the largest gland in the body. Weighting in the adult men 1.4 to 1.5 kg and
1.2 to 1.4 kg in the adult women (Wolf, 1990), it sits mainly on the upper right of the
abdomen and rests just under the diaphragm, and to the right of the stomach, intestine,
spleen and overlying the gallbladder (Ger, 1989; Stringer, 2014), as shown in Figure
2.1.

Figure 2.1: Liver location in the body.(School, 2014)

The liver performs hundreds of vital life functions (Mitra and Metcalf, 2012) such
as detoxification of hormones, drugs, filter the blood from waste products, production
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of proteins required for blood clotting, metabolism of carbohydrates, synthesis, break-
down and storage (as glycogen); production of chemicals (bile) that aid in digestion.

The liver anatomy can be described using two different aspects; anatomically from
anterior view, the liver is divided into two portions, a right and a left lobe, as shown in
Figure 2.2 (a). This division, however, is not used surgically because it is not showing
the internal features of vessels and biliary ducts, which are very important in liver
surgery. Functionally based on Couinaud classification, the liver is divided into eight
functionally independent segments, as shown in Figure 2.2 (b). Each segment has its
own vascular inflow, outflow and biliary drainage (Bismuth, 2013).

Figure 2.2: Liver; (a) liver anterior view; (b) segmental anatomy according to Couin-
aud (Farid et al., 2013).

The liver contains four vessel structures: portal vein, hepatic vein, hepatic arteries
and bile duct. The liver is connected to two main blood supply. 80% of the blood
rich in nutrients is derived from the portal vein and the remaining percentage of blood
through hepatic artery, rich in oxygen (Kan and Madoff, 2008). The right hepatic vein
divides the right lobe into anterior and posterior segments. The middle hepatic vein
divides the liver into right and left lobes. Left hepatic vein divides the left lobe into
medial and lateral part. Portal vein divides the liver into upper and lower segment.
Hereby, the arrangement of these vessels used in dividing liver into eight functionally
independent segments. (Kang et al., 2014a)

2.2 Medical imaging modalities

Liver imaging is important for lesion detection and characterisation, especially moni-
toring the patients with a history of disease to evaluate treatment response. The liver is
considered as a site of metastasis spread from lung, stomach, colon and pancreas (Sa-
hani and Kalva, 2004a). The liver pathology examination is performed through various
medical imaging modalities such as US, MRI, PET, CT, etc. The imaging modalities
can be generally categorised into two groups: ionising radiation group which use ei-
ther X-rays or gamma rays and non-ionising radiation that use of sound waves or radio
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wave combined with magnetic fields, as illustrated in Figure 2.3. Depending on the
specific application requirements, one or more of these imaging methods can be used.
A brief review of the most commonly used imaging modalities for liver lesions diag-
nosis, which can be detected and characterised by these methods.

Figure 2.3: Medical imaging modalities, categorised according to ionising and non-
ionising radiation, with further specific categorisation for each category.

2.2.1 Ultrasound Imagining

The US device consist of three parts: (1) console comprising a computer, controls,
keyboard, disk storage and printer. (2) Video display monitor. (3) The transducer,
which is a small hand-held device attached to the US device through a cord, that used
for scanning, as displayed Figure 2.4. The US uses high-frequency sound waves upper
the human hearing limit (> 9 − 18 MHz) (Afonso, 2015) to create a live image for
internal organs.

Figure 2.4: Ultrasound. (a) Ultrasound device. (b) Sample of ultrasound image.

The US imaging is a painless, safe, inexpensive procedure and easily available.
Moreover, US imaging is very sensitive in differentiating between a cystic lesion and
a solid lesion (Toriyabe et al., 1997) and assessing the relation between lesions and
hepatic vessels(Schmidt et al., 2000; Catheline et al., 2000). Despite of that, the CT
and MRI are considered as a higher sensitive for detecting and characterising focal and
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solid lesion than US (Glover et al., 2002; Toriyabe et al., 1997; Nam et al., 2011), where
the US sensitivity for liver metastases detection ranges between 40% and 70%(Paulson,
2001). In contrary, the US suffers from low specificity, and inability to detect small
lesions that less than 1 cm (Dhar et al., 2016).

2.2.2 MRI imaging

MRI is a 3D imaging technique, which is used to generate images of the internal organs
in the body for diagnosis. MRI produce high-quality images by utilising the science
of nuclear magnetic resonance (NMR)(Pichler et al., 2008). The patient is placed on a
sliding table that enters into a tunnel with a strong magnetic field around the organs to
be diagnosed. The signal-to-noise-ratio (SNR) and quality of the image are determined
by the strength of the magnetic field where the current systems utilised either 1.5T or
3T field strength (Han and Talavage, 2011), due to higher field strengths provide a
greater SNR and theoretically improve spectral resolution; however, potential limiting
factors include the increased field inhomogeneity leading to increased metabolite line
widths.

The human body is mostly water. Water molecules (H2O) contain hydrogen nuclei
(protons), which become aligned in a magnetic field. The hydrogen atoms are excited
with radio frequency (RF) electromagnetic pulse, which makes the hydrogen alignment
appear in a heterogeneous manner. When excitation by radio frequency is finished, all
the hydrogen atoms come back into homogeneous alignment again while the released
of RF reflects the characteristic of proton’s chemical environment (Keevil, 2001). The
generated radio frequency signal from hydrogen atoms is received by coil to produce
images in frequency, or k-space. The inverse Fourier transform of the signal (k-space)
constructs a 2D or 3D image (Tsao et al., 2003).

A contrast agent such as gadolinium-based is used with MRI scan to enhancing
the detail of the fabric and making vascular tissue more visible through changing the
magnetic properties of the blood as shown in Figure 2.5. MRI scan is, in general, a
safe modality without exposing the human body to ionising radiation (Schenck, 2000).
Moreover, MRI provides a high soft tissue differentiation (Aisen et al., 1986). Despite
of that, MRI is not always preferable especially when another imaging modality could
produce the same information. in spite of that, MRI images usually affected by various
artefacts due to its sensitivity to the noise, making it very challenging to generate MRI
images. Furthermore, MRI equipment is costly and has high maintenance costs, time-
consuming, and claustrophobia-exacerbating (van Herk and Kooy, 1994; Wintermark
et al., 2007).
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Figure 2.5: Example of MRI image Axial fat-suppressed T1-weighted with different
phases. (a) unenhanced phase. (b) artial phase. (c) portal phase. (d) late phase at
20-min.

2.2.3 CT scan imaging

CT is one of most widely used 3D imaging technique, which can be used to produce
horizontal or axial tomographic images through the combination of X-ray and com-
puter technology. It shows detailed image of any part of the human body including fat,
muscles, internal organs and bones (Aisen et al., 1986). To perform the CT scan, the
patient lies on a table slides through the centre of a X-ray tube, which contains rotating
X-ray beam and detectors. The X-ray beams circle around the human body, emits the
X-ray that passes through the specific part of the body from different angle to generate
different views for the same organ. The attenuation of the X-ray beams measure by the
detector, then the computer interprets the data that is received from the CT (Hu, 1999;
Hsieh, 2003a). In CT image, the proportion of radiation attenuation absorbed by the
tissues represents the density of the organs that is called Hounsfield Unit (HU) (Razi
et al., 2014). The corresponding HU value is calculated by Equation 2.1.

HUx = 1000× µx − µwater
µair − µwater

(2.1)

Where µwater and µair are respectively the linear attenuation coefficients of water
and air . In a voxel x with average linear attenuation coefficient µ presented as µx.
The intensities range of CT image in HU from -1000 to +1000 (-1024 to +1024 or
+3072, depending on the particular vendor’s encoding). The different organs presented
as different voxels in the image which led to different HU values. The HU of tissue
intensity is based on two values: air has a minimum HU value as -1000 HU and water
as 0 HU. (Hsieh, 2003b)

Usually contrast agents such as iodine are taken with CT scan imaging by injec-
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tion before the image acquisition. The benefit of contrast enhanced image is to find
the pathology by enhancing the contrast between a tumour and the normal tissue sur-
rounding structure. After injecting the contrast, images are acquired after varied time
lengths in order to visualise the dynamic of the blood flow within tissues. These mul-
tiple images enhance the detection and characterisation of their tumours.

In clinical practice, the images are divided into four phases based on the time dura-
tion from taking the injection (Roy et al., 2014a). The first phase is the non-enhanced
image. The second is arterial phase after 25-40 seconds from succeeding the injection.
The third is portal phase after about 60-75 seconds. The final is delayed phase take
place after 3-5 minutes taking the contrast agent. Figure 2.6 depicts sample CT images
in four phases.

Figure 2.6: Example of CT scan image in four phases. (a) CT image before contrast
injection. (b) arterial phase. (c) portal phase. (d) delay phase

2.2.4 CT, MRI, and US comparison

CT scan, MRI and US are commonly used in oncology patients where each have var-
ious advantages and limitations.The CT scan can offer high resolution images with
short acquisition time which make it preferable in emergency situation and trauma
cases. Moreover, it provides a good contrast between bone, tissue and vessels at the
same time. However, MRI is more sensitive and provides much more soft tissue details
than CT. Further to this, the ability of MRI to change the image contrast by changing in
magnetic field and radio wave to highlight different types of tissue. On the other side,
US is safe, readily available and cheap imaging compared to CT and MRI. However,
US relies on the skill and expertise of the radiologist and equipment quality. Table 2.1
depicts the comparison between the three imaging modalities of CT, MRI and US.
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Points CT scan MRI US
Cost (Wintermark et al., 2007) Cheaper than MRI More expensive Cheapest one

Time required (van Herk and Kooy,
1994; Jung et al., 2009)

Quick compared to MRI and US (Less
than 10 minutes with less than 30 sec-
ond for actual scan).

Required a long time (15 minutes up to 2 hours) More than CT and less than MRI

Imaging techniques (Pichler et al.,
2008)

X-ray Strong magnetic field and radio frequency (RF)
electromagnetic pulse

High frequency sound waves

Radiation (Pichler et al., 2008) Ionising radiation Non-ionising radiation Non-ionising radiation

Risk of contrast Agent (Schenck,
2000; Feinstein et al., 2010)

Rare allergic reaction but more com-
mon compared to MRI. Risk in cases
of renal insufficiency and dehydration.

Very rare allergic. The risk of reaction in patients
have a history of kidney or liver disorders.

Safe, with a low incidence of side ef-
fects compared to CT and MRI.

Comfort (Wippold, 2007; Peris
et al., 2010)

Rarely causes claustrophobia

* Anxiety, especially patients have claustropho-
bia.
* Discomfort because the patients must to stay on
a hard table for a long time.

Comfort

Limitations (Schenck, 2000; Cohen
and Afdhal, 2010)

Not fit for overweight patients (more
than 200 kg)

* Not fit for overweight patients (more than 160
kg).
* Not suitable for Patients with Cardiac Pacemak-
ers or having tattoos and metal implants.

* Disrupted by air or gas.
* Operator dependency.

Preferred for (Aisen et al., 1986;
Wintermark et al., 2007; Cohen and
Afdhal, 2010)

Bone injuries, cancer detection, biopsy,
lung and chest and emergency.

Soft tissue evaluation, spinal cord injury, brain tu-
mours and tendon injury.

Check the organs in the abdominal cav-
ity, examine the blood flow, and exam-
ine foetuses

Details of soft tissues (Aisen et al.,
1986; Afonso, 2015)

Showing bone, tissues and vessels at
same time

Providing more details than CT More noises

Details of bone (Aisen et al., 1986;
Cohen and Afdhal, 2010)

Providing much details than MRI Less details Usually not used for bony structures

Table 2.1: Comparison between CT scan, MRI and Ultrasound.
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2.3 Liver lesion types

A tumour is an abnormal growth of cells or tissues. There are different types of liver
tumours, as illustrated in Figure 2.7. Some tumours are benign (non-cancerous) such
as Cyst, Hemangioma, while others are malignant (cancerous) such as Hepatocellular
carcinoma (HCC), metastasis. There are several criteria used to diagnose liver lesion.
First, blood tests: several blood tests can be done to check the liver problem such as
test levels of alpha-fetoprotein (AFP). High levels of this protein could be a sign of
liver cancer. Second, medical imaging such as CT, MRI are used mainly for diagno-
sis. These imaging techniques allow doctors to see inside the body without surgery.
Imaging techniques frequently employ contrast agents to improve image resolution and
enhance pathology detection. However, liver biopsy is considered the gold-standard di-
agnostic method to identify the liver cancer. The biopsy is performed by inserting a
thin needle through the skin to obtain a small sample of liver tissue. (Rockey et al.,
2009a)

Figure 2.7: Liver lesion types.

Liver biopsy is used when liver diagnosis is not clear. However, biopsy is usually
not recommended due to the risk of bleeding from the site of needle entry point or
having some cancer cells follow the pathway of the needle and spread outside of the
liver. Typically, a liver biopsy is performed by an expert radiologist using CT scan or
US to help guide the biopsy needle.

2.3.1 Benign tumours

There are various types of benign tumours in the liver as presented in Table 2.2 (Fer-
gusson, 2012a; Assy et al., 2009a; Suh et al., 2011; Grazioli et al., 2010), all of which
are abnormal growths cells or structures. However, benign tumours do not spread to
other organs. Benign tumours are quite common and usually do not produce symp-
toms and, mostly need no treatment. However, treatment of benign lesions depends on
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the size, location, and symptoms of the lesions. Generally, some benign lesion may
produce symptoms such as abdominal pain or have a huge size may effect on liver
function required a treatment which often requires surgical intervention to remove the
tumour.

Hemangiomas

Hepatic hemangioma lesion is the most common non-cancerous, solid tumour.
Usually seen in women in the right hepatic lobe with no specific age range but rarely
occur under adulthood (Glinkova et al., 2004). Pathologically, hemangioma consists
of many tangles of blood vessels appear as blood-filled spaces, may contains clot, cal-
cification and scar (Dilsiz et al., 2009). Overall, Hemangioma may be found isolated
or multiple with diameter less than 5 cm to giant lesion (10-20 cm)(Maruyama et al.,
2013; Erdogan et al., 2007). The small lesion not causing symptoms or risk develop-
ing cancer or requiring treatment but a large lesion is more likely to cause symptoms
(abdominal pain) and may be needed to eradication the lesion.

Hepatic Adenoma

Hepatic adenoma is one of the rare solitary benign lesion and mostly identified in
young women which is correlated with increased estrogen levels especially oral con-
traceptives or taking higher potency hormones such as anabolic steroids or glycogen
storage disease (Dhingra and Fiel, 2014; Furlan et al., 2008). The hepatic adenoma
affects architecture of normal liver cells and shows the arrangement of infected cells
as sheet and cords. This type of lesions causes pain in the upper right of the abdomen.
Typically, the lesion diameter is 5-10 cm and surrounded by a capsule from infected
cells (Grazioli et al., 2001). The treatment, in this case, is necessary by surgically re-
moved, due to the risk of malignant transformation or bleeding (Socas et al., 2005).

Focal Nodular Hyperplasia (FNH)

The FNH lesion is second most prevalent benign after hepatic hemangioma and
mostly occurred in young women similar to hepatic adenoma, due to taking oral con-
traceptives (Navarro et al., 2014; Venturi et al., 2007). It usually causes pain in the
upper right of the abdomen but rarely grows or bleeds and has no risk of malignant
transformation. The lesion diameter less than 5 cm and often located close to the liver
surface (Halankar et al., 2012). The FNH contains central scar which is differentiated
from hepatic adenoma. The lesion is diagnosed confidently by imaging modalities
such as CT scan and MRI, but it is often subtle on US (Grazioli et al., 2012).

Hepatic cysts

The hepatic cyst is one of the most common benign lesion. This lesion is sacs filled
with fluids that occur in the liver with generally less than 3 cm diameter and could be
isolated or multiple lesion (Bakoyiannis et al., 2013; Miliadis et al., 2010). Typically,
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it is asymptomatic, no affect liver function and has no risk malignant potential (Schiff,
2009).

Benign lesion Outline

Hemangiomas

• The most common benign solid lesions of the
liver.

• common in the right lobe of the liver.

• diameter less than 5 cm to giant lesion (10-20
cm)

• Rare spontaneous rupture (bleeding)

(Glinkova et al., 2004; Vilgrain et al., 2000)

Hepatic adenomas

• Benign solid neoplasms of the liver

• Most commonly seen in young women.

• Typically solitary, although multiple adeno-
mas also can occur.

(Socas et al., 2005)

Focal nodular hyperplasia
(FNH)

• FNH is the second most common benign tu-
mour of the liver.

• More common in women (similar to adeno-
mas)

• Usually do not rupture spontaneously.

• has central scar

(Grazioli et al., 2010)

Hepatic cysts

• Fluid-filled structures of the liver (Bakoyian-
nis et al., 2013).

• Different types of hepatic cysts include
(Zhang et al., 2009b) : Simple liver cysts ;Bil-
iary cysts ;Parasitic cysts ;Cystadenomas

Table 2.2: Types of benign tumour.

2.3.2 Malignant tumours

Liver cancer is a type of malignant tumour. There are two types of malignant (Reynolds,
2001). First, primary liver cancer, where tumours have originated in the liver. Second,
metastatic secondary liver cancer, where tumours spread from cancer sites elsewhere
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in the body such as lung, colon, and breast. As listed in Table 2.3 (Moreira, 2015;
Garrean et al., 2008; Robinson, 2000; Al-Salem, 2014; Reynolds, 2001)

Malignant tumour in early stage often does not cause symptoms until it has reached
an advanced stage. So many cases are diagnosed fairly late. Liver cancer treatment is
determined by tumour characteristics such as number, size, and location in the liver;
tumour effect on liver functions or cause cirrhosis and/or tumour has spread outside
the liver.

Malignant lesion Outline

Hepatocellular carcinoma
(HCC)

• Most common type of primary liver cancer.

• 75% people with cancer have HCC disease.

• HCC can start as a single tumour or as multi-
ple tumours through the liver.

• Multiple sites are more common than single
tumour.

(Davis et al., 2008; Zviniene, 2012)

Cholangiocarcinoma

• Start in the bile ducts of the liver.

• 10-20% people have liver cancer diagnosed as
Cholangiocarcinoma.

(Iwatsuki et al., 1998)

Hemangiosarcoma

• Rare type of liver cancer; Begins in the blood
vessels of the liver;

• Grows quickly.

• Diagnosed fairly late.

(Rademaker et al., 2000a)

Hepatoblastoma

• Very rare type of liver cancer.

• Usually seen in children under 4 year’s age.

(Schnater et al., 2003; Faraj et al., 2008)

Table 2.3: Types of malignant tumour.

Hepatocellular carcinoma (HCC)

Hepatocellular carcinoma (HCC), also called malignant hepatoma is a primary
common liver cancer. Most cases of HCC are due to either a viral hepatitis infection or
cirrhosis (alcoholism being the most common cause of hepatic cirrhosis) (Davis et al.,
2008). HCC usually common in men more than women especially as old ages and
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could be seen focal, multifocal or diffuse. US, CT and MRI are used to diagnose HCC
but the CT and MRI is better than US in detection. However, in some cases, the biopsy
is required for diagnostic accuracy.

Cholangiocarcinoma

Cholangiosarcoma is a second common primary malignant tumour of bile duct
that accounts approximately 10-20% of all primary liver cancer (Reddy and Faust,
2005; Khan et al., 2005). The Cholangiocarcinoma is characterised on CT and MRI
as irregular shape with peripheral enhancement in portal phase (Blechacz and Gores,
2008).

Hemangiosarcoma

Hemangiosarcoma is a rare metastases malignant liver lesion that usually occurs
with no symptoms in elderly men (Rademaker et al., 2000b). The Hemangiosarcoma
originates in spleen and often spreads to the liver and lung. The most important of
hemangiosarcoma characteristic is an aggressive lesion, grows quickly and effects on
blood vessels (Shoemaker et al., 2016).

Hepatoblastoma

Hepatoblastoma is another type of malignancy tumour of fetal hepatocytes, which
is the most frequent in children and infants (Schnater et al., 2003). Usually, the right
lobe is affected more than left lobe with no symptoms (Davenport et al., 2012). The
treatment is made by Surgical tumour removal or liver transplantation (Ang et al.,
2007).

The next section will introduce our dataset, experimental setup and evaluation ma-
trices that used in this thesis.

2.4 Dataset and Evaluation Measurements

In this section, we will first present the datasets used in this thesis. Furthermore, we
introduces the evaluation measurements that will be used to evaluate the proposed
framework for liver segmentation, lesion detection, vessels extraction and also liver
lesion classification/characterisation.

2.4.1 Datasets

In order to provide a rigorous evaluation and benchmarking of the proposed frame-
work, the following two datasets (patients anonymised) were used during experiments:

1. Dataset I, obtained from ImageClef (Marvasti et al., 2015).

2. Dataset II, obtained from King Hussein Medical Center, Amman, Jordan.
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The overall dataset comprises of two datasets, collected from two different institutions
with a total number of 174 CT scan images and divided into 80 cases malignant (34
case HCC and 46 case Metastases) and 94 cases benign (56 case Cysts and 38 case
Haemangiomas), as presented in Figure 2.8.

Figure 2.8: The overview of the dataset size; (a) Split dataset based on the lesion
category (Malignant/ Benign); (b) Split dataset based on the lesion types (Cysts, Hae-
mangiomas, HCC, Metastases).

2.4.1.1 Dataset I

The dataset I is given in ImageClef 2014 for liver CT annotation task (Marvasti et al.,
2015). a 50 3D abdominal CT scans acquired from 46 patient and divided into 29
cases malignant and 21 cases benign with total number of lesions 137. Among the 50
CT scans, 98 lesion is malignant, while 39 lesion is benign. The dataset I contains
four common types of liver lesions; two types are benign (14 case Cysts and 7 cases
Haemangiomas) and two types are malignant (13 case HCC and 16 case Metastases) ,
as illustrated in Figure 2.9.
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Figure 2.9: The overview of the dataset I; (a) Split dataset based on the lesion cate-
gory (Malignant/ Benign); (b) Split dataset based on the number of the lesions for each
of benign and malignant; (c) Split dataset based on the lesion types (Cysts, Haeman-
giomas, HCC, Metastases).

The CT images had varied resolutions (x: 190-308, y: 213-387) voxels in plane
and contain between 41 and 588 slices depending on the field-of-view and the slice
thickness. The slice thickness between 0.5 and 5 mm and the slice spacing varies from
0.674 to 1.007 mm.

The reference segmentation are available for the liver and lesions by ImageClef. In
addition, the liver lesion characterisation are provided by a radiologist on each scan.
The RadLex ontology (Mejino Jr et al., 2008) was used to characterise of the high-level
features (semantic features) for the lesion annotation.

2.4.1.2 Dataset II

The dataset II is obtained from King Hussein Medical Centre, Amman, Jordan and the
patient details is anonymised. The total number of lesions 328 obtained from 124 CT
scan, acquired from 115 patient. Among the 328 lesions, 117 were benign while 211
were malignant. In overall, the 124 CT case divided into 51 case malignant and 73
case benign. The dataset II contains four common types of liver lesions; two types are
benign (42 case Cysts and 31 case Haemangiomas) and two types are malignant (21
case HCC and 30 case Metastases) , as illustrated in Figure 2.10.
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Figure 2.10: The overview of the dataset II; (a) Split dataset based on the lesion cate-
gory (Malignant/ Benign); (b) Split dataset based on the number of the lesions for each
of benign and malignant; (c) Split dataset based on the lesion types (Cysts, Haeman-
giomas, HCC, Metastases).

The dataset was composed of 76 men and 39 women who ranged in age from 24
to 86 years with mean age of 53.7 years. All scans were acquired between 2009 and
2016. The CT scan images have a resolution of 512x512 voxels in plane and contain
between 159 and 482 slices depending on the field-of-view and the slice thickness.
The slice thickness between 2 and 5 mm and the slice spacing varies from 0.65625 to
1 mm and the voxel size range from 0.6836 to 0.8789 mm.

All of the CT scans were acquired in triple phase. On each CT scan, the liver
lesion detection and characterisation was provided by three experts radiologist, with
more than 15 years experience based on RadLex ontology.

2.4.2 Evaluation Measures

This section will present in details all the evaluation measurements that used during the
evaluation the proposed framework in both side: liver segmentation, lesion detection,
vessels extraction and liver lesion classification/characterisation. The next part of the
evaluation measurements section presents the different evaluation methods which are
used to assess the accuracy of the segmentation.
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2.4.2.1 Segmentation Evaluation

This section presents an evaluation of the liver segmentation, lesion detection and ves-
sels extraction for the proposed framework. To measure the accuracy of the proposed
framework in segmentation, all the the evaluation methods that mentioned in this sec-
tion are used.

Figure 2.11: The evaluation of liver/lesion segmentation. (a) Ground truth of Liver
segmentation by radiologist. (b) Overlap liver segmentation proposed system (Seg.)
and ground truth (GT). (c) Yellow line is a ground truth of the lesion drawn by expert
and blue line is the segmented lesion by the proposed system . (d) Set matching indi-
cated are the True Negative (TN), False Positive (FP), False Negative (FN), and True
Positive (TP) areas.

As shown in Figure 2.11, we define (X) as a set of all pixels in the image. The
ground truth T ∈ X as the set of pixels that were labelled as liver by the radiologist.
Similarly, we defined S ∈ X as the set of pixels that were labelled as liver by the
proposed system.

A true positive set is defined as TP = T ∩ S, the set of pixels common to (T ) and
(S). True negative is define as TN = T̄ ∩ S̄, the set of pixels that were labelled as
non-liver in both sets. Similarly, the false positive set is FP = T̄ ∩ S and the false
negative set is FN = T ∩ S̄.
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Moreover, this section investigates the different evaluation measurement methods
that are used to evaluate the system performance. To measure the accuracy of segmen-
tation, let (S) is a segmentation result from a segmentation ground truth (T ) that is seg-
mented manually by an expert radiologist. where each of (S) and (T ) is a binary mask
image. There are many methods to assess the segmentation accuracy which reflects the
accuracy of under-segmentation (|S ∩ T | ≤ |T |) or over-segmentation (|S ∩ T | ≤ |S|)
or both. These measures are presented as follows:

• Volumetric Overlap Error (VOE%):

The lower absolute values on the (V OE) indicate better segmentation results.
The (V OE = 0%) for perfect segmentation result (S = T ). On the other hand,
the (V OE = 100%) for no intersection between segmentation and ground truth
(S ∩ T = φ). The (V OE) between two sets of segmentations (S) and (T ) is
given as a percentage and calculated as Equation 2.2:

V OE(S, T ) =

(
1− |S ∩ T |
|S ∪ T |

)
× 100% (2.2)

• Relative Volume Difference (RVD%)

The perfect match obtained when RDV = 0% and larger than zero other-
wise. In case of empty segmentation (S = φ) the RDV = −100%. How-
ever, the perfect segmentation value of 0% can also be obtained when the vol-
ume of over-segmentation (|S\(S ∩ T )|) is the same value under-segmentation
(|T\(S ∩ T )|). The RVD Equation 2.3 is shown as follow:

RVD(S, T ) =

(
|S| − |T |
|T |

)
× 100% (2.3)

• True Positive Volume Fraction (TPVF%)

This method evaluates only the under-segmentation, where TPV F = 0% when
there is no intersection between (S) and (T ) and TPV F = 100% when is no
under-segmentation T ⊆ S. TPVF equation is presented in Equation 2.4.

TPV F (S, T ) =

(
|S ∩ T |
|T |

)
× 100% (2.4)
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• False Positive Volume Fraction (FPVF%)

This method evaluates only the over-segmentation. The FPVF denotes the amount
of the pixels from the CT image (I) falsely identified in segmentation (S). How-
ever, neither TPV F nor FPV F can evaluate segmentation accuracy alone, both
metrics TPV F and FPV F shall be taken always into consideration. The FPVF

is defined in Equation 2.5.

FPV F (S, T ) =

(
|S − (S ∩ T )|

|S|

)
× 100% (2.5)

• Jaccard Similarity Metric (JSM%)

The perfect segmentation (100%) obtained when the segmented area is equal
the ground truth (S = T ). In case of no intersect between segmentation and
ground truth S ∩ T = φ the JSM value equal zero. The JSM equation is shown
in Equation 2.6.

JSM(S, T ) =

(
|S ∩ T |
|S ∪ T |

)
× 100% (2.6)

• Dice Similarity Coefficient (DSC%)

The DSC is equal to 100% if the segmentation is accurate without false positive
(S = R), and DSC is equal zero if the intersect between segmentation and
ground truth is null S∩T = φ. The DSC is calculated via the following Equation
2.7

DSC(S, T ) =

(
2× |S ∩ T |
|S|+ |T |

)
× 100% (2.7)

2.4.2.2 Classification/Characterisation Evaluation

In order to evaluate the performance and validate the proposed framework for liver
lesion classification/characterisation, a number of different metrics are adopted dur-
ing the evaluation and benchmarking. Each metric focuses on a different performance
aspect. Moreover, we will adopt the standard metrics that are commonly used in med-
ical system evaluation, to facilitate comparison with the current relevant work. The
most used metrics of validation are Sensitivity, Specificity, Positive predictive value,
Negative predictive value and accuracy (Šimundić, 2008)
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Confusion Matrix

Several metrics such as sensitivity, specificity and accuracy that used to measure the
system performance can be calculated from the confusion matrix. In this section, the
confusion matrix will be discussed first.

Confusion matrix consists of two columns and two rows that represent the number
of false positive (FP), false negative (FN), true positive (TP) and true negative (TN), as
illustrated in Figure 2.12.

Figure 2.12: Confusion matrix.

Sensitivity (SN)

Sensitivity is calculated as the number of true positive prediction over the number of
actual positive cases, as defined in Equation 2.8. However, the sensitivity deals only
with the positive cases.

Sensitivity(SN) =
TP

TP + FN
(2.8)

Specificity (SP)

Specificity is computed as the number of true negative prediction over a number actual
negative cases, as depicted in Equation 2.9. However, the specificity concerns only on
the negative cases.

Specificity(SP ) =
TN

TN + FP
(2.9)

Accuracy (Acc)

Accuracy is the most common metric method which used to evaluate the system per-
formance. The high accuracy means the better system performance. The advantage of
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this metric lies in its simplicity and defined by the Equation 2.10.

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
(2.10)

Positive Predictive Value (PPV)

PPV is the proportion of positive predict results that are actually true. It effectively esti-
mates an overall true positive probability for the system and computed by the Equation
2.11.

PositivePredictiveV alue(PPV ) =
TP

TP + FP
(2.11)

Negative Predictive Value (NPV)

NPV is defined as the proportion of the cases with a negative results who are correctly
predicted. The NPV is calculated by Equation 2.12.

NegativePredictiveV alue(NPV ) =
TN

TN + FN
(2.12)

Receiver Operating characteristic (ROC) curve

ROC curve is a graphical plot that visually describe the performance of the system. The
curve is constructed by plotting the rate of false positive against the true positive rate
(Flach et al., 2003; Fawcett, 2006). The x axis represents the false positive rate (FPR),
and can be computed as 1 − specificity. It shows the percentage of positive samples
that are incorrectly classified. The y axis comprises the true positive rate (TRP), also
known as sensitivity. It represents the percentage of positive samples that are correctly
identified.

2.5 Conclusion

This chapter started with an overview of the liver anatomy with presenting three dif-
ferent modalities that used in the liver diagnosis and a brief discussion about liver
diseases types. Based on that, the hepatic imaging in oncologic patients is undertaken
to detect and characterise liver tumours and differentiate between tumour types, es-
pecially either benign or malignant. Moreover, to monitoring the lesion development
and response to the treatment. As presented previously each imaging modality has
advantages and limitations compared to each other. However, selecting the most ap-
propriate imaging technique to detecting and characterising liver lesions rely on the
kind of information that required to the clinical decision. The US usually is used in
initial examination for the patient who has no past medical history or allergy to contrast
agent. Although the ultrasound has several advantages, such as being safe, inexpen-
sive and easily available. However, The US is not an adequate examination for FNH
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diagnosis or patient has HCC with cirrhosis. CT scan is widely used for their high
sensitivity and specificity to detecting cancers and ability to imaging the entire body.
Moreover, CT is faster, more comfort, cheaper than MRI. Unlike CT, which use radi-
ation, MRI offers an attractive alternative to ionising radiation based CT with highly
detailed images of soft tissues. However, MRI is expensive, less available, noisy and
need longer acquisition time compared to CT.

In overall, The appropriate imaging modalities should be selected on a case-by-
case basis to assessed the lesion, depending on several factors such as lesion type,
availability of imaging facilities, imaging suitability, and cost issues.

28



Chapter 3

Literature Review

This chapter presents a review of key related literature work. Various computer-aided
diagnosis (CAD) approaches using CT images have been proposed to study liver le-
sions. These approaches can be divided into two main categories: (1) Liver lesion
classification, (2) Liver lesion characterisation. Following this order, the literature will
be categorically presented. Hence, Section 3.1 and Section 3.2 reviews related work
in image pre-processing and image segmentation techniques respectively. Section 3.3
reviews related work on lesion classification, while lesion characterisation work is pre-
sented in Section 3.4. Section 3.5 links the thesis with the literature review to con-
tribute this research field. Finally, the chapter is concluded in Section 3.6.

3.1 Image Pre-processing

CT is one of the important imaging modality that helps to locate the pathological vari-
ation in the human body such as cancer. CT provides high contrast images of body
tissues or organs with good spatial resolution, and the information provided by CT
varies from other imaging examinations such as US and MRI. The flexibility of CT not
only provides diagnostic information but is also useful in guiding many clinical pro-
cedures like surgeries, interventions and radiation therapies (Kaur and Juneja, 2018a).
The quality of CT image plays a vital role in the excellence of medical investigations
that can easily be affected by the presence of artifacts during acquisition procedure.
The artifacts present in image effects both the diagnostic and automated computerised
analysis tasks, such as image segmentation and lesion detection. Thus, a clean CT
image is essential to extract the precise medical diagnosis information. However, CT
images usually contain noise that can affect the medical diagnosis tasks, mainly in the
low contrast images. Hence, a medical image contaminated with noise may not be able
to provide correct diagnosis results which can be harmful to the health of patients.

In this thesis, the CT images acquired from different patients subjected to variable
radiation doses with a random amount of noise have been considered, which were ac-
quired by different CT scanner system that supports different iterative reconstruction
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(IR) algorithms, such as SAFIRE and ADMIRE IR algorithm. However, CT images
are usually degraded with the Gaussian or Poisson noise which has a negative impact
on the quality of the CT images (Gravel et al., 2004; Sanches et al., 2008). There-
fore, de-noising techniques are of great interest in CT imaging, and it is an important
preprocessing step to reduce anatomical variability.

3.1.1 Spatial and temporal filter

Spatial filtering involves eliminating noise from the CT image by convolving it with
a smoothing function in the spatial domain. However, this technique blurs the sharp
edges of the image by reducing its variance, and the amount of blurring depends on
the convolution function used for filtering which is same as reducing large frequency
values from the image. In CT imaging, convolution filtering is susceptible as data
acquired in the frequency domain is multiplied by a smoothing function which lessens
large spatial frequency values. In this smoothing, there is a trade-off between the
reduction in noise and spatial resolution of the image. The choice of the temporal filter
must be made by considering suitable relation to the sampling interval for avoiding the
false artifacts. A temporal filter with a limited frequency response reduces the signal at
the boundaries of the image, whereas adequate frequency response produces additional
noise in the image through aliasing.

The frequency domain filters and local smoothing method reduces noise, but they
do not preserve details, texture and fine structure of the image and removes them as
they mimic functional aspects of noise. Initially, the effort to reduce the noise based on
linear filtering was made by (Lee, 1980). (Tsagaan et al., 2001) and (Liu et al., 2016)
utilised 3D Gaussian smoothing filter for removing artifacts in CT image. However, the
Gaussian filter have the disadvantage of blurring the edges while reducing the noise.
In the same manner, (Lin et al., 2006) and (Campadelli et al., 2009b) used median filter
for de-noising CT images which preserve the edges while removing noise.

3.1.2 Anisotropic diffusion filter

(Perona and Malik, 1990) proposed an edge detection and multi-scale smoothing scheme
named anisotropic diffusion filter (ADF). ADF addresses the limitation of spatial fil-
tering and considerably improves the image quality by maintaining edges of the object
as it effectively removes noise in identical regions and ensures edge sharpening. This
filter describes the problem in the form of a heat equation which relies on second-
order partial differential equation (PDE) in an anisotropic medium, and it can attain
good trade-off among noise removal and edge preservation. Here, image smoothening
is framed as a diffusion process that can be stopped or repressed at edges by choosing
the strengths of the local gradient in various orientations.

(Linguraru et al., 2011) and (Glisson et al., 2011) employed ADF filter for noise
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reduction in CT images, which usually removes small image details by transforming
image statistics because of its edge enhancement effect and generates staircase effect
in the image. (Zhang et al., 2009a) used ADF filter on brain CT images and concluded
that it gives better de-noising results as compared to other techniques with a high com-
putation time.

3.1.3 Total variation de-noising

(Rudin et al., 1992) proposed another de-noising technique based on Rudin, Osher,
and Fatemi (ROF) model, known as a total variation (TV) which is capable of smooth-
ing homogeneous areas of the image. It is iterative constrained based optimisation
algorithm that performs de-noising by minimising the TV norm with the constraints
considered from the image noise statistics. The TV de-noising method uses regulari-
sation expression given by Equation 3.1:

min
t∈Y

‖h− k‖2

2γ
+M (k) (3.1)

Where h represents the noisy image and k represents the desired image of size
n×n, Y is the Euclidean spaceOn×n, and γ > 0 is Lagrange multiplies and, Euclidean
norm is represented by ‖.‖. The function M (k) is discrete total variation of k, as
depicted in Equation 3.2.

M (k) =
∑
j≤n

∣∣∣(∇h)i,j

∣∣∣ (3.2)

However, many improvements have been proposed in the total variation algorithm,
but still, this method suffers from staircase effects and eliminates important details
from the image. This technique works on the principle that images with extreme and
probably false detail possess high total variation, which means it will have a high ab-
solute gradient. Then dropping the total variation of the image removes the undesired
details by keeping the essential details such as edges or texture of the image. The ad-
vantage of using this technique over other de-noising techniques is that it is effective in
preserving the edges and performs de-noising even on images with low signal to noise
ratio.

3.2 Image Segmentation

The aim of image segmentation is to divide an image into a set of areas that may cor-
respond in medical imaging with the type of tissue, structure or function (Despotović
et al., 2015). The segmentation process is useful to classify the pixels to different
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anatomical areas, such as tissues, bones, muscles and blood vessels. in addition, it is
utilised to define the pathological areas in the organs (Memon et al., 2006). The seg-
mentation techniques are divided into three groups (manual, semi-automated and fully-
automated) based on the degree of user interaction. Liver, lesions and vessels segmen-
tation from CT is a prerequisite for treatment planning and CAD systems. Analysis
of vasculature structure from CT images has received interest due to possible contri-
butions towards a variety of medical applications. Accurate annotation of the blood
vasculature structure can result in improved diagnosis and more accurate liver surgical
and resection planning (Kirbas and Quek, 2003)

The segmentation techniques are applied to different types of imaging modalities.
In the literature, these algorithms are commonly used in CT image. The segmentation
algorithms can be categorised according to several criteria, such as user interaction,
imaging modality, algorithm properties, ect. Regarding the method properties, the
algorithms can be classified in grey level-based and contour-based techniques. The
next subsections will present in detail the various common segmentation techniques.

3.2.1 Grey Level-based

Grey level is the most intuitive and most obvious image features (Chen et al., 2013).
The threshold-based, clustering-based, and region growing approaches belong to this
group of techniques (Soler et al., 2001a; Ruskó et al., 2009a; Chen et al., 2009). The
gray level-based methods are easy to apply and have a lower computational cost (Ning
et al., 2010). These methods have some drawbacks such as less robust to noise and gra-
dient changes; some of these algorithms are semi-automatic and need user’s interaction
(Zheng et al., 2018).

3.2.1.1 Region Growing

The region growing (RG) method is considered as one of the simplest techniques for
image segmentation. The RG technique is partitioning of an image into similar re-
gions of connected pixels by incrementally adding new points to the region. This ap-
proach starts with a single or a group pixels that are called initial seed points. The seed
point can be selected manually by the user or automatically by a computer algorithm.
Starting from the seed point and based on some pre-defined criteria, such as intensity,
variance, color or texture etc., they operate by appending new pixels seeded region as
long as they meet the pre-defined criteria (Susomboon et al., 2007; Ruskó et al., 2009a;
Gloger et al., 2010). However, This method involves two major challenges: selecting
the appropriate seed point in the region of interest and defining the criteria such as
threshold value for stopping the growth process. The process is iterated on until no
more pixels can be appended to the region. The main advantage of RG method is that
it is able to divide regions that have similar characteristics and generate a connected
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area (Rogowska, 2000).

(Rusko et al., 2007a; Kumar et al., 2013b) proposed a region growing approach
for automatic liver segmentation where the estimated liver intensity range based on
histogram analysis is used to threshold the algorithm. The multiphase CT image used
later by (Ruskó et al., 2009b) to improve the segmentation accuracy. An automatic
liver lesion segmentation approach based on region growing and watershed algorithm
proposed by (Anter et al., 2013). (Lu et al., 2014) proposed a region growing algorithm
to segment the liver from CT image. The Quasi-Monte Carlo approach is utilised to
select the optical seed points. However, the liver contour gotten by this method was not
smooth. On the other hand, a region growing approach based on intensity similarity
and the spatial proximity between voxels are used in vessels extraction task (Selle
et al., 2002a; Shang et al., 2008; Jiang et al., 2013a; QIAN, 2017). (Jiang et al., 2013b)
proposed a region growing based on spectrum information for vessels segmentation
task.

The fundamental drawback of RG algorithm is the noisy data can be a problem for
RG approach as it may result in holes or over segmentation (Pham et al., 2000). In
addition, it can be computationally expensive (Adams and Bischof, 1994).

3.2.1.2 Thresholding Based

The segmentation methods which based on threshold are often used to make a rough
segmentation to determine the region of interest or seed points as pre-processing. The
thresholding approach can be used to create a binary mask by replacing each pixel in an
image with a black pixel if the image intensity value is less than the specified threshold
value, or a white pixel if the image intensity is greater than the threshold. Thresh-
olding methods use histogram properties to classify pixels, thus these algorithms are
optimised for a determined type of images with similar histograms properties (Soler
et al., 2001a). The threshold can be chosen manually by the user or automatically
by a computer algorithm. However, the threshold selection is the major challenging
in this approach. (Soler et al., 2001a) proposed the first threshold method for liver
lesion segmentation. (Seo and Park, 2005) proposed adaptive multi-modal threshold
to find the range of gray-level values of the liver structure, then an optimal thresh-
old for lesion segmentation was proposed by (Park et al., 2005). (Ciecholewski and
Ogiela, 2007) proposed the use of histogram equalisation for simplifying the choice
of a threshold value of liver lesions. (Rusko et al., 2007b; Huang et al., 2011; Kumar
et al., 2013b) have also proposed liver lesion segmentation approaches where the initial
lesion boundaries are segmented using histogram analysis and thresholding followed
by post-processing steps for a refined segmentation. The advantage of this approach is
a simple and easy implementation and low computational cost.
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3.2.1.3 Clustering Based

The main idea of the clustering based method is that in n-dimensional feature space,
the distance between samples is shorter if they belong to the same class and the sim-
ilarity of samples from same class is higher. The clustering approaches separate the
pixels of an image into a specific number of clusters based on gray-level similarity.
These algorithms are iterative, starting with some initial clusters and continuing to
modify the clusters until they change. Fuzzy c-means incorporates the fuzzy concept
to k-means, in which each data point can belong to more than one cluster. The data
points have sets of weights that indicate the degree of their belonging to the clusters.
FCM is a popular unsupervised technique in the field of image processing, especially
for liver lesion segmentation (Hong et al., 2001). Firstly, a set of tissue classes of the
liver and lesion should be predetermined. Then, a membership value is assigned to
each voxel related to the tissue classes, based on the features such as intensity, texture,
etc. The method performance depends on the initialisation and selecting accurate clus-
ter centres. However, there are two main issues in clustering based approaches: one
is how to estimate the similarity of samples, the other is how to determine the thresh-
old of similarity. (Massoptier and Casciaro, 2008) proposed a method using k-means
clustering technique to segment the tumor inside the liver. (Häme, 2008) proposed
fuzzy c-means clustering with spatial smoothing followed by deformable models for
a refined segmentation. (Gunasundari and Ananthi, 2012; Kumar et al., 2013a) pro-
posed the use FCM for liver lesion segmentation. (Moghbel et al., 2016) propose an
automatic liver lesion segmentation based on a hybrid approach integrating cuckoo
optimisation and fuzzy c-means method with random walkers algorithm. (Foruzan
and Chen, 2016) proposed a combination of the SVM, watershed and scattered data
approximation approaches to initially segment a lesion. The segmentation results are
refined using sigmoid edge model. The other method combined FCM with graph cut
approach (Wu et al., 2017) to improve the lesion segmentation results. The lesion was
extracted using confidence connected region growing method to reduce computational
cost. Then, initial foreground/background regions were labeled automatically, and a
kernelised FCM with spatial information was incorporated in graph cuts approach to
increase segmentation accuracy. (Ahmadi et al., 2016) proposed liver vessels extrac-
tion approach based on FCM in conjunction with genetic algorithms. The advantages
of clustering based algorithms are: they are fully automatic and they can handle mul-
tiple tasks of segmentation. In addition, they have a relatively low computational cost
(Das and Sabut, 2016).

3.2.2 Contour-based

Contour-based approaches generally achieve good results in segmentation process but
a more complex interaction, initialisation, and/or training process is required in or-
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der to obtain the desired results. However, these characteristics can be inappropriate
in a clinical environment (López-Mir et al., 2015). Probabilistic atlases, level-sets,
deformable models and statistical shape models are approaches used in segmentation
which are based on contour properties (Heimann et al., 2007a, 2009; Casciaro et al.,
2012a; Wang et al., 2013a; Yang et al., 2014).

3.2.2.1 Probabilistic Atlases

Probabilistic atlases (PA) utilise both the prior shape and the spatial location informa-
tion to achieve a refined segmentation. Moreover, relations between adjacent struc-
tures can be effectively formulated using multi-class atlases. The PA is constructed by
a manual segmentation from a large number of anatomical images. These images are
registered into a standard space via affine transformations. The procedure for produc-
ing PA starts with averaging the images and corresponding segmentations where the
PA is employed into a Bayesian frame. Afterwards, the probability of each pixel/voxel
to belong to the specific organs is computed. lastly, a simple thresholding or an itera-
tive conditional mode approach is used to extract the wanted part based on the posterior
probability (Park et al., 2003a; Shimizu, 2006).

(Zhou et al., 2006) proposed a probabilistic model consisting of location and den-
sity probabilities. In this approach, spatial relations between liver, bone structure and
diaphragm are used for defining a standard anatomical structure surrounding the liver
with this anatomical structure being utilised as a reference with all cases being de-
formed to it. Density probabilities of liver intensities are assumed as Gaussian and
calculated utilising the regions under PA. After that, both probabilities are used for seg-
menting the liver. (Slagmolen et al., 2007) suggested a PA and corresponding intensity
atlas using affine registration based on maximisation of mutual information (MI) fol-
lowed by a non-rigid registration using B-splines via MI and surface distance between
the reference segmentation and the floating image segmentation as a similarity metric.
However, as in this PA is not directly build on the image to be segmented, an additional
step is required to register both intensity atlas and PA onto the image of interest and
then final segmentation is obtained by thresholding the PA. (Li et al., 2010) proposed
a probabilistic liver atlas combined with a rib cage atlas. In this method, problems of
mapping derived from the variability in the liver shape are avoided by achieving a more
accurate mapping of probabilistic atlas onto the input CT volume. The main drawback
of this AP approach is that the PA requires a lot of training data to be collected and
manually segmented (Park et al., 2003b). In addition, it has high computational costs
(Ji et al., 2013).

3.2.2.2 Level Sets

Level set method (LSM) relying on boundary tracking by dynamic variations to extract
the object (Osher and Fedkiw, 2006). LSM segments the object by asking the user to
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draw a rough contour outside/inside the target, and then the contour will shrink/extend.
When the contour corresponds to the target boundary, the shrinking/growing procedure
will be stopped. The direction of the shrinking/extending and finding the end point of
the procedure is controlled by the speed function (Leventon et al., 2000). This ap-
proach requires training (Wang et al., 2013b) or an initial iteration to form the initial
curve (Yang et al., 2014) or drawing the initial boundary (Peng et al., 2014). However,
some efforts have focused on automating the initial boundaries but the computational
cost has increased significantly (Casciaro et al., 2012b) or decreased the algorithm’s
accuracy (Ciecholewski, 2014). LSM has gained attention for liver, lesion and vessels
segmentation with a number of proposed methods. (Dawant et al., 2007) segmented
the liver based on 2D level sets with a dynamic speed function. A 3D level set method
based on a medium level of intervention for the liver segmentation in CT slices sug-
gested by (Wimmer et al., 2007). (Platero et al., 2011) proposed a variation of level set
where shape priors are incorporated into edge-based and region-based models. (Yang
et al., 2014) proposed a semi-automatic approach to segment the liver from CT im-
age. The liver is initially extracted by a level set algorithm with multiple seed points
selected by the user, and followed by a threshold-based method to refine the initial
segmentation. The automatic liver segmentation method utilising level set proposed
by (Wang et al., 2016). The initial liver segmentation is obtained using a probabilistic
atlas method with a maximum a posteriori classification. The segmentation is then
refined using a shape and intensity prior based level set approach. On the opposite,
a level set approach had been used for lesion segmentation. (Smeets et al., 2008)
proposed a level set approach based on statistical pixel classification with supervised
learning for the lesion segmentation. A multi-resolution 3D level set method coupled
with adaptive curvature approach for the classification of the pixels into lesion and
background proposed by (Jimenez-Carretero et al., 2011). Furthermore, the level set is
amongst the most popular vessel segmentation approaches (Toledo et al., 2000). (Selle
et al., 2002b) proposed pixel clustering approach for liver vessel segmentation and then
refined by level sets approach. (Jin et al., 2013; Hibet-Allah et al., 2016) proposed
Hessian-based multi-scale filtering and a level set approach for vascular trees extrac-
tion. (Lu et al., 2017) proposed a liver vessel segmentation based on the variational
level set approach, which uses non-local robust statistics to suppress the influence of
noise in the images. (Selvalakshmi et al., 2017) proposed a new fuzzy Bernstein poly-
nomial level set algorithm for segmentation of liver lesions and hepatic vein where the
initial level set is evolved directly from the initial liver segmentation by spatial fuzzy
clustering approach. However, The main drawbacks of the level set approaches are the
time-consuming, computationally expensive and the space complexity.
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3.2.2.3 Deformable Models and Statistical Shape Models

Deformable models are curves or surfaces defined within an image domain that can
move under the influence of internal forces, which are defined within the curve or
surface itself, and external forces, which are computed from the image data. The in-
ternal forces are designed to keep the model smooth during deformation. The external
forces are defined to move the model toward an object boundary or other desired fea-
tures within an image. On the other side, a statistical shape model (SSM) is built by
given a set of examples of a shape. SSMs utilise prior information by providing global
shape constraints based on a training set. The main drawback is that SSM requires a
large training dataset. Furthermore, it often lacks the flexibility to adapt accurately to
a structure with high variations in shape. Thus, many of the proposed SSMs are fol-
lowed by a free-form deformation step utilising deformable models (Heimann et al.,
2006; Kainmüller et al., 2007; Zhang et al., 2010a; Wang et al., 2015a).

(Saddi et al., 2007) suggested an automatic liver SSM with deformable models
based on non-rigid template matching for a refined segmentation. A hybrid method
utilising evolutionary algorithm,SSM and a deformable mesh proposed by (Heimann
et al., 2007b). Initialisation of SSMs is done by a multi-resolution algorithm using an
evolutionary approach. A deformable mesh is fitted to extract a liver based on inter-
nal forces and external forces. The internal forces describe the deviation of the mesh
from the underlying SSM, while the external forces model the fit to the image data.
(Kainmüller et al., 2007) proposed an automatic liver segmentation by matching the
SSM to the CT data and enhance the initial results by a deformable mesh. The SSM
consists of around 7000 landmarks and is built by 112 liver shapes. (Seghers et al.,
2007a) proposed to employ local information for solving the flexibility problem of
SSM. Unlike the global shape models, in this implementation, a statistical model for
each edge of the mesh is utilised for capturing mean and covariance of the edge vec-
tor. (Erdt and Kirschner, 2010) proposed an SSM approach combining learned local
constraints with constraints directly obtained from current curvature for coping with
the drawback of SSM in regions with high curvature. (Li et al., 2015) proposed an
automatic liver segmentation framework based on shape constraints and deformable
graph cut in CT Images. Firstly, the CT image is smoothed using curvature anisotropic
diffusion filtering to construct a statistical shape model based on the principal com-
ponent analysis. Secondly, the mean shape model is moved using thresholding and
Euclidean distance transformation to obtain a coarse position in a CT image, and then
the initial mesh is locally and iteratively deformed to the coarse boundary, which is
constrained to stay close to a subspace of shapes describing the anatomical variabil-
ity. Finally, the deformable graph cut was proposed to refine the liver surface detec-
tion. (Saito et al., 2017) proposed an automatic liver segmentation method using SSM
where SSM-guided expectation-maximisation (EM) algorithm without using spatial
standardisation for better handling of pathological livers. The segmentation is then
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refined using a graph cut based approach.

3.2.2.4 Graph Cut

Graph Cut (GC) is an alternative to boundary based segmentation methods proposed
by (Boykov et al., 2001). The main idea of graph cuts is to represent the image to
an undirected weighted graph. Each node represents each pixel of the image. Each
edge connected a pair of adjacent pixels. The weight of edge indicates the similarly of
gray level, colour or texture between each pair. The GC segments the image into back-
ground and the object by finding the minimum cost function between all possible cuts
of the graph. The best cut is to make the similarity in a sub-graph maximum and the
similarity between sub-graphs minimum. However, the user is required to provide the
seeds representing the background and the object to be segmented. (Beichel12 et al.,
2007) suggested graph cut approach for initial liver segmentation. Afterwards, re-
quiring the user to fix arbitrary segmentation errors. (Massoptier and Casciaro, 2007)
proposed a GC approach for liver segmentation initialised by adaptive thresholding.
(Stawiaski et al., 2008) proposed an interactive liver lesion segmentation using graph
cut algorithm for an initial segmentation and watersheds method for a refine segmenta-
tion. (Shimizu et al., 2010) proposed a combination of statistical atlas-based algorithm
and graph cuts method. Prior shape is estimated by using the PA proposed in (Park
et al., 2003a) and then an implicit SSM is fitted as proposed in (Leventon et al., 2000).
(Pamulapati et al., 2011) introduced a 4D graph-based to segment liver vessels and le-
sions based on multiphase CT image to model the differential enhancement of the liver
structures and Hessian-based shape likelihoods to avoid the common pitfalls of graph
cuts with under segmentation and intensity heterogeneity. (Chen et al., 2012) proposed
a strategic combination of the active appearance model (AAM), live wire (LW), and
graph cut for abdominal organ segmentation. The AAM combined with LW was used
for initial object recognition and delineation. The shape constraint generated from the
initial recognised object was integrated into the graph cuts cost computation to improve
segmentation accuracy. (Wu et al., 2016) proposed an automatic liver segmentation
approach using a histogram-based adaptive thresholding approach and morphological
operations. Then, the initial segmentation was enhanced by using supervoxel-based
graph cuts algorithm. A graph cuts and border marching based method for liver seg-
mentation proposed by (Liao et al., 2017). The pixel-wise and patch-wise features is
employed to enhance the original data and highlight the liver region. However, a major
drawback of this technique is their reliance on initialisation as well as the need for a
dense neighbourhood system in order to avoid geometric artefacts and jagged bound-
aries (Daněk et al., 2012).Furthermore, it has a higher computational complexity.

In summary: image segmentation methods, including liver, lesions and vessels
segmentation, can be grouped according to several criteria, such as user interaction,
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algorithm properties, etc. The literature review divided these methods into grey level-
based and contour-based approaches. Contour-based approaches generally achieve
better results. However, a hard user interaction, initialisation, and/or training process is
required, in order to obtain the desired results. Additionally, the computational cost in-
creases considerably in these methods. These reasons can be inappropriate in a clinical
environment, making their application limited (Campadelli et al., 2009a; López-Mir
et al., 2013). On the other hand, grey level-based methods can obtain good results with
a reasonable computational cost and the low training required. Thus, they could be
optimal for clinical environments (Ruskó et al., 2009a; Gloger et al., 2010). However,
pre- and/or post-processing steps are required in order to increase the segmentation
accuracy by reducing the image noise and adjacent organs connections (Gloger et al.,
2010).

3.3 Liver Lesion Classification

There are several systems that were proposed by researchers to classify liver tumor
according to the tissue types (Normal, Benign, and Malignant). Computer aided liver
lesion classification can be divided into three types based on liver segmentation and
lesion detection. First, manual liver segmentation and lesion detection where drawn
by experienced radiologist. Second, semi-automated liver segmentation and lesion
detection. Finally, fully-automated liver segmentation and lesion detection.

Manual liver segmentation and lesion detection; these techniques completely de-
pend on expert radiologist to mark lesions, while focusing on extracting the appropri-
ate features to feed classifiers to identify lesion types (Duda et al., 2006; Huang et al.,
2006; Dramiński et al., 2007; Ganeshan et al., 2009; Wang et al., 2009; Ye et al., 2009;
Duda et al., 2013; Yang et al., 2013a; Rao et al., 2014; Doron et al., 2014a). The ad-
vantage of this approach is avoiding the error rate in segmentation and lesion detection.
However, some of the lesions are invisible and unreachable by the human perception
(Mir et al., 1995). Furthermore, segmentation accuracy depends only on the skills and
experience of the user. In addition, it is a very time consuming and a tedious process.

Semi-automated classification systems; this type of systems needs the radiologist
to intervene in segmentation and detection of lesions (Kretowski, 2002; Stoitsis et al.,
2006; Mougiakakou et al., 2007a), where it could be done in two possible ways: (1)
The radiologist outlines the region of interest with the mouse clicks then the automatic
segmentation algorithm is applied. (2) The automatic segmentation is followed by
manual checking and editing of the segment boundaries. However, the accuracy of this
method depends on the experience of radiologist to enter the parameter for a correct
segmentation.

Fully automated systems (Mala and Sadasivam, 2010; Chi et al., 2013b; Kumar
et al., 2013a); the main advantage of this method is that no user interaction is needed,
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which saves the time and can provide more useful information and helps the radiologist
in diagnosis of diseases. However, low contrast between organs and the high shape
variability of the liver makes automatic segmentation a hard task.

Recent research efforts have been contributing considerably to enhance the perfor-
mance of lesion classification (Kumar et al., 2012). Generally, the classification system
is performed in three systematic sequential stages, which are (1) Liver lesion extrac-
tion to define the region of interest (ROI), (2) Features extraction to compute low-level
features from segmented ROI (3) Classification process based on extracted features.

The majority of liver lesion classification methods, utilises different low-level fea-
tures calculated directly from single ROI (segmented lesion) to design robust CAD
systems. Feature extraction refers to identifying a set of distinguishing and sufficient
features from medical image such as CT scan image for lesion diagnosis. The ex-
tracted features capture key informations of the image such as intensity, texture, and
shape properties.

Generally, all proposed CAD systems shared in two main stages for lesion classi-
fication, which are feature extraction and classification (Kang et al., 2014b; Roy et al.,
2014b). Features extraction is an important phase in the CAD system to describe the
lesion with its essential characteristic (Rockey et al., 2009b; Fergusson, 2012b). Ba-
sically, there is a large diverse set of features to be used. Those come under three
categories; Bag-of-Visual features, texture feature and combined (texture,intensity and
shape) features, as fully illustrated in Figure 3.1.

Figure 3.1: Literature on liver lesion classification, categorised according to work on
low-level features type.
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3.3.1 Bag-of-Visual Features

This section presents the most relevant key work regarding lesion classification based
on ROI selection, according to the categorisation shown in Figure 3.1. Hence, Bag-of-
Visual-Features will be introduced in this section.

The Bag-of-Visual-Words (BoVW) can be used for image classification, through
treating image features as words. The ROI is abstracted by several local patches to
generate a numerical vector called feature descriptors (Winn et al., 2005). The feature
descriptors-represented patches are converted to codebook (Van Gemert et al., 2010)
which is considered as a representative of several similar patches in the feature space.

Image patch representation and bag-of-visual-words (BoVW) were used in lesion
classification by analysing multiple region of interest, (Safdari et al., 2013) proposed
classification and lesion detection system, where a visual word histogram was used
to build a dictionary through using local descriptors and representing a region in the
image. The accuracy result reported is more than 95% on dataset size of 73 CT images.
(Wang et al., 2015b) proposed CAD system to classify normal livers and livers with
lesions. The dataset comprised 151 cases (76 normal and 75 abnormal). The patches
are extracted densely from a given ROIs with 400 to 500 patches. The histogram of
oriented gradients (HOG) and intensity are extracted as the features of patches inside
ROI. The coding dictionary is created from feature clustering in the training set. Each
patch feature is coded with sparse constraint to generate a coding scheme from both
training and testing images. Bag of visual features (BOF) is used to represent the ROI.
The SVM is adopted for classification with accuracy of 96.15%.

Regarding to recent developed BoVW, (Diamant et al., 2016) proposed single dic-
tionary BoVW for the automatic lesion classification. Two datasets were used to eval-
uate the system performance with total number of 194 CT images. The visual word
histograms are generated based on creating two separate dictionaries from two ROIs
for interior and lesion margin region where all the patches inside ROIs are clustered
by using k-means algorithm. The two histograms from interior and margin lesion
are concatenated to build a new feature vector that represents the given lesion. The
proposed method shows result with 93% of accuracy by using nonlinear SVM with
histogram intersection kernel. The best accuracy was obtained using the combination
of two datasets parameter: (1) patch size 7x7 pixels, dictionary size of 160 words and
word size of 14 for the first dataset and (2) patch size 9x9 pixels, dictionary size of 200
words and word size of 12 for the second dataset.

An approach similar to the preceding ones was used by (Diamant et al., 2015). In
their work, the analysis of BoVW was performed on single (portal phase) and multi-
phase CT scans. The given ROI is divided into uniform patches (patch size between
5 and 13 pixels), from which visual words are computed. The histogram of visual
word is utilised to generate feature vectors for each image. A mutual information (MI)
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criterion was used to improve BoVW model by selecting the most relevant words from
a generated dictionary. For classification task, the SVM with histogram intersection
kernel was used. The experiments on 85 CT images, used optimal parameter of BoVW-
MI (patch size of 11, visual of word size of 10 principal component analysis (PCA)
coefficient and dictionary size 260 words), gave the weighted average classification
sensitivity and specificity of about 82.4% and 92.7% for multi-phase CT scan and
70.6% and 86.9% based on single phase. This work was later tested by (Diamant
et al., 2017) on three different tasks: chest x-ray pathology identification, liver lesion
classification with dataset size 118 portal phase CT images and lesion classification
in breast mammograms, by considering different parameter of BoVW for each task.
Table 3.1 represents a different classification system based on bag-of-visual features.

In summary: BoVW and image patches are a crucial approach to any classifi-
cation system. The BoVW were originally proposed for text document analysis, and
it was further adapted for image analysis (Bosch et al., 2007). The existing methods
tried to capture all the characteristics of lesion through dividing the ROI into patches
(Diamant et al., 2016). However, the widely used BoVW approach with image patches
for lesion classification basically (1) uses k-means for coded vector calculation to gen-
erate sparse dictionary learning (codebook learning) (Jurie and Triggs, 2005), which
approximates any local descriptor using one learned visual word only and leads to
large reconstruction error of local descriptors (Wang et al., 2010, 2017); (2) Through
literature, there exists a limited work based on extracted patches that the accuracy of
the existing methods mainly depends on the number and size of the patches in addition
to the dictionary size , which may work only with specific conditions such as specific
dataset and specific machine settings. As a consequence, the performance is varied
significantly under ROI selection (Singh et al., 2014) and different acquisition condi-
tions (Bharti et al., 2017) such as different operators and settings. In proposed work,
the multiple ROIs (internal, border, and surrounding area) fused with the difference-of-
features between the internal lesion and surrounding area employed as a new feature
vector to well-represent the lesion characteristic, and the various behaviours between
benign and malignant.
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Author Year Dataset Patch
size

Number of dic-
tionary word

Features Accuracy

(Safdari et al., 2013) 2013 Cyst (25); Metastases (24);
Haemangiomas (24)

9x9 250 Visual word his-
togram

95.89%

(Wang et al., 2015b) 2015 Normal (76); Abnormal (75) 16x16;
24x24;
32x32

500 HOG; Intensity 96.15%

(Diamant et al.,
2015)

2015 Haemangiomas (27); Focal
Nodular Hyperplasia (16);
HCC (29); Cholangiocarci-
noma (13)

11x11 260 Visual word his-
togram

Portal phase (Sensitiv-
ity 70.6%; Specificity
86.9%); Multi-phase
(Sensitivity 82.4%;
Specificity 92.7%)

(Diamant et al.,
2016)

2016 Cyst (61); Haemangiomas
(53); Metastases (80)

7x7 160 Visual word his-
togram

93%

(Diamant et al.,
2017)

2017 Cyst (22); Haemangiomas
(32); HCC (29); Metastases
(35)

11x11 750 Visual word his-
togram

sensitivity 83.1%;
specificity 93.6%

Table 3.1: Liver lesion classification literature work based on bag-of-visual features.
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3.3.2 Texture Features

Texture is a powerful discriminating visual feature which has been widely used in
pattern recognition and computer vision for identifying visual patterns with proper-
ties of homogeneity that cannot result from the presence of only a single colour or
intensity. Most of biomedical images acquired and represented in grayscale are of-
ten highly textured, and consequently, examination of biomedical images usually re-
quires interpretation of organ/tissue/lesion appearance, i.e., the local intensity varia-
tions, based on different texture properties such as smoothness, coarseness, regularity,
and homogeneity. Since texture acquires such distinguished importance, it is becom-
ing one of the most commonly used characteristics in biomedical image classification
and retrieval. Hence, texture features gained more attention in liver tumor classifi-
cation, such as: Co-occurrence Matrices (COM) (Haralick et al., 1973a; Bankman,
2008; Conners and Harlow, 1980); Gradient Matrices (GM) (Lerski et al., 1993); Gray
Level Histogram (GLH); Gray-Level Co-Occurrence Matrix (GLCM); Texture Fea-
ture Coding Method (TFCM) (Horng et al., 2002); Gray Level Difference Matrices
(GLDM) (Weszka et al., 1976); Spatial Gray Level Dependence Matrices (SGLDM);
First Order Statistics (FOS); Run Length Matrices (RLM) (Galloway, 1975; Albregt-
sen et al., 2000); Gray Level Run Length Matrix (GLRLM); Wavelet coefficient statis-
tics; Discrete Wavelet Transform (DWT) (Mallat, 1989); Autocorrelation Coefficients
(AC) (Gonzales and Woods, 2007); Laws Texture Energy (LTE) (Laws, 1980); Fractal
Model (FM) (Mandelbrot and Pignoni, 1983; Chen et al., 1989, 1998; Li et al., 2009;
Sankar and Thomas, 2010).

The intensity and shape features were used mostly for liver segmentation and le-
sion detection (Seghers et al., 2007b; Mitrea et al., 2009). But the majority of re-
search was developed based on texture features as lesion descriptors (Duda et al.,
2004), which can reveal subtle characteristics of the lesion and robustness. Further-
more, the computerised methods for texture characterisation being able to overpass the
limits of the subjective human eye (Mitrea et al., 2009). Textural features usually play
only a secondary role in feature description that deals with coloured images. However,
in medicine, textural features gain an extra importance, because (a) gray-level features
alone may not have enough discriminatory power and (b) some diseases can affect the
organs in such a manner that CT images of those organs show texture changes with
less intensity changes. Moreover, texture features have been utilised in several ways:
(1) Standalone, (2) Through merging with other features (e.g. intensity and shape).
The rest of the literature can be categorised in two groups based on feature extraction,
which are texture features, and combination features (intensity, shape, and texture), as
illustrated in Figure 3.1.

Furthermore, texture features were used in different CT image phase such as non-
contrast CT image, single phase-enhanced CT image after contrast agent such as portal
phase, and multiphase CT image (non-enhanced, arterial phase, portal phase, and de-
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layed phase). It will be followed by extensive literature review. This section will be
further categorised into three main approaches: (1) Statistical approach, (2) Structural
approach and (3) Combined Statistical and Structural approach.

3.3.2.1 Statistical approach

Statistical texture analysis approaches (Eltoukhy et al., 2012) are more extensively
used for texture feature extraction. They recognise the texture as a quantitative measure
of the arrangement of intensities in an area. One of the earliest attempts to utilise
texture in classification was proposed in 1995 by (Mir et al., 1995), which works direct
on lesion without segmentation. This study explored whether the texture features could
be providing information to differentiate between malignant and normal liver tissue
that are unreachable to the human perception through find the most appropriate texture
features. COM, RLM, GLDM texture features were used in this work (Mir et al.,
1995). The dataset consists of three groups of liver CT tissues were classified: normal
liver, abnormal tissue (malignant) which divided into malignancy with clearly visible,
and malignance was not visible. Entropy, local homogeneity (COM), and gray level
distribution (RLM) texture features were found the most useful features to classify
invisible malignancy tissue with a confidence level above 99%. However, the result
represented using confidence level not accuracy.

While (Ganeshan et al., 2009) proposed a system to determine whether texture
analysis of CT images in liver region apparently healthy were changed through the
presence of a malignant tumor in patients with colorectal cancer. The dataset consists
of three groups of tissues. Firstly, healthy tissue with no malignancy. Secondly, malig-
nancy tissue but no liver involvement. Finally, liver metastases tissue (malignant). The
tumor region was manually constructed as region of interest. Statistical parameter of
texture (mean gray-level intensity, Entropy, and Uniformity) were extracted from both
unfiltered images as well as filtered images (highlighting fine, medium and coarse tex-
ture). However, the experiments revealed that texture features derived from unfiltered
images for three groups were not significantly different, while statistically different
when used filtered images.

Semi-automatic classification system was presented by (Stoitsis et al., 2006). Im-
age pre-processing was used to enhance image quality and define tumor as ROI. The
proposed system was able to classify four types of liver tissues: Normal, cyst, heman-
gioma, and HCC. Five texture features (FOS, COM, GLDM, LTE, and FM) were ex-
tracted for each tumor. The most useful features were found using a feature selection,
based on Genetic Algorithms. Classification was carried out by Neural Network. The
best classification accuracy was equal to 90.63%. Later, (Mougiakakou et al., 2007a)
extended this work by considering a different features set (FOS, SGLDM, GLDM,
TEM, and FDM).
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Another classification system was proposed by (Wang et al., 2009). The system
classified three types of hepatic tissue (Normal, HCC, and Hemangioma). The ROIs
of tumor were defined by experienced radiologists. For each ROI, four texture features
(FOS, SGLDM, GLRLM, and GLDM) were extracted to fed SVM classifier. The clas-
sifier was used two strategies to construct multiclass SVMs: one-against-all (Liu and
Zheng, 2005), one-against-one (Hsu and Lin, 2002). The performance of classification
was assessed through 5-fold cross validation. The best accuracy has been observed
by the multiclass SVM using one-against-one method which was 97.78%. However,
the proposed system used a fixed size ROI (32x32), while the lesion has variable size
larger or smaller than selected ROI.

Yet another fully automated classification system was presented by (Mala and
Sadasivam, 2010). The proposed system was able to detect liver and classify two
types of tumors (fatty and cirrhosis liver). Wavelet based statistical texture features is
extracted and fed three types of Neural Network (Probabilistic Neural Network, Linear
Vector Quantisation, and Neural Network and Back Propagation Neural Network). The
system evaluation used was 10-fold cross validation. The experiment showed higher
accuracy of 96%. However, the proposed system work on the noise-free dataset. More-
over, the accurate of liver segmentation and boundary are very important and critical
in classification accuracy.

(Duda et al., 2004) proposed a classification system based on triphase liver CT im-
age. For each phase, texture features (gray-level histogram, COM, RLM, and Laws)
were extracted from manually traced ROI. These features were combined in one fea-
ture vector to classify liver tissue into normal or one of two main primary tumors
(HCC, cholangiocarcinoma). Decision Dipolar Tree classifier was used in classifica-
tion. The proposed system applied was 10-fold cross validation method and repeated
5 times to evaluate system accuracy. The experiments showed that the higher accuracy
gained when used features from triphase (non-enhanced, arterial phase, portal phase)
together rather than used features from each phase separately. The accuracy recorded
for each phase was 95.5%, 93.9%, and 93.9% respectively, while triphase together was
99.7%. However, another work later by the same team (Duda et al., 2006) confirmed
that texture parameters derived from three subsequent acquisition moments (triphase)
improves the classification accuracy.

Another approach based on four phases CT image was proposed by (Chi et al.,
2013b). The importance of this study is to improve radiologist’s accuracy in tumor
diagnosis. The proposed system used a hybrid generative-discriminative (Chi et al.,
2013a) and nonrigid B-spline registration (Yushkevich et al., 2006) methods to localise
tumor on multiphase image. Multi-phase density and co-occurrence matrix features
were extracted for each phase and combined in one feature vector. The precision-recall
curve and the Bull’s Eye Percentage Score (BEP) (Manjunath et al., 2002) were used
to evaluate the system performance. The experimental results showed improvement
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in BEP score when used multi-phase image to obtain 78%, while the score recorded
63%-65% using a single phase image. However, the proposed system can be used
in content-based image retrieval for focal liver lesions by providing visually similar
lesions.

Another tumor classification based on multi-phase CT image (pre-contrasted phase,
arterial phase, portal phase and delayed phase) was presented by (Ye et al., 2009).
The dataset consists from four types of liver tissue (Normal, cyst, haemangioma, and
HCC); each lesion was drawn by experienced radiologist. Temporal features (rela-
tive signal intensity, intensity change tendency, and signal enhancement ratio), FOS,
SGLM features were extracted from each phase to be fed into SVM classifier. K-fold
cross validation was used to evaluate system accuracy. The best classification accu-
racy was achieved when mixed features (Temporal features, FOS, and SGLM) were
95.5%, 97.2%, and 96.4% for normal-abnormal, cyst-other disease, and carcinoma-
haemangioma sub problems respectively. However, Boundary of each lesion was
drawn by experienced radiologist. Within the identified lesion, a 16x16 pixels square
was extracted as ROI for extracting features and classification. Which means the pro-
posed system is not capable of handling small lesions. Furthermore, the temporal
features are quite limited as the different features are computed over the mean value of
the pixels (heterogeneous lesions might be hard to distinguish in this case).

Another system, developed by (Krishan and Mittal, 2015), focused on enhancing
CT images using two different algorithms: contrast limited adaptive histogram equal-
isation (CLAHE) and constrained variable histogram equalisation (CVHE). Where
CVHE and CLAHE were used to enhance CT image and lesion respectively. Twenty
texture features based on spatial gray level dependence matrices are extracted from a
lesion cut size of 25x20 pixels. The classification (normal and abnormal) was per-
formed with the SVM for 97% accuracy. However, the dataset is limited where it
contains only malignant and normal liver. Moreover, the proposed system used a fixed
cut size ROI (25x20), while the lesion has variable size larger or smaller than selected
ROI. In (Obayya et al., 2016), the adaptive neuro-fuzzy inference system (ANFIS) was
used to classify liver lesion as benign or malignant. The liver is extracted automat-
ically by applying threshold and boundary extraction algorithm on CT image. Then
FCM approach is used for lesion segmentation. GLCM and discrete wavelet transform
(DWT) features are extracted to train ANFIS classifier separately. The proposed sys-
tem was tested on 100 images evenly split between benign and malignant. The author
reported that the DWT is more effective than GLCM with an accuracy of 96% and
90% respectively. However, The DWT feature has has some limitations in capturing
relevant information such as a lack of shift invariance, which means that small shifts
in the image can cause a significant variations in values of wavelet coefficients at dif-
ferent scales (Kingsbury, 2001). Table 3.2 represents a different classification system
based on statistical texture features.

47



C
hapter3.

L
iterature

R
eview

Author Year Dataset Features Accuracy
(Mir et al., 1995) 1995 Normal (20); Abnormal clear visible

malignant (20); Abnormal invisible ma-

lignant (20)

COM; RLM; GLDM invisible malignant 99%

(Stoitsis et al., 2006) 2006 Normal (76); Cyst (19); Hemangioma

(28); HCC (24)

FOS; COM; GLDM; LTE; FM; 90.63%

(Duda et al., 2006) 2006 Normal (150); HCC (150); Cholangiocr-

cinoma (150)

FOS; RLM; COM; LTE non-enhanced, 95.5%; arterial phase,

93.9%; portal phase, 93.9%

(Mougiakakou et al., 2007a) 2007 Normal (76); Cyst (19); Hemangioma

(28); HCC (24)

FOS; COM; GLDM; LTE; FM 84.96%

(Ganeshan et al., 2009) 2009 Healthy (15); Malignant not in liver (9);

Metastases (8);

FOS; COM -

(Ye et al., 2009) 2009 Normal (64); HCC (26); Cyst (14); Hae-

mangioma (27);

COM; FOS 95.5%

(Wang et al., 2009) 2009 Normal (30); HHC (30); Hemangioma

(30)

FOS; SGLDM; GLRLM;

GLDM

97.78%

(Mala and Sadasivam, 2010) 2010 Fatty liver (100); Cirrhotic liver (100) BWT and FOS; BWT and COM 96%

(Chi et al., 2013b) 2013 HCC (16); Metastases (10); Heman-

gioma (16); Cysts (15); Liver abscess

(7); FNH (5)

COM; FOS -

(Krishan and Mittal, 2015) 2015 Normal (20); Malignant (20) SGLDM 97%

(Obayya et al., 2016) 2016 Malignant (50); Benign (50) GLCM; DWT Using GLCM 90%; Using DWT 96%

Table 3.2: Liver lesion classification literature work based on statistical texture features.
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3.3.2.2 Structural approach

In structural texture analysis approaches, (Kitasaka et al., 2003) described a texture
as the composition of well-defined texture elements such as regularly spaced parallel
lines. The properties and placement rules of the texture elements define the image
texture.

The lesion classification system was proposed by (Huang et al., 2006). The system
has been adapted in order to differentiate between the two sets of liver tumors: HCC
(malignant) and hemangiomas (benign). The tumor region was manually selected and
extracted as a circular sub-image from CT image. The equalisation autocorrelation
coefficients between neighbouring pixels within the image were used as features to
identify liver lesion. Support vector machine (SVM) (Vapnik, 2013) was used in clas-
sification. The evaluation of proposed system used k-fold cross validation (Duda et al.,
2012). Accuracy of classification was equal to 81.7%.

(Ramamoorthy et al., 2015) examined the feature extraction methods for a better
classification accuracy through enhancing texture recognition. The rotation-invariant
texture features are extracted by two methods: (1) using individual Gabor filter and (2)
combining the multi-scale property of Gabor filters and rotation-invariant property of
Local Binary Pattern (MGRLBP). The system was tested on dataset of 56 images of
four different classes (30 images are split equally between normal and hemangioma,
26 images are divided into fatty liver and cyst). The SVM classifier was used in clas-
sification task. The author reported that the proposed MGRLBP performed better than
individual feature extraction. However, the size of the dataset used for evaluation is
small. Furthermore, the dataset consisted only from normal liver tissues and benign
lesions.

3.3.2.3 Combined Statistical and Structural approach

The texture can be represented by structure or statistical approaches. In this section, the
combination between two approaches will be presented. Table 3.3 shows a comparison
between different classification system based on combined (statistical and structural)
texture features.

One of the earliest semi-automatic classification systems was proposed by Kre-
towski (Kretowski, 2002). The objective of the work is classifying liver tissue to nor-
mal or metastases after taken the contrast agent (arterial phase, and portal phase). Four
type of texture features (FOS, GM, COM, and RLM) were extracted and fed Dipolar
Decision Trees (Bobrowski and Kretowski, 2000) classifier. The arterial phase showed
the highest accuracy. The tumor classification system based on three typical acquisition
moments (without contrast, arterial, and portal phase of contrast agent) was proposed
by (Duda et al., 2013). ROI is drawn on each phase of image at the same size and of
the same anatomical position. Several types of texture features (FOS, COM, RLM,
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GLDM, GM, TFCM, AC, and LTE) were used to differentiate between four types
of liver tissue (Normal, cholangiocarcinoma, cirrhosis, and HCC). To select the most
robust features, a simplified Monte Carlo (Dramiński et al., 2007) was applied as a fea-
ture selection method. An Adaptive Boosting algorithm (Quinlan, 2014) with a C4.5
tree (Freund and Schapire, 1995) was used in classification. The experiments result
shown that a small set of features (consist from 12 features) gained higher accuracy
exceeding 90%, while all set of features (183 features) recorded an accuracy rate of
88.94%. However, the features are unstable and dependent on the lesion characteristic
on each phase. Where the lesion may appear in phases and disappear in another.

Another work was presented by (Quatrehomme et al., 2012). The proposed sys-
tem work on four phases liver CT image (non-enhanced, arterial phase, portal phase,
and delayed phase) to classify five types of liver tumors; three types are benign (cysts,
adenomas, haemangiomas); and two types are malignant (HCC, and metastases). Four
different types of texture features (gray level histogram, unser histograms statistics
(Unser, 1986), LTE, and Gaussian Markov Random Fields (Cross and Jain, 1983))
were extracted and then labelled by a SVM classifier. A Leave-One-Out cross vali-
dation was used to evaluate the system performance. The experiments showed that a
significant improvement was achieved using multiphase CT texture analysis, in par-
ticular on haemangiomas tumors. However, the proposed system is unable to classify
HCC lesion since it was able to classify only 4 cases out of 13 cases correctly.

The most recently fully automated classification system proposed by (Kumar et al.,
2013a), specialised in differentiation between HCC (malignant) and hemangioma (be-
nign). From each ROI, four texture features set (gray level, co-occurrence of gray
level, wavelet coefficient statistics, and contourlet coefficient statistic) were extracted.
A probabilistic neural network classifier was used in tumor classification. The highest
accuracy achieved is 96.7%, which had been obtained with contourlet coefficient co-
occurrence features. However, the proposed system can be extended for other types
of liver diseases but the performance measures and accuracy mainly depend on the
number of samples used.
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Author Year Dataset Features Accuracy

(Kretowski,
2002)

2002
Normal (192);

Metastases (405)

FOS; GM;
COM;
RLM

92.3%

(Quatrehomme
et al., 2012)

2012

HCC (13); Metastases
(38); Cyst (25);
Adenomas (10);

Haemangiomas (9)

LTE; UHS;
MRE;
FOS;

-

(Duda et al.,
2013)

2013

Normal (573);
Cholangiocarcinoma

(222); Cirrhosis (433);
HCC (319);

RLM;
FOS;

GLDM;
COM;
TFCM;

LTE; GM;
AC

90%

(Kumar et al.,
2013a)

2013
Malignant (150);

Benign (150)

Gray level;
GLCM;
Wavelet

coefficient
statistics;

Contourlet
coefficient

statistic

96.7%

Table 3.3: Liver lesion classification literature work based on combined (statistical and
structural) texture features.

3.3.3 Combined Feature

In contrast with the previous techniques of using texture only to classify liver lesions,
a mix of texture with other features (intensity, shape), were used in the literature as
well. Table 3.4 displays a different classification system based on combined features
(Intensity, texture and shape features).

In 2005, (Lee et al., 2005) proposed a system to classify three different types of
lesions, namely: Cyst, Hemangioma, and HCC. Lesions were drawn by experienced
radiologist from non-contrast CT image. The combination features (mean gray level,
entropy, local variance) were extracted to fed Back-Propagation Cerebellar Model Ar-
ticulation Controller (BP-CMAC) neural network classifier. The accuracy of proposed
system recorded 87%. However, the proposed system based on extracted features di-
rectly from given ROI not provide robust and accurate performance.

Later, the approach was extended by utilising shape descriptor in addition to GLCM
features (Lee et al., 2007). A sequential forward selection algorithm was used to reduce
feature space and adopted 4-layer pyramid scheme in classification. First layer in clas-
sifier distinguished between normal and abnormal liver tissue and cyst from abnormal
liver tissue in the second layer. The third layer used to identify Hemangioma and last
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layer recognised HCC from undefined liver tissues. Three different types of classifier
were used, namely: SVM, MILP, and RBF neural network. The accuracy of classifi-
cation was 89.5%, 82.1%, and 86.7% respectively. However, the proposed system is
confused with hepatoma and cavernous hemangioma diseases and cause false positive
results. Recently, the same approach was improved by utilising four features from the
ROI, namely: edge, roundness, contrast, and internal texture (Lee et al., 2014). The
extracted feature sets were fed to SVM classifier to classify the lesions with accuracy
93.7%.

Another approach based on portal phase of contract enhancement CT image was
proposed by (Yang et al., 2013b). The proposed system was able to detect and clas-
sify three types of tumors, namely: hyperdense, hypodense, and heterogeneous. The
combination features (Fast discrete curvelet transform, Biorthogonal wavelet, His-
togram, and intensity superpixel) were extracted to fed Naive Bayes Nearest Neighbor
(NBNN). The accuracy for classification has achieved 93%. However, the important
advantage of nonparametric method when compared with other methods, that required
training for detection of liver lesions and classification and need adjust the algorithm
parameters carefully, which makes it flexible and easy to implement. On the other
hand, Image dataset and the local descriptors are considered as main role in the detec-
tion performance and only depend on single-phase CT slices to detect lesion.

Additional study in liver lesion classification was provided by (Doron et al., 2014b).
The combination of texture features (GLCM, LBP, Gabor, GLBP) and intensity fea-
ture (gray level intensity) are obtained from a given lesion. For classification module,
SVM and KNN classifier were used to distinguish between four types of liver tissues,
namely: Cyst, Hemangioma, Metastases, and Healthy tissue. The best result of 97%
accuracy was obtained with combination of Gabor, LBP and Intensity features using
SVM classifier. However, the main disadvantage of LBP feature is that the spatial rela-
tions among LBPs are often eliminated within the LPB histogram generation process,
because they are selected in a single histogram and results to loss of global image in-
formation (Guo et al., 2010). While, computation complexity is considered the main
main disadvantage of Gabor wavelet, due to producing a large number of redundant
features at different scales (Baaziz et al., 2010).

The semi-automatic lesion classification system based on multiphase CT images
was proposed by (Chang et al., 2017). Three types of features were extracted from the
lesions in each phase, including texture, shape and kinetic curve. The GLCM texture
feature was calculated 3D texture data of the lesion. The 3D shape features were
obtained using compactness, elliptic model and margin to describe the lesion shape.
A kinetic curve was created from each phase of CT image to represent differences in
density of the lesion between each phase. The most useful features were found using
a feature selection, based on Backward elimination. The extracted feature sets were
fed to binary logistic regression classifier to classify the lesions with leave-one-out
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cross validation. A total of 71 cases including 49 benign and 22 cases of malignant
were used to evaluate classification performance. The highest accuracy of 81.69% was
achieved through combining all of the features. However, the majority of the dataset
cases were benign lesions, where only 30% of the cases are malignant.

Author Year Dataset Features Accuracy

(Lee et al., 2005) 2005

Cyst (55);
Hepatoma (33);
Hemangioma

(33)

Mean gray level;
Entropy; Local

variance
87%

(Lee et al., 2007) 2007

Cyst (76); HCC
(30);

Haemangiomas
(40)

GLCM; Shape
descriptor

89.5%

(Yang et al.,
2013b)

2013
Hyperdense;
Hypodense;

Heterogeneous

Fast discrete
curvelet

transform;
Biorthogonal

Wavelet;
Histogram;
Intensity

superpixel

93%

(Lee et al., 2014) 2014

Cyst (76); HCC
(30);

Haemangiomas
(40)

Edge;
Roundness;

Contrast; Internal
texture

93.7%

(Doron et al.,
2014b)

2014

Cyst (43);
Haemangiomas
(24); Metastases

(25); Healthy
tissue (20)

GLCM; LBP;
Gabor; GLBP;

Gray level
intensity

97%

(Chang et al.,
2017)

2017
Malignant (22);

Benign (49)

3D texture
(GLCM); 3D

shape
(Compactness,
Elliptic model
and Margin);
Kinetic curve

82.69%

Table 3.4: Liver lesion classification literature work based on combined features (in-
tensity, texture and shape features).

In summary: According to the previous literature about liver lesion classification
based on texture and combination features extracted from lesion ROI, the majority
of researcher are focused on feature extraction, and usually using the absolute value
of features that extracted from lesion area. Moreover, the statistical texture features
gained more attention comparing to other types of texture features or intensity and
shape feature (Duda et al., 2004). However, the characteristics of malignant lesions
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differ from benign lesions in terms of shape, boundary and effect on surrounding liver
tissues (Nicolau et al., 2006; Assy et al., 2009b; Murakami and Tsurusaki, 2014a).
Furthermore, the classification through black box low-level features is meaningless
for radiologist because it does not provide the understandable information behind the
classification decision. There exists a limited work that benefited from all the char-
acteristics of the lesion such as border, shape and surrounding area. In addition, in-
terpreting the classification results through high-level features. Hence, our proposed
system utilises all the lesion characteristics (internal, border and surrounding area)
with the combined between intensity, texture and shape features to enhance the system
accuracy. In addition, proposing multiple ROIs to calculate the high-level features by
considering the ability of each ROI that represents a set of characteristics, and then
using high-level features to classify the lesion. In contrast with most existing research,
which use low-level features only, the use of high-level features and characterisation
helps in interpreting and explaining the classification and is more intuitive to clinicians.

3.4 Liver Lesion Characterisation

Recently, Liver lesion characterisation has become one of the major research topics in
the field of medical imaging and diagnostic radiology. This research not only concerns
in tumor classification, but also characterisation the tumor through describe it (size,
location, boundaries).

CaReRa (Case Retrieval in Radiology) (Reddy and Faust, 2006) is a prototype Con-
tent Base Case Retrieval (CBCR) implementation of the Clinical Experience Sharing
(CES) concept, which focuses on liver cases. The objective of CaReRa is search and
retrieves past cases relevant to the query case. Radiologists describe their observation
of CT image in free-text radiology reports. Unfortunately, radiology reports written
in natural language are often vague, incomplete and error-prone, which makes them
challenge for automatic processing (Oberkampf et al., 2015). Moreover, it becomes
difficult to retrieve valuable information from reports because of their unstructured na-
ture (Iroju and Olaleke, 2015). Hence, it is beneficial to represent the observations in a
structured manner. To represent imaging observations of the liver domain, The Ontol-
ogy of Liver for Radiologists (ONLIRA) has been developed based on the radiologists’
manual annotation process (Seghers et al., 2007c). It enables description of liver CT
in a structured way with an emphasis on its properties and the relations between liver,
veins and liver lesions (Marvasti et al., 2017).

ImageClef (Caputo et al., 2014) was part of the Cross Language Evaluation Forum
(CLEF) 2014. ImageClef has four main tasks; Liver CT annotation is one of these
tasks. The objective of this task was to answer on multiple choice questions to annotate
liver based on an analysis of the image features to generate a structured report (Caputo
et al., 2014). The dataset provided for this task contained 50 CT images for training
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and 10 CT images for testing, segmented liver and lesion. All the participants (Kumar
et al., 2014; Spanier and Joskowicz, 2014; Nedjar et al., 2015) were asked to answer
questions that generated from ONLIRA (Kokciyan et al., 2014).

This section will present the most relevant key works regarding liver lesion charac-
terisation following the categorisation depicted in Figure 3.2. The presented literature
in this section covers work that only focus on semantic features (high-level features)
to characterised liver lesion. This is in contrast with the previous section that included
lesion classification that operated on low-level features. The literature of this section
will be categorised based on the approaches that used to characterise lesion. The tech-
niques that used machine learning to characterise lesion are presented in Section 3.4.1,
lesion characterisation based on Case-based Retrieval is presented in Section 3.4.2.

Figure 3.2: Literature on liver lesion characterisation.

3.4.1 Based on Machine Learning

Machine learning approaches are widely used in medical imaging classification (Pourghas-
sem and Ghassemian, 2008; Setia et al., 2008) and annotation (Tommasi et al., 2008;
Wennerberg et al., 2011). The extracted low-level features are fed as input to machine
learning to relate them to high-level features. (Gimenez et al., 2012) proposed a liver
lesion characterisation system to predict radiological observations from CT images in
the portal phase. Intensity, texture and shape features were extracted from the 79 pre-
identified lesions. The least absolute shrinkage and selection operator (LASSO) was
used in lesion characterisation. A Leave-One-Out cross validation was used to evalu-
ate the system performance. This work was later extended by (Agarwal Vibhu, 2013)
by implementing a stack of two auto-encoders consisting of the 21x21 randomly sam-
pled patches. The neural network and 10-cross validation were used to evaluate the
system performance. The system accuracy is not significant to the results obtained in
the study proposed by (Gimenez et al., 2012) (this was validated using a 2 sample t
test that gave a p-value of 0.74, rejecting the null hypothesis). However, the proposed
methods are only characterised binary semantic features that can be presented by pos-
itive or negative observation, for instance, whether the lesion is heterogeneous or not.
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Regarding the utilisation of semantic features, (Depeursinge et al., 2014) proposed
a framework to predict semantic terms of the liver lesions using linear combination of
texture features based on Riesz wavelets and SVM. The lesion ROI was divided into
12x12 patches to analyse the lesion structure. The feature vector was built by applying
the Steerable Riesz wavelets for each patch. The distances between all visual semantic
terms are calculated to establish a non-hierarchical computationally-derived ontology
of visual semantic terms containing inter-term synonymy and complementarity. The
computationally-derived ontology is complementary to the RadLex ontology because
it allows connecting semantic concepts with their actual appearance in CT images.
For example, heterogeneous and homogeneous feature are very close to each other in
RadLex because they both describe the uniformity of lesion enhancement, but they are
opposed to each other in the computationally-derived ontology since they are visually
antonymous in terms of texture characterisation. The system evaluation used 74 liver
cases annotated with 18 visual semantic features set. Leave-one-patient-out cross-
validation resulted in an average area under the ROC curve of 0.853 for predicting
the presence of each semantic feature. However, the proposed system is limited to
characterise some of the important semantic features such as overall lesion shape and
discrimination between the margin of the lesion and lesion shape.

According to the ImageClef task, (Kumar et al., 2014) designed multi-class clas-
sification scheme based on SVM to annotate liver lesions. Each semantic feature
(question) has multiple answers (labels) such as lesion shape (regular, irregular, round,
oval,...), for each answer has a classifier that is trained to separate it from other an-
swers. Two stages of SVM were used to annotate each semantic feature where the sec-
ond stage is activated only when the first stage assigned multiple labels. The first stage
is 1-vs-all SVM and the second stage is 1-vs-1 SVM classifier. The best overall accu-
racy of 91% was obtained by the RBF kernel with scaling factor equal 1. (Spanier and
Joskowicz, 2014) tried four different types of machine learning algorithm (linear dis-
criminant analysis (LDA), logistic regression (LR), K-nearest neighbors (KNN), and
SVM) to link between extracted low-level features and the high-level features based
on training dataset. Leave-one-out cross validation was used to build a training model
for every semantic feature and classifier. The lesion location (lobe and segment) was
estimated from the image itself by measuring the centre of the lesion and the liver.
The lesion characterised in the right lobe if the lesion centre is on the right part of
the liver. Almost the same performance was obtained by using any previous classifier,
with accuracy of 91%. However, the location of the lesion was characterised in a prim-
itive way with high probability of error where the localisation of lesions depends on
knowledge of liver anatomy (Sibulesky, 2013; Majno et al., 2014).

Another recent ImageClef task participant, (Nedjar et al., 2015) proposed a clas-
sification approach to characterise liver lesion. The characterisation process divided
into two phases. The first stage is pre-processing to segment the actual lesion from
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given lesion box. Thereafter, features vector is generated through extracted texture
and shape features from the segmented lesion. The second stage is classification pro-
cess. Each semantic feature is classified by using random forest classifier. The overall
characterisation accuracy was 82.5%

Later, (Kurtz et al., 2015) proposed a new framework that enables retrieving sim-
ilar images based on semantic features and user feedback. The given lesions are au-
tomatically annotated with semantic terms. Each ROI is divided into 12x12 patches
extracted from internal and margin of the lesion. A gray-level intensity histogram and
multi-scale Riesz wavelets were extracted from each patch to build the feature vector.
The SVM was used to annotate lesions. The predicted semantic features were used to
enhance the performance of retrieving similar images. The system evaluation used 72
images from 42 patients annotated with 18 visual semantic features set. The area under
the receiving operator characteristic (AUC) curve was used to measure the annotation
system performance, 0.76 for all 18 semantic features. Table 3.5 represents a different
characterisation system based on machine leaning.

Author Year Dataset ML Validation Accuracy
(Gimenez et al.,
2012)

2012 79 case LASSO
Leave-one-

out
81.6%

(Agarwal Vibhu,
2013)

2013 79 case
Neural

Network
10-cross

validation
89.5%

(Depeursinge
et al., 2014)

2014 74 case SVM
Leave-one-
patient-out

ROC curve
0.853

(Kumar et al.,
2014)

2014 50 case SVM 10 cases 91%

(Spanier and
Joskowicz, 2014)

2014 50 case
LDA; LR;

KNN;
SVM

10 cases 91%

(Nedjar et al.,
2015)

2015 50 case
Random

forest
10 cases 82.5%

(Kurtz et al.,
2015)

2015 72 case SVM
Leave-one-
patient-out

AUC curve
0.76%

Table 3.5: Liver lesion classification literature work based on machine leaning.

3.4.2 Based on Case-Based Similarity

Content-based image retrieval (CBIR) is a computer vision technique that gives a way
for searching relevant images in large databases (Müller et al., 2004). The low-level
features (texture, intensity and shape) of the lesion are utilised to select which cases
are similar to the query case (Smeulders et al., 2000). Another method for liver char-
acterisation task by using content-based image retrieval technique was introduced in
(Kumar et al., 2014). The most similar training images were used to select the answers
for query un-annotated image. The Euclidean distance was used to calculate the simi-
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larity between image feature vectors. Then, a weighted voting scheme was applied to
select more similar cases to the test image to answering questions. This work was later
extended by (Kumar et al., 2016). The weighted nearest-neighbour (WNN) search with
sequential feature selection used to find the most similar training images to select the
labels for the test images. However, the higher frequency of the labels in the dataset
would have a greater chance of being selected as the best answer. (Nedjar et al., 2015)
proposed another method based on retrieval-based approach to characterise liver le-
sion, by using a specific signature of the liver. The CT image was normalised into a
rectangular block with the size of 200x190 and encode it by applying 1D Log-Gabor
wavelets. The output of the Gabor filter was divided into a small block of size 5x5. For
each block, the dominant angular direction was quantised into four levels by using the
Daugman algorithm. After that, the Hamming distance (HD) was used as a similarity
metric to retrieve the top five similar images to the query image. The majority voting
between retrieved images has been used in characterisation. The experiment showed
a slightly improved in accuracy compared to the classification approach; with overall
accuracy of 83.6%. However, the dataset is small compared to the number of annota-
tions. Moreover, there are some of the annotations such as the lesion location cannot
be estimated correctly through CBIR.

In summary: according to previous literature about liver lesion characterisation,
the majority of works have been done through machine learning technique. Through
literature, the existing works predicted the semantic description of the lesion but did
not characterise the effects of the lesion on the anatomical structures as well as the
relation between the lesion and the surrounding liver area. Furthermore, lack in char-
acterised some of the high-level features that rely on the case itself such as the prox-
imity of the lesion to the hepatic vasculature or characterised lesion in a primitive way
with the high probability of error such as lesion location. In addition, some of works
used unbalanced dataset such as ImageClef dataset (Kumar et al., 2014; Spanier and
Joskowicz, 2014; Nedjar et al., 2015; Kumar et al., 2016), where it has limited training
data compared to the number of semantic features and more than 70% of the high-level
features not applicable or it has the same semantic features for all the dataset. Hence,
the proposed lesion characterisation system will be divided the semantic features into
two groups: (1) high-level features that extracted from the case itself such as lesion
location. (2) high-level features that predicted through training data. Moreover, pro-
posed multiple ROIs (internal, border and surrounding lesion) to captured all the lesion
characteristic. In addition, the balanced dataset will be used in training task that have
enough training data compared to the high-level features.
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3.5 Connection the Thesis with Previous Studies

The previous works have shown different techniques used to classify/ characterise the
liver lesions from CT images. The segmentation process is considered the first step for
semi-automated and fully automated CAD systems. However, all CAD systems share
two main stages: the feature extraction and the classification/ characterisation stage.

In this thesis, particular attention was paid to the efficiency of the proposed algo-
rithms as well as their accuracy. Regarding the segmentation process efficiency, the
grey level-based approach was adopted for this task. This due to this approach has the
advantages of a low computational cost, no training requirements and no user inter-
action (Ruskó et al., 2009a; Gloger et al., 2010). The prior medical knowledge, pre-
processing and post-processing were used to enhance the algorithm accuracy. Thus,
the reasonable balance between accuracy, robustness and computational cost in frame-
work design can offer a suitable solution for clinical use.

This chapter has also given an overview of different CAD systems for liver le-
sion classification and characterisation. The majority of the proposed works used the
texture features for lesion diagnosis, as the combination features achieved promising
results in this task. In this thesis, the statistical features such as GLCM will be em-
ployed, due to its considered the most popular method to drive the spatial statistical
texture features, providing information about the spatial arrangement and intensities
distribution in the image, and also outperforming other techniques such as wavelet fea-
tures (Bayram et al., 2011). Furthermore, the intensity and shape features will be also
used. This is because the malignant lesions differ from benign lesions not only in sur-
face texture but also in shape, boundary and intensity (Nicolau et al., 2006; Assy et al.,
2009b; Murakami and Tsurusaki, 2014a).

However, the liver lesion classification and characterisation accuracy is usually af-
fected by detecting lesion appearance in CT image. These characteristics are observed
differently according to the region of interest selection approaches. Lesion character-
isation based on CT image methods, using existing ROI selection approaches, have a
limit to represent all the lesion characteristics such as the relation between liver and
lesion. Thus, the performance of the CAD systems using the current ROI selection
methods was variable according to the feature extraction techniques. Hence, to over-
come this limitation and obtain a better and more stable framework performance than
the current methods, we proposed a multiple ROIs selection approach to well-represent
the lesion characteristics.

It is crucial to emphasise that, to the best of my knowledge, all previous studies and
others in literature used hand-designed features (such as texture, intensity, etc.) which
are fed into a classifier (such as SVM, RF, etc.), in an attempt to classify liver lesions.
However, the main limitation for using hand-designed features in lesion classification
is that the diagnosis decision cannot be explained in human-level understanding, mak-
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ing it less reliable for physicians. Hence, to overcome this drawback, the proposed
lesion classification framework will benefit from the lesion characterisation. This will
be done through utilising the high-level features to classify liver lesions. The use of
high-level features provides a human-interpretable explanation of the lesion diagnostic
decision to better-trusted diagnosis.

3.6 Conclusion

This chapter started with an overview of the various CAD systems based on CT image
has been presented. Then, a categorised review of related literature on classification
and characterisation was discussed. The review highlighted each one’s approaches
and limitations and how the proposed system will address each of them. The disease
diagnosed in most cases were malignant such as HCC, metastases, benign tumors such
as cyst, hemangioma, which distinguished from healthy liver tissue. Texture features
were used widely in classification tumor system such as COM, RLM, FOS, FM, LTE
and GLCM as mentioned in the literature. Different datasets (tumors types, tumors
size, dataset size, image resolution) were used in different classifiers. Furthermore,
different evaluation approaches were used to calculate the system performance. As a
result, it is difficult to infer the best features and classifier method which can be used
in classification/ characterisation. However, some texture features have shown to be
reliable in different CT image phases. For instance, GLCM and COM texture feature
has been utilised successfully to enhance the classification accuracy for different CT
image phases (non-enhanced and enhanced images). While FM feature was frequently
considered just for one phase of CT image (non-enhanced). In addition, FOS and RLM
features were most often used for enhanced CT image (after administration of contrast
agent). Texture features gained more attention, while Intensity and shape features used
in segmentation and lesion detection. Combination features (texture, intensity, and
shape) gained promising results compared to texture features.

As overall conclusion, most of literature work was diagnosed liver lesion by ex-
tracting the features from the lesion only and not paying much attention to the relation
between lesion and surrounding area. The selected ROI in existing works have a limit
for representing all liver lesion characteristic. Thus, the performance of these systems
was variable according to used feature extraction approaches. Moreover, there are
some of the semantic features such as the lesion location cannot be estimated correctly
through CBIR or machine learning. The proposed system will utilise the lesion and
surrounding area to capture all the characteristic of the lesion where multiple ROIs
area are selected by considering the ability that each ROI represents the kind of char-
acteristics and exploiting relationships between low-level and high-level features.
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Liver Image Analysis in CT

This chapter shows the overall structure of our computer aided detection framework
for liver segmentation, lesion detection and vessels extraction. The aim of this thesis is
to develop an automated CAD system for liver lesion with the main focusing on lesion
characterisation/classification.

Hence, the liver lesion characterisation and classification process will be introduced
in the next chapter in details. This chapter is organised as follows: Section 4.1 will
introduce the automatic liver segmentation framework. Section 4.2 will present the
automatic lesion detection. Section 4.3 will discuss the framework for the main vessels
extraction. Section 4.4 will discuss the obtained segmentation results. Finally, the
chapter is concluded in Section 4.5.

4.1 Liver segmentation

Liver segmentation from abdominal images is an important step in many diagnostic
and surgical procedures. The manual liver segmentation process is subjective and very
time consuming (Suzuki et al., 2013), because a radiologist has to extract the liver on
many CT slices (Suzuki, 2011). In addition, the accurate segmentation depends on
his/her experience (Arakeri et al., 2011). Figure 4.1 depicts the block diagram of an
automatic liver segmentation process using CT images.

Figure 4.1: Detailed block diagram of Our framework for liver segmentation.

The our framework has focused mainly on three steps for liver segmentation:
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• Pre-processing step is used to enhance the CT image quality and remove the
noise to get more surety and ease in segmenting the liver. Noises in the CT are
the main cause of false-positive and false-negative segmentation results, which
may lead to relatively high error rates of segmentation result.

• Intensity analysis with prior-knowledge to extract liver area automatically.

• post-processing step is used to enhance the segmentation result.

4.1.1 Pre-processing

CT is one of the important imaging modality that provides a high contrast of body
tissue or organs with good spatial resolution (Zhu et al., 2012; Kaur and Juneja, 2018b).
The quality of CT image is important in medical diagnosis that can be affected by
the presence of artifacts during acquisition procedure. The most commonly affected
noises in medical CT image are impulse noise "Salt and Pepper", Gaussian and Poisson
noise (Javed et al., 2016). The noise in CT image affects both the diagnosis process
and automated computerised analysis tasks, such as segmentation, three-dimensional
image reconstruction, and visualisation. Therefore, reducing noise in the CT image
is considered an important step, because it helps to improve the performance of the
image analysis such as segmentation (Bhadauria and Dewal, 2012).

The main goal of applying the pre-processing step is to enhance the image qual-
ity, smoothness and reduce the noise that occurred by defects of CT scan device. In
addition, it emphasises beneficial image features and quality for better segmentation
accuracy and speed. Image filtering is a major pre-processing method used for many
purposes including smoothing, sharpening and contrast stretching. In practice, as well
as reducing noise, it is important to preserve the edges of the image where the edges
provide important information about the visual appearance of the image. Because of
this, anisotropic diffusion filter (ADF) and the median filter have been adopted for this
task.

Perona and Malik proposed an edge detection and multiscale smoothing algorithm
called anisotropic diffusion filter (ADF) (Perona and Malik, 1990). ADE addresses the
limitation of spatial filtering and improves image quality by preserving the edges of
the object as it eliminates noise in similar areas and ensures edge sharpening. How-
ever, this algorithm usually removes small image detail and change image statistics
because of its edge enhancement effect. This filter describes the problem in the form
of a heat equation based on the second-order partial differential equation (PDE) in an
anisotropic medium, and it can achieve a good trade-off between noise removal and
edge preservation (Li et al., 2013). Here, image smoothing is framed as a diffusion
process that can be stopped or repressed at edges by selecting the strengths of the local
gradient in various orientations. In this algorithm, boundaries are preserved by con-
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volving the image I in the direction orthogonal to image gradient. The ADF process is
given by Equation 4.1.

∂I(y, i)

∂i
= div (c (y, i)∇I (y, i)) (4.1)

Where ∇I (y, i) gives the value of image gradient at voxel y and iteration i, ∂I(y,i)
∂i

is the partial derivative of I (y, i) and the edge-stopping function c (y, i) is illustrated
in Equation 4.2.

c (y, i) = g ‖∇I (y, i)‖ = e−‖∇I(y,i)‖/R
2

(4.2)

Where, R is the diffusion parameter and c is the flux function that controls the rate
of diffusion.

On the other side, Median filter is a nonlinear approach used to remove noise from
images. The median filter is demonstrably effective at removing noise whilst keeping
edges for a given, fixed window size (Chang and Chu, 2012). Furthermore, Median
filter is particularly effective at removing "salt and pepper" type noise. Because of
this, the median filter is widely used in filtering the image by moving through the
image pixel by pixel, replacing each value with the median value of neighbouring
pixels. The median is calculated by first sorting all the pixel values from the window
into numerical order, and then replacing the pixel being considered with the middle
(median) pixel value.

In this work, the noise present in the CT image is removed by employing a 3x3
median filter, as depicted in Equation 4.3. The median filter was selected due to its
retains the edge information within the input image where Gaussian and Mean filters
tend to blur the edges in the image (Moghbel et al., 2016). This is because the Median
filter does not create new unrealistic pixel values in the case of the filtering window
laying over an edge.

f(x, y) = median(3,3)[I(x, y)] (4.3)

Where f(x,y) shows the filtered image and I(x,y) shows the original image before
applying median filter. Figure 4.2 shows the original CT image and the output images
achieved after de-noising algorithm ADF and median filer respectively.

The visual interpretation of the images is used to differentiate between noisy and
denoised image content. However, to further validate the results at the quantitative
level, some objective criteria were used such as Peak signal to noise ratio (PSNR), and
they do not rely on the visual appearance of the images. This parameter computes
PSNR between two images as a quality measurement between the original and filtered
image.
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Figure 4.2: Pre-processing step to remove the CT image noise. (a, d, g, j, m, p) the
original input CT image. (b, e, h, k, n, q) the output CT image after ADF. (c, f, i, l, o,
r) the output CT image after median filter.
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The Mean Square Error (MSE) and the PSNR are the two error metrics used to
compare noise reduction quality of the image. The MSE represents the cumulative
squared error between the denoised and the original image, whereas PSNR represents a
measure of the peak error. The lower the value of MSE, the lower the error. In contrast,
the higher PSNR value means a better noise reduction algorithm. Equation 4.4 and
Equation 4.5 depicts the respective formulas to compute MSE and PSNR respectively.

MSE =
1

mn

m∑
y=1

n∑
x=1

(I(x, y)− I ′(x, y))
2 (4.4)

PSNR = 10 log10

(
(Imax)

2

MSE

)
(4.5)

Where I is the original with image dimensions m and n. I ′ represents the image
after noise reduction process. Imax is the maximum pixel value for the image.

The performance of both filters (median filter and ADF) is evaluated through PSNR
metric over the 50 cases. The Figure 4.3 depicts the graphical results of PSNR for ADF
and median filter approach, which demonstrates that ADF has better results in some
cases as compared to the median filter algorithm. However, the median filter is better
than ADF algorithm in the low quality of CT images. This is due to the CT image with
the low quality has black and bright pixels, causing noise in the image where the dark
and bright pixels are reduced better by using the median filter.

Figure 4.3: Pre-processing step to remove the CT image noise. (a, d, g, j, m, p) the
original input CT image. (b, e, h, k, n, q) the output CT image after ADF. (c, f, i, l, o,
r) the output CT image after median filter.

In this thesis, regarding the experiments, the median filter provided a good results
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compared to ADF method. In addition, the median filter computational cost is signif-
icantly lower than the ADF algorithm. Hence, the median filter was adopted to fulfill
this task.

4.1.2 Liver Segmentation

First step in semi/fully automated diagnostic system is liver segmentation then lesion
detection. The variety of sizes and shapes of the liver from a patient to another, and
similar intensity of liver with other organs, makes the liver segmentation a task difficult
(Soler et al., 2001b; Seo et al., 2005). However, manual segmentation from clinical
setting perspective is tedious and excessively time consuming (Militzer et al., 2010).

After enhancing the input CT image by reducing the noise and smoothing the im-
age, the next step of the framework is segmenting the liver from CT scan. The liver
segmentation is done through CT intensity analysis and prior-knowledge, which is de-
fined as assumptions based on medical knowledge. The framework is based on the
following medical assumptions:

• The liver is the largest internal organ in the human body (Bandiera et al., 2015).

• The liver is located in the front of the abdominal cavity in the right quadrant
(Ger, 1989; Stringer, 2014).

• The contrast agent typically makes the liver appear brighter than the other ab-
dominal organs. Where the liver absorbs more contrast agent more than other
organs (Sahani and Kalva, 2004a).

• The liver parenchyma in CT image is almost homogeneous(Han et al., 2015).

For the liver segmentation, the framework used a contrast-enhanced CT images
that are acquired in the portal phase. where the contrast agent makes the liver appear
brighter than surrounding abdominal organs. In addition, liver is derived 80% of the
blood from the portal vein (Kan and Madoff, 2008), which can be exploited to separate
the liver from other organs. The histogram of the input CT scan is analysed. According
to (Rusko et al., 2007a; Corson et al., 2011) the intensity of the liver in a portal phase
is in the range of [-50, 250] HU. Figure 4.4 shows the HU intensity ranges for the
abdominal organs in contrast-enhanced CT scan.
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Figure 4.4: The distributions of HU values for different abdominal organs in contrast-
enhanced CT scan (Corson et al., 2011).

The [-50, 250] HU intensity range was applied on CT image to excludes air, fat and
bones that having voxels intensity out of this range, which makes the localisation of the
liver more robust. According to our assumption that liver is located in the right quad-
rant of the abdomen, the histogram of the right side with the range of [-50, 250] HU
was calculated and smoothed to determine the mean liver voxels intensity, as depicted
in Figure 4.5.

Figure 4.5: CT image and intensity range. (a) the original input CT image. (b) the
histogram of CT image. (c) smoothed histogram of CT image.
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After smoothing CT histogram as shown in Figure 4.5, it has two highest pitch that
represents liver and muscles. Since liver intensity is higher than others (based on pre-
knowledge),the first highest pitch belongs to the muscles and the second area contains
the liver. Let H(ml) be the histogram of HU values of the liver and muscles where m

corresponding to the first high intensity in the histogram and l corresponding to the
second high intensity HU value. The liver likelihood HU intensity range is defined by
[lmin, lmax] where lmin is the minimal point between the two highest pitches m and l; lmax

is the lowest point in the tail of histogram. Then, a binary image mask for the liver area
is created on the original CT image. The intensity of pixels which is in the determined
range [lmin, lmax] are assigned value 1 and otherwise lower or higher than the range are
assigned zero value. M(i,j) is binary mask for the liver defined as in Equation 4.6.

M(i, j) =

{
1, if lmin ≤ f(i, j) ≤ lmax

0, otherwise
(4.6)

Figure 4.6 displays the liver segmentation process. As the first step, the threshold
of the liver intensity range is determined based on pre-knowledge and histogram-based
adaptive threshold approach, as shown in Figure 4.6.a. For the adaptive threshold of
the liver, a rough estimation of the intensity range [lmin, lmax] was computed from the
histogram of H(ml), where lmin and lmax denoted by the minimum and maximum of liver
voxels intensity values, respectively. The second step, the binary liver mask is created
by using the threshold lmin and lmax where the pixels having intensity in the range [lmin,
lmax], as depicted in Figure 4.6.b. However, the segmented image includes pixels from
the liver and the other organs as well, which have similar intensity range to the liver. In
order to achieve more accurate segmentation, the post-process is applied that includes
the morphological operation to refine the liver segmentation.

Figure 4.6: Selecting of liver intensity range from a CT image.
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4.1.3 Post-processing

After segmenting the liver area from the CT image, the segmentation result usually
contains not only liver tissue but also other organs, which have similar intensity to
the liver. In addition, it has holes and connected pixels with the neighbour organs.
Therefore, the post-processing based on morphological operation is applied on the
segmented area.

The morphological process is used to delete certain unwanted region and filling
the holes, which lead to detect the liver object and enhance the segmentation result.
Usually a set of structure elements are used in morphological process, such as dilation,
erosion, opening, and closing. The shape and size of structure element is important
in selecting or extracting object to avoid of removing too many desirable objects, or
keeping too many unwanted ones (Luo et al., 2009). Here a circular structure element
with radius 3 is adopted which selected as a compromise between elimination of the
unwanted area and the connected organs with each other and preservation of details
the object. Therefore, the value of structure element was selected based on the prior-
knowledge of the anatomical structure of the abdomen and the resolution of the CT
image. Hence, the liver segmentation post-processing is applied as follows:

• Applied Erosion process to delete the fragments of other organs.

• Applied Connected Component Labeling algorithm (CCL) to identify connected
pixel areas where the largest connect pixels is selected as liver region based on
pre-knowledge (The liver is the largest internal organ in the human body).

• Applied Dilation process to fill the holes and reserve the pixels that removed
from the liver by erosion process.

• Filled the remain holes inside the segmented region.

• Obtained the segmented liver by complemented and multiplied the resulting bi-
nary mask with the original CT image, as shown in Equation 4.7.

S(i, j) =

{
CT (i, j), if M(i, j) = 1

0, otherwise
(4.7)

Where S(i,j) is a final segmented liver, CT(i,j) is the original CT image and M(i,j)
is the liver mask.

Figure 4.7 depicts the liver segmentation process. The original CT image shown in
Figure 4.7.a. The pre-processing median filter is used to smooth and remove the image
noise to improve the segmentation process. The pre-knowledge and the histogram-
based adaptive threshold is used to produce the initial binary mask for the liver, as
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shown in Figure 4.7.b. The erosion process is used to separate the liver area from other
organs, as shown in Figure 4.7.c. The CCL algorithm is applied to select the largest
connected pixels area as considering the liver is the largest organ in the abdomen, as
figured in Figure 4.7.d. The dilation and filling the holes is used to refine the segmented
liver mask, as shown in Figure 4.7.e and Figure 4.7.f respectively. Figure 4.7.g shows
the final results for liver segmentation.

Figure 4.7: Steps of liver segmentation process. (a) The original input CT image. (b)
The initial binary liver mask. (c) Operates erosion morphology. (d) Select the largest
connected pixels as the liver is the largest organ that appear in CT image. (e) Operates
dilation morphology. (f) The final liver mask after filling the holes. (g) The final result
of the liver segmentation.

Figure 4.8 illustrates the graphical evaluation results of liver segmentation based
on Dice similarity coefficient (DSC) metrics. The vertical axis (x-axis) represents the
number of cases that achieved the DSC values in the horizontal axis (y-axis). The
highest DSC value means the better segmentation result.

Figure 4.8: Number of cases and obtained DSC values of liver segmentation for eval-
uating the method.
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Figure 4.9: Samples of liver segmentation results (our method versus ground truth). (a)
The original input CT image. (b) The ground truth of liver segmentation representing
by the red line. (c) Liver segmentation result (green line) with ground truth (red line).

Figure 4.9 depicts the difference in segmentation by our automatic method com-
pared with the ground truth obtained from the radiologist (included in the dataset).
However, in some CT cases, the segmentation results are not quite satisfactory. The
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increase in a false positive segmentation is due to some of the organs may surround
the liver and have almost the same intensity value. In addition, the boundary between
liver and contact organs may disappear and are difficult to discriminate it and this lead
to incorrect segmentation by considering the other organs as a part of the liver.

By inspecting the segmentation results, we can find that some exams presented a
high false positive due to the contact organs have similar intensity to the liver with no
clear boundaries between of them. Hence, to overcome this problem, the segmented
liver boundary was traced based on location and area across CT slices. In order to
capture the significant increase in the liver area and irregular change in the boundaries
over CT slices, due to overlap between the contact tissues and liver area. By compar-
ing the liver boundary slice-by-slice, the unexpected added area will be removed, as
depicted in Figure 4.10.

Figure 4.10: Refine segmented liver boundary. (a) The CT image in the first slice. (b)
The segmentation result(green liner) compared to the ground truth (red line). (c) The
CT image in the next slice. (d) The segmentation result(green liner) compared to the
ground truth (red line). (e) Refine the segmentation for the first slice.

The segmentation results of the first slice, as depicted in Figure 4.10.b, shows a
high false positive due to the surrounding non-liver tissues have short common bound-
aries with liver as shown in Figure 4.10.a (inside red circle). In the next slice, the
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boundaries between liver and surrounding tissues disappeared, as shown in Figure
4.10.c (inside blue circle). By comparing the first slice to the next slice, non-liver
areas will be discarded, as illustrated in Figure 4.10.e.

4.2 Liver Lesion Detection

The liver lesion segmentation is the second stage in the framework. The lesion is de-
tected from the segmented liver, as presented in Section 4.1. The clustering method is
widely used in lesion segmentation by dividing the input image into different clusters,
based on changes in the intensity value. The different tissues in the medical images of-
ten comprise overlapping intensity on the gray level. Accordingly, the fuzzy clustering
algorithm is particularly suitable for lesion detection from the medical image such as
CT scan.

Fuzzy clustering is a popular unsupervised approach in medical image processing
field, especially for liver lesion segmentation (Moghbel et al., 2016). This is because
of its fuzzy nature, which allows pixels to belong to multiple clusters with varying de-
grees of membership. The advantages of Fuzzy clustering algorithm include a straight-
forward implementation and applicability to multichannel data make. Especially, the
ability of Fuzzy clustering approach to model uncertainty within the data give a so-
lution to deal with the fuzziness of the CT images. The CT images mainly suffer
from inhomogeneity and uncertainty due to differences in noise and scanning geome-
tries (e.g. starting angles of the helical scan). Furthermore, the substantial variations
exist among different manufacturers when measuring CT images in phantoms, poten-
tially owing to differences in x-ray spectra, CT detectors, and reconstruction kernels
(Birnbaum et al., 2007; Fletcher et al., 2016). Because of our dataset has varied charac-
teristics (e.g. resolution, spaces, etc.) and has produced from different manufacturers,
the Fuzzy clustering approach has adopted in this work.

The fuzzy c-means (FCM) clustering algorithm assigns pixels to each group by
using fuzzy memberships. Let X = {x1, x2, ..., xn} denotes an image with n pixels to
be grouped into c clusters where c is a positive integer greater than one. The c clusters
is a partition of X into mutually disjoint sets {x1, x2, ..., xc}whereX = x1∪x2∪...∪xc
or equivalently based on indicator function {µ1, µ2, ..., µc} where µi(x) = 1 if x ∈ Xi

and µi(x) = 0 if x /∈ Xi for all i = 1, 2, ..., c. The set {µ1, µ2, ..., µc} of indicator
function is called a hard c-partition of clustering X into c classes (Wu and Yang, 2005).
The following Equation 4.8 defined the hard c-means.

H(µ, a) =
c∑
i=1

n∑
j=1

µij‖xj − ai‖2 (4.8)

Where {µ1, µ2, ..., µc} with µij = µi(xj) is a fuzzy c-partition and {a1, a2, ..., ac}
is the set of c cluster centres.
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The hard c-means extended to allow µi(x) to be membership function of fuzzy sets

µi on X assuming values in the interval [0, 1], where
c∑
i=1

µi(x) = 1 for all x ∈ X . This

extension of {µ1, µ2, ..., µc} is called a fuzzy c-partition of X , as defined in Equation
4.9.

Hm(µ, a) =
c∑
i=1

n∑
j=1

µmij‖xj − ai‖
2,m > 1 (4.9)

where m (weighting exponent) is the degree of fuzziness, which could be used to
enhance the clustering performance of FCM (Yu et al., 2004). The FCM clustering
method minimises the objective function Hm in an iterative way, as depicted in Equa-
tion 4.10 and Equation 4.11.

µij =
[1/‖xj − ai‖2]

1/(m−1)

c∑
k=1

[1/‖xj − ak‖2]
1/(m−1)

(4.10)

ai =

n∑
j=1

(µij)
mxj

n∑
j=1

(µij)
m

(4.11)

The fuzzy c-means (FCM) clustering method has been employed widely in le-
sion detection. However, the FCM is sensitive to noise and outliers. Therefore, the
alternative fuzzy c-means (AFCM) is used for their ability to tolerate noise and out-
liers that often happen in medical images (Wu and Yang, 2002). The euclidean norm
E2(x, a) = ‖x− a‖2 used in FCM has been replaced in AFCM with new one, as
presented in Equation 4.12.

E2(x, x) = 1− exp(−β‖x− a‖2) (4.12)

The AFCM clustering method groups the similar pixels iteratively and the centres
of the grouped pixels are adjusted for all iterations. The AFCM objective function
measures the overall dissimilarity within the grouped pixels and the dissimilarity re-
quires to be minimised to get the optimal partition. The objective function of AFCM
is shown in Equation 4.13.

HAFCM =
c∑
i=1

n∑
j=1

(µij)
m {1− exp(−β‖xj − ai‖2

}
(4.13)
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Where β is a constant which can be defined in Equation 4.14.

β =


n∑
j=1

‖xj − x̄‖2

n


−1

with x̄ =
n∑
j=1

xj
n

(4.14)

Through the objective function, the pixels are assigned to higher membership value
when their intensities are close to the centroid of corresponding groups, or the lower
membership values are being assigned to them when the intensities are far from the
centroid. The membership value of the intensities of pixels and centre of the grouped
pixels are solely dependent on the distance between each other to assign these pixels
to a specific group. The Equation 4.15 and Equation 4.16 are been used to update the
membership functions and the group centres.

µij =
[1/(1− exp(−β‖xj − ai‖2))]

1/(m−1)

c∑
k=1

[1/(1− exp(−β‖xj − ak‖2))]
1/(m−1)

(4.15)

and

ai =

n∑
j=1

(µij)
m exp(−β‖xj − ai‖2)xj

n∑
j=1

(µij)
m exp(−β‖xj − ai‖2)

(4.16)

The lesion is extracted from the segmented liver using AFCM clustering method
(Wu and Yang, 2002) to segregates each pixel into one of three defined classes which
are liver, lesion and vessels. According to the pre-knowledge, the liver parenchyma
appears less brighter intensity compared to the vessels where the lesions appear darker
(Sahani and Kalva, 2004a; Oliveira et al., 2011a). The pixels in the lesion with low
intensity are assigned to the first cluster, the liver pixels are assigned to the second
cluster and third cluster contains the vessels pixels with the high-intensity value. The
AFCM clustering algorithm assigns pixels for each class using fuzzy membership.

Figure 4.11 depicts the liver lesion segmentation process. The original CT image
shown in Figure 4.11.a. The segmented liver is presented in Figure 4.11.b. Figure
4.11.c shows the image pixels clustering into one of three defined class by applying
AFCM algorithm where Liver area defined as green colour, Lesion is red and vessels
is blue. Figure 4.11.d. shows the final result of liver lesion segmentation.
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Figure 4.11: Steps of liver lesion segmentation process. (a) The original input CT
image. (b) The segmented liver. (c) Operates AFCM to cluster the segmented liver
into three areas where the green colour presents liver, lesion is red and vessels are blue
. (d) The final result of the liver lesion segmentation.

Table 4.1 shows the liver lesion detection algorithm that analyses a segmented liver
by using AFCM algorithm to classify image pixels into three classes which are liver,
lesion and vessels.

ALGORITHM 1: Clustering the segmented liver into three classes (Liver, Lesion
and Vessels)

INPUT:
Liver Image X = {x1, x2, ..., xn}
SET number of cluster c=3;
SET degree of fuzziness m=2;
SET improvement value ε = 0.0001;
SET Random initial centre ao = {a(o)1 , ..., a

(o)
c };

OPERATION:
Using Equation 4.14 to estimate parameter (β);
WHILE

∥∥a(k+1) − a(k)
∥∥ < ε DO

Using Equation 4.15 to calculate µ(k) with a(k);
Using Equation 4.16 to calculate a(k+1) with µ(k) and a(k);
IF
∥∥a(k+1) − a(k)

∥∥ > ε THEN k=k+1
END WHILE

OUTPUT L = {l1, l2, . . . , ln}, li is a label for point xi;

Table 4.1: Our algorithm to cluster image pixels into three classes (liver, lesion and
vessels) based on AFCM.
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In the above algorithm, the number of cluster is three classes which are liver, lesion
and vessels. The degree of fuzziness (m) selected the value two where the updated
fuzzy membership value is proportional to the square of the inverse distance from a
specific segment location to each cluster’s centroid.

Figure 4.12 illustrates the graphical evaluation results of liver lesion segmentation
based on Dice similarity coefficient (DSC) metrics. The vertical axis (x-axis) repre-
sents the number of cases that achieved the DSC values in the horizontal axis (y-axis).
The highest DSC value means the better segmentation result.

Figure 4.12: Number of cases and obtained DSC values of liver lesion segmentation
for evaluating the method.

Figure 4.13: Samples of liver lesion detection results (our method versus ground truth).
Our method is shown in blue and the reference detection in yellow.
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Figure 4.13 illustrates the liver lesion detection accuracy of the method compared
to the manual radiologist detection. The results of lesion detection shows over-segmentation
and under-segmentation compared to the ground truth on some of cases especially with
low intensity contrast between lesion and liver or with weak lesion boundary. This is
due to the our detection method mainly relies on the gray level intensity difference
between lesion and normal liver tissue.

Towards a better liver lesion segmentation, the post-processing step is applied to
refine the lesion boundaries. In order to reduce the false negative/ false positive seg-
mentation due to under/ over-segmentation of the lesion, the fast marching approach is
used to enumerate the majority of the lesion voxels. Subsequently, level set approach
refines lesion final shape by attaching the segmented contour to edges in the image
while maintaining smoothness. The main advantages of these techniques are that arbi-
trarily complex shapes can be modeled and topological changes are handled implicitly.
The idea behind this process is to refine the delineation of lesion boundaries that rep-
resents the abnormality area with respect to the healthy liver, as shown in Figure 4.14.
Figure 4.14.a depicts the segmentation results using our method based on AFCM ap-
proach and before the refinement process. Figure 4.14. illustrates the results after the
refinement process.

Figure 4.14: Liver lesion segmentation versus ground truth (GT) where GT is delin-
eated as red contours. (a) The segmentation results before refinement process. (b) The
segmentation results after refinement process.
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4.3 Liver Vessels Extraction

The liver vessels extraction is important for anatomical liver segments which will be
used later in lesion characterisation such as describe lesion location. In this step, the
segmented liver is used to extract the vessels. In this work, the region growing al-
gorithm based on the pre-processing Gaussian filter with the size 3 x 3 was adopted
to extract the vessels, where several attempts were done to select the best parameter.
where Gaussian is able to reduce the noise, improve the image contrast in homogenous
areas and bright out the details of an image (Liu et al., 2012). The gray-level intensity
distribution for the vessels is different from liver parenchyma intensity. Figure 4.15
shows the block diagram of the framework to extract liver vessels.

Figure 4.15: Block diagram of our framework for liver vessels extraction. The depicted
output is the liver vessels from the CT image.

The main processing stages of the framework to extract liver vessels are as follows:

• At the first step, the histogram Li(x) of the segmented liver is calculated. Where
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the histogram contains liver, lesion and vessels intensity L = P +T +V , where
P corresponds to the liver parenchyma, T to the lesion and V to the vessels.

• Applied Gaussian filter Gσ(x, y) on the segmented liver image, as presented in
Equation 4.17:

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(4.17)

Where x and y are the offset position from a discriminated pixel, σ is a scale
parameter. The gradient magnitude of a Gaussian filter is presented in Equation
4.18 to enhance the boundaries.

∇G(x, y) =

√(
∂G(x, y)

∂x

)2

+

(
∂G(x, y)

∂y

)2

(4.18)

Where the gradient magnitude of a Gaussian filter ∇G(x, y) combines ∂G(x,y)
∂x

(horizontal derivative) and ∂G(x,y)
∂y

(vertical derivative) as shown in Equation 4.19
and Equation 4.20.

∂G(x, y)

∂x
= − x

2πσ4
exp

(
−x

2 + y2

2σ2

)
(4.19)

and
∂G(x, y)

∂y
= − y

2πσ4
exp

(
−x

2 + y2

2σ2

)
(4.20)

• Computed the histogram LG(v) of the new filtered image. The liver vessel is
realised by intersecting both histograms resultant of: (1) directly from the CT
image Li(x) and (2) after applying Gaussian filtering LG(v). After the peak
point of the histogram, the brightness distribution of the image after applied
Gaussian filter intersects with the input image. Thus, this point considered as
vessels threshold (Tv).

• The region growing algorithm is employed to segment vessels. The intensity of
the vessels inside the liver area is brighter than the intensity of liver parenchyma
which have intensity distribution based on (Tv). The intensity value of the pixels
greater than the threshold (Tv) are classified straightforwardly as a liver vessels
and used them as seeds for the region growing algorithm that aggregates the
neighbouring pixels with the intensity level value greater than threshold (Tv) to
create binary mask for the vessels.
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Figure 4.16 depicts the sample of liver vessels extraction process. The original
input CT image shown in Figure 4.16.a. The segmented liver is depicted in Figure
4.16.b. Figure 4.16.c. shows enhanced liver after applied Gaussian filter. Figure 4.16.d
shows the detected vessels where the vessels are blue. The 2D vessels mask shown in
Figure 4.16.e.

Figure 4.16: Sample of liver vessels extraction. (a The original input CT image. (b)
The segmented liver. (c) Applies Gaussian filter. (d)Detected liver vessels (blue). (e)
Liver vessels mask.

81



Chapter 4. Liver Image Analysis in CT

This part investigate the performance of our algorithm for liver vessels extraction
based on Gaussian filter compared to AFCM method. In order to validate the liver
vessels extraction results, the 30 CT scan of the liver were selected randomly. The
calculated values of the OVE, RVD, TPVF, FPVF, JSM and DSC for our method based
on 3x3 Gaussian filter is presented in Table 4.2. Table 4.3 presents the evaluation
results of vessels extraction performance through AFCM clustering algorithm.

Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
1 8.15 5.23 98.26 6.63 91.85 95.75
2 24.31 14.87 92.57 19.41 75.69 86.16
3 9.38 1.42 95.75 5.59 90.62 95.08
4 27.97 -10.28 79.43 11.46 72.03 83.74
5 10.29 -1.54 93.85 4.69 89.71 94.57
6 8.18 2.88 97.12 5.61 91.82 95.74
7 6.86 3.09 97.94 4.99 93.14 96.45
8 20.09 20.53 97.95 18.73 79.91 88.83
9 22.40 -8.07 83.86 8.78 77.60 87.38
10 20.63 7.75 91.93 14.68 79.37 88.50
11 16.33 13.56 97.29 14.33 83.67 91.11
12 21.45 8.34 91.66 15.40 78.55 87.99
13 9.76 -1.13 94.33 4.59 90.24 94.87
14 21.33 12.70 93.65 16.90 78.67 88.06
15 6.18 4.35 98.91 5.21 93.82 96.81
16 19.04 10.05 93.97 14.61 80.96 89.48
17 27.48 11.21 88.79 20.17 72.52 84.07
18 14.75 11.22 97.20 12.61 85.25 92.04
19 9.17 4.21 97.20 6.73 90.83 95.19
20 16.98 1.24 91.29 9.83 83.02 90.72
21 23.70 9.38 90.62 17.16 76.30 86.56
22 25.74 -9.38 81.23 10.36 74.26 85.23
23 10.91 5.06 96.61 8.04 89.09 94.23
24 15.01 9.44 96.22 12.07 84.99 91.89
25 11.79 -1.13 93.21 5.73 88.21 93.74
26 12.08 -1.16 93.03 5.88 87.92 93.57
27 15.46 1.54 92.32 9.07 84.54 91.62
28 19.09 10.07 93.96 14.64 80.91 89.45
29 19.58 7.51 92.49 13.97 80.42 89.15
30 12.89 4.70 95.30 8.98 87.11 93.11
Mean 15.83 3.59 92.86 10.06 84.17 91.22

Table 4.2: Quantitative results of vessels extraction after applying 3x3 Gaussian filter
pre-processing step.
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Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
1 11.22 5.23 96.51 8.28 88.78 94.05
2 18.80 14.87 96.28 16.18 81.20 89.62
3 10.44 5.67 97.17 8.04 89.56 94.49
4 30.97 2.06 82.52 19.14 69.03 81.68
5 15.49 1.54 92.31 9.09 84.51 91.60
6 14.41 4.33 94.23 9.68 85.59 92.24
7 17.22 18.53 98.97 16.51 82.78 90.58
8 23.06 20.53 95.89 20.44 76.94 86.97
9 28.02 8.07 87.09 19.42 71.98 83.71
10 18.47 15.82 96.93 16.31 81.53 89.83
11 19.38 14.92 95.93 16.52 80.62 89.27
12 26.69 16.68 91.66 21.45 73.31 84.60
13 12.47 4.54 95.46 8.68 87.53 93.35
14 15.43 12.70 97.46 13.52 84.57 91.64
15 17.13 8.69 94.57 12.99 82.87 90.63
16 22.67 20.09 95.98 20.08 77.33 87.22
17 25.88 11.21 89.91 19.16 74.12 85.13
18 19.20 11.22 94.39 15.13 80.80 89.38
19 17.21 8.41 94.39 12.93 82.79 90.58
20 22.99 1.24 87.56 13.52 77.01 87.01
21 23.70 9.38 90.62 17.16 76.30 86.56
22 19.54 -9.38 84.99 6.21 80.46 89.17
23 27.04 5.06 86.50 17.66 72.96 84.37
24 11.87 9.44 98.11 10.35 88.13 93.69
25 19.13 3.40 90.94 12.05 80.87 89.42
26 17.16 10.45 95.35 13.67 82.84 90.62
27 18.39 12.28 95.39 15.04 81.61 89.88
28 25.90 30.22 97.99 24.76 74.10 85.12
29 24.51 15.01 92.49 19.58 75.49 86.03
30 17.51 8.22 94.13 13.03 82.49 90.41
Mean 19.73 10.01 93.39 14.89 80.27 88.96

Table 4.3: Quantitative results of vessels extraction using AFCM approach

The overall vessels extraction performance of the AFCM is reduced by 3.90 ±
2.47% and 2.26 ± 1.13% on the average of Jaccard Similarity Metric and Dice Simi-
larity Coefficient respectively, compared to our algorithm based on the pre-processing
Gaussian filter. The Figure 4.17 depicts the comparison of True positive Volume Frac-
tion(TPVF) and False Positive Volume Fraction (FPVF) between our vessels extraction
method and AFCM algorithm.

The results are depicted in Figure 4.17, and shows that the liver vessels extraction
on our method based on medical knowledge background and Gaussian filter is slightly
better by 1.53± 0.67% on average of True positive compared to the AFCM approach.
In addition, the extracted area which wrongly indicates that as a part of liver vessels
(False positive) of the AFCM approach is increased by 4.83±1.52% on average, due to
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the sensitivity of the AFCM to the noise and does not use any information about edge
to locate vessels that will affect in the tracking procedure (Kirbas and Quek, 2004).
Although the accuracy of the extraction of liver vessels is similar between the two
methods, but the increase in the False Positive will affect the accuracy of the location
of the lesion characterisation for the vessels.

Figure 4.17: The liver vessels extraction performance based on TPVF and FPVF eval-
uation considering the Gaussian filter versus AFCM algorithm.

Figure 4.18 illustrates the graphical evaluation results of liver vessels segmentation
based on Dice similarity coefficient (DSC) metrics. The vertical axis (x-axis) repre-
sents the number of cases that achieved the DSC values in the horizontal axis (y-axis).
The highest DSC value means the better segmentation result.
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Figure 4.18: Number of cases and obtained DSC values of liver vessels segmentation
for evaluating the method.

4.4 Results and Evaluation

This section presents an evaluation of liver segmentation, lesion detection and vessels
extraction, coming from the dataset that was used in this thesis, as presented in details
in Chapter 2. The performance of the system can be described through its accuracy and
efficiency. These two factors are used to measure the success of the system to apply in
clinical practice. For instance, the good accuracy of segmentation system is limited to
practical use if it needs a long running time on an average case.

4.4.1 Evaluation of liver segmentation

In this thesis, an automatic liver segmentation was introduced by using anatomic med-
ical knowledge, histogram-based adaptive threshold and morphological operations.
Firstly, the HU intensity range of the liver based on medical pre-knowledge was ap-
plied to excludes air, fat and bones that having out range of liver intensity. The next
step, the adaptive threshold of the liver intensity was estimated from the histogram of
the image. Final step, the post-process (morphological operation) is applied to refine
the liver segmentation result.

To evaluate accuracy of our liver segmentation method over the dataset compared to
the ground truth; we utilised Jaccard Similarity Metric and Dice Similarity Coefficient
methods which depicted in the Equation 4.21 and Equation 4.22. The average accuracy
of liver segmentation was 82.85% and 90.45% respectively.

Figure 4.19 depicts a visual evaluation for automatic liver segmentation framework
by using different measurement methods. Figure 4.19.a shows the evaluation results
by using Volumetric Overlap Error. Figure 4.19.b illustrates the evaluation of the liver
segmentation framework based on Relative Volume Difference. The evaluation results
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by using True Positive Volume Fraction is shown in Figure 4.19.c. The Figure 4.19.d
depicts the evaluation of over-segmentation for the framework through False Positive
Volume Fraction. The full evaluation results are available in Appendix A.

The results are depicted in Figure 4.19, and shows that the best result of the liver
segmentation compared to the ground truth by using JSM and DSC evaluation were
96.57% and 98.25% respectively, due to the quality of the original CT image and the
sensitivity of the interpreter. On the other hand, the lowest JSM and DSC segmentation
results were 59.70% and 74.77% respectively, because of the intensity similarity be-
tween liver and contact organs with the disappearance of the boundary between them.
In addition, the poor quality of the CT image.

Figure 4.19: The overview of results for our liver segmentation by adopting different
evaluation methods. (a) Evaluation by using VOE method. (b) TPVF method. (c)
FPVF method. (d) RVD method. (e) Jaccard Similarity Metric method. (f) Dice
Similarity Coefficient evaluation method.

4.4.2 Evaluation of liver lesion detection

The liver lesion is detected from the segmented liver through applying AFCM ap-
proach. The lesion segmentation process involves partitioning the segmented liver into
three different clusters. Namely, liver area, lesion and vessels.

The average accuracy of liver lesion segmentation compared to the ground truth
over the dataset by Jaccard Similarity Metric and Dice Similarity Coefficient evaluation
methods was 79.76% and 88.51% respectively.
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The Figure 4.20 depicts a visual evaluation for automatic liver lesion segmentation
framework by using different measurement methods. Figure 4.20.a shows the evalua-
tion results by using Volumetric Overlap Error. Figure 4.20.b illustrates the evaluation
of our liver segmentation framework based on Relative Volume Difference. The eval-
uation results by using True Positive Volume Fraction is shown in Figure 4.20.c. The
Figure 4.20.d depicts the evaluation of over-segmentation for our framework through
False Positive Volume Fraction. The full evaluation results are available in Appendix
A.

The evaluation results of the lesion detection are illustrated in Figure 4.20, and
shows that the best accuracy of JSM and DSC were 91.24% and 95.42% respectively.
However, the lowest lesion segmentation of JSM and DSC were 50.21% and 66.86%

respectively. This is due to the AFCM lesion detection approach mainly relies on the
gray level intensity difference between the clusters. Moreover, the lesion detection is
affected by the CT image quality and the imaging time. However, most lesion seg-
mentation differences between our method and ground truth occur at the boundary
especially with the malignant lesion, because the characteristics of the malignant le-
sion are an invasion of adjacent structures with ill-defined/ poor margins (Murakami
and Tsurusaki, 2014a; Minami and Kudo, 2015).

Figure 4.20: The overview of results for our liver lesion segmentation by adopting
different evaluation methods. (a) Evaluation by using VOE method. (b) TPVF method.
(c) FPVF method. (d) RVD method. (e) Jaccard Similarity Metric method. (f) Dice
Similarity Coefficient evaluation method.

87



Chapter 4. Liver Image Analysis in CT

4.4.3 Evaluation of liver vessels extraction

The vessels in the segmented liver is extracted by a combination of pre-processing
Gaussian filter and region growing algorithm. The adaptive threshold is obtained by
intersecting the histogram of the liver before applying pre-processing process and the
histogram after applying the Gaussian filter. Finally, the region growing algorithm is
applied to extract the vessels. The accuracy of liver vessels extraction over the dataset
by Jaccard Similarity Metric and Dice Similarity Coefficient evaluation methods was
82.06% and 90.03% respectively.

Figure 4.21 depicts a visual evaluation for automatic liver vessels segmentation our
framework by using different measurement methods. Figure 4.21.a shows the evalua-
tion results by using Volumetric Overlap Error. Figure 4.21.b illustrates the evaluation
of our liver segmentation framework based on Relative Volume Difference. The eval-
uation results by using True Positive Volume Fraction is shown in Figure 4.21.c. The
Figure 4.21.d depicts the evaluation of over-segmentation for our framework through
False Positive Volume Fraction. The full evaluation results are available in Appendix
A.

Figure 4.21: The overview of results for our liver vessels segmentation by adopting
different evaluation methods. (a) Evaluation by using VOE method. (b) TPVF method.
(c) FPVF method. (d) RVD method. (e) JSM method. (f) DSC evaluation method.

The evaluation results of liver vessels extraction are depicted in Figure 4.21, and
shows that the best accuracy result of JSM and DSC were 93.82% and 96.81% respec-
tively. On the other hand, the lowest liver vessels extraction of JSM and DSC were
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58.76% and 74.03% respectively. This is due to the several factors that affected on the
extraction performance: (1) CT image quality and noise ratio in the image. (2) Injec-
tion duration for determining CT scan timing, due to it affects the time to peak contrast
enhancement in the vessels. (3) The type and size of the lesion as the large/ malignant
lesions affect the structure of the vessels.

4.4.4 Comparison with Other Methods

It is always difficult to directly compare the segmentation performance with the state-
of-art methods due to different datasets for evaluation, different qualities of manual
segmentation, and differences in the evaluation metrics used. Hence, to overcome
these challenges, different performance evaluation metrics with currently available
public datasets are used for testing the performance of our framework, as a comparison
would be more valuable if done using the same standard dataset with same validation
criterion.

For evaluating the segmentation quality, the MICCAI criterion (Heimann et al.,
2009) is used in this section, including the following measures:

Average Symmetric Surface Distance (ASD) [mm]

The ASSD is the average of all the distance from points on the framework segmentation
boundary (BS = {S1, S2, ..., SN}) to the ground truth boundary (BGT = {GT1, GT2, ..., GTM}),
as depicted in Equation 4.21.

ASD =

n∑
i=1

min
1≤j≤m

‖Si −GTj‖+
m∑
j=1

min
1≤i≤n

‖GTj − Si‖

|BS|+ |BGT |
(4.21)

Where ‖Si −GTj‖ denotes the Euclidean distance of the pixels Si and GTj in
millimetre.

Root Mean Square Symmetric Surface Distance (RMSD) [mm]

The RMSD is highly correlated with ASD, but it is more sensitive to large deviations
from the ground truth region, as defined in Equation 4.22.

RMSD =

√√√√√ n∑
i=1

min
1≤j≤m

‖Si −GTj‖2 +
m∑
j=1

min
1≤i≤n

‖GTj − Si‖2

|BS|+ |BGT |
(4.22)
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Maximum symmetric surface distance (MSD) [mm]

MSD, also known as the Symmetric Hausdorff Distance, takes the maximum distance
instead of the average. it is sensitive to outliers and returns the true maximum error, as
depicted in Equaion 4.23.

MSD = max

{
max
1≤j≤m

‖Si −GTj‖ , max
1≤i≤n

‖GTj − Si‖
}

(4.23)

The three surface errors ASD, RMSD and MSD are given in millimetres and equal
to zero if it is a 100% accurate segmentation.

For a fair comparison, the public dataset (SLIVER07) was used to evaluate our liver
segmentation framework. SLIVER07 is a liver CT dataset provided by the workshop
on 3D segmentation in clinic that was held in conjunction with MICCAI 2007 con-
ference (Heimann et al., 2007c). The dataset includes 20 CT volumes with standard
liver segmentation. The CT images were acquired using different CT scanners. All the
volumes have an in-plane resolution of 512× 512 pixels and slice number varies from
64 to 502 (average 214). The inner-slice pixel spacing varies from 0.54 to 0.87 mm
(average 0.7), and the slice thickness varies from 0.7 to 5 mm (average 1.6).

Method VOE % RVD % ASD (mm) RMSD (mm) MSD (mm) Time (min)
(Kainmüller et al., 2007) 6.1±2.1 -2.9±2.9 0.9±0.3 1.9±0.8 18.7±8.5 15
(Heimann et al., 2007b) 7.7±1.9 1.7±3.2 1.4±0.4 3.2±1.3 30.1±10.2 7
(Chen et al., 2012) 6.5±1.8 -2.1±2.3 1±0.4 1.8±1 20.5±9.3 6
(Lu et al., 2014) 7.4±1.9 4.6±2.8 1.2±0.4 2.8±1.3 38.5±18 12.4
(Yang et al., 2014) 8.9±2.2 2.3±2 1.4±0.3 2.4±1.2 24.3±9.6 2.1
(Li et al., 2015) 6.24±1.52 1.8±2.76 1.03±0.31 2.11±0.95 18.82±8.82 5.8
(Wu et al., 2016) 7.6 4.2 1 2 18.5 1.3
Our method 11.57±2.8 4.43±3.2 1.8±0.9 2.89±2.3 28.34±8.4 0.7

Table 4.4: Quantitative comparative results for liver segmentation over the SLIVER07
dataset.

On the other hand, the performance of our liver lesion segmentation framework
is evaluated using 3Dircadb dataset from Research Institute against Digestive Cancer
(IRCAD) (France, 2016), which is publicly available. This dataset is composed of 3D
CT volumes of 10 men and 10 women with hepatic tumours in 75% of cases. The CT
volumes correspond to 20 different patients. The expert radiologists have manually
out-lined liver tumor contours for all CT volumes to determine the ground truth. All
the CT images have an in-plane resolution of 512× 512 pixels and slice number varies
from 74 to 260 (average 141). The inner-slice pixel spacing varies from 0.56 to 0.87

mm (average 0.72), and the slice thickness varies from 1 to 4 mm (average 1.78).
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Method VOE % RVD % ASD (mm) RMSD (mm) MSD (mm) Time (min)
(Moghbel et al., 2016) 22.78+12.15 8.59+18.78 NA NA NA 16
(Wu et al., 2017) 30.61+10.44 15.97+12.04 4.18+9.6 5.09+10.71 12.55+17.07 3.2
(Foruzan and Chen, 2016) 29.04+8.16 2.2+15.88 0.72+0.33 1.1+0.49 4.25+3.03 1.5
Our method 25.14+9.34 11.69+7.52 5.23+4.17 6.11+5.42 14.02+7.81 0.8

Table 4.5: Quantitative comparative results for liver lesion segmentation over the
3Dircadb dataset.

Regarding the comparison of liver vessel extraction, where there is no public database
available for liver vessels segmentation based on CT scans, the quantitative compari-
son between the different methods is difficult. This is because the comparison would
be more valuable if done using the same dataset with the same validation standard cri-
terion. Furthermore, our method is designed to extract the major vessels that meet our
target in characterising the location of the lesion for these vessels, not to extract the
whole vascular network.

The liver and lesion segmentation performance achieved on SLIVER07 and 3Dircadb
dataset is presented in Table 4.4 and 4.5 respectively. For comparison, we also present
the segmentation results of the other methods. Results for each measure represent as
the mean and standard deviations of the overall datasets. As can be seen in Table 4.4
and Table 4.5, our method achieves good segmentation results for the SLIVER07 and
3Dircadb dataset in terms of liver and lesion segmentation respectively. For all the
datasets, our method outperforms the other algorithms in terms of the computational
cost. The average run time of our method for liver or lesion segmentation is less than
one minute. In addition, the our framework is a fully automatic that does not require
any user interaction. However, the main drawback of the approach that obtained the
best results in Table 4.4 is that it needed more than 100 liver shapes for the training
process and besides that a semi-automatic (and manual) iteration was required in the
training step. In general, a high computational cost and a hard training or initialisation
was required in these methods

Among all the methods in Table 4.5, (Moghbel et al., 2016) proposed an auto-
matic hybrid method based on FCM with cuckoo optimisation and random walkers. It
achieved the highest accuracy and the average time was 16 minutes per case. (Foruzan
and Chen, 2016) obtained initial tumor contours using supervised watershed, SVM,
and scattered data approximation for large/small tumors and then refined the contours
based on sigmoid edge model.Several seed points for the tumor, liver, and other back-
ground were marked in the middle tumor slice through user interaction. (Wu et al.,
2017) proposed a semi-automatic method for liver tumor segmentation in CT volumes
based on improved fuzzy C-means (FCM) and graph cuts. The performance of our
method on the 3Dircadb dataset was comparable to the other methods, and the lesion
segmentation procedure was performed automatically in a fast way with low compu-
tational cost. However, The segmentation errors were mainly due to the low contrast
or weak boundaries of lesions. In addition, the lesions with inhomogeneous intensity
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were also prone to be under-segmented.

From Table 4.4 and Table 4.5, we obtain that the liver and lesion segmentation per-
formance of our method in terms of the five metrics are comparable to the best results.
The average running time achieved by our method is shorter than that of other methods
and can meet the clinical requirements. Thus, we can conclude that the our method is
a good automatic liver and lesion segmentation method in terms of the segmentation
accuracy and time efficiency.

4.4.5 Computational time

On the other side, The computational time for liver segmentation, lesion detection and
vessels extraction is very important in the computer aided systems. Since the manual
liver segmentation is time consuming. The semi-automatic and fully automatic systems
have been proposed to solve the time consuming in efficient way.

For our framework, the computational time was computed to measuring the frame
work performance. The Figure 4.22 shows the average computational time in millisec-
onds per CT slice for our system to segment the liver, detect lesion and extract vessels.
The experiments were carried out using a single core of an Intel i5-3570 processor at
3.4 GHz with 8 GB of RAM.

Figure 4.22: The overview of computational time for our framework in three different
stages which are: (1) Liver segmentation. (2) Lesion segmentation. (3) Vessels extrac-
tion. The reported values are the time averages in milliseconds per slice, calculated
over the our datasets.
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4.5 Conclusion

This chapter presented a fully automatic computer aided detection framework for liver
segmentation, detection the lesion inside the liver and extraction the liver vessels. This
was done to utilise its potential usage benefits as a base for the proposed liver le-
sion characterisation and classification framework (introduced in the next chapter). To
achieve these tasks, the pre-processing was used to enhance the CT image quality. The
pre-knowledge such as liver location and gray-level intensity analysis was employed
to extract liver area from the other organs. Finally, the post-processing was applied to
refine liver segmentation. In the second stage, the liver lesion was extracted by apply-
ing the AFCM clustering algorithm. In the last stage, the pre-processing was applied
on the segmented liver, and histogram analysis was performed to detect the optimal
threshold to extract the liver vessels. The region growing technique was adopted to ex-
tract vessels of the liver. Several evaluation measurement methods (VOE, RVD, TPVF,
FPVF, JSM and DSC) were used to assess our framework including liver segmentation,
lesion detection and vessels extraction. All the results presented in this chapter were
conducted using our dataset, which was already presented in Chapter 2. According
to the evaluation results, the our system for liver segmentation, lesion detection and
vessels extraction is showed a good results with a good performance based on com-
putational time. Conclusively, these results highlight the possibility of utilising the
automatic liver segmentation, lesion detection and vessels extraction to contribute in
our target which is liver lesion characterisation and classification. The next chapter
will present the structure of the proposed framework for liver lesion characterisation
and classification.
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Liver Lesion Characterisation and
Classification

This chapter presents the overall structure of the proposed framework for liver lesion
classification and characterisation. The aim of this chapter is to present a novel frame-
work and methodology for the two aspects, which are liver lesion classification and
characterisation. The framework theoretical and concept basics, building constructs
and its contributions to the thesis objectives are also discussed. The overview of this
chapter is as follows: Section 5.1 presents the overall of the proposed framework. The
liver lesion classification framework based on low-level feature is introduced in Sec-
tion 5.2. The liver lesion characterisation framework is introduced in Section 5.3. The
lesion classification framework based on high-level features and the fusion between
high-level and low-level features are presented in Section 5.4 and 5.5 respectively. The
feature selection and classifiers approaches used in this thesis, will be presented in
Section 5.6 and Section 5.7 respectively. Finally the chapter is concluded in Section
5.8.

5.1 The Proposed Framework

The main objective of this research study is to develop a computer aided liver tumour
characterisation/classification based on CT images. Particularly, CT scan is widely
used for their high sensitivity and specificity to diagnose cancers and the ability to
imaging the entire body (Sahani and Kalva, 2004b; Fass, 2008). The CT-images are
considered as a rich medium of information, such information (features) which is
highly beneficial for liver characterisation related tasks. The liver lesion classifica-
tion and transformation the low-level features to the higher semantic level, would also
be of great benefits:

• Assisting radiologists to improve and facilitate their diagnosis.

• Medical education used in training non expert radiologist.
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• Medical image retrieval through searching similar cases not only by image, but
also by diagnosis.

Figure 5.1 depicts block diagram of our proposed framework to diagnose the liver
lesions, which has been used as a base for the investigations carried out so far.

Figure 5.1: Overview block diagram of the proposed framework for liver lesion clas-
sification through low-level features and high-level features (characterisation).

The main stages of the framework system are:

• Liver segmentation, lesions detection and vessels extraction from CT image, as
discussed in Chapter 4.

• Extracting features from Liver and lesions.

• Characterising lesions in high-level features (semantic features) by exploit the
relationships between low-level features and high-level features.
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• Classifying lesion into Benign (non-cancerous), Malignant (cancerous) in two
ways, based on low-level features and through characterisation (high-level fea-
tures)

The majority of the researches are being conducted to develop CAD system, which
mainly focuses on improving liver segmentation, lesion detection and feature extrac-
tion to diagnose liver lesion. However, our proposed framework not only concerns on
the lesion but also on the relation between the lesion and the liver (surrounding area)
to extract and represent the features of the lesion, due to the characteristic differences
between benign and malignant liver lesions in terms of their effect on surrounding
liver tissue. Therefore, the lesion and surrounding liver tissue are used for better CAD
system performance.

The framework provides two different modes for the liver lesion diagnosis. The
first way is the classification-mode that uses the low-level features from the lesion and
surrounding area to generate new feature vectors towards a more accurate diagnosis
decision. The second way is the characterisation-mode that exploit the relationships
between low-level features and high-level features to predict radiological observation
in describing the liver lesions. Then, the high-level features utilise in the lesion di-
agnosis decision to enhance the liver lesion classification performance, by providing
radiological observations / prior-knowledge through liver lesion characterisation. The
high-level features and characterisation helps in interpreting and explaining the classi-
fication and is more intuitive to clinicians.

In this Chapter, we introduced two concepts. Namely, low-level feature and high-
level feature. These concepts are defined as follows:

• The low-level feature is defined as a quantitative/numerical feature derived di-
rectly from raw pixel (hand-designed features).

• The high-level feature is defined as the terms (numerical, categorical, nominal,
etc.) that describe the liver lesion in a way interpreted by humans.

The high-level features are based on the ontology of liver that is used by radiology,
making it intuitive and understandable to radiologists, because these concepts are what
radiologists used to characterise liver lesions.

5.2 Liver Lesion Classification

This section presents and discusses our proposed framework to classify liver lesions
into one of the two classes: Benign or Malignant based on low-level features. Recent
research efforts have been contributing considerably to enhance the performance of le-
sion classification (Kumar et al., 2012). According to literature, most of the literature
work was focusing on feature extraction and classifiers for well-performing system
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(Lin et al., 2016), and usually using the absolute value of features that extracted from
lesion area, or using image patches by dividing lesion area to several regions for build-
ing dictionary BoVW based on a visual histogram. As a consequence, the performance
is varied significantly under ROIs selection and different acquisition conditions such
as different operators and settings. Hence, as the literature lacks this part (to the best of
our knowledge), the ROI selection methods introduced as a new research area, which
is importantly responsible for representing the lesion characteristics.

The next sections will present the core of the proposed framework to classify liver
lesion based on low-level features. The low-level features that used in classification
task are presented in Section 5.2.1. To address the challenge of the relation between
lesions and liver with focusing on selected area of the interest, the novel proposed
of difference-of-features technique is presented in Section 5.2.2. The novel multiple
ROIs selection method based on the characteristics of the lesions is introduced in Sec-
tion 5.2.3. The combination of the two proposed method (difference-of-features and
multiple ROIs) is presented in Section 5.2.4.

5.2.1 Feature extraction

The next stage in the proposed framework based on low-level features is feature ex-
traction to perform the lesions classification. As discussed in Chapter 3, there is a
large diverse set of low-level features could be used for lesion classification purpose.
Those features come under three categories; intensity, shape, and specifically texture
feature that gained more attention as presented in Chapter 3. However, the proposed
framework used the combination features (intensity, texture and shape features). These
quantitative imaging features were selected upon (1) most commonly used. (2) most
descriptive lesions. As discussed in Chapter 3, the texture features proved to be useful
in many work. Furthermore, the malignant lesions had higher intensity and broader
distribution in the CT image (more heterogeneous) compared to the benign ones. In
addition, there is a difference in the shape feature between Benign and Malignant le-
sions in terms of regularity. Thus, the combination would yield more robust results to
handle various lesion types. The images are represented in matrices to use in math-
ematical process. In order to extract distinctive characters of the images, statistical
feature extraction methods are used.

Intensity Features

The liver lesion intensity in the CT images is important for classification task. Intensity
feature derived from histogram features which describe the relative frequency of pixel
intensity value in the image. Thus, five different types of intensity features are com-
puted, the features are: (1) Mean, (2) Standard Deviation, (3) Skewness, (4) Kurtosis,
(5) Entropy of gray-level histogram.
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• Mean (µ) calculate the estimation of the average level of intensity in the ROI
region.

µ =
1

N

N∑
(x,y)∈ROI

I(x,y) (5.1)

Where I(x,y) is the gray level at pixel (x,y), and I is the total number of pixel
inside the ROI, and N is the total number of pixels inside the ROI of the lesion.

• Standard deviation (σ) is a measure of the dispersion of intensity.

σ =

√√√√ 1

N

N∑
j=1

(Ij − µ)2 (5.2)

• Skewness (γ1) is a measure of histogram symmetry.

γ1 =
1

N × σ3

N∑
j=1

(Ij − µ)3 (5.3)

• Kurtosis (K) is a measure of the tail of the histogram.

K =
1

N × σ4

N∑
j=1

(Ij − µ)4 (5.4)

• Entropy (H) is a measure of uncertainty of the histogram in the segmented
region.

H = −
N∑
j=1

Ij log Ij (5.5)

Texture Features

Following the literature conclusion, The texture features are widely used and consid-
ered as an important key in medical image interpretation. For the lesion classification
purpose, three different texture feature types are calculated.
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• Gray-Level Co-occurrence Matrix (GLCM).
GLCM is a robust statistical feature and widely used for extracting the second-
order texture feature to characterised the spatial distribution of the gray levels
in the images (Walker et al., 1995). The GLCM shows the arrangement of the
gray-level pixel (i) with the same gray scale neighbourhood (j) in predefined
direction (θ) and distance (d) to generate the co-occurrence matrix (G(i, j|d, θ)).
The Figure 5.2 depicts the reference pixel relative to angle and (θ) and distance
(d).

Figure 5.2: The direction of GLCM (0o, 45o, 90o, and 135o) and distance (d).

In this thesis, the GLCM parameter for the distance pixels length of d = {1, 2, 3 and 4}
with orientation of θ = (0o, 45o, 90o, and 135o) are used. However, most of the
research that used GLCM did not provide any justification for the selection of
the distance (d) and angle (θ) (Susomboon et al., 2008). According to the analy-
sis of variance technique and multiple pair-wise comparison (Clausi, 2002), they
found that the use of "near" and "far" displacement was sufficient to capture the
texture features.

According to the Haralick (Haralick et al., 1973b), the five texture coefficients
derived from the GLCM matrix are utilised to capture the homogeneity and non-
uniformity of the lesions. these coefficients are:
Energy quantifies the repetition of gray level pairs in an image:

Energy =
N∑
x=1

N∑
y=1

(I(x,y))
2 (5.6)
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Entropy represents the randomness in the image.

Entropy =
N∑
x=1

N∑
y=1

I(x,y)log2(I(x,y)) (5.7)

Contrast is a local grey level variation in the GLCM. It can be thought of as a
linear dependency of grey levels of neighbouring pixels.

Contrast =
N∑
x=1

N∑
y=1

|x− y|2 × I(x,y) (5.8)

Homogeneity measures the uniformity of the non-zero entries in the GLCM. It
weights values by the inverse of contrast weight

Homogeneity =
N∑
x=1

N∑
y=1

1

1 + (x− y)2
× I(x,y) (5.9)

Correlation assesses the linearity of relationship between various gray level
pixel pairs.

Correlation =
N∑
x=1

N∑
y=1

(x− µx)(y − µy)I(x,y)
σxσy

(5.10)

Where

σx =
N∑
x=1

(x− µx)2
N∑
y=1

I(x,y)

and

σy =
N∑
y=1

(y − µy)2
N∑
x=1

I(x,y)

• Gabor Energy
Gabor energy reveals the localised frequency distribution pixels to describe the
lesion texture homogeneity. The vector of lesion Gabor energy represented in 4
scales and 16 directions.

g(x,y) =
1

2πσxσy
exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2π

)
(5.11)
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Shape Features

The shape features could be contributed to differentiate between Malignant lesion from
Benign ones. Where Malignant lesions have different characteristic in shape from
Benign. The four types of shape features are computed to define the lesion shape.
These features as follows:

• Dispersion feature is estimating the irregularity of the lesion, which identifies
the irregular shape by the equation below.

Dispersion =
MaxRadius

Area
(5.12)

• Elongation feature differentiates the regular oval mass from the irregular. This
value is given by the following equation.

Elongation =
Area

(2×MaxRadius)2
(5.13)

• Circularity 1. The circularity of the lesion is expressed by the following equa-
tion, where the result takes a value of 1 for perfect circles.

Circularity1 =

√
Area

(π ×MaxRadius2)
(5.14)

• Circularity 2. the following formula is useful in differentiating circular/ oval
lesion from irregular, where the result takes a value of 1 for perfect circles. This
value measures how a lesion is similar to an ellipse.

Circularity2 =

√
MinRadius

MaxRadius
(5.15)

• Roundness. The roundness of the lesion is expressed by the following equation,
where R ∈ [0, 1]. The bigger value of R means that the lesion shape is close to
circle.

R =
4π × area

MaxRadius2
(5.16)
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5.2.2 Difference-of-Features (DoF)

After surveying the published papers in literature, it is observed that many researchers
try to diagnose liver diseases using different techniques to increase the classification
performance. However, it has been found that the previous studies on CAD systems
usually used the absolute value of features, which are extracted from lesion regions.
As a consequence, the performance is varied significantly under different acquisition
conditions. For example, the CT machines or operators are different. In this section,
the surrounding normal tissue of liver in the same image is used as reference. So
for a certain feature, we calculate the difference of features between the lesion and
surrounding normal liver tissue and employ it as a new feature vector in our proposed
classification system based on low-level features.

Feature extraction is a crucial stage in the CAD system. Understanding the corre-
lation between the lesion characteristics and corresponding imaging features is critical
for image training, as well as for features extraction. Traditional CAD systems usu-
ally use the absolute features of the lesion area for the classification task. The major
drawback of absolute features, in general, is the range of distinctive features of the
same lesion type may vary, depending on the ratio of the contrast agent absorption re-
sulting the amount of contrast agent injection and imaging time. Hence, to overcome
this limitation, we proposed the DoF to calculate the contrasting (difference/relative)
features between the lesion and surrounding area. This is due to the conspicuity of a
liver lesion depends on the attenuation difference between the lesion and the normal
liver. Contrast agents are usually needed to contrast the lesion and surrounding normal
tissue. However, the contrast agent will be absorbed by the lesion, as well as by the
liver parenchyma, but at a different ratio depending on the type of the lesion and the
contrast-imaging phase. As a result, DoF technique uses contrast as a discriminative
feature for lesions classification. Hence, the extracted lesion features are normalised
by surrounding liver features based on the ratio of contrast agent absorption.

First of all, the proposed system defines two types of ROIs for extracting the fea-
tures relating to intensity and texture. The first ROI is the lesion boundary (Rl), and
the second ROI is the surrounding normal liver tissue (Rs) as shown in Figure 5.3. In
contrast with existing works about the identification of lesions using one ROI (lesion
area only), we also consider the second ROI (Rs) which surrounds the first ROI (Rl).
Moreover, the second ROI will be used as well to extract low-level features. The differ-
ence of features between the first ROI and the second ROI will be employed as a new
feature vector. However, there are some constrains to identify the second ROI: (1) The
second ROI must be centrally surrounding the first ROI. (2) The ratio of the diameter
between the (Rl) and (Rs) is heuristically chosen through exhaustive experiments to be
1:1.5, as presented in Table 5.1. (3) The first ROI is excluded from the second ROI
region. (4) The liver vessels (V) are excluded from the (Rs) region. As displayed in
Figure 5.3.e.
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Figure 5.3: Proposed framework for Lesion and normal liver tissue ROI selection; (a)
Original CT image; (b) Liver lesion and vessels detection; (c) First ROI is red border
for segmented lesion and second ROI is green border for surrounding normal liver
tissue; (d) Actual segmented lesion; (e) Normal liver tissue excluding lesion area and
liver vessels.

Table 5.1 depicts the experiments results of DoF technique using different ratio
between lesion and surrounding liver on the classification accuracy over our Dataset
II.

Sensitivity Specificity PPV NPVratio
(Lesion:Liver) B M B M B M B M

Average
Accuracy

1:0 0.863 0.745 0.745 0.863 0.829 0.792 0.792 0.829 0.815
1:0.5 0.890 0.784 0.784 0.890 0.855 0.833 0.833 0.855 0.847
1:1 0.904 0.784 0.784 0.904 0.857 0.851 0.851 0.857 0.855
1:1.5 0.945 0.863 0.863 0.945 0.908 0.917 0.917 0.908 0.911
1:2 0.932 0.843 0.843 0.932 0.895 0.896 0.896 0.895 0.895
1:2.5 0.880 0.765 0.765 0.880 0.859 0.796 0.796 0.859 0.836

Table 5.1: The experiments results of using different ratio between lesion and sur-
rounding liver on the classification accuracy.

Table 5.2 presents the algorithm for extracting the normal liver tissue surrounding
the lesion. Where the segmented area will be assigned as a second ROI.
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ALGORITHM 1: Segmenting Surrounding Normal Liver Tissue (Rs)

INPUT:
Segmented Liver (LV);
Segmented Liver Vessels (V);
Segmented Lesion (Rl);

OPERATION:
FIND MAXDIM= maximum diameter of Rl;
CREATE Structure element, X_OUTSIDE = 1.5×MAXDIM ;
SET R̄ = Dilate(Rl, X_OUTSIDE) ∈ LV ;
SET Rsv = R̄−Rl;
SET Rs = Rsv − V ∈ Rsv;

OUTPUT (Rs);

Table 5.2: The proposed programming algorithm to extract the second ROI from nor-
mal liver tissue that surround the lesion.

The Figure 5.4 depicts proposed framework to classify liver lesion based on low-
level features by applying our proposed difference-of-feature technique.

Figure 5.4: Proposed framework for Lesion classification based on difference-of-
feature technique.
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In our system, the low-level features, as discussed in Section 5.2.1, are extracted
from the lesion and surrounding normal liver tissue area, and used the difference be-
tween them to generate a new feature vector and used in training a classifier. Equation
5.17 depicts example to calculate mean (µ) by applying difference-of-feature.

difference(µ) =
1

N

∑
(x,y)∈Rs

INormal(x, y)− 1

M

∑
(x,y)∈Rl

ILesion(x, y) (5.17)

Where INormal(x, y) means the gray level at pixel (x,y) of normal surrounding liver
tissue Rs, ILesion(x, y) means the gray level at pixel (x,y) of lesion Rl, M is the total
number of pixels inside the Rs of normal liver and N is the total number of pixels
inside the Rl of lesion.

5.2.3 Multiple ROIs

This section presents a new method of the proposed multiple ROIs for liver lesion
classification that efficiently utilises of ROI to build the stable classification frame-
work with high performance. According to the literature, the majority of researches
classify the liver lesion based on extracting low-level features from the lesion with no
pay attention to the relation between lesion and liver where lesion classification perfor-
mance depends mainly on the lesions characteristic such as surrounding area, internal
structure, edge and morphology (Zhang et al., 2010b). However, the main limitation
and lack of previous study (to the best of our knowledge) to represent all the lesion
characteristics in a reliable way. Specifically, the lesion characteristics observation
could differ based on the type of extracted ROI.

In this part, we proposed multi-region of interest from the internal lesion, border
and surrounding area to capture all the lesion characteristics for better classify liver
lesions. From segmented lesion (Rl), the (Rl) was divided into two areas (where Rl =

Ri ∪ Rb). (Ri) is the area internal the lesion and it considers that more than 80% of
the pixels located in the central of the lesion. Otherwise, the remaining area between
internal lesion and lesion boundary is considered as a lesion border (Rb). The area
that surrounds the lesion from the liver tissue is taken as the third region (Ro). The
Figure 5.5 shows multiple ROIs selection area which are: inside lesion, lesion border
and outside lesion.
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Figure 5.5: Proposed framework for multiple ROIs selection; (a) Original CT image;
(b) The segmented lesion in red border; (c) Three defined ROIs which are outside
lesion is green, lesion border is red and inside lesion is yellow.

Table 5.3 presents the algorithm for extracting the multiple ROIs from CT image.
Where the inside lesion will be assigned as a first ROI (Ri), the second ROI for the
lesion border (Rb) and the third ROI is outside lesion (Ro).

ALGORITHM 2: Extracting Multiple ROIs From CT Image

INPUT:
Segmented Liver (LV);
Segmented Lesion (Rl);

OPERATION:
FIND MINDIM= minimum diameter of Rl;
CREATE Structure element, X_INSIDE = MINDIM × 0.3;
SET Ri = Erode(Rl, X_INSIDE) ∈ Ri;
SET Rb = Rl −Ri;
CREATE Structure element, X_OUTSIDE = 2×X_INSIDE;
SET R̄ = Dilate(Rl, X_OUTSIDE) ∈ LV ;
SET Ro = R̄−Rl;

OUTPUT (Ri), (Rb), (Ro);

Table 5.3: The proposed algorithm to extract the second ROI from normal liver tissue
that surround the lesion.

The low-level features within the internal, border and surrounding lesion were pro-
cessed to compute intensity, texture and shape features from each ROI; as presented in
Section 5.2.1. The feature-level fusion was adopted to combined all extracted features,
which is considered as the most popular approach in data fusion (Zhou and Bhanu,
2008). As presented in Figure 5.6.
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Figure 5.6: Proposed framework for lesion classification based on multiple ROIs.

5.2.4 Combined Multiple ROIs and Difference-of-features

In this section, we try to combine between the two previous proposed methods (DoF
and Multiple ROIs) to generate a new feature vector that will be used in lesion classi-
fication task. From the segmented lesion Rl, we selected firstly multiple regions from
inside, border and outside lesion each denoted by Ri, Rb, Ro, respectively. Multiple
ROIs are chosen by interpreting the various lesion characteristics from each selected
area as well as capturing the relation between the lesion and surrounding liver area, as
illustrated in Figure 5.7.

Figure 5.7: Divided lesion into Multiple ROIs; (a) Orignal CT image; (b) Multiple
ROIs (inside lesion, lesion border and outside lesion).
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From an input CT imageCT (x, y), the lesion (Rl) was detected firstly, as presented
in Chapter 4. The lesion divided into two areas (inside lesion and lesion border) and
denoted byRi(x, y) andRb(x, y), respectively, the liver tissue that surrounds the lesion
Rl is assigned as a third ROI (Ro(x, y)). The multiple ROIs are selected to capture all
the lesion characteristics of internal structure, border and the relation between lesion
and liver. The low-level features extracted from each ROI to generate three feature
vectors and each feature vector represent the features of extracted area, as formulated
in Equation 5.18.

Vx = f(RIOx) for x = inside, border and outside lesion (5.18)

Where Vx is the feature vector, and f(RIOx) is the function that extracted the low-
level features from the selected ROI. Then The difference-of-features applied between
the two feature vectors (inside lesion and outside lesion) as follows:

VDoF = VOutsideLesion − VInsideLesion (5.19)

Where VDoF is difference-of-features vector between outside lesion and inside le-
sion feature vectors. The new feature vector VDoF and lesion border (VLesionBorder)
feature vector combined (fused) in one vector to feed into the classifier. The combined
feature vector depicted in Equation 5.20.

Fv = αVDoF ∪ βVLesionBorder (5.20)

Where Fv is fusion vector, α and β is weight that used in combination of the two
feature vectors to generate linear fusion vector where the condition α+ β = 1 must be
satisfied for the weighted average constraint (Weisstein and Weisstein, 2009). Through
the experiments performed on the entire dataset, different values for α and β were
tried, and the best results, as presented in Table 5.4, were α = 0.7 and β = 0.3 that
because the internal and surrounding lesion area are more represented for the lesion
characteristics than the border area.

In this approach, a new feature vector is obtained by a linear combination of the
feature vectors, obtained from lesion border features (FBorder = {l1, l2, l3, ..., ln}) and
DoF between outside and inside lesion features (FDoF = {d1, d2, d3, ..., dn}), where l,
d is a feature and n is the number of features. α and β is the weighted average of a
2-vectors, with α + β = 1. The weighted feature vector is FDoF,Border = αFDoF +

βFBorder. In the combined feature vector approach, the features vectors, from the
lesion border and DoF, are concatenated to form a new feature vector FDoF,Border =

FDoF ∪ FBorder.
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Weight SN SP PPV NPV
α β B M B M B M B M

Average
Accuracy

0.3 0.7 0.851 0.813 0.813 0.851 0.842 0.823 0.823 0.842 0.833
0.4 0.6 0.894 0.863 0.863 0.894 0.884 0.873 0.873 0.884 0.879
0.5 0.5 0.947 0.913 0.913 0.947 0.927 0.936 0.936 0.927 0.931
0.6 0.4 0.957 0.925 0.925 0.957 0.938 0.949 0.949 0.938 0.943
0.7 0.3 0.968 0.938 0.938 0.968 0.948 0.962 0.962 0.948 0.954
0.8 0.2 0.957 0.913 0.913 0.957 0.928 0.948 0.948 0.928 0.937

Table 5.4: The experiment results of using different weight (α , β) on the classification
accuracy.

The Figure 5.8 shows the overview of the proposed method to classify liver lesion
based on the combination of multiple ROIs and difference-of-features (DoF). The DoF
feature between inside lesion and outside lesion fused with lesion border features to
generate a new feature vector. Then, the combined feature vector is feed into the
classifier.

Figure 5.8: Proposed framework for lesion classification based on combination multi-
ple ROIs and difference-of-feature technique.
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5.3 Liver Lesion Characterisation

The main goal and contribution of this thesis is to characterise liver lesion automati-
cally in CT images. In addition, exploit the relationships between low-level features
and high-level features (semantic features) to enhance the liver lesion classification
performance. Moreover, liver lesion characterisation provides radiological observa-
tions to interpret the classification decision. However, the importance of the explicit
linkage between high-level features and low-level features has recently been empha-
sised (Depeursinge et al., 2014; Caputo et al., 2014). The second main contribution
is enhancing lesion classification accuracy by using high-level features to classify the
respective lesions and interpret the diagnosis decision. In contrast with most existing
research (to the best of our knowledge), which uses low-level features only (black box)
in lesion classification task, the use of high-level features and characterisation helps in
interpreting and explaining the classification and is more intuitive to clinicians.

Figure 5.9: Overall proposed framework for lesion characterisation and classification
based on high-level features.
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An overview of the proposed framework for liver lesion characterisation and clas-
sification based on the high-level feature is shown in Figure 5.9. The first stage of
the proposed system is segmenting liver, detecting lesions and extracting vessels as
presented in Chapter 4. The second stage is characterising liver lesion through extract-
ing high-level features by linking between low-level features and semantic meaning
to describe the liver lesion in analogy to radiologist observation. The final stage is
utilising the high-level features to classify liver lesion, the use of high-level features
provides a human-interpretable explanation of the computer-based diagnostic decision
to better-trusted diagnosis.

The next sections will present the core of proposed framework to characterise and
classify liver lesion based on high-level features. The high-level features that calcu-
lated to characterise liver lesion are presented in Section 5.3.1. The Section 5.3.2 will
present and discuss the characterisation framework in details to generate high-level
features. The liver lesion classification based on high-level features is presented in
Section 5.3.3.

5.3.1 High-level Features

Liver lesions originate from a variety of causes and appear in many variations on CT
scan images; some are benign while others are malignant, and various diagnoses show
a variety of visual manifestations. The ability to capture and characterise these lesions
is important to differentiate between Benign and Malignant lesions. The malignant
lesion has different characteristics compared to the benign lesion, as presented the key
characteristics of benign and malignant lesion in Table 5.5.

Properties Malignant Benign

internal lesion
structure

Wide range of changes;
Heterogeneous attenuation;

Invasion of adjacent
structures.

Homogeneous; Water
attenuation.

Lesion composi-
tion

Solid; Mix. Cystic.

Rim
Thick enhancing rim;

Continuous rim;
Thin rim; Absent rim;

Discontinuous rim.
lesion shape Irregular. Regular; Round; Oval shape.
Lesion margin Ill-defined margins. Sharp margin.
Relation to sur-
rounding tissue

Invades and destroy
surrounding tissue.

Compress surrounding tissue.

Table 5.5: Liver lesion characteristics comparison between Malignant and Benign.

According to the importance of the lesion characteristics in the diagnosis process,
each liver lesion has been characterised by a set of 21 high-level feature using a con-
trolled vocabulary of 85 semantic terms, as depicted in Table 5.6. The aim of char-
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acterisation stage is to analysis the imaging observations of the liver lesion domain
with an emphasis on properties of the lesion such as internal structure, margin, shape
and the relations between the liver and liver lesions through describing lesion rim and
location.

High-level feature Characterisation
Lesion density Hypodense, Hyperdense, Isodense, NA*.
Lesion density type Heterogeneous, Homogeneous, NA.

Lesion rim
Continuous Bright Rim, Discontinuous Bright Rim,

Continuous Dark Rim, Discontinuous Dark Rim,
NA.

Lesion rim thickness Thick, Thin, NA.
Contrast Uptaken Heterogeneous, Homogeneous, Dense, NA.

Enhancement Pattern
Hypoattenuation, Hyperattenuation, Isoattenuation,

NA.
Lesion composition Solid, Cystic, Mix, NA.
Lesion leveling type Fluid fluid, Fluid gas, Fluid solid, NA.
Lesion shape Irregular, Ovoid, Round, NA.
Lesion focality Single lesion, Multiple lesions, NA.
Lesion margin Smooth, ill defined, well defined, Irregular, NA.
Lesion margin defini-
tion

Defined, Diffuse, NA.

Lesion enhancement Enhancing, Hypervascular, Nonenhancing, NA.
Lesion brightness Hyperdense, Hypodense, Water density, NA.
Lesion surrounding Complete, Incomplete, Absent, NA.
Calcified (inside lesion) Yes, No, NA.
Calcified wall Yes, No, NA.
Scar Yes, No, NA.
Lobe Left Lobe, Right Lobe, Caudate Lobe, NA.

Segment
Segment I, Segment II, Segment III, Segment IV,
Segment V, Segment VI, Segment VII, Segment

VIII, NA.

Close to vein
Left hepatic vein, Right hepatic vein, Middle hepatic

vein, Left portal vein, Right portal vein, Middle
portal vein, NA.

* NA is not applicable.

Table 5.6: The high-level features used in this thesis to characterise liver lesion.

Three aspects of the liver lesion characterisation were considered during proposing
the framework. First, essential concepts, such as a lobe or a lesion. Second, individual
properties of these concepts, such as the size or density of the lesion. Finally, the
relationships between the concepts. The relations are important because they describe
how different concepts relate to each other. For example, between a liver concept
and a lobe concept, one can specify a LiverLobe relation to show that a liver contains
lobes. Developing characterisation phase enables us to clearly specify cardinality or
functionality requirements among relations. For example, a liver can have at most one
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left lobe, while it can have many lesions.

Liver: The anatomical properties of the liver, such as its segments and lobes should
be described. Additionally, for the referential model of segments and, regions must
be defined as this is crucial in describing the location of an anomaly. Each liver is
composed of three lobes which are: Right Lobe, Left Lobe and Caudate Lobe. The:
LiverLobe property relates a Liver to each of its Lobes. In addition, the liver has an 8-
segments. Each segment instance refers to a segment in the Liver. Hence, for example,
caudate lobe can only be segmented by Segment I, whereas left lobe can be segmented
by Segments II, III, or V.

Lesion: The characteristics of a lesion, such as margin, shape, internal structure,
composition, calcification, and its contents must be defined. There may be abnormal
areas of the liver a radiologist wishes to identify. The margin, shape and density of
a lesion can be specified. For example, the shape of the lesion is described with the:
LesionShape property that may take the following values: irregular, round, ovoid, and
other. The density of a lesion is represented with: LesionDensity data property that
takes a value of hyperdense, hypodense, or isodense. The lesion component such as
calcification: LesionCalcified property indicates whether an area is calcified. Figure
5.10 shows The relations of the lesion with the characterisation concepts.

Figure 5.10: The relations of the lesion with the characterisation concepts.

The proposed liver characterisation method is composed of two main phases. The
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first stage relies on machine learning process to characterise the lesion by exploiting
the relationships between low-level features and high-level features. The second stage,
the high-level features which are extracted from the image directly, defined as visual
features from the image contents. Figure 5.11 depicts the overall proposed framework
for liver lesion characterisation.

Figure 5.11: The Overall proposed framework for liver lesion characterisation.

In summary: According to the medical prior-knowledge for the characteristics of
benign and malignant lesion based on the structure of the lesion, shape and their ef-
fect in the surrounding area, as reported in (Berland et al., 1988; Kondo et al., 2014;
Murakami and Tsurusaki, 2014a; Minami and Kudo, 2015). In malignant lesions, the
internal lesion structure shows a wide range of changes (heterogeneous attenuation)
and invasion of adjacent structures; the lesion is surrounded by a thick enhancing rim;
the lesion border is defined as irregular or having ill-defined margins. But in benign
lesions, the internal structure is diffusely homogeneous; a thin or absent rim; the lesion
border is round or oval shape with a sharp margin (Berland et al., 1988; Heiken, 2007;
Murakami and Tsurusaki, 2014a). The proposed system will characterise the internal
lesion structure through lesion density, lesion density type, lesion composition... The
relation between a lesion and its surrounding area (i.e. rim enhancement) will be char-
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acterised through lesion rim features. Furthermore, the lesion shape, size and focality
add more useful information about the lesion’s shape behaviour.

In this thesis, we contribute by presenting a CAD system for characterising liver
lesions from CT scan images in analogy to radiologist observation. The proposed sys-
tem categorises the high-level features into two groups; the first group is visual features
from the image contents; the high-level features that are extracted directly from the im-
age itself such as (Lesion location, lesion focality, Calcified, Scar, ...), as presented in
Section 5.3.2; the second group is the high-level features that are calculated through
machine learning to characterise the lesion such as (Lesion density, lesion rim, lesion
composition, lesion shape, ...), as discussed in Section 5.3.3.

5.3.2 Visual Features From The Image Contents

This section presents the high -level features that are extracted directly from the CT im-
age. Table 5.7 shows the high-level features which are not part of the general learning
process but are rather estimated from the image itself.

High-level feature Characterisation
Lesion focality Single lesion, Multiple lesions, NA*.
Calcified (inside lesion) Yes, No, NA.
Calcified wall Yes, No, NA.
Scar Yes, No, NA.
Lobe Left Lobe, Right Lobe, Caudate Lobe, NA.

Segment
Segment I, Segment II, Segment III, Segment IV,
Segment V, Segment VI, Segment VII, Segment

VIII, NA.

Close to vein
Left hepatic vein, Right hepatic vein, Middle hepatic

vein, Left portal vein, Right portal vein, Middle
portal vein, NA.

* NA is not applicable.

Table 5.7: The high-level features computed directly from the CT image to charac-
terised liver lesion.

The proposed approach is categorised the extracted high-level features from the CT
image into two groups; the first group is the high-level features that characterised the
liver lesion location. The second group is the high-level features that characterised the
liver lesion component.

5.3.2.1 Lesion Location

The liver vessels segmentation is an important step for lesion location characterisation.
In the first step, the liver area is segmented from the CT image as discussed in Chapter
4. Then the liver vessels are further extracted from the detected liver area as well
presented in Chapter 4. Once the vessels are extracted in a 2D image, it is necessary to
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construct the 3D vessels and assign them to either portal veins or hepatic veins for the
couinaud liver segmentation.

Portal Veins and Hepatic Veins

The segmented 2D liver vessels are composed of two types of vessels which are hepatic
and portal veins. At the first step the vessels skeleton is extracted from the segmented
2D vessels area in all slices to build the topology of vasculature. The importance of
this step is preserving the vessels connectivity and extend through the slices in a 3D
space. To achieve the goal, a 3D thinning algorithm is utilised to capture the vessels
skeleton through categorising the voxels. To check the local voxel connectivity in a 3D
space, a structure of 3x3x3 lattice points was built, as presented in Figure 5.12.

Figure 5.12: The neighbourhood connectivity of a voxel where the 8 and 18 neighbours
of v are represented by white and black circles respectively.

For each check point v has two neighbours types:

• 8-connected neighbours pixels in 2D space, where v ∈ Vvessels has at least one
of its 8 neighbours is belonging to the vessels with a value of 1.

Vs = {v|Number(N8(v) = 1) ≥ 1, v ∈ Vvessels} (5.21)

• 18-connected neighbours pixels in 3D space, , where v ∈ Vvessels has at least one
of its 18 neighbours is belonging to the vessels with a value of 1.

Vs = {v|Number(N18(v) = 1) ≥ 1, v ∈ Vvessels} (5.22)

After tracing the vessels pixels, the connected component labeling algorithm (Chang
et al., 2004; Hu et al., 2005) is applied to group the connected vessels on transverse
image space and build a 3D model.

Once all vessels are extracted, it is important to classify these vessels either portal
veins or hepatic veins, which are utilise later to divide liver area into eight segments

116



Chapter 5. Liver Lesion Characterisation and Classification

based on Couinaud segmentation method. The prior-knowledge is used in liver vessels
classification process based on the following medical assumptions:

• The hepatic vein consists of three main branches (right, middle, and left hepatic
vein) and they were vertically longer than 15% of the liver height, coming from
upper to the bottom liver part (Oliveira et al., 2011b).

• The thickness of hepatic vessels decreases in flow direction (Selle et al., 2002c).

The first step, the hepatic veins with three main branches are identified from the
binary vessels mask Vvessels as follows:

I Choose the first slice Sc containing the vessels Vvessels as a starting point.

II Select the largest connected pixels from the slice Sc and identified as a main
hepatic vein (VHvein).

III Merge the connected pixels with (VHvein) if both conditions are met:

(a) The connected pixels is overlapping with the selected vessels in previous
slice.

(b) The connected pixels thickness is equal or smaller than the selected vessels
thickness in previous slice, based on second assumption.

IV Repeat step (III) until there is no overlap between (VHvein) and connected pixels.

V Compare the the height of detected vessels branch to the liver height. based on the
first assumption, if the height of segmented branch compared to the liver height
is equal or larger that 15%, then assigned as hepatic vein, otherwise it is rejected
and restart the process.

VI Repeat the steps I to V until all the hepatic vein branches have been defined.

After finished the hepatic vein extraction process, the remain largest connected
vessels pixels is defined as a portal vein vessels. Figure 5.13.a presents the 3D recon-
structed liver vessels and Figure 5.13.b shows the 3D reconstructed hepatic and portal
veins.
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Figure 5.13: 3D Liver vessels construction and classification; (a) 2D CT scan image;
(b) 3D volume rendering of liver with vessels and lesion; (c) 3D vessels classification,
magenta is portal vein and blue is hepatic vein.

Anatomy of The Liver Segments

Liver anatomy can be described using two different aspects: (1) Anatomically, is not
used surgically and that does not show the internal features of vessels. (2) Functionally
based on Couinaud classification, is commonly used to define the anatomy of the liver
segments by their relationship to vascular structures.

Figure 5.14: Illustrative figure of the liver Segmental anatomy with hepatic and portal
vein; (a) liver segmental anatomy based on Couinaud classification system; (b) 3D of
hepatic and portal vein; (c) 3D of hepatic vein; (d) 3D of portal vein.
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The Couinaud classification system is based on the main branches of the portal
vein. The Couinaud liver segment is the most widely used to define the anatomy of
the liver since it is more convenient for surgery and more accurate for localisation and
monitoring of the liver lesions (Germain et al., 2014). The liver divides into eight
functionally independent segments based on the Couinaud classification where each
segment has its own inflow, outflow blood vessels (Huang et al., 2007), as shown in
Figure 5.14.

The liver vessels extraction is important for anatomical liver segments specifically
hepatic and portal vein, as discussed in Section 5.3.2.1. According to the Couinaud
classification system, each segment has centrally portal vein and peripherally hepatic
vein (Bismuth, 1982; Marvasti et al., 2015). Each segment can be separated through
hepatic vein where the portal vein divides the liver into upper plane that contains liver
segments (II, IVa, VII, and VIII) and the lower plane that comprise liver segments (III,
IVb, V, and VI). Table 5.8 depicts the relation between portal vein, hepatic vein and
liver segments.

Liver Segment Hepatic vein (HV ) Portal vein (PV )
Segment II Left of Left HV Superior to PV
Segment III Left of Left HV Inferior to PV

Segment IVa
Between the left and middle

HV
Above to PV plane

Segment IVb
Between the left and middle

HV
Below to PV plane

Segment V
Between the middle and right

HV
Below to PV plane

Segment VI Right of the right HV Below to PV plane
Segment VII Right of the right HV Above to PV plane

Segment VIII
Between the middle and right

HV
Above to PV plane

Table 5.8: Anatomy of The Liver Segments based on hepatic and portal vein.

Based on the functional segments and lobes, the proposed system used prior-knowledge
to characterised liver segment and lobe that have a lesion. The liver consists of three
lobes based on Couinaud classification method: (1) Caudal lobe which contains seg-
ment I. The segment I (Caudal lobe) is located between the portal vein and inferior
vena cava (IVC). The IVC has been detected based on prior-knowledge where consid-
ering the the largest connected vessel in 2D from the portal vein will be seen the IVC.
The IVC is located on the underside of the middle of the liver and has a circle/oval
shape (Kogure et al., 2000; Hedman et al., 2016). (2) Left lobe which contains seg-
ment II, II and IV. (3) Right lobe which contains segment V, VI, VII and VIII. However,
there is another method for anatomy liver segments which is considered the segment
IV as a fourth lobe (quadrate lobe) (Rutkauskas et al., 2006). According to the prior-
knowledge and experiments observation, the lookup table was built to utilise in liver
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anatomical annotation. Table 5.9 shows the annotation results including the ratio of the
appearance of liver segments in the CT slices based on transverse view point. These
values of liver segments area ratio were estimated after observing more than half of all
the dataset cases.

Liver Segment Liver lobe Slice Appearing Ratio
in Slice

VII, VIII Right lobe First slice 47%
IVa Left lobe 15% 38%
II Left lobe 20% 23%
III Left lobe 35% 33%
IVb Left lobe 52% 35%
V, VI Right lobe 47% 53%

Table 5.9: Anatomy of The Liver Segments based on hepatic and portal vein.

5.3.2.2 Lesion Component

There may be abnormalities in the liver that the radiologist wants to recognise. These
abnormal areas may have various components, such as lesion has scar or calcification.
The calcifications are hyperdense on CT and are seen in Metastases, Cholangiocarcino-
mas, Fibrolamellar carcinoma and Hemangiomas (Murakami and Tsurusaki, 2014b).
On the other side, The scar is visible as a hypodense structure on CT image and is
seen in Fibrolamellar carcinoma, Hepatocellular carcinoma, Cholangiocarcinoma and
Hemangioma (Blachar et al., 2002; Kim et al., 2009). Therefore, the characterisation
of lesion components is important not only distinguish between benign and malignant
but also identify the type of disease. Figure 5.15 shows two samples of liver lesion,
The first Figure 5.15.a. liver lesion with scar and the second Figure 5.15.b. liver lesion
with calcification.

Figure 5.15: Two samples of liver lesions (red box); (a) Liver lesion with scar (arrow);
(b) Liver lesion with calcification (arrow).
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The proposed method relies on the following hypothesis: the lesion is darker than
calcification, as calcification appears on radiographs and CT images, is easily visible as
a hyper-dense or radiopaque lesion because calcification attenuates X-rays (Murakami
and Tsurusaki, 2014b). The lesion is brighter than the scar where the scar is visible as
a hypo-dense structure on the CT (Kim et al., 2009). From extracted lesion, the inten-
sity analysis is performed to identify the Scar/ Calcification area. Due to the intensity
variation between lesion and Scar/ Calcification area, the lesion segmentation results
may have some of the holes. These holes are filled based on reconstruction step (hole-
filling) which completes the lesion segmentation. The intensity of the segmented lesion
before filling the holes is compared to the intensity of the holes within the lesion. The
flow chart in Figure 5.16 depicts the process of detecting Scar/ Calcification region that
starts with applying some morphological operations to the segmented lesion to fill the
holes. Then both lesion images (after and before morphological operations) are sub-
tracted from each other. This step is necessary to identify the Scar/ Calcification area.
The intensity histogram of the segmented lesion Hl and the intensity histogram of the
holes area Ha is compared to differentiate between lesion tissue and scar/calcification
tissue, as defined in the following algorithm in the Table 5.10.

Figure 5.16: An illustration of the lesion scar/calcification detection process.
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ALGORITHM 3: Detecting scar/calcification in the lesion

INPUT:
Segmented Lesion (Rl);

OPERATION:
SET R = Fill hole (Rl);
SET Ra = R - Rl;
SET Hl = Histogram((Rl);
SET Ha = Histogram((Ra);
SET P = Max Intersect Point (Hl, Ha);
IF P > Max Intensity (Ha) OUTPUT Calcification
ELSEIF P < Max Intensity (Ha) OUTPUT Calcification;
ELSE OUTPUT Lesion;

END

Table 5.10: The proposed programming algorithm to detect scar/calcification area from
the lesion.

5.3.3 High-level Features Based on Machine Learning

In this section, we present the proposed liver lesion characterisation framework, based
on machine learning, that emulate the human understanding of liver lesion images. Fig-
ure 5.17 displays the proposed framework overview to characterised the lesion based
on machine learning. The proposed system needs to be trained through using low-level
features that extracted from the lesion as an input and the high-level description as an
output.

Figure 5.17: Overview of the lesion characterisation that is inferred from the low-level
features through machine learning process.

Table 5.11 shows the generated high-level features that used to characterised the
lesion based on machine learning. The learning process is utilised to linkage between
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low-level features and high-level features through selecting the best-related region of
interest (Multiple ROIs) to infer the high-level features by considering the ability of
each ROI that represents a set of lesion characteristics.

High-level feature Characterisation
Lesion density Hypodense, Hyperdense, Isodense, NA*.
Lesion density type Heterogeneous, Homogeneous, NA.

Lesion rim
Continuous Bright Rim, Discontinuous Bright Rim,

Continuous Dark Rim, Discontinuous Dark Rim,
NA.

Lesion rim thickness Thick, Thin, NA.
Contrast Uptaken Heterogeneous, Homogeneous, Dense, NA.

Enhancement Pattern
Hypoattenuation, Hyperattenuation, Isoattenuation,

NA.
Lesion composition Solid, Cystic, Mix, NA.
Lesion leveling type fluid fluid, fluid gas, fluid solid, NA.
Lesion shape Irregular, Ovoid, Round, NA.
Lesion margin Smooth, ill defined, well defined, Irregular, NA.
Lesion margin defini-
tion

Defined, Diffuse, NA.

Lesion enhancement Enhancing, Hypervascular, Nonenhancing, NA.
Lesion brightness Hyperdense, Hypodense, Water density, NA.
Lesion surrounding Complete, Incomplete, Absent, NA.
* NA is not applicable.

Table 5.11: The high-level features inferred from the low-level features based on ma-
chine learning to characterised liver lesion.

The lesion characterisation was reached based on segmenting the lesion and sur-
rounding liver tissue with image processing methods. According to the enhancing
lesion rim definition, that is an enhancing ring around the lesion (peripheral enhance-
ment), the rim may be thin (< 1cm) or thick (> 1cm) (Elsayes et al., 2005; Martin
et al., 2010; Jang et al., 2013). The area that surrounds the lesion from the liver tissue
with size (1.5cm) is added to the segmented lesion and defined as (AROI), To ensure
the capture of all lesion rim characteristics (thick / thin). The segmented area (AROI)
was divided into three areas which defined as Multiple ROIs. Namely, The inner lesion
(LRin) and it considers that the pixels located between the central of the lesion and le-
sion border. The second area is lesion margin (LRm) and denotes as the area between
inner lesion and lesion edge. The area that surrounds the lesion from the liver tissue
is taken as the third region (LRout) to capture all the characteristics of the relation
between lesion and liver.

Regarding multiple ROIs selection, the distance map is calculated for the (AROI)
based on the intensity difference and the proximity distance for each voxel with respect
to the normal liver tissue to generate the abnormality level map. The fast-marching
method (Sethian, 1999) is adopted to generate the initial labeled regions. The speed of
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fast-marching approach was empirically defined and it is equal 1 in pixels having inten-
sity less or same the normal tissue, and 0.2 when the intensity difference is significant,
due to the fast-marching approach might get stuck with the high intensity pixels such
as calcified area. The abnormality map contains the zero value that represent the liver
tissue and denoted by (LRout), and positive values which define the lesion including
the border and denoted by (LR). The further analysis of the abnormal area (LR), start-
ing from the lesion centre and iteratively checking the abnormality neighbours in order
to reduce abnormality pixels. The asymmetry and compactness features are calculated
at each abnormality level to determine the inner lesion area (LRin) with abnormality
level is equal or above the lesion threshold, otherwise defined as lesion margin (LRm).

Formally, consider a set of non-zero area LR = {l1, l2, l3...ln} where LR is the set
of (non-zero) areas in the partitioned abnormality map and n is the number of the areas
in the abnormality map. For any area li ∈ LR let m(li) represent the abnormality
value of the area li. For any subset of areas V ⊆ LR let m(V ) = minv∈Vm(v)

indicates the lower abnormality value of areas included in V . let X = LR/V where
LR/V = {x ∈ LR |x /∈ V }, for any V ⊆ LR and any li ∈ X , the relation f(V, li)

considered true just only when li is at least neighbour for one area in V . For any
V ⊆ LR let f(V ) = {d ∈ X|f(V, d)} refers to a set of areas that are neighbour to
any area in V and let f−1(V ) = {d ∈ f(V )|m(d) = m(V )− 1} refers to the subset of
the neighbourhood that contains only areas with an equal to the abnormality value of
area V subtracted by 1. The area li ∈ LR is considered as a maximum area when just
m(d) < m(li) for all d ∈ f ({li}), as depicted in Figure 5.18 for the abnormality level
map illustration. The abnormality level b of the area embracing the maximum area li
from the inner lesion is defined in Equation 5.23 to generate the lesion border mask
and assigned as lesion margin (LRm).

V b
i =

{
{li} , b = 0

V b−1
i ∪ f−1

(
V b−1
i

)
, 1 ≤ b ≤ m (li)− 1

(5.23)

In order to build the distance map for each abnormality level
(
V b
i |0 ≤ b ≤ m (li)− 1

)
,

the asymmetry and compactness features are computed for the area (li). These features
are utilised to assign li (abnormality level) of V l

i to represent a lesion area where the
larger value is most likely to represent the lesion.
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Figure 5.18: The abnormality level map for liver lesion; (a) Liver lesion CT image; (b)
Liver lesion abnormality map involving in V embracing by li areas.

Regarding our proposed Multiple ROIs, the main idea for generating the level of
abnormality map for lesion is to separate the lesion margin (LRm) from the inner
lesion (LRin) area. Figure 5.18 depicts a small lesion (5.18.a) and the corresponding
abnormality map (5.18.b). The brightest pixels of the abnormality map represent the
maximum area li, where m (li) = 6, as shown in Figure 5.18.b. The first abnormality
level surrounding li is V 1

i where the set of V contains li and all areas which neighbour
li with a total number of abnormality level equal to 5. Continuing the iteration (b =

2, ..., 5), each level of the abnormality area Vi is assigned as an inner lesion LRin up
to 80% of the lesion area. The remain abnormal level area is assigned as lesion margin
LRm. LRin is the area internal the lesion and it considers that more than 80% of
the pixels located in the central of the lesion. Otherwise, the remaining area between
internal lesion and lesion boundary is considered as a lesion margin (LRm).

Figure 5.19 depicts a summary of the proposed work-flow for liver lesion charac-
terisation based on learning process. A set of expert-characterised CT images of liver
lesion are utilised to train and validate the proposed framework. The validation meth-
ods and attempted experiments will introduce in next Chapter 6. The feature extraction
block calculates a wide variety of intensity, texture and shape features by considering
the lesion characteristics.
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Figure 5.19: Proposed framework for liver lesion characterisation based on machine
learning process.

A set of quantitative of low-level features were extracted from the segmented lesion
(LR) and also from each area in multiple of ROIs that includes the inner lesion (LRin),
lesion margin (LRm) and the rim area of the lesion (LRout). Table 5.12 presents the
low-level features that are used for lesion characterisation.
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Category Low-level Features Represents Dimension
Intensity Histogram Histogram of lesion intensity value. 32

mean Estimation of the average level of intensity value. 1
Standard Deviation Calculates dispersion of intensity value. 1
Skewness Measure of histogram symmetry. 1
Kurtosis Measure of the tail of the histogram 1
Variance The variation of intensity around the mean. 1
Entropy Measure of histogram uniformity. 1
Energy Measure of histogram homogeneity. 1

Texture Gabor energy A 27D vector of lesions Gabor energies in 3 scales and 9 directions. 27
GLCM (Contrast) is a local grey level variation in the GLCM (linear dependency of grey levels of neighbouring pixels). 1
GLCM (Energy) quantifies the repetition of gray level pairs in an image. 1
GLCM (Correlation) assesses the linearity of relationship between various gray level pixel pairs. 1
GLCM (Homogeneity) measures the uniformity of the non-zero entries in the GLCM. 1

Shape 1 Fourier descriptors A 20D vector of the area Fourier descriptors. 20
Smoothness Smoothness of the lesion. 1
Compactness Compactness of the lesion. 1
Sphericity Sphericity of the lesion. 1
Solidity Solidity of the lesion. 1
Roughness Measure of boundary irregularity. 1

Shape 2 Dispersion estimation the irregularity of the lesion. 1
Elongation differentiates the regular oval mass from the irregular. 1
Circularity 1 differentiate circular/ oval lesion from irregular. 1
Circularity 2 differentiate ellipse lesion from irregular. 1
Roundness differentiate circular lesion from irregular. 1

Table 5.12: Low-level features that used for lesion characterisation task.
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From an input image, the lesion was segmented as a first step and denoted by (LR).
A set of features (Shape 2) were extracted to generate a feature vector that used to char-
acterised lesion shape. The (LR) was divided into two areas: inner lesion and lesion
margin and denoted by (LRin) and (LRm) respectively. In addition, the surrounding
lesion area from the liver selected as a third region and denoted by (LRout). These three
region defined as Multiple ROIs by considering the ability of each ROI that represents
a set of lesion characteristics. The high-level features of lesion margin and lesion mar-
gin definition are characterised by extracting the set of features (Shape 1) from (LRm).
All the high-level features (Lesion density, density type, enhancement pattern, lesion
composition, lesion leveling type and lesion brightness) are characterised by extracting
the intensity and texture feature from both region (LRin) and (LRm) to generate two
feature vectors. The features (LRin) and (LRm) are fused (FVLRin

∪FVLRm) to repre-
sent the mentioned high-level features. The intensity and texture feature are extracted
from (LRout) to characterised lesion rim, rim thickness and lesion surrounding. The
difference-of-features of intensity and texture features that extracted from (LRin) and
(LRout) are utilised to characterised the high-level features contrast uptaken and lesion
enhancement.

Table 5.13 depicts the mapping between high-level, low-level features and selected
ROIs that were used to generate the respective high-level features to characterise liver
lesions.

High-level feature Low-level features ROI Feature vector
Lesion density Intensity + Texture LRin, LRm FVLRin

∪ FVLRm

Lesion density type Intensity + Texture LRin, LRm FVLRin
∪ FVLRm

Lesion rim Intensity + Texture LRout FVLRout

Lesion rim thickness Intensity + Texture LRout FVLRout

Contrast Uptaken Intensity + Texture LRin, LRm FVDoF(LRin
,LRout)

Enhancement Pattern Intensity + Texture LRin, LRm FVLRin
∪ FVLRm

Lesion composition Intensity + Texture LRin, LRm FVLRin
∪ FVLRm

Lesion leveling type Intensity + Texture LRin, LRm FVLRin
∪ FVLRm

Lesion shape Shape 2 LR FVLR
Lesion margin Shape 1 LRm FVLRm

Lesion margin definition Shape 1 LRm FVLRm

Lesion enhancement Intensity + Texture LRin, LRout FVDoF(LRin
,LRout)

Lesion brightness Intensity + Texture LRin, LRm FVLRin
∪ FVLRm

Lesion surrounding Intensity + Texture LRout FVLRout

Table 5.13: The high-level features inferred from the low-level features based on ma-
chine learning to characterise liver lesions.
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5.4 Liver Lesion classification based on High-level Fea-
tures

Classification stage of the diagnostic system (CAD) is the one in charge of making the
inferences about the extracted information in the previous stages in order to be able
to produce a diagnostic about the input image. The goal of the classification stage
is to apply a learning-based approach considering its input feature vector(s), for the
purpose of disease diagnosis. An overview of the lesion classification system through
high-level features (liver lesion characterisation) is given in Figure 5.20.

Figure 5.20 depicts a summary of the proposed work-flow for liver lesion classi-
fication based on high-level features. The lesion characterisation block generates a
wide variety of high-level features from each image, as presented in Table 5.6. The
proposed framework categorises the high-level features into two groups, as shown in
Figure 5.11; the first group is the high-level features that are extracted from the image
contents such as (Lesion location, Lesion focality, Calcified, Scar, ...), as presented in
Table 5.7; the second group is the high-level features that are inferred from the quan-
titative features through machine learning process to characterise the lesion such as
(Lesion density, Lesion rim, Lesion composition, Lesion shape, etc.), as depicted in
Table 5.11. The machine learning stage is used to predict the presence of each seman-
tic term that describes liver lesions, which is inferred from the quantitative features by
considering the lesion’s intensity, texture and shape characteristics. Finally, we con-
catenate all the high-level features to create a single feature vector, and then using a
new feature vector to classify the lesion. In contrast with most existing research, which
uses hand-designed features, the use of high-level features (characterisation) helps in
interpreting and explaining the classification decision.

Figure 5.20: Proposed framework for liver lesion classification through high-level fea-
tures (lesion characterisation).
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Our proposed system consists of three main stages: (1) Automatic liver segmen-
tation, lesion detection and vessels extraction. (2) characterised lesion by extracting
high-level features from the lesion, as discussed in Section 5.3. (3) classification; the
classifier is trained through using high-level features that produced via characterisation
approach and the diagnosis as an output, with the benefit of interpretable characterisa-
tion that supports the diagnostic decision.

The characterisation approach provides more understanding and interpretation of
the decision for the radiologists, compared to the black box low-level features ap-
proach. In contrast with most existing research, which uses low-level features only,
the use of high-level features and characterisation helps in interpreting and explaining
the classification and is more intuitive to clinicians. However, the classification de-
cision based on low-level features is difficult to justify to radiologists and clinicians,
who typically use subjective heuristics (lesion characterisation) to diagnose diseases.

5.5 Liver Lesion classification based on combination of
High-level Features and Low-level Features

As discussed in Section 5.2, the liver lesion classification results from extracting low-
level features to feed the classifier. Particularly, the novel of difference-of-features and
multiple ROIs is utilised to enhance the classification accuracy. In Section 5.4, the
novel feature vector from the high-level features is fed the classifier for better lesion
classification performance, with the benefit of interpretable lesion characterisation in
analogy to radiologist observation that supports the diagnostic decision. In this section,
the lesion classification is performed through the novel feature vector that fused both,
low-level feature vector and high-level feature vector.

Figure 5.21 presents the overall proposed framework for liver lesion classification
based on the combination of low-level features and high-level features. Our method
utilises both high-level and low-level features for lesion classification task. In classifi-
cation, the input vector is created by concatenation of high-level and low-level features.

As discussed in Section 5.2.4, we extracted low-level features based on the com-
bination of multiple ROIs and DoF techniques. The Dof features between inside and
outside lesion concatenated with lesion border features to generate a new low-level
feature vector. On the other hand, the lesion characterisation feature vector is based
on the visual features derived from the image contents, as presented in Section 5.3.2,
and the high-level features inferred through the learning-based approach, as described
in Section 5.3.3. Therefore, the classification decisions made by a combination of
low-level and high-level features.
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Figure 5.21: Proposed framework for liver lesion classification through combination
of high-level features and low-level features.
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5.6 Feature Selection

In order to increase the classification/characterisation accuracy and decrease the system
costs, the feature selection approach can be used to select the most robust features from
the high dimensional feature set (Jain et al., 2000). The system performance might
be adversely affected by high dimensional feature set due to redundancy or lack of
importance of some features (Pappu and Pardalos, 2014; Li et al., 2016). Hence, the
main goal of a feature selection approach is to search for an optimal subset of relevant
features and reduce the redundancy (Sun et al., 2013; Tang et al., 2014).

In this study, the Genetic Algorithm (GA) (Siedlecki and Sklansky, 1989) was
adopted to measure the relevance and significance of the features and avoid the re-
dundancy. The GA is a general adaptive optimisation procedure, which is utilising to
reduce the dimensionality of the features where GAs has been successfully applied to
a wide range of dimensionality reduction studies (Adams et al., 2015). Each variable is
represented by a gene and the sequence of genes is called a chromosome. A number of
chromosomes (population) are randomly initialised by three genetic operators: selec-
tion, crossover and mutation. The chromosomes are evaluated by a predefined fitness
function to measure their quality. However, the selection operator utilises to select the
high performing chromosomes to transfer it directly to the next generation. The new
offspring chromosomes are created by swapping a portion of chromosomes (genes)
between two chosen chromosomes and this mechanism is called a crossover operator.
The mutation operator modifies one or more gene value of a selected chromosome to
provide the better solution, as shown in Figure 5.22.

Figure 5.22: Genetic algorithm (GA) flow chart.
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The schematic theory shows how the schemata featuring that appears in chromo-
somes with a high degree of expectation has a greater expectation of propagation
through successive population as a GA evolves (McCall, 2005), as shown in equation
5.24.

mH(i+ 1) = FH(i)mH(i)

[
1− pc

lH
l − 1

] [
(1− pm)H

]
(5.24)

where H is a schema features; mH is the number of chromosomes belonging to H ,
FH(i) is the relative fitness of H that defined as the average fitness of all chromosomes
in the population (i) belonging to H divided by the average fitness of all chromosomes
in the population; l is the length of chromosome; pm is the mutation probability, and
pc is the crossover probability.

The GAs showed better results compared to other feature selection techniques
to generate a more robust feature vector, in studies related to the lesion classifica-
tion/characterisation (Gletsos et al., 2003; Mougiakakou et al., 2007b; Aalaei et al.,
2016). In addition, GA is considered to be an excellent choice for feature selection
task due to relative insensitivity towards noisy data (Osowski et al., 2009). It dif-
fers significantly from the other existing wrapper algorithms because of the traditional
methods search from a single population point unlike GA which searches from paral-
lel population points (Akhter et al., 2016). GA is advantageous over other algorithms
since it is less likely to be trapped by local minimum and provides a better global op-
timal solution (Garg, 2010; Ling and Liu, 2015). Hence, the GA was adopted to fulfil
this task.

5.6.1 Implementation of GA

Using GA for feature selection, each feature is considered as a gene (chromosome),
represented as 1 (selected) or 0 (not selected). The classification accuracy (the fitness
of the chromosome) was determined as the area, Az, under the ROC curve. The fitness
function F (c) for the cth chromosome depicted in Equation 5.25.

F (c) =

[
f(c)− fmin

fmax − fmin

]2
, c = 1, 2, ..., n (5.25)

Where fmin and fmax is the minimum and maximum f(c) among the n chromo-
somes respectively.

The fitness function F (c) based on the Az value ranged from 0 and 1. The chro-
mosome with the largest Az value is assigned a fitness of 1, the chromosome with the
smallest Az value is assigned a fitness of 0. The smallest value for Az is Az ≤ 0.5 and
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largest value is 0.5 < Az ≤ 1. The probability of the cth chromosome being selected
as a parent, Ps(c) is proportional to its fitness. Ps(c) calculated in Equation 5.26.

Ps(c) =
F (c)
n∑
c=1

F (c)
, c = 1, 2, ..., n (5.26)

A random sampling based on the probabilities (Ps(c)) allowed chromosomes with
higher value of fitness to be chosen more frequently. The crossover rate determines
the probability that parents will exchange genes. After crossover, another chance of
introducing new features was obtained by mutation. The processes of parent selection,
crossover, and mutation resulted in a new generation of n chromosomes. The best
subset of features was selected to be the chromosome that provides the highest average
Az during the evolution process.

In this thesis, the follow parameters were used. The initial probability of a feature’s
presence (Pinit), probability of crossover (Pc) and probability of mutation (Pm) was
0.002, 0.9 and 0.001 respectively. For better results, several studies suggest the use
of a high value of crossover probability and a low value of the mutation probability
(Chtioui et al., 2009; Sipper et al., 2018).

Figure 5.23 illustrates the Genetic algorithm evaluation for feature selection. Fig-
ure 5.23.a depicts the evolution of the number of selected features and Figure 5.23.b
depicts the total area under the ROC curve Az for the GA.

Figure 5.23: The Genetic algorithm evaluation for feature selection. (a) The evolution
of the number of selected features for a GA. (b) The evolution of the area Az under the
ROC curve for the GA

The classifiers performance based on the areaAz under the ROC curve for different
feature set sizes for the GA feature selection method are illustrated in Figure 5.24. It
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is noted that the classification accuracies of the three classifiers have improved and
the best performance of SVM was 0.97 at 39 number of features, compared to LR and
LDA was 0.95 and 0.94 respectively at 78 number of features, as shown in Figure 5.24.

Figure 5.24: The comparisons of the area Az under the ROC curve for each considered
classifier based on the number of features.

The SVM classification performance comparison using ROC analysis is shown in
Figure 5.25. The overall ROC performance of classification without using GA feature
selection is Az = 0.94, with comparison to Az = 0.97 of classification performance
after applied feature selection. For feature selection approach, less than half of the fea-
tures were selected and at least one feature was selected from each category (intensity,
texture and shape feature). Thus, the three categories of features complement each
other to achieve better results. The results show that feature selection can improve the
accuracy of the classifier.

Figure 5.25: The classification performance comparison based on using GA.
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We perform the GA feature selection approach to evaluate its performance. Table
5.14 summarised the classification results based on area Az under the ROC curve,
respect to the number of selected features. Using GA, the selected feature set contains
only 38 of the available 111 features to achieve the best classification accuracy of 97%.
The feature vector size is reduced by 65.75%. The feature set number 4 has the similar
accuracy to the feature set number 3 but with an increase in the number of features
by 11.71%. This theoretical result is due to the good separation between data in the
selected base.

Feature set Number of features Az Percentage of reduction
1 13 0.75 88.29%
2 25 0.84 77.48%
3 38 0.97 65.76%
4 51 0.97 54.05%
5 78 0.96 29.73%
6 87 0.95 21.62%
7 100 0.94 9.91%
8 All features 0.94 0%

Table 5.14: The number of features and the area Az under the ROC curve in the GA
feature selection approach

The best classification accuracy 97% is achieved by using only 38 features: 9 bins
of histogram, Skewness, Kurtosis, Entropy, GLCM (Contrast, Homogeneity and Cor-
relation), 21 bins of Gabor Energy, Elongation and Roundness features. The selected
features by GA approach are related with the lesion appearance and shape. By exam-
ining the CT images of the pathological area, we can see that the lesions vary in the
degree of brightness, distribution and regularity of the shape. This explains the reasons
for choosing these features. For example, the Elongation and Roundness feature is a
descriptive characteristic of shape regularity. The malignant lesion is mostly irregular
in shape compared with the benign lesion. In malignant lesions, the internal lesion
structure shows a wide range of changes (heterogeneous attenuation) and invasion of
adjacent structures. But in benign lesions, the internal structure is diffusely homoge-
neous. Therefore, these aspects also explain the choice of the homogeneity, Entropy,
Gabor Energy,etc. as descriptive characteristics of the lesion. The GA approach re-
duces the feature size by 65.75% without compromising the accuracy of the classifier.

5.7 Classifiers

For the liver lesion classification/characterisation, the three of the most common clas-
sifiers (Support vector machine (SVM), Logistic Regression (LR) and Linear Discrim-
inant Analysis (LDA)) are used to classify/characterise liver lesion. The LR is widely
used for analysing the radiological observation (Saffari et al., 2015). Moreover, the
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SVM has been widely used in the last few years for medical diagnoses. Furthermore,
its capability to address problems by learning from samples and its ability to address
large amounts of information simultaneously (Ulagamuthalvi et al., 2012; Jordan and
Mitchell, 2015). In addition, the LDA is widely used in tissue classification stage
especially with limited amount of data (Cheng et al., 2006). For classifier selection,
the number of parameters to be used, especially for small-sized datasets, is critical to
maximising the difference between the variances. However, for our small dataset size,
these classifiers were chosen because they are controlled by fewer parameters and can
be less susceptible to model violations. Hence, the use of SVM, LDA and LR are
particularly worthwhile in this area.

5.7.1 Linear Discriminant Analysis (LDA)

LDA is a common classification method for predicting class membership of observa-
tion through finding a linear combination of features (variable) which best discriminate
two or more classes (Ressom et al., 2008). LDA finds the optimal vector ν to discrim-
inate the classes by maximising the ratio between class variance (Fukunaga, 2013).
Consider a set of observation {b1, b2, ..., bn} where each observation belonging to the
class κ. The mean µ and scatter matrix ζ for each classes is computed by the Equation
5.27 and Equation 5.28 respectively.

µκ =
1

xκ

∑
bκ (5.27)

ζ =
κ∑
i=1

(bi − µi)(bi − µi)T (5.28)

Where x represents the number of the samples in κ. The difference between-class
scatter is calculated using Equation 5.29

Dζ =
κ∑
i=1

(µi − µ)(µi − µ)T (5.29)

Where µi and µ are the mean of class i and entire classes respectively. The class
separation in a direction of ν to maximise the distance between classes is given in
Equation 5.30.

J(ν) =
νTDζν

νT ζν
(5.30)
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5.7.2 Logistic Regression (LR)

LR is a discriminative machine learning classification approach used to predict the
probability a class dependent variable (Hosmer Jr et al., 2013). LR is used to predict
the class based on a S-shape (sigmoid) function ρ, such that ρ(fn) = L(cn = 1 |fn ) for
cn ∈ {0, 1} where L(cn = 1 |fn ) is equivalent to 1−ρ(fn) for the binary classification
(Bewick et al., 2005). The sigmoid function is defined by the Equation 5.31.

ρ(fn) =
eZ(fn)

1 + eZ(fn)
(5.31)

Where Z(fn) = z0 + z1f1n + z2f2n + · · ·+ +zxfxn, assuming x class observations
and the log-likelihood function K(z) of the data is defined by Equation 5.32.

K(z) = ln [L(fn |cn )]

= ln
[∏

L(cn = 1 |fn )cnL(cn = 0 |fn )1−cn
]

=
N∑
n

[cn ln(ρ(fn)) + (1− cn) ln(1− ρ(fn))]

(5.32)

The objective of LR is to select a parameter vector z with maximum likelihood
K(z) to estimate the probability of the class which called maximum likelihood esti-
mator, and can be estimated through differentiating K(z) with respect to z.

5.7.3 Support Vector Machine (SVM)

SVM is a supervised machine learning approach which has been successfully demon-
strated for cancer classification and medical diagnosis,especially with the high dimen-
sional feature spaces and relatively small sample size.(Chakraborty, 2011). In addition,
the ability of the SVM to perform both linear and non-linear classification. The main
idea of the SVM is find an optimal hyperplane by maximise the margin to separate the
data into classes, as illustrated in Figure 5.26.

Figure 5.26: Example of two classes separated by a hyperplane H.
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Regarding the Figure 5.26, the hyperplanes H1 and H2 is defined in Equation 5.33
where H0 is the median in between H1 and H2. The margin (m) of a separating hy-
perplane is represented by m = d+ + d− where d+ and d− is the shortest distance to
the closest positive and negative point respectively, respect to H0. The total distance
between H1 and H2 is defined as 2/‖w‖

H1 : w • xi + b ≥ +1 when yi = +1

H2 : w • xi + b ≤ −1 when yi = −1
(5.33)

Where x is the input sample features, y is the output class, w is the weight vector
and b represents a bias.

The performance evaluation of the proposed method for liver lesion characteri-
sation and classification will discuss in the next Chapter 6. The experiments were
performed using tenfold cross-validation and train/test spilt validation. However, The
SVM classifier with Radial Basis Function kernel (SVM-RBF) was chosen because it
provides the best results when compared to other classifiers that were tested. Further-
more, it can classify multi-dimensional data, unlike a linear kernel function and it has
fewer parameters to set than a polynomial kernel. Two main RBF parameters applied
in SVM are C and γ. Parameter C represents the cost of the penalty and parameter γ
is the width of the kernel function.

5.8 Conclusion

This chapter presented the proposed thesis framework technical design details for liver
lesion classification and characterisation. The framework was built to a better model of
lesion classification and characterisation through linking between low-level features,
high-level features and ROI. In addition, dealing with the challenge of the region of
interest selection method that represent the lesion characteristics. Thus, the difference-
of-features and multiple ROIs were developed for robust capturing of lesion charac-
teristics in a reliable way. Furthermore, in contrast to the previous techniques that
operate mainly over the lesion area with no pay attention to the relation between lesion
and liver. The design of the liver lesion characterisation framework was inspired by an
understanding of the radiologists’ vision to characterise lesions as well as the utilising
of prior knowledge of the medical background to support its robust performance.

This section presented a new technique for liver lesion characterisation, based on
high-level features extracted automatically from the CT image, to simulate the clinician
observation in describing liver lesions. In addition, the proposed framework presents
three different methods to classify liver lesion. Liver lesion classification based on
low-level features. Enhancing the lesion classification accuracy through utilising the
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high-level features to classify the respective lesions, with the benefit of interpretable
characterisation that supports the diagnostic decision. These results will be presented
in the next chapter. The combination between low-level features and characterisation
were used to build an extended feature vector. In summary, the chapter contributions
are:

• Developing an automated technique for liver lesion characterisation in order to
predict radiological observation in describing the liver lesions through using
low-level features extracted from computed tomography (CT) images to infer
higher level features, and simulate radiological observations for liver charac-
terisation. In addition, overcoming the challenge of linking the image content
through converting the low-level features to visual semantics by lesion charac-
terisation. Thus, Assigning high-level descriptions to the liver lesion in analogy
to radiologist observation.

• Proposing a novel Multiple ROIs for liver lesion classification/characterisation.
The proposed method is based on medical knowledge and classifies the region
of interest into three areas (inside lesion, lesion border and surrounding lesion)
through constructing a multi-level abnormality map based on the intensity differ-
ence with respect to the normal liver. In addition, the asymmetry and compact-
ness features are computed to define the probability of each level to represent a
lesion. Thus, three regions of interest are defined and known as Multiple image
ROIs. The idea behind the multiple image ROIs is to capture all the lesion ap-
pearance characteristics by considering the ability of each ROI that represents
a set of lesion characteristics. This is in contrast with most existing research,
which mainly relies on lesion area without considering the effect of the lesion
on the surrounding area, where the performance of classification/ characterisa-
tion could be affected due to the selection of ROI methods, which represents the
characteristics of the lesion.

• Proposing a difference-of-feature (DoF) technique to enhance the classification/
characterisation performance. The idea of the DoF is identifying the difference
between the lesion and the surrounding normal liver tissues. The DoF empha-
sises the relative difference of the lesion properties, in relation to surrounding
tissues of the same patient, regardless of the demographics or imaging device.
Then, the two proposed techniques (DoF and Multiple ROIs) are combined to-
wards a better and robust classification/characterisation results.

• Building a new classification framework for classifying liver lesion in three dif-
ferent novel ways, as follows:

1. Classifying lesion based on low-level features that are extracted from a
Multiple ROIs (inside, border and outside lesion). The multiple ROIs fused
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with difference-of-features between the lesion itself and its surrounding
area. This is in contrast with most existing research, which focus on ex-
tracted features from the segmented lesion only. The Multiple ROIs and
difference-of-features emphasise the relative difference of the lesion prop-
erties, in relation to the surrounding tissues of the same patient. It also
captures the different property/behaviour between benign and malignant
lesions and how they affect the adjacent tissues.

2. Utilising the high-level features that characterised the lesion to build a
novel feature vector. The new feature vector is used to classify the respec-
tive lesions, with the benefit of interpretable characterisation that supports
the diagnostic decision in analogy to radiologist observation, which is in
contrast with the existing works that used the black box low-level features
that cannot provide an explanation in human level understanding for the di-
agnostic decision. However, the classification based on high-level features
is more reliable for the radiologist, which provides the understanding ex-
planation for the diagnostic decision in analogy to radiologist observation.

3. Building a novel feature vector that composed of the combination of low-
level features and high-level features. The new feature vector is used to
enhance the classification accuracy. In contrast with the existing works
that used only low-level features. However, the classification through the
fusion between high-level and low-level features will lose the advantages
of the characterisation and track back to diagnosis explanation.

The next chapter will further discuss the liver lesion classification/ characterisation per-
formance with more evaluation across the dataset. Furthermore, the proposed frame-
work will be benchmarked against a number of state-of-art baselines in the next chapter
as well.
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Results and evaluation

This chapter is focusing on presenting and discussing of the evaluation and results of
the proposed framework and its various components in terms of their classify and char-
acterise liver lesions. In addition, a comparative evaluation of classification accuracy,
between the characterisation approach and low-level features, is presented as well as
benchmarking of the entire framework against the related work baselines.

The structure of the chapter is as follows: The experimental setup and validation
methods that used to evaluate the system performance is presented in Section 6.1 and
Section 6.2 respectively. Section 6.3 and Section 6.4 evaluates the liver lesion char-
acterisation and classification performance of the proposed framework. Section 6.5
presents the benchmarking of the proposed framework against a number of state-of-art
baselines. Finally, the chapter is concluded in Section 6.6.

6.1 Experimental Setup

All the experiments were performed on on Intel Core I5- 3.40 GHz computer with 8
Gigabytes of RAM under windows 7 64-bit operating system. The Matlab R2015b
was used to run the experiments and extract the features to achieve the thesis goal of
liver lesion classification and characterisation.

6.2 Validation

In order to evaluate the performance and validate the classification/ characterisation
models, a number of metrics were adopted, as previously discussed in Chapter 2. The
evaluation process was performed by using a two different approaches, as follows:

• K-fold Cross Validation is the most widely used model validation method to as-
sess the performance of a classifier (Geisser, 1993; Kohavi et al., 1995). Firstly,
the original sample data is randomly partitioned into k equal sized sub-samples,
where the k − 1 samples are selected to training, and the rest samples perform
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the validation alternately, as presented in Figure 6.1. The validation process is
repeated k times (folds), with each fold k is used just once as the validation sam-
ple. The advantage of this approach is that all the samples in the dataset are used
for both training and testing, and each fold is used for validation only once.

Figure 6.1: Visual representation of K-fold-cross-validation.

• Train/Test Split Validation is usually split the dataset into training data and test
data. In our studies, the overall dataset comprises of two datasets, collected from
two different institutions. The first dataset (Dataset I) was chosen to validate the
proposed system, and the second dataset (Dataset II) was used for training the
classifier.

6.3 Evaluation of Lesion Characterisation

This section evaluates the liver lesion characterisation performance of the proposed
framework. The evaluation is done based on a number of different metrics are pre-
sented in previous Chapter 2. Figure 6.2 depicts the experiment model of liver lesion
characterisation.

Figure 6.2: Experiment model of liver lesion characterisation.
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The lesion characterisation framework includes two strategies for characterising
lesion: (1) automatic lesion characterisation based on the image itself where the high-
level features are estimated directly from the query image, as presented in Section
5.3.2. (2) automatic lesion characterisation using a machine learning algorithm to
annotate the lesion, as discussed in Section 5.3.3.

In this thesis, we proposed a fully automatic liver lesion classification/ charac-
terisation, which do not require any user interaction in any of the steps and that all
parameters are fixed for all the images processed in beforehand. The proposed frame-
work is designed according to certain assumptions based on medical knowledge, as
discussed in Chapter 4 for liver segmentation and Chapter 5 for vessels classification
and Multiple ROIs selection. For example, the liver intensity parameter is applied on
CT image for a rough segmentation. This parameter is estimated according to the med-
ical knowledge-based assumption, that the liver intensity is in the range of [−50, 250]

HU.

Visual Features From The Image Contents

This section evaluates the proposed framework performance for extracted the high-
level features from the query image such as lesion location. The characterisation per-
formance mainly depends on the extracted lesion and vessels, as discussed in Chapter
5. The liver anatomy mainly relies on the portal vein and the hepatic vein where these
vessels are enhanced at the portal phase (Reitinger et al., 2006; Mule et al., 2015;
Rajesh et al., 2015). All the experiments were done in a portal phase.

Each liver lesion was characterised by seven high-level features that extracted di-
rectly from the CT image contents. Figure 6.3 illustrates the statistics of prediction
accuracy for all seven high-level features across the dataset I, dataset II and the combi-
nation of Dataset I and II. The prediction accuracy of high-level features varies over the
dataset used for evaluation. This due to all seven high-level features were not equally
used through the datasets since the number of cases is not equally distributed among
each characteristic class.
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Figure 6.3: Evaluation results of lesion characterisation based on the image across the
datasets.

The evaluation results of proposed approach to characterise liver lesion based on
the high-level features directly extracted from the query image shown in Figure 6.3.
The experiment was performed on Dataset I, Dataset II and overall dataset (Dataset
I + Dataset II). The proposed framework mainly extracted high-level features from
the query image based on existing medical knowledge in practice that supports lesion
characterisation for better overall performance, as discussed in Section 5.3.2. The
average performance of lesion characterisation for the seven high-level features that
extracted from the image contents was 96.7%.

Figure 6.4 depicts samples of liver lesion characterisation results that characterise
lesion location and component from the query CT image. Figure 6.4.a Sample of
correct lesion characterisation. Figure 6.4.b sample of incorrect lesion characterisation
of close to vein property. Only the "Right Portal Vein" was predicted wrongly as
"Middle Hepatic Vein". For this high-level feature, This error is due to the effect the
lesion on the vessels which lead to the loss of some vessels structure.
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Figure 6.4: Sample of liver lesion characterisation results that extracted directly from
query CT image; (a) Sample of correct lesion characterisation; (b) Sample of incorrect
close to vein annotation.
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High-level Features based on Machine Learning

In this section, the liver lesion characterisation based on learning model is evaluated
through the accurate prediction of the high-level features. The accuracy is defined as
the number of correct prediction for each high-level feature divided by the total number
of the cases.

The Support vector machine (SVM) classifier was used to characterise liver lesion.
The SVM has been widely used in the last few years for medical diagnoses. Further-
more, its capability to address problems by learning from samples and its ability to
address large amounts of information simultaneously (Ulagamuthalvi et al., 2012; Jor-
dan and Mitchell, 2015). Hence, the use of SVM is particularly worthwhile in this
area.

Two validation approaches were performed to evaluate the proposed framework
performance. Namely; tenfold cross-validation and train/test spilt validation. In ad-
dition, the evaluation has been done by using portal phase only and multiphase CT
scan protocol (Arterial phase, Portal phase and Delayed phase). Figure 6.5 depicts the
statistics of tenfold cross-validation prediction accuracy based on portal phase for all
the high-level features that extracted through learning process, as discussed in Section
5.3.3. The overall dataset is randomly partitioned into ten subgroups for training and
testing. For each iteration, one subgroup is left out to test the proposed framework per-
formance. Furthermore, the liver lesion characterisation performance of our proposed
framework (Multiple ROIs) is evaluated/compared with the traditional way that only
relied on the lesion ROI (single ROI) to predict the lesion characterisation.

In general, the single ROI have a limited characterisation performance over the
relation between the lesion and surrounding area. This is clearly reflected in the le-
sion surrounding, lesion rim and rim thickness high-level features where the maxi-
mum reached accuracy is < 45%. This is attributed to the lesion ROI alone not rep-
resented the relationship between lesion and liver. However, The proposed multiple
ROIs enhanced the characterisation framework performance for each high-level fea-
tures categories, which are as follows: (1) the relationship between lesion and liver.
(2) lesion margin high-level features. (3) and the lesion structure. The best overall per-
formance of lesion characterisation based on SVM classifier were 78.28± 4.63% and
95.56 ± 1.25% for single ROI and Multiple ROIs respectively, compared to LR clas-
sifier was 77.22 ± 3.71% and 94.7 ± 2.01%. While the accuracy achieved with LDA
classifier was 74.71 ± 3.23% and 92.41 ± 2.45%. However, the SVM was adopted in
this section, due to the SVM achieved the best accuracy. The full results of LR and
LDA classifiers are available at Appendix B.

Furthermore, the results shows that the Multiple ROIs technique is more contribu-
tive to the overall lesion characterisation. The proposed multiple ROIs records average
improvement of 12.64±3.45% and 55.17±5.31% for characterising the internal lesion
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structure and the relation between lesion and liver respectively. This is due to utilising
the features of surrounding lesion from the liver tissue to interpreting the effect the
lesion on the liver rather than relying on the lesion characteristics only. In addition,
selecting the internal lesion is more descriptive to the lesion structure, due to reducing
the false positive of the lesion segmentation and focusing on the internal structure.

Figure 6.5: The accuracy comparison between single ROI and Multiple ROIs to pre-
dict the high-level features using the portal phase CT image where tenfold cross-
validation method and SVM classifier was adopted.

Figure 6.6 shows both selection ROI methods (Single ROI and Multiple ROIs)
evaluation based on multiphase CT images.A tenfold cross-validation method was per-
formed where 90% of the dataset was used to train the classifier, while the remaining
10% was used to measure the prediction accuracy.
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Both selection ROI methods (single ROI and Multiple ROIs) achieved slightly bet-
ter performance in multiphase CT compared to the single phase and scored average
accuracy improvement of 1.36± 0.6% and 0.33± 0.2% respectively, as shown in Fig-
ure 6.6.

Figure 6.6: The accuracy comparison between single ROI and Multiple ROIs to predict
the high-level features using the multiphase CT image where tenfold cross-validation
method and SVM classifier was adopted.

Figure 6.7 depicts the evaluation of proposed liver lesion characterisation frame-
work based on Multiple ROIs comparison by using portal phase and multiphase CT
images. The SVM classifier was used to predict the high-level features and the accu-
racy of prediction was estimated using a ten-cross validation.
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Figure 6.7: The accuracy comparison of the proposed Multiple ROIs to predict the
high-level features by using portal phase and multiphase CT image where tenfold
cross-validation method and SVM classifier was adopted.

The results are depicted in Figure 6.7, and shows that the performance of proposed
framework in portal phase to characterised lesion shape and margin is better by 1.3 ±
0.4% on average compared to multiphase CT image. This is related to the lesion being
affected by the rate of absorption and washout of the contrast agent during the time
of screening in respect of the lesion size. On the other side, the multiple phase CT is
doing better to characterise the internal structure of the lesion compared to the single
phase with average improvement of 3.4 ± 0.7% for single ROI and 1.1 ± 0.3% for
multiple ROIs. This can be explained as multiphase provides more useful information

150



Chapter 6. Results and evaluation

about enhancement pattern variation over the phase.
To verify and confirm the performance of the proposed framework, another valida-

tion approach was implemented by splitting the dataset into training and testing sets.
Figure 6.8 depicts the statistics of prediction lesion characterisation accuracy using
portal phase CT image. The SVM classifier has been considered for characterisation
process. the experiment has been done by using Dataset II for training the classifier
and Dataset I for testing the proposed framework.

Figure 6.8: The accuracy comparison between single ROI and Multiple ROIs to predict
the high-level features using the portal phase CT image where Training/Testing split
validation method and SVM classifier was adopted.
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Figure 6.9 shows the accuracy evaluation of prediction lesion characterisation using
multiphase CT image. The dataset II was used to train the SVM classifier, while the
dataset I was used to evaluate the framework prediction accuracy.

Figure 6.9: The accuracy comparison between single ROI and Multiple ROIs to pre-
dict the high-level features using multiphase CT image where Training/Testing split
validation method and SVM classifier was adopted.
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Figure 6.10 depicts the comparison between the multiple ROIs characterisation
framework based on portal phase CT image and multiple ROIs characterisation frame-
work using multiphase CT image. The SVM classifier was trained on dataset II and
dataset I was used to evaluate the framework performance.

Figure 6.10: The accuracy comparison of the proposed Multiple ROIs to predict the
high-level features by using portal phase and multiphase CT image where Train-
ing/Testing split validation method and SVM classifier was adopted.
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6.4 Evaluation of Lesion Classification

This section examines the liver lesion classification performance of the proposed frame-
work to classify liver lesions either benign or malignant. The classification accuracy
(ACC), specificity (SPE), sensitivity (SEN), negative predictive value (NPV) and pos-
itive predictive value (PPV) are used in the system evaluation.

The liver lesion classification framework includes three different ways for classify-
ing lesions: (1) automatic liver lesion classification based on low-level features (black
box). (2) automatic lesion classification through high-level features. (3) lesion classi-
fication based on the feature fusion between low-level and high-level features.

For the classification task, the Support vector machine (SVM) classifier was adopted,
for being the most commonly used in lesions classification. Moreover, the SVM is a
well-established and very popular classifier. In addition, The SVM is less prone to
over-fitting compared to others algorithms such as back-propagation neural networks.

Classification based on Low-level Features

The performance of the proposed liver lesion classification framework based on low-
level features is evaluated by using three different configurations, as discussed in Sec-
tion 5.2. The first way, the lesion is classified using difference-of-features (DoF) be-
tween segmented lesion and surrounding tissues. The second way, the classification
task is carried out by fusing features of Multiple ROIs (internal, border and surround-
ing lesion). The last configuration, the classification performed through fusing lesion
border features with the difference-of-features between internal and surrounding le-
sion. The average classification performance based on Lesion ROI, DoF, Multiple
ROIs and combined Multiple ROIs and DOF technique by LR classifier were 83.33%,
89.08%, 91.38% and 93.1% respectively. While the classification accuracy achieved
by LDR classifier were 81.61%, 87.93%, 89.66% and 90.23%. However, the highest
accuracy was achieved by SVM as will be presented in detail in Table 6.1. Therefore,
the SVM was adopted in this section. The results of LR and LDA are displayed in full
at Appendix B.

Table 6.1 presents the comparison between all of the proposed configurations to
classify liver lesion from portal phase CT image. The SVM classifier performance was
evaluated by adopting tenfold cross-validation method.

In general, the evaluation results depicts that the combination of multiple ROIs and
difference-of-features is more contributive to the overall lesion classification perfor-
mance in terms of the evaluation metrics. The proposed of three different methods
(DoF, Multiple ROIs and combination of Multiple ROIs and DoF) displayed the bet-
ter classification accuracy over the single ROI (lesion area only) with increasing the
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overall system accuracy is 7.5 ± 1.8%, 8.7 ± 2.1% and 12.1 ± 1.3% respectively, as
presented in Figure 6.11. This is due to the classification accuracy is affected by sev-
eral factors such as the ROI selection that represent the lesion features and imaging de-
vices/settings. However, All the lesion characteristics such as lesion its self, boundary
and relation with the surrounding area were captured through our proposed multiple
ROIs. Moreover, the Difference-of-Features helps to overcome the challenge issues
such as the variation of intensity and texture ranges between study cases due to the
imaging devices settings such as images resolution and spacing.

SN SP ACC PPV NPV Average
ACC

Lesion ROI
Malignant 0.788 0.872 0.788 0.840 0.828

0.833
Benign 0.872 0.788 0.872 0.828 0.840

DoF
Malignant 0.90 0.915 0.90 0.90 0.915

0.908
Benign 0.915 0.90 0.915 0.915 0.90

Multiple ROIs
Malignant 0.913 0.926 0.913 0.913 0.926

0.92
Benign 0.926 0.913 0.926 0.926 0.913

Multiple ROIs + DoF
Malignant 0.938 0.968 0.938 0.962 0.948

0.954
Benign 0.968 0.938 0.968 0.948 0.962

Table 6.1: Summary of lesion classification through low-level features results obtained
by tenfold cross-validation and SVM classifier using portal phase CT images. The
combination of Multiple ROIs and DoF is achieving higher accuracy levels compared
to the other methods.

Figure 6.11: ROC-curves of different lesion classification methods using portal phase
CT images where tenfold cross-validation method and SVM classifier was adopted.
The combination of Multiple ROIs and DoF achieves higher accuracy over all the other
methods.
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The Table 6.2 and Figure 6.12 shows enhancing on overall classification perfor-
mance for the proposed combination between multiple ROIs and DoF when using mul-
tiphase CT images by 1.7±0.8%, malignant classification accuracy by 2.5±1.1% and
benign classification accuracy by 1.1 ± 0.5% as compared to the single phase (portal
phase) representation, due to provide more represented information, in particular on
hypervascular lesions.

SN SP ACC PPV NPV Average
ACC

Lesion ROI
Malignant 0.838 0.883 0.838 0.859 0.865

0.862
Benign 0.883 0.838 0.883 0.865 0.859

DoF
Malignant 0.925 0.926 0.925 0.914 0.935

0.925
Benign 0.926 0.925 0.926 0.935 0.914

Multiple ROIs
Malignant 0.925 0.957 0.925 0.949 0.938

0.943
Benign 0.957 0.925 0.957 0.938 0.949

Multiple ROIs + DoF
Malignant 0.963 0.979 0.963 0.975 0.968

0.971
Benign 0.979 0.963 0.979 0.968 0.975

Table 6.2: Summary of lesion classification results through low-level features obtained
by tenfold cross-validation and SVM classifier using multiphase CT images. The
combination of Multiple ROIs and DoF is achieving higher accuracy levels compared
to the other methods.

Figure 6.12: ROC-curves of different lesion classification methods using multiphase
CT images where tenfold cross-validation method and SVM classifier was adopted.
The combination of Multiple ROIs and DoF achieves higher accuracy over all the other
methods.
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Table 6.3 and Table 6.4 depicts the extended evaluation of the framework perfor-
mance through using split Train/Test validation method.

SN SP ACC PPV NPV Average
ACC

Lesion ROI
Malignant 0.690 0.714 0.69 0.769 0.625

0.70
Benign 0.714 0.690 0.714 0.625 0.769

DoF
Malignant 0.793 0.810 0.793 0.852 0.739

0.80
Benign 0.810 0.793 0.810 0.739 0.852

Multiple ROIs
Malignant 0.828 0.810 0.828 0.857 0.773

0.82
Benign 0.810 0.828 0.810 0.773 0.857

Multiple ROIs + DoF
Malignant 0.862 0.905 0.862 0.926 0.826

0.88
Benign 0.905 0.862 0.905 0.826 0.926

Table 6.3: Summary of lesion classification through low-level features results obtained
by Training/Testing split validation and SVM classifier using portal phase CT im-
ages. The combination of Multiple ROIs and DoF is achieving higher accuracy levels
compared to the other methods.

Figure 6.13: ROC-curves of different lesion classification methods using portal phase
CT images where Training/Testing split validation method and SVM classifier was
adopted. The combination of Multiple ROIs and DoF achieves higher accuracy over
all the other methods.
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SN SP ACC PPV NPV Average
ACC

Lesion ROI
Malignant 0.759 0.762 0.759 0.815 0.696

0.76
Benign 0.762 0.759 0.762 0.696 0.815

DoF
Malignant 0.828 0.810 0.828 0.857 0.773

0.82
Benign 0.810 0.828 0.810 0.773 0.857

Multiple ROIs
Malignant 0.862 0.857 0.862 0.893 0.818

0.86
Benign 0.857 0.862 0.857 0.818 0.893

Multiple ROIs + DoF
Malignant 0.897 0.952 0.897 0.963 0.870

0.92
Benign 0.952 0.897 0.952 0.870 0.963

Table 6.4: Summary of lesion classification through low-level features results obtained
by Training/Testing split validation and SVM classifier using multiphase CT im-
ages. The combination of Multiple ROIs and DoF is achieving higher accuracy levels
compared to the other methods.

Figure 6.14: ROC-curves of different lesion classification methods using multiphase
CT images where Training/Testing split validation method and SVM classifier was
adopted. The combination of Multiple ROIs and DoF achieves higher accuracy over
all the other methods.

In summary: In this section, we proposed three methods to classify liver lesion
based on low-level features, Namely: (1) Difference-of-Feature approach (DoF). (2)
Multiple ROIs. and (3) combination of multiple ROIs and DoF. These approaches
were compared to the traditional way, which focuses on extracted features from the
segmented lesion only. For more confident results, the McNemar test (McNemar,
1947) was used in this study to benchmark all approaches. Table 6.5 depicts the Mc-
Nemar analysis p-value results in comparison of the proposed approaches based on
portal phase CT images.

158



Chapter 6. Results and evaluation

Lesion ROI Lesion ROI
DoF 0.025858 DoF
Multiple ROIs 0.009330 0.479500 Multiple ROIs
Multiple ROIs + DoF 0.000318 0.013328 0.041227

Table 6.5: McNemar analysis p-value results in comparison all proposed approaches
to classify liver lesion based on portal phase CT images.The p-value < 0.05 scores are
in bold font.

The results show that all the proposed approaches are better than traditional ROI
statistically. However, the Multiple ROIs are doing better than difference-of-features
based on the classification accuracy but is not statistically significant, where the com-
bination between Multiple ROIs and difference-of-features enhanced the accuracy re-
sults and statically significant compared to all other approaches (p-value < 0.05). Table
6.6 depicts the McNemar analysis p-value results in comparison of the proposed ap-
proaches based on multiphase CT images.

Lesion ROI Lesion ROI
DoF 0.037056 DoF
Multiple ROIs 0.010787 0.546494 Multiple ROIs
Multiple ROIs + DoF 0.000086 0.026857 0.073638

Table 6.6: McNemar analysis p-value results in comparison all proposed approaches
to classify liver lesion based on multiphase CT images.The p-value < 0.05 scores are
in bold font.

The results based on multiphase CT images show that all the proposed approaches
are better than traditional ROI statistically. However, the Multiple ROIs are doing
better than difference-of-features based on the classification accuracy but is not sta-
tistically significant, where the combination between Multiple ROIs and difference-
of-features enhanced the accuracy results and statically significant compared to the
difference-of-features alone (p-value < 0.05). As the result, the proposed approach of
combining multiple ROIs and DoF has adopted to benchmark the performance of the
lesion classification through utilising high-level features and comparing it in terms of
the classification performance via low-level features.

Classification based on High-level Features

In this section, the performance of the lesion classification based on high-level features
is evaluated through five types of evaluation metrics and ROC curve. The semantic fea-
tures are used to build the new feature vector and, fed into classifier. Table 6.7 depicts
the lesion classification based on high-level features evaluation using portal phase CT
images and multiphase CT images evaluation presented in Table 6.8 .The two vali-
dation approaches (tenfold cross-validation and Train/Test split validation) were per-
formed in evaluation. The results show that the classification performance when used
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portal phase CT images in characterisation achieved same accuracy levels compared
to using multiphase CT images in characterisation, due to using multiphase CT images
in characterisation is slightly better than portal phase CT images to characterised le-
sion structure where the portal phase CT images shows slightly better performance in
characterised lesion shape and margin, as discussed in Section 6.3.

Validation Lesion SN SP ACC PPV NPV Average
ACC

cross-validation
Malignant 0.975 0.968 0.975 0.963 0.978

0.971
Benign 0.968 0.975 0.968 0.978 0.963

Train/Test
Malignant 0.931 0.905 0.931 0.931 0.905

0.92
Benign 0.905 0.931 0.905 0.905 0.931

Table 6.7: Summary of lesion classification through high-level features results ob-
tained by tenfold cross-validation and split Training/Testing validation method.
The SVM classifier and portal phase CT images were adopted.

Figure 6.15: ROC-curves of lesion classification based on high-level features using
portal phase CT images and SVM classifier where tenfold cross-validation and
Training/Testing split validation approaches were used.

Validation Lesion SN SP ACC PPV NPV Average
ACC

cross-validation
Malignant 0.975 0.968 0.975 0.963 0.978

0.971
Benign 0.968 0.975 0.968 0.978 0.963

Train/Test
Malignant 0.931 0.905 0.931 0.931 0.905

0.92
Benign 0.905 0.931 0.905 0.905 0.931

Table 6.8: Summary of lesion classification through high-level features results ob-
tained by tenfold cross-validation and split Training/Testing validation method.
The SVM classifier and multiphase CT images were adopted.
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Figure 6.16: ROC-curves of lesion classification based on high-level features using
multiphase CT images and SVM classifier where tenfold cross-validation and Train-
ing/Testing split validation approaches were used.

Furthermore, the high-level features have been shown to be more useful in lesion
classification than low-level features, especially in the classification of malignant le-
sions. The results based on portal phase CT images show that the classification through
high-level features provides up to 1.7 ± 0.6% overall accuracy increase compared to
low-level features and up to 3.7 ± 1.2% accuracy increase for malignant lesion clas-
sification and the same level of accuracy for benign lesions. The use of multiphase
CT images has enhanced the classification accuracy based on low-level features to
achieve the same level of accuracy through utilising high-level features. However, the
high-level features still offers higher accuracy in classification of malignant lesions
by 1.2 ± 0.6% compared to the low-level features, which confirms the classification
through high-level features higher accuracy to fulfil its job. In addition, the use of
high-level features helps in interpreting and explaining the classification and is more
intuitive to clinicians, which is in contrast with black box low-level features approach.

Classification based on combined High-level and Low-level Features

This section investigates the performance of the combined high-level and low-level fea-
tures to further analysis their lesion classification capabilities across the datasets. Table
6.9 and Table 6.10 depicts the evaluation analysis of combined high-level and low-level
features for lesion classification task across the tenfold cross-validation and Train/Test
split validation approach by using portal and multiphase CT and images respectively.
The results show that the merged high-level and low-level features achieved slightly
higher accuracy compared to its individual components with multiphase CT images.
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Validation Lesion SN SP ACC PPV NPV Average
ACC

cross-validation
Malignant 0.963 0.979 0.963 0.975 0.968

0.971
Benign 0.979 0.963 0.979 0.968 0.975

Train/Test
Malignant 0.897 0.952 0.897 0.963 0.870

0.92
Benign 0.952 0.897 0.952 0.870 0.963

Table 6.9: Summary of lesion classification through combined features results obtained
by tenfold cross-validation and split Training/Testing validation method. The SVM
classifier and portal phase CT images were adopted.

Figure 6.17: ROC-curves of lesion classification based on combined features using
portal phase CT images and SVM classifier where tenfold cross-validation and
Training/Testing split validation approaches were used.

Validation Lesion SN SP ACC PPV NPV Average
ACC

cross-validation
Malignant 0.975 0.979 0.975 0.975 0.979

0.977
Benign 0.979 0.975 0.979 0.979 0.975

Train/Test
Malignant 0.931 0.952 0.931 0.964 0.909

0.94
Benign 0.952 0.931 0.952 0.909 0.964

Table 6.10: Summary of lesion classification through combined features results ob-
tained by tenfold cross-validation and split Training/Testing validation method.
The SVM classifier and multiphase CT images were adopted.
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Figure 6.18: ROC-curves of lesion classification based on combined features using
multiphase CT images and SVM classifier where tenfold cross-validation and Train-
ing/Testing split validation approaches were used.

Furthermore, since the combined features is designed to be used for enhance the
classification accuracy, the results based on portal phase shows that the combined fea-
tures achieved 1.7 ± 0.8% increase in overall accuracy, 2.5 ± 0.9% and 1.1 ± 0.7%

increase in malignant and benign lesions classification respectively, compared to the
classification through low-level features. For the comparison with the classification
through high-level features, the combined features achieved 1.2 ± 0.3% less accuracy
in malignant lesions classification and 1.1 ± 0.1% higher accuracy in benign lesion
classification. The combined features have slightly improved the classification accu-
racy to 97.7% by using multiphase CT image.

6.5 Framework Benchmarking

This section shows the proposed framework for liver lesion characterisation and classi-
fication benchmarking against state-of-art baselines, in terms of system accuracy. Sec-
tion 6.5.1 presents the results and evaluation of proposed liver lesion characterisation
framework against the baselines. The proposed framework for liver lesion classifica-
tion versus the baselines are presented in Section 6.5.2.

6.5.1 Benchmarking Characterisation and Comparisons

Table 6.11 depicts the selected list of state-of-art baselines to benchmark the proposed
liver lesion characterisation framework. These baselines have been selected based on
careful literature analysis, as presented and discussed in Chapter 3, in addition to cover
all the used same dataset, as most of the presented works provide results for their own
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dataset. Furthermore, each of the baselines uses different technique in characterising
lesions. The baselines were selected by the end of February 2016, where we started
the evaluation stage and prepared to write the thesis.

Generally, the selected baselines could be summarised based on the dataset as fol-
lows:

• Same our dataset (Dataset I):
Baselines 1, 3, 4 and 6. The baseline 1 regenerated by 6.

• Using all our dataset by re-implemented the baselines:
Baselines 1, 2, 5 and 6. The baseline 6 provided us with the code.

# Baseline Dataset Approach

1 (Gimenez et al.,
2012)

79 case
Machine learning. intensity, texture,
shape, and edge sharpness features

extracted. LASSO classifier.

2 (Depeursinge
et al., 2014)

74 case

Machine learning. Lesion was divided
into 12x12 patches. linear combination

of texture features based on Riesz
wavelets. SVM classifier.

3 (Spanier and
Joskowicz, 2014)

50 case
(Dataset I)

Machine learning. Intensity, texture
features with Linear Discriminant

Analysis (LDA) classifier.

4 (Nedjar et al.,
2015)

50 case
(Dataset I)

Case-based similarity. Retrieve the top
five similar images then applied the

majority voting.

5 (Kurtz et al.,
2015)

72 case

Machine learning. Lesion was divided
into 12x12 patches. A gray-level

intensity histogram and multi-scale
Riesz wavelets. SVM classifier.

6 (Kumar et al.,
2016)

50 case
(Dataset I)

Case-based similarity. weighted
nearest-neighbour (WNN) with

sequential feature selection.

Table 6.11: Summaries of the selected baselines approaches to benchmark the pro-
posed liver lesion characterisation framework.

Table 6.12 depicts the evaluation results of the proposed lesion characterisation
framework benchmarking against the selected baselines set. The reported proposed
framework results, over the Dataset I, were obtained based on portal phase CT images,
for fair comparison with the baselines.
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# High-level feature Baseline
1

Baseline
3

Baseline
4

Baseline
6

Proposed
system

1 Lesion density 0.76 0.86 0.82 0.88 0.94
2 Lesion density type 0.78 0.84 0.84 0.82 0.94
3 Lesion rim 0.62 - - - 0.96
4 Lesion rim thickness - - - - 0.94
5 Contrast Uptaken 0.84 0.86 0.80 0.86 0.90
6 Enhancement Pattern - 0.84 0.82 0.88 0.94
7 Lesion composition - 0.88 0.86 0.90 0.92
8 Lesion leveling type - 0.82 0.82 0.84 0.90
9 Lesion shape 0.58 0.74 0.84 0.88 0.88
10 Lesion focality 0.40 0.26 0.88 0.90 0.96
11 Lesion margin 0.68 0.86 0.84 0.86 0.94
12 Lesion margin definition 0.60 0.80 0.82 0.84 0.92
13 Lesion enhancement 0.74 0.84 0.80 0.86 0.92
14 Lesion brightness 0.82 - - - 0.90
15 Lesion surrounding - - - - 0.92
16 Calcified (inside lesion) - 0.82 0.90 0.94 1
17 Calcified wall - 0.62 0.74 0.68 0.90
18 Scar - - - - 1
19 Lobe - 0.62 0.52 0.48 0.98
20 Segment - 0.40 0.32 0.26 0.92
21 Close to vein - 0.48 0.54 0.60 0.98

Table 6.12: The proposed lesion characterisation framework accuracy (%) perfor-
mance versus the baselines set on the same dataset (Dataset I).

The proposed framework outperformed all the baselines over the dataset I with
average accuracy of 94%. In addition, the proposed system was able to characterise
the liver lesions with the additional number of the high-level features compared to the
baselines. The baselines accuracy to characterised lesion location such as Segment is
low, due to the primitive way in which the high-level features were extracted .

Conclusively, the competitive performance of the proposed framework relates to
its robust structure, which is designed to improve the lesion characterisation model
through using multiple ROIs and difference-of-features. In addition, the mapping be-
tween the high-level features and the selected ROI based on the medical knowledge
are the keys to capturing all the lesion characteristics efficiently.

Table 6.13 depicts the evaluation results of the proposed lesion characterisation
framework benchmarking against the selected baselines set. Four baseline methods
are studied to be compared with the proposed framework over the whole dataset. The
baseline 1 and 6 provided us with the source code and we ran their code over the
dataset. Due to the limited availability of the used dataset, we have regenerated the
baseline 2 and 5 and applying it on the available dataset.
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# High-level feature Baseline
1

Baseline
2

Baseline
5

Baseline
6

Proposed
system

1 Lesion density 0.80 - 0.74 0.90 0.97
2 Lesion density type 0.81 0.87 0.71 0.86 0.96
3 Lesion rim 0.72 - 0.64 - 0.98
4 Lesion rim thickness - - - - 0.95
5 Contrast Uptaken 0.82 0.84 0.88 0.84 0.95
6 Enhancement Pattern - 0.75 0.85 0.87 0.95
7 Lesion composition - - - 0.91 0.97
8 Lesion leveling type - - - 0.87 0.94
9 Lesion shape 0.67 - 0.60 0.83 0.94
10 Lesion focality 0.34 - - 0.85 0.96
11 Lesion margin 0.76 0.82 0.86 0.84 0.95
12 Lesion margin definition 0.67 0.78 - 0.79 0.95
13 Lesion enhancement 0.72 0.76 - 0.89 0.97
14 Lesion brightness 0.84 0.71 0.79 - 0.97
15 Lesion surrounding - - - - 0.95
16 Calcified (inside lesion) - - - 0.90 0.99
17 Calcified wall - - - 0.74 0.94
18 Scar - - - - 0.99
19 Lobe - - - 0.53 0.98
20 Segment - - - 0.44 0.93
21 Close to vein - - - 0.65 0.94

Table 6.13: The proposed lesion characterisation framework accuracy (%) perfor-
mance versus re-implementation of baselines set on our dataset (Dataset I + Dataset
II).

The best liver lesion characterisation performance is obtained by our proposed
framework with average characterisation accuracy of 96% for the predictive high-level
features. These results are consolidated by the comparison with the three other base-
lines methods over the dataset size of 174 cases. The proposed framework always
shows the highest accuracy results with an average over of 92%.

6.5.1.1 Discussion

In this thesis, the publicly available ImageClef dataset was used since it is a popular
dataset in this field. The training dataset included the ground truth used for liver lesion
characterisation. A fair comparison with other recent and related work which used the
same dataset or applied their methods on our dataset will be also feasible.

Liver lesion interpretation from CT image is being widely studied. In the previ-
ous studies, characterisation of the liver lesion was mainly explored in two ways: (1)
Case-based retrieval approach (CBIR) and (2) Machine learning-based approach (ML).
Following the ML approach, (Gimenez et al., 2012) computed a relatively large set of
quantitative features from liver CT scans and fed whole feature matrix in LASSO reg-
ularisation model to predict the high-level features. (Depeursinge et al., 2014) adopted
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a different modeling method and created a SVM model using only the rotation co-
variant Riesz wavelet features to learn the signature of each high-level feature from
CT images. (Spanier and Joskowicz, 2014) trained four different classifier to char-
acterise liver lesions using a set of quantitative image features. (Kurtz et al., 2015)
adopted SVM to characterise liver lesion based on gray-level intensity histogram and
multi-scale Riesz wavelet features.

Moving towards the direction of CBIR for lesion characterisation, (Nedjar et al.,
2015) used CBIR approach to characterise liver lesion, by using a specific signature
of the liver. The similarity metric used to retrieve the top five smilar images to the
given image. The majority voting between retrieved images has been used in charac-
terisation. (Kumar et al., 2016) Adopted the weighted nearest-neighbour search ap-
proach with sequential feature selection to find the most similar training images for
characterisation task. To the best of our knowledge, no study was mapped between
low-level, high-level features and represented ROI to characterise the liver lesion. our
proposed framework categorises the high-level features into two groups: (1) Visual
features from the image contents and (2) High-level features that predicted through
learning approach. Lesion characterisation infers explicit mapping between low-level,
high-level features and ROI, as presented in Chapter 5.

Table 6.12 provides the results of our proposed framework against other methods
and applied on Dataset I (ImageClef). The results show that the proposed framework
achieved the highest lesion characterisation accuracy, outperforming the other baseline
methods. The highly significant results achieved by our proposed method was due to
the way in which the high-level features were predicted. All of the high-level features
number (9, 10, 16, 17, 18, 19, 20 and 21) are estimated from the image itself. which
called the visual features from image contents. However, the baselines inferred these
features in a primitive way based on other cases, which increases the probability of
error in characterisation. For example, the lesion location (Segment, Lobe) features
depend on the visual image contents where cannot be predicted correctly from other
cases. However, In our proposed framework, these features calculated from the image
itself by segmented the liver based on the main vessels and medical knowledge, as
described in Section 5.3.2.

Regarding the two high-level features (Calcified inside lesion and Scar), the pro-
posed framework achieves 100% accuracy. This is not surprising since the dataset
contains only 3 cases with Calcified inside lesion and 4 cases with Scar which are
detected correctly. These areas inside lesion are distinguishable due to the intensity
difference between lesion tissue and Calcified and Scar area, located at lesion centre,
as presented in Chapter 5.

The remain features accuracy of our proposed framework was higher than that of
baselines. The results have experimentally confirmed the importance of mapping be-
tween low-level, high-level and ROI. We extracted a set of low-level feature form each
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proposed ROIs (inside, border and outside lesion) and order the features as per their rel-
evancy to the targeted high-level feature. For example, the lesion rim feature is inferred
by considering intensity and texture feature from outside lesion ROI. The characteri-
sation of lesions depends heavily on the characteristics of lesions including internal
structure, morphology, border and rim. These characteristics are differently observed
according to ROI area that may indeed significantly impact the characterisation per-
formance. The baselines have limitation for guaranteeing robust characterisation per-
formance for liver lesion, mainly due to the difficulties that represent all appearances
of the lesion characteristics through the current single ROI. Similarly, the baseline 1
(Gimenez et al., 2012) based on LASSO regularisation model, which performs vari-
able selection by shrinking parameter estimates (coefficients of the regression) closer
to zero, has a low accuracy compared to other methods. This is due to the dataset
contained a few subtle cases meaning there were a few samples from which to derive
optimal features or regression coefficients. However, A more diverse training dataset
would include more subtle cases and this would have a positive impact on the accuracy
of methods, as illustrated in Table 6.13.

Conclusively, these results highlight the potential benefits of mapping between
low-level, high-level and ROIs as a base for the proposed framework towards a more
accurate characterisation performance compared with the existing characterisation ap-
proaches.

6.5.2 Benchmarking Classification and Comparisons

Table 6.14 presents the selected list of baselines to benchmark the proposed liver lesion
classification framework. These baselines were selected because they are the most re-
cent relevant work. So, they represent the state-of-art with high accuracy, as discussed
in Chapter 3. It is well known that the datasets are limited in the medical field. We al-
ready contacted several researchers in the field to either share their datasets or at least
to run our code on their datasets, however, this was fully refused for confidentiality
purposes. Due to the limited availability of a standard benchmark dataset, we have
regenerated the baselines by implementing and testing them on our dataset.

Generally, the selected baselines could be summarised based on the CT phases as
follows:

• Using portal phase:
Baselines 2, 3 and 4.

• Using multiphase:
Baselines 1 and 5.
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# Baseline Dataset Approach

1 (Quatrehomme
et al., 2012)

95 case

Multiphase. Law texture
measures,Gaussian Markov Random
Fields, Unser histograms and First

order statistics features were extracted.
SVM classifier.

2 (Kumar et al.,
2013a)

150 case

Portal phase. Gray level, GLCM,
wavelet coefficient statistics and

contourlet coefficient statistics. A
probabilistic neural network classifier.

3 (Doron et al.,
2014b)

112 case
Portal phase. Gabor, Local Binary
Patterns and grey level intensity

features. SVM classifier.

4 (Diamant et al.,
2017)

118 case
Portal phase. Bag-of-visual-word with

patch size of 11 and visual of word
size 10. SVM classifier.

5 (Chang et al.,
2017)

71 case

Multiphase. 3D texture (GLCM), 3D
shape (compactness, elliptic model

and Margin) and Kinetic curve
features were obtained from lesion .
binary logistic regression classifier.

Table 6.14: Summaries of the selected baselines approaches to benchmark the pro-
posed liver lesion classification framework.

Table 6.15 presents the performance of various proposed methods (Proposed P 1

based on low-level features, Proposed P 2 through high-level features and Proposed
P 3 combined low-level and high-level features) used to classify liver lesion based on
portal phase CT images, compared with three baselines using accuracy, sensitivity,
specificity, positive predictive, and negative predictive value.

Baseline Lesion SN SP ACC PPV NPV Average
ACC

Baseline 2
Malignant 0.813 0.883 0.813 0.855 0.847

0.851
Benign 0.883 0.813 0.883 0.847 0.855

Baseline 3
Malignant 0.775 0.894 0.775 0.861 0.824

0.839
Benign 0.894 0.775 0.894 0.824 0.861

Baseline 4
Malignant 0.838 0.872 0.838 0.848 0.863

0.856
Benign 0.872 0.838 0.872 0.863 0.848

Proposed P 1 Malignant 0.938 0.968 0.938 0.962 0.948
0.954

Benign 0.968 0.938 0.968 0.948 0.962

Proposed P 2 Malignant 0.975 0.968 0.975 0.963 0.978 0.971
Benign 0.968 0.975 0.968 0.978 0.963

Proposed P 3 Malignant 0.963 0.979 0.963 0.975 0.968 0.971
Benign 0.979 0.963 0.979 0.968 0.975

Table 6.15: Liver lesion classification based on portal phase CT image performance
comparison between the proposed methods and baselines.
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Regarding to the liver lesion classification, all proposed three methods achieved
higher accuracy compared to each baseline in terms of the lesion type and overall
system performance. The results show that P 2 and P 3 achieves higher overall system
accuracy. Furthermore, P 2 achieves the highest accuracy in the classification of the
malignant lesion 97.5%. However, the P 2 performed 1.1% less than P 3 for the benign
lesion classification. It is obvious from Figure 6.19 that P 2 gained higher performance
and increased the classification system accuracy 1.7% and 11.5% compared to P 1 and
the highest overall accuracy baseline respectively, with the advantage of interpreting
the diagnosis decision in human understating and analogous to radiologist observation.

Figure 6.19: Accuracy Vs Standard error for classification performance comparison
between proposed methods and baselines based on portal phase CT image. P 2 and P
3 achieves higher overall accuracy.

However, when comparing the performance of approaches, it is essential not to
rely on just the statistical significant of the differences in sensitivities, specificities or
accuracies; the magnitude of the differences must also be assessed (Dwyer, 1991). The
two-by-two matched data array and the McNemar analysis provide a succinct format
for the presentation and proper analysis of matched comparisons of binary (positive
and negative) test results (Fagerland et al., 2013). For more confident results, the Mc-
Nemar test was used in this study to assess our proposed system compared to the
baselines. Table 6.16 Depicts the statistical analysis using McNemar test to compare
proposed method over other approaches, where a p-value of <0.05 indicates a statisti-
cally significant.
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Baselin 2 Baselin 2
Baselin 3 0.479500 Baselin 3
Baselin 4 1 0.617075 Baselin 4
Proposed P1 0.001911 0.001542 0.002076 Proposed P1
Proposed P2 0.000204 0.000023 0.000330 0.248213 Proposed P2
Proposed P3 0.000318 0.000044 0.000523 0.371093 0.479500

Table 6.16: McNemar analysis p-value results in comparison between all proposed
approaches versus selected baselines to classify liver lesion based on portal phase CT
images.The p-value < 0.05 scores are in bold font.

According to the results in Table 6.16, our new methods for liver lesion classifica-
tion based on low-level, high-level and combination low-level and high-level features
are statistically significant compared to the baselines. However, the P 2 and P 3 are
doing better than P 1 but is not statistically significant, where the P 2 provides more
understanding and interpretation of the decision for the radiologists, which is in con-
trast with black box low-level features approach.

Table 6.17 presents the performance of various proposed methods (Proposed P 1

based on low-level features, Proposed P 2 through high-level features and Proposed
P 3 combined low-level and high-level features) used to classify liver lesion based on
multiphase CT images, compared with two baselines using several evaluation metrics.

Baseline Lesion SN SP ACC PPV NPV Average
ACC

Baseline 1
Malignant 0.863 0.894 0.863 0.873 0.884

0.879
Benign 0.894 0.863 0.894 0.884 0.873

Baseline 5
Malignant 0.750 0.841 0.75 0.80 0.798

0.79.6
Benign 0.841 0.750 0.841 0.798 0.800

Multiple ROIs + DoF
Malignant 0.963 0.979 0.963 0.975 0.968

0.971
Benign 0.979 0.963 0.979 0.968 0.975

Through characterisation
Malignant 0.975 0.968 0.975 0.963 0.978

0.971
Benign 0.968 0.975 0.968 0.978 0.963

Combined features
Malignant 0.975 0.979 0.975 0.975 0.979 0.977
Benign 0.979 0.975 0.979 0.979 0.975

Table 6.17: Liver lesion classification based on multiphase CT image performance
comparison between the proposed methods and baselines.

The proposed lesion classification framework, represented by the P 3, outperformed
all the baselines over the available dataset. The P 3 performed 9.8% more than the high-
est baseline accuracy (baseline 1) and slightly higher by only 0.8% compared to the P
1 and P 2. However, the P 2 has an advantage of diagnosis explanation through charac-
terisation compared to the traditional ways based on low-level features. Furthermore,
P 2 provides the highest accuracy of malignant lesion classification up to 97.5%.

Accuracy and standard error measures the overall effectiveness and trueness of the
proposed classification systems versus baselines as illustrated in Figure 6.20.
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Figure 6.20: Accuracy Vs Standard error for classification performance comparison
between proposed methods and baselines based on multiphase CT image. P 2 and P 3

achieves higher overall accuracy.

Baselin 1 Baselin 1
Baselin 5 0.002183 Baselin 5
Proposed P1 0.001384 0.000005 Proposed P1
Proposed P2 0.000796 0.000003 0.479500 Proposed P2
Proposed P3 0.000480 0.000001 1 1

Table 6.18: McNemar analysis p-value results in comparison between all proposed
approaches versus selected baselines to classify liver lesion based on multiphase CT
images.The p-value < 0.05 scores are in bold font.

The results in Table 6.18 for the McNemar statistical analysis of the comparison
between the proposed framework and baselines based on multiple CT images show
that all the proposed methods is statistical significant compared to the baselines. Fur-
thermore, the baseline 6 is better than baseline 1 statistically. Although the accuracy of
P 3 is slightly higher than P 1 and P 2 but it is not statistical significant and which will
lose the advantage of P 2 approach to interpret the results. Moreover, the P 2 is able to
classify the liver malignant lesion more accurately compared to P 1 approach.

6.5.2.1 Discussion

In this thesis, Due to the limited availability of a standard benchmark dataset for the
liver lesion classification task, we have regenerated the baselines by implementing and
testing them on our dataset.

Recent studies reported classification accuracy in the range of 82− 97% in classi-
fying liver lesion. The high variation in these reported results is partly due to different
dataset size being used but also due to the fact that different studies using different
validation approach, such as leave-one-out or 10-fold cross-validation. The method
proposed by (Quatrehomme et al., 2012) uses SVM to separate five types of liver le-
sion in multiphase CT images based on texture and other statistical features. (Kumar
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et al., 2013a) presented a method that extracts curvelet and texture features from the CT
image, which serve as input of a probabilistic neural network. The evaluation showed
the method can efficiently distinguish between two particular types of liver lesions.
(Doron et al., 2014b) combines various texture, intensity features and classifiers for
differential diagnosis of focal liver lesions. (Diamant et al., 2017) applied the bag-of-
visual-words (BoVW) method learned from image patches. They used two dictionaries
for lesion interior and boundary regions. Based on the two dictionaries they generated
histograms for each lesion ROI. The final classification was made using SVM. (Chang
et al., 2017) obtained three kind of features for each tumor, including texture, shape,
and kinetic curve on segmented tumors. Backward elimination was used to select the
best combination of features through binary logistic regression analysis to classify the
tumors, as presented in Chapter 3.

Table 6.15 and Table 6.8 provide the results of our proposed framework against
other methods applied on our dataset (174 CT scans) based on portal phase and mul-
tiphase CT scans respectively. The experiment results show that the classification
method based on high-level features gained higher performance compared to the low-
level features and recorded accuracy 97% with the advantage of interpreting the diag-
nosis decision in human understating and analogous to radiologist observation. The
combination between low-level and high-level features was slightly higher from high-
level features in multiphase CT image but will lose the advantages of characterisation
and track back to diagnosis explanation, due to a diagnostic decision that not only de-
pends on high-level feature but also on low-level features that are unable to interpret
the classification result.

The baselines show lower accuracy compared to our proposed framework. This is
due to the classification of liver lesions depends largely on how to represent the char-
acteristics of lesion based on ROI selection. However, the main limitation of previous
studies with traditional ROI (mainly selected lesion area) is that they may not able to
represent all lesion characteristics in a reliable way. Because the ability to observe
each of the lesion characteristics could differ depending on the type of extracted ROIs.

On the other side, the classification accuracy based on multiphase CT scan shows
better results compared to the single phase (portal phase). This is due to the multiphase
provide more represented information, in particular on hypervascular lesions.

Conclusively, these results show the classification lesion based on high-level fea-
tures (characterisation) is better than all other methods, due to gained a higher accu-
racy. In addition, it emphasise the usefulness of the proposed framework for the lesion
characterisation and classification. However, the characterisation approach provides
more understanding and interpretation of the decision for the radiologists, which is
in contrast with the black box low-level features approach. Another interesting result

173



Chapter 6. Results and evaluation

is the ability of our proposed classification through characterisation to classify liver
malignant lesion more accurately compared to low-level features.

6.6 Conclusion

This chapter provided an extensive benchmarking and evaluation of the proposed liver
lesion characterisation/ classification framework. Both, lesion characterisation and
classification were introduced. The evaluation sequence was as follows:

• Evaluation of the proposed liver lesion characterisation framework to assess their
capabilities to extract high-level features that describe the lesions and quantify
the performance obtained. The evaluation reflected the benefits of mapping be-
tween high-level feature and ROI selection based on medical prior-knowledge
towards more descriptive lesion characteristics.

• Evaluation of the proposed liver lesion classification framework. The evaluation
separated into three parts, as follows:

– Evaluation of lesion classification based on low-level features. The perfor-
mance of the proposed lesion classification system is evaluated by using
three different configurations. The first way, the lesion is classified using
difference-of-features (DoF) between segmented lesion and surrounding
tissues. The second way, the classification task is carried out by fusing
features of Multiple ROIs (internal, border and surrounding lesion). The
last configuration, the classification performed through fusing lesion bor-
der features with the difference-of-features between internal and surround-
ing lesion. The evaluation showed that the fusing multiple ROIs and DoF
(last configuration) performs higher than its individual components.

– Evaluation of lesion classification based on high-level features. The evalu-
ation related to the benefits of the utilising the high-level features that ex-
tracted through lesion characterisation framework to enhance lesion clas-
sification performance. The results showed that the characterisation ap-
proach has improved the accuracy of liver lesion classification, especially
malignant lesions accuracy with the benefit of interpretable the classifica-
tion decision.

– Evaluation of lesion classification based on the fusion between low-level
and high-level features. The evaluation results showed that the combined
features have slightly improved the classification accuracy compared to the
characterisation approach. However, the combination approach will lose
the advantage of characterisation approach to interpret the results.
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• Benchmarking of the liver lesion characterisation/classification framework against
a related set of baselines. This evaluation quantified the proposed character-
isation/classification framework power, as it demonstrated with high accuracy
scores.

All the evaluations were conducted over two datasets that were discussed in detail
in Chapter 2. The dataset provided a level of challenge by collecting the CT images
from the different sources that were varied in the machine settings which reflected on
the image resolution and spacing. This dataset added a considerable credibility to the
reported results. Furthermore, the multiphase CT images results are compared to the
portal phase CT (single phase) and show a slight improvement in lesion structure char-
acterisation while the single phase better in lesion shape and margin characterisation,
due to the lesion size and the fill in/washout of the contrast agent during the time of
screening. On the other hand, the multiphase provides an improvement on lesion clas-
sification based on low-level features, in particular on hypervascular lesions, due to its
being more descriptive for lesion.

Going a step further, a related solid and recent set of baselines were selected to
measure and benchmark the performance of liver lesion characterisation/classification
framework. The baselines vary in their techniques that used to enhance the lesion
characterisation and classification performance which makes it more competitive to
the proposed framework. The proposed framework can achieve a high characterisation
accuracy with the large number of high-level features compared to the baselines and
can go further, by classifying the liver lesion with the advantage of interpreting the
diagnosis decision in human understating and analogous to radiologist observation,
which is in contrast with black box low-level features approach. The next chapter will
involve the thesis conclusion with highlights on the contributions and presents some
potential future work.
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Conclusion

This thesis provided an integrated framework to characterise and classify liver lesions.
Targeting the liver lesion characterisation was the main goal of this thesis, for the
objective of characterising liver lesion with a large number of high-level features au-
tomatically. Furthermore, the proposed framework enhances liver lesion classification
through utilising high-level features to classify the respective lesions, with the benefit
of interpretable characterisation that supports the diagnostic decision. The liver lesion
characterisation is emerging as a research issue and challenging task. The main chal-
lenge is to investigate the detection of subtle differences in low-level features of the
selected ROI and to link them to the high-level features derived from a standard ter-
minology to represent the lesion characteristics in analogy with radiology. To achieve
this task, we had to face some critical challenges from the liver lesion characterisation
field in general and ROI selection in particular.

Most of the available methods operate by exploiting low-level features from the
lesion ROI/ patches, with no pay attention to the relation between lesion, margin and
liver, to calculate the high-level features related to the lesion characteristics based on
learning process or case-based retrieval, as presented in Chapter 3. The accuracy of
the lesion characterisation is usually affected by selecting ROI to represent each of the
lesion characteristics. This could be referred as the ROI selection problem over the
lesion characterisation. In addition, there are some of the high-level features that rely
on the case itself, and cannot be predicted by using case-based retrieval or machine
learning approach such as lesion location.

On the other hand, Most of the existing research deal with low-level features only,
for lesion classification. In addition, they mainly focused on feature extraction and
classification for well-performing system. While the ROI selection methods intro-
duced as a new research area, which is importantly responsible for representing the
lesion characteristics. Through literature, there have been no attempts to classify liver
lesion through high-level features (to the best of our knowledge), since the majority of
relevant research attempted to classify lesions based on low-level features.
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This thesis presents two main novelties, the first contribution is the automatic char-
acterisation of the liver lesion with a large number of high-level features compared to
relevant state-of-art baselines. The novelty of the proposed characterisation approach
lies in:

• Assigning high-level descriptions to the liver lesion in analogy to radiologist
observation.

• Proposing multiple image ROIs (inside, border and surrounding lesion) by gen-
erating abnormality level map based for the lesion and surrounding area to calcu-
late the high-level features by considering the ability of each ROI that represents
a set of lesion characteristics.

• Associating between low-level, high-level features and the selected ROI to cap-
ture all the lesion characteristics and provide a human interpretable information.

The second contribution of this thesis is enhancing liver lesion classification per-
formance in three different novel ways, as follows:

• Classifying liver lesion based on low-level features. The novelty of the proposed
approach lies in; Proposing multiple ROIs fused with difference-of-features be-
tween the internal lesion and surrounding lesion area from the normal liver tis-
sue. All the lesion characteristics such as internal, boundary and relation with the
surrounding area were captured through our proposed multiple ROIs. Moreover,
the Difference-of-Features helps to overcome the challenge issues such as the
variation of intensity and texture ranges between study cases due to the imaging
devices/ settings such as images resolution and spacing, which makes it more
generic to dealing with different datasets.

• Classifying liver lesion based on high-level features. The high-level features cal-
culated by the lesion characterisation framework are utilised to generate a novel
feature vector. In contrast with most existing research, which uses low-level fea-
tures only, the use of high-level features (characterisation) helps in interpreting
and explaining the classification decision and is more intuitive to clinicians. An-
other interesting result is the ability to use high-level features to classify liver
lesion more accurately compared to the traditional ways that used low-level fea-
tures in classification.

• Combining low-level and high-level features for enhanced lesion classification
performance. However, using the combination approach will lose the advantages
of characterisation and track back to diagnosis explanation. This is due to the
lesion classification not only relies on the high-level features but also uses the
low-level features in the diagnosis decision.
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Conclusively, the competitive performance of the proposed framework for liver
lesion characterisation relates to its underlying robust structure, which has been de-
signed to better characterise liver lesions through using multiple ROIs and prior med-
ical knowledge. Furthermore, the analogy between the radiological observations plus
the exploit the relationships between low-level features and high-level features with
respect to the ROI selection are the keys to its efficient lesion characteristics capturing.
This is in contrast with majority of the baselines that attempt to characterise lesions
through retrieving similar cases or using lesions its self without pay attention to the re-
lation between lesion and liver. In addition, the advantage of the proposed framework
to enhanced lesion classification performance, with the benefit of interpretable charac-
terisation that support the diagnostic decision. In contrast with most existing research,
which use black box low-level features only.

A comprehensive set of evaluation metrics were carried out over two datasets
(Dataset I and overall dataset). This has been done to evaluate the overall framework
for lesion characterisation performance and classification as well. A comparative eval-
uation of characterisation and classification accuracy is presented as well as bench-
marking with the recent solid set of the related work. The experimental results and
the overall benchmarking compared to the selected baselines indicated the proposed
framework ability to characterised and classified liver lesions with higher accuracies.
In addition, the statistical analysis confirmed that the results of the proposed approach
is statistically highly-significant compared to other existing approaches for liver lesion
classification with the benefit of interpretable characterisation.

However, this thesis concluded that the proposed lesion characterisation framework
has many advantages; The first advantage is characterising liver lesion with high accu-
racy, and the larger number of high-level features compared to the other researchers.
The second benefit is the ability to classify liver lesion with high accuracy with the
advantage of interpreting the diagnosis decision in human understating and analogous
to radiologist observation. The third advantage is the genericness aspect which makes
it applicable with different datasets with different CT image settings and resolutions.

7.1 Limitations

The framework aims, in principle, to classify/ characterise the liver lesions from CT
scans. However, there are a number of limitations of this proposed framework. Hence,
this section summarises the proposed framework limitations.

In this thesis, the dataset was limited to four types of liver lesion. The proposed
framework was developed based on the imaging characteristics of four lesions types in
CT scan; two types are benign (Haemangioma and Cyst) and two types are malignant
(HCC and Metastases). However, Haemangioma and Cyst are the common benign
lesions, whereas HCC and Metastases are the common malignant lesions. Studies on
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liver lesion and lesions in other body areas can be extended in future work to encourage
continued development of relevant feature extraction methods.

The second limitation is the segmentation of vessels used in our framework. The
vessels are extracted from the CT image to characterised lesion location. However,
some lesions, especially closed to the vessels, have an enhanced rim with the same
intensity of vessels that can be erroneously classified as a part of the vessels. This
misclassification leads to a wrong characterisation of the lesion rim.

Machine learning algorithms are an important milestone that is associated with
the lesion classification and characterisation filed in general. The main limitation is
the performance of machine learning-based techniques depends on the training data
size. A low number of training data usually results in a higher error in classifica-
tion/characterisation. Therefore, we excluded any special case (not enough for train-
ing) in our dataset and focused on the most common features for characterisation and
most common lesions types in terms of classification.

7.2 Future work

The work presented in this thesis can be extended in order to a better possible way to
enhance the liver lesion characterisation and classification performance, the investiga-
tion can be continued in several aspects:

• The fusion features from multiphase CT image. In this work, the shift from
portal phase to multiphase shows that the results of lesion classification are im-
proved. However, more investigation is required about combine the extracted
features from multiphase CT images, rather than the linear fusion. This will
help to increase their combined performance.

• Multimodality imaging studies. This work is limited to developing lesion char-
acterisation/classification methods in structural CT images. However, the con-
sideration should be given to the use of other imaging modalities such as US/
MRI in addition to structural CT scan image as they may provide supplementary
information for characterisation/classification of the lesion. In addition, explore
the possible ways to fuse features from different modalities. This would fully
verify the scalability aspect to achieve a better performance.

• On semantic features. The work presented in this thesis showed successfully
enhancing on lesion classification with the advantage of interpreting the diag-
nosis decision in human understating and analogous to radiologist observation.
In other word, the high-level features are capable of differentiating between ma-
lignant and benign lesion. However, adding more high-level features such as le-
sion filling/washout of contrast agent will not only improve the malignant/benign
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classification but also help to classify lesion types. In addition, extend the study
to diagnose other part of the body.

• On low-level features. We intend to explore more efficient low-level features
such as 3D low-level features, which in the current work mainly use 2D low-
level features. Furthermore, the future work will show whether 3D low-level
features could represent lesion characteristics for building more efficient liver
lesion characterisation/classification system.

• On learning process. We intend to investigate the use of relevance feedback
to reduce the semantic gap between low-level and high-level features through
allow the radiologist to evaluate the interpretation of lesion characteristics. This
evaluation is used to enhance the high-level features prediction. In addition,
investigate more advanced deep learning methods.
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This appendix presents the evaluation and results of the proposed framework for liver
segmentation, lesion detection and vessels extraction based on CT images. The frame-
work performance is investigated by considering different types of evaluation measure-
ments. Namely; Volumetric Overlap Error (VOE), Relative Volume Difference (RVD),
True Positive Volume Fraction (TPVF), False Positive Volume Fraction (FPVF), Jac-
card Similarity Metric (JSM) and Dice Similarity Coefficient (DSC). All the evalua-
tions were performed over the entire dataset with a total number of 174 CT scan image.

Liver Segmentation Results

Table A.1 depicts the quantitative results of proposed liver segmentation based on pre-
knowledge and after applying 3x3 median filter preprocessing step.

Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
1 21.43 8.39 91.69 15.41 78.57 88.00

2 9.37 3.33 96.67 6.45 90.63 95.09

3 7.03 2.46 97.54 4.80 92.97 96.36

4 23.12 9.11 90.89 16.70 76.88 86.93

5 12.07 4.37 95.63 8.38 87.93 93.58

6 19.93 7.66 92.34 14.23 80.07 88.93

7 24.58 15.07 92.47 19.64 75.42 85.99

8 21.79 8.50 91.50 15.66 78.21 87.77

9 6.45 -6.45 93.55 0.00 93.55 96.67

10 6.45 -6.45 93.55 0.00 93.55 96.67

11 15.34 5.70 94.30 10.78 84.66 91.69

12 16.98 6.38 93.62 12.00 83.02 90.72

13 6.49 -6.49 93.51 0.00 93.51 96.65

14 13.15 4.80 95.20 9.17 86.85 92.96

15 4.57 -4.57 95.43 0.00 95.43 97.66

16 14.48 5.34 94.66 10.14 85.52 92.19

17 8.54 -8.54 91.46 0.00 91.46 95.54
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Table A.1 continued from previous page
Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
18 3.43 -3.43 96.57 0.00 96.57 98.25

19 9.64 3.43 96.57 6.64 90.36 94.94

20 20.14 7.76 92.24 14.40 79.86 88.80

21 5.08 -5.08 94.92 0.00 94.92 97.39

22 13.83 5.08 94.92 9.67 86.17 92.57

23 9.32 3.31 96.69 6.41 90.68 95.11

24 16.94 6.37 93.63 11.97 83.06 90.74

25 6.63 -6.63 93.37 0.00 93.37 96.57

26 20.88 8.09 91.91 14.96 79.12 88.34

27 19.05 7.28 92.72 13.56 80.95 89.47

28 17.76 6.71 93.29 12.58 82.24 90.26

29 18.36 6.98 93.02 13.04 81.64 89.89

30 17.81 6.74 93.26 12.62 82.19 90.23

31 12.31 4.47 95.53 8.56 87.69 93.44

32 16.00 5.97 94.03 11.27 84.00 91.30

33 9.72 3.46 96.54 6.70 90.28 94.89

34 12.60 4.58 95.42 8.77 87.40 93.28

35 19.31 7.39 92.61 13.76 80.69 89.31

36 14.75 5.45 94.55 10.34 85.25 92.04

37 11.45 4.13 95.87 7.93 88.55 93.93

38 14.77 5.46 94.54 10.36 85.23 92.03

39 19.32 7.39 92.61 13.77 80.68 89.30

40 17.46 6.59 93.41 12.36 82.54 90.43

41 14.62 5.40 94.60 10.25 85.38 92.11

42 15.68 5.84 94.16 11.03 84.32 91.49

43 16.01 5.97 94.03 11.27 83.99 91.30

44 17.47 6.59 93.41 12.37 82.53 90.43

45 12.42 4.52 95.48 8.64 87.58 93.38

46 10.80 3.88 96.12 7.47 89.20 94.29

47 15.55 5.78 94.22 10.93 84.45 91.57

48 5.78 -5.78 94.22 0.00 94.22 97.02

49 13.70 5.02 94.98 9.57 86.30 92.65

50 17.37 6.55 93.45 12.29 82.63 90.49

51 9.56 4.38 97.06 7.01 90.44 94.98

52 18.96 9.35 93.71 14.30 81.04 89.52

53 8.87 4.04 97.29 6.49 91.13 95.36

54 8.31 3.77 97.47 6.07 91.69 95.66
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Table A.1 continued from previous page
Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
55 9.11 4.16 97.21 6.67 90.89 95.23

56 9.53 4.36 97.07 6.99 90.47 95.00

57 11.57 5.38 96.38 8.53 88.43 93.86

58 15.69 7.54 94.93 11.72 84.31 91.49

59 14.54 6.92 95.35 10.82 85.46 92.16

60 16.20 7.81 94.75 12.11 83.80 91.19

61 13.29 6.26 95.79 9.86 86.71 92.88

62 19.69 9.77 93.43 14.88 80.31 89.08

63 11.19 5.19 96.51 8.25 88.81 94.07

64 12.19 5.69 96.17 9.01 87.81 93.51

65 16.02 7.71 94.81 11.98 83.98 91.29

66 11.31 5.25 96.47 8.34 88.69 94.00

67 19.31 9.55 93.58 14.58 80.69 89.31

68 15.81 7.60 94.89 11.81 84.19 91.42

69 13.54 6.39 95.70 10.05 86.46 92.74

70 16.02 7.72 94.81 11.98 83.98 91.29

71 10.31 4.75 96.81 7.58 89.69 94.56

72 19.23 9.51 93.61 14.52 80.77 89.36

73 12.68 5.95 96.00 9.39 87.32 93.23

74 11.80 5.50 96.30 8.71 88.20 93.73

75 15.49 7.43 95.01 11.56 84.51 91.61

76 13.50 6.37 95.71 10.02 86.50 92.76

77 9.76 4.47 96.99 7.16 90.24 94.87

78 8.36 3.79 97.45 6.11 91.64 95.64

79 11.24 5.21 96.49 8.29 88.76 94.04

80 16.35 7.89 94.69 12.23 83.65 91.10

81 8.54 3.88 97.39 6.24 91.46 95.54

82 11.65 5.42 96.36 8.60 88.35 93.81

83 12.30 5.75 96.13 9.10 87.70 93.44

84 12.30 5.75 96.13 9.09 87.70 93.45

85 12.02 5.61 96.23 8.88 87.98 93.60

86 21.07 10.58 92.89 16.00 78.93 88.22

87 14.22 6.75 95.46 10.57 85.78 92.35

88 19.08 9.42 93.67 14.40 80.92 89.45

89 21.67 10.93 92.65 16.48 78.33 87.85

90 24.81 12.85 91.36 19.05 75.19 85.84

91 18.17 8.90 94.01 13.67 81.83 90.01
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Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
92 11.08 5.13 96.55 8.16 88.92 94.14

93 14.06 6.67 95.52 10.45 85.94 92.44

94 12.12 5.66 96.20 8.95 87.88 93.55

95 20.46 10.22 93.13 15.51 79.54 88.60

96 12.13 5.67 96.19 8.97 87.87 93.54

97 9.77 4.48 96.99 7.17 90.23 94.86

98 10.40 4.79 96.78 7.65 89.60 94.52

99 14.50 6.90 95.36 10.79 85.50 92.18

100 9.58 4.39 97.05 7.03 90.42 94.97

101 20.12 10.02 93.26 15.23 79.88 88.81

102 22.87 11.65 92.16 17.45 77.13 87.09

103 8.91 4.06 97.27 6.52 91.09 95.34

104 18.77 9.24 93.79 14.15 81.23 89.64

105 26.12 13.69 90.79 20.14 73.88 84.98

106 10.82 5.00 96.64 7.97 89.18 94.28

107 13.36 6.30 95.77 9.91 86.64 92.84

108 15.98 7.69 94.83 11.95 84.02 91.31

109 9.11 4.16 97.21 6.67 90.89 95.23

110 18.36 9.01 93.94 13.82 81.64 89.90

111 13.10 6.16 95.86 9.71 86.90 92.99

112 8.72 3.97 97.33 6.38 91.28 95.44

113 21.65 10.92 92.66 16.47 78.35 87.86

114 17.26 8.39 94.36 12.95 82.74 90.56

115 11.09 5.14 96.55 8.17 88.91 94.13

116 16.13 7.77 94.77 12.06 83.87 91.23

117 19.95 9.92 93.33 15.09 80.05 88.92

118 21.45 10.80 92.74 16.30 78.55 87.99

119 21.59 10.89 92.68 16.42 78.41 87.90

120 20.80 9.33 92.51 15.38 79.20 88.39

121 29.42 14.17 88.62 22.38 70.58 82.75

122 32.21 15.91 87.23 24.74 67.79 80.80

123 25.41 11.83 90.50 19.07 74.59 85.45

124 20.60 9.22 92.60 15.22 79.40 88.51

125 15.02 6.43 94.83 10.90 84.98 91.88

126 28.40 13.57 89.11 21.54 71.60 83.45

127 16.57 7.18 94.23 12.08 83.43 90.97

128 38.46 20.11 83.85 30.19 61.54 76.19
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Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
129 33.53 16.76 86.55 25.88 66.47 79.85

130 15.63 6.73 94.60 11.36 84.37 91.52

131 32.63 16.18 87.01 25.10 67.37 80.50

132 28.80 13.80 88.92 21.86 71.20 83.18

133 14.98 6.42 94.85 10.87 85.02 91.90

134 29.07 13.96 88.79 22.09 70.93 83.00

135 14.86 6.36 94.90 10.77 85.14 91.97

136 19.49 8.65 93.06 14.35 80.51 89.20

137 21.52 9.70 92.21 15.95 78.48 87.94

138 25.26 11.75 90.57 18.95 74.74 85.54

139 15.53 6.68 94.64 11.28 84.47 91.58

140 19.49 8.65 93.06 14.35 80.51 89.20

141 19.59 8.70 93.02 14.42 80.41 89.14

142 15.39 6.61 94.69 11.18 84.61 91.66

143 22.81 10.39 91.66 16.97 77.19 87.13

144 20.02 8.92 92.84 14.76 79.98 88.87

145 38.08 19.84 84.07 29.85 61.92 76.48

146 15.88 6.85 94.50 11.55 84.12 91.38

147 23.00 10.50 91.57 17.13 77.00 87.01

148 16.87 7.33 94.12 12.31 83.13 90.79

149 25.94 12.13 90.26 19.50 74.06 85.10

150 28.57 13.66 89.03 21.67 71.43 83.34

151 40.30 21.44 82.78 31.83 59.70 74.77

152 17.40 7.59 93.90 12.72 82.60 90.47

153 24.25 11.18 91.02 18.13 75.75 86.20

154 30.12 14.60 88.28 22.97 69.88 82.27

155 18.78 8.28 93.35 13.79 81.22 89.64

156 18.81 8.30 93.34 13.82 81.19 89.62

157 14.90 6.37 94.88 10.80 85.10 91.95

158 18.80 8.29 93.34 13.81 81.20 89.63

159 22.08 10.00 91.97 16.39 77.92 87.59

160 38.37 20.05 83.91 30.10 61.63 76.26

161 23.77 10.92 91.24 17.74 76.23 86.51

162 39.32 20.73 83.36 30.96 60.68 75.53

163 20.88 9.36 92.48 15.44 79.12 88.35

164 16.07 6.94 94.43 11.70 83.93 91.26

165 26.30 12.34 90.09 19.80 73.70 84.86
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Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
166 21.45 9.67 92.24 15.89 78.55 87.99

167 16.30 7.05 94.34 11.87 83.70 91.13

168 24.23 11.17 91.03 18.11 75.77 86.22

169 19.50 8.65 93.05 14.36 80.50 89.19

170 32.24 15.92 87.21 24.77 67.76 80.78

171 16.76 7.28 94.16 12.23 83.24 90.85

172 22.80 10.39 91.66 16.97 77.20 87.13

173 18.82 8.31 93.33 13.83 81.18 89.61

174 16.30 7.05 94.34 11.87 83.70 91.13

Mean 17.15 7.35 93.68 12.48 82.85 90.45

Table A.1: Overview of the proposed liver segmentation results after applying prepro-
cessing step obtained over the entire dataset

Liver Lesion Detection Results

Table A.2 presents the quantitative results of AFCM approach for liver lesion detection
when applying 3x3 median filter preprocessing step.

Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
1 20.63 -8.47 84.75 7.41 79.37 88.50

2 23.05 -23.05 76.95 0.00 76.95 86.97

3 17.44 10.04 94.98 13.68 82.56 90.44

4 18.91 14.96 96.26 16.27 81.09 89.56

5 15.64 11.99 97.00 13.38 84.36 91.51

6 38.29 -4.96 74.43 21.68 61.71 76.33

7 13.35 9.21 97.12 11.06 86.65 92.85

8 25.64 2.71 86.45 15.83 74.36 85.29

9 33.60 -3.39 78.45 18.79 66.40 79.81

10 13.65 8.48 96.61 10.95 86.35 92.68

11 28.11 -4.29 81.86 14.48 71.89 83.65

12 17.29 1.74 91.32 10.23 82.71 90.54

13 14.14 9.57 96.81 11.64 85.86 92.39

14 19.25 -8.11 85.72 6.71 80.75 89.35

15 12.49 10.20 98.10 10.98 87.51 93.34

16 25.22 24.27 95.96 22.78 74.78 85.57

17 24.02 16.09 93.30 19.63 75.98 86.35

18 8.76 -7.25 91.96 0.85 91.24 95.42
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Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
19 25.84 17.83 92.75 21.28 74.16 85.16

20 31.75 35.02 95.34 29.39 68.25 81.13

21 13.13 1.46 93.65 7.70 86.87 92.97

22 16.90 6.35 93.65 11.94 83.10 90.77

23 23.75 1.29 87.09 14.02 76.25 86.53

24 16.88 -0.84 90.40 8.84 83.12 90.78

25 31.19 29.33 93.48 27.72 68.81 81.53

26 14.45 13.61 98.49 13.31 85.55 92.21

27 25.23 7.78 88.89 17.52 74.77 85.57

28 20.33 17.25 96.33 17.84 79.67 88.68

29 9.60 -4.22 92.95 2.95 90.40 94.96

30 25.64 14.57 91.51 20.13 74.36 85.30

31 22.37 2.84 88.65 13.80 77.63 87.40

32 27.62 -12.05 78.92 10.27 72.38 83.98

33 13.39 -7.26 89.45 3.55 86.61 92.82

34 18.91 -2.27 88.54 9.40 81.09 89.56

35 26.77 1.35 85.12 16.02 73.23 84.55

36 16.46 5.26 93.42 11.24 83.54 91.03

37 14.48 -8.78 88.15 3.37 85.52 92.20

38 24.31 13.03 91.78 18.80 75.69 86.17

39 15.26 -7.24 88.42 4.68 84.74 91.74

40 23.60 1.17 87.13 13.88 76.40 86.62

41 11.54 -6.44 90.86 2.89 88.46 93.88

42 36.99 -3.59 75.92 21.25 63.01 77.31

43 30.02 -1.65 81.66 16.97 69.98 82.34

44 32.77 3.87 81.96 21.10 67.23 80.40

45 11.26 4.06 95.94 7.80 88.74 94.04

46 21.15 24.21 98.85 20.42 78.85 88.17

47 17.74 6.71 93.29 12.57 82.26 90.26

48 14.72 2.68 93.29 9.15 85.28 92.06

49 27.91 1.72 84.50 16.93 72.09 83.78

50 26.21 2.78 86.10 16.23 73.79 84.92

51 20.43 7.89 92.11 14.62 79.57 88.62

52 11.14 -3.85 92.29 4.01 88.86 94.10

53 18.51 -6.58 86.85 7.04 81.49 89.80

54 36.65 -20.17 69.74 12.64 63.35 77.56

55 15.63 5.82 94.18 10.99 84.37 91.52
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Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
56 14.53 8.15 95.92 11.30 85.47 92.17

57 20.41 7.87 92.13 14.60 79.59 88.64

58 34.42 2.00 80.00 21.57 65.58 79.21

59 18.67 -1.36 89.09 9.67 81.33 89.71

60 15.25 1.85 92.59 9.09 84.75 91.74

61 19.23 2.39 90.43 11.68 80.77 89.36

62 12.97 4.73 95.27 9.04 87.03 93.07

63 14.78 5.43 94.52 10.35 85.22 92.02

64 20.59 -2.16 87.57 10.50 79.41 88.53

65 16.39 -2.26 90.05 7.87 83.61 91.08

66 14.28 5.26 94.74 10.00 85.72 92.31

67 21.62 8.42 91.58 15.53 78.38 87.88

68 47.68 23.30 76.70 37.79 52.32 68.70

69 16.62 6.23 93.77 11.73 83.38 90.94

70 22.26 8.71 91.29 16.03 77.74 87.48

71 18.69 1.13 90.20 10.81 81.31 89.69

72 13.44 1.61 93.54 7.94 86.56 92.79

73 17.58 6.64 93.36 12.45 82.42 90.36

74 18.93 14.98 96.25 16.29 81.07 89.55

75 13.20 1.58 93.67 7.79 86.80 92.93

76 19.08 11.14 94.43 15.03 80.92 89.45

77 17.17 6.46 93.54 12.14 82.83 90.61

78 38.80 60.74 98.99 38.42 61.20 75.93

79 14.80 -1.28 91.42 7.40 85.20 92.01

80 14.27 5.26 94.74 9.99 85.73 92.32

81 10.03 3.58 96.42 6.92 89.97 94.72

82 20.31 7.83 92.17 14.53 79.69 88.69

83 16.87 -5.96 88.09 6.33 83.13 90.79

84 9.62 -7.59 91.34 1.15 90.38 94.95

85 15.63 5.82 94.18 10.99 84.37 91.52

86 18.94 7.23 92.77 13.48 81.06 89.54

87 12.87 -6.06 90.30 3.87 87.13 93.12

88 17.91 6.78 93.22 12.70 82.09 90.17

89 17.85 6.75 93.25 12.65 82.15 90.20

90 19.93 11.72 94.14 15.73 80.07 88.93

91 16.24 -6.29 88.29 5.78 83.76 91.16

92 16.34 -5.76 88.48 6.11 83.66 91.10
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Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
93 13.06 -9.51 88.59 2.10 86.94 93.01

94 20.22 -6.55 85.85 8.13 79.78 88.75

95 12.71 -3.70 91.49 4.99 87.29 93.22

96 12.96 3.85 94.87 8.65 87.04 93.07

97 13.74 5.04 94.96 9.60 86.26 92.62

98 22.32 -17.22 79.91 3.47 77.68 87.44

99 13.39 -10.94 87.74 1.47 86.61 92.82

100 14.57 5.00 94.45 10.05 85.43 92.14

101 22.92 1.24 87.60 13.48 77.08 87.06

102 15.80 -4.00 89.59 6.67 84.20 91.42

103 11.85 -4.11 91.77 4.29 88.15 93.70

104 45.28 -2.56 69.83 28.34 54.72 70.74

105 13.88 5.10 94.90 9.70 86.12 92.54

106 18.65 10.84 94.58 14.67 81.35 89.72

107 31.38 13.23 86.77 23.36 68.62 81.39

108 19.27 -6.86 86.27 7.37 80.73 89.34

109 13.15 -9.32 88.63 2.26 86.85 92.96

110 11.33 -2.05 93.03 5.02 88.67 93.99

111 17.50 1.29 90.99 10.16 82.50 90.41

112 12.45 -1.20 92.80 6.07 87.55 93.36

113 20.10 7.73 92.27 14.36 79.90 88.83

114 16.97 6.38 93.62 11.99 83.03 90.73

115 24.81 9.91 90.09 18.03 75.19 85.84

116 12.67 -2.83 91.92 5.41 87.33 93.24

117 39.10 -6.10 73.39 21.84 60.90 75.70

118 18.82 7.17 92.83 13.39 81.18 89.61

119 11.33 -6.46 90.96 2.76 88.67 93.99

120 11.43 0.58 94.21 6.33 88.57 93.94

121 15.08 -1.69 91.07 7.36 84.92 91.85

122 22.94 -4.99 84.87 10.67 77.06 87.04

123 17.16 6.46 93.54 12.13 82.84 90.62

124 12.27 -2.73 92.19 5.22 87.73 93.47

125 18.99 6.96 92.63 13.40 81.01 89.51

126 12.90 -2.59 91.90 5.66 87.10 93.10

127 18.55 10.77 94.61 14.59 81.45 89.78

128 26.20 16.30 91.85 21.03 73.80 84.93

129 16.20 15.86 98.41 15.05 83.80 91.19

189



Appendix A.

Table A.2 continued from previous page
Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
130 49.14 -18.34 61.25 25.00 50.86 67.43

131 10.93 7.19 97.60 8.94 89.07 94.22

132 28.50 1.08 83.83 17.06 71.50 83.38

133 25.29 -6.19 82.88 11.65 74.71 85.52

134 17.67 11.01 95.28 14.17 82.33 90.31

135 15.86 3.09 92.80 9.98 84.14 91.39

136 15.29 5.68 94.32 10.74 84.71 91.72

137 12.65 10.13 97.97 11.04 87.35 93.25

138 17.86 -6.33 87.34 6.76 82.14 90.19

139 29.94 19.31 90.35 24.27 70.06 82.39

140 28.63 18.23 90.89 23.12 71.37 83.30

141 18.60 7.08 92.92 13.22 81.40 89.74

142 14.37 -8.71 88.24 3.34 85.63 92.26

143 18.32 10.62 94.69 14.40 81.68 89.92

144 28.64 18.23 90.88 23.13 71.36 83.29

145 19.49 19.78 98.02 18.16 80.51 89.20

146 20.55 12.15 93.93 16.25 79.45 88.55

147 13.13 10.57 97.89 11.47 86.87 92.98

148 18.65 10.84 94.58 14.67 81.35 89.72

149 21.54 22.37 97.76 20.11 78.46 87.93

150 19.65 -16.65 81.68 2.00 80.35 89.10

151 17.56 -12.06 84.93 3.43 82.44 90.38

152 22.84 13.78 93.11 18.17 77.16 87.10

153 13.15 10.13 97.67 11.32 86.85 92.96

154 17.32 -1.86 89.68 8.62 82.68 90.52

155 29.79 30.21 94.96 27.07 70.21 82.50

156 17.37 -15.92 83.29 0.95 82.63 90.49

157 22.27 16.26 94.58 18.64 77.73 87.47

158 18.53 10.76 94.62 14.57 81.47 89.79

159 23.79 18.44 94.47 20.24 76.21 86.50

160 17.73 6.70 93.30 12.56 82.27 90.27

161 31.73 25.51 91.50 27.10 68.27 81.14

162 20.92 12.41 93.80 16.56 79.08 88.32

163 26.70 -26.61 73.34 0.06 73.30 84.60

164 17.27 6.51 93.49 12.22 82.73 90.55

165 49.79 -19.78 60.25 24.90 50.21 66.86

166 16.83 14.96 97.61 15.10 83.17 90.81
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Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
167 23.55 10.63 91.26 17.51 76.45 86.65

168 20.77 12.30 93.85 16.43 79.23 88.41

169 10.50 -9.93 89.77 0.33 89.50 94.46

170 22.36 -19.58 78.85 1.95 77.64 87.41

171 20.47 -18.57 80.37 1.30 79.53 88.60

172 26.15 -22.28 75.49 2.87 73.85 84.96

173 23.46 17.33 94.22 19.69 76.54 86.71

174 45.33 -17.80 64.40 21.66 54.67 70.69

Mean 20.64 3.50 89.58 12.87 79.36 88.07

Table A.2: Overview of the proposed liver lesion detection results when applying pre-
processing step obtained over the entire dataset

Liver Vessels Extraction Results

Table A.3 shows the quantitative results of the proposed liver vessels extraction ap-
proach based on 3x3 Gaussian filter preprocessing step.

Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
1 8.15 5.23 98.26 6.63 91.85 95.75

2 34.38 14.87 85.13 25.88 65.62 79.24

3 9.38 1.42 95.75 5.59 90.62 95.08

4 27.97 -10.28 79.43 11.46 72.03 83.74

5 10.29 -1.54 93.85 4.69 89.71 94.57

6 8.18 2.88 97.12 5.61 91.82 95.74

7 6.86 3.09 97.94 4.99 93.14 96.45

8 20.09 20.53 97.95 18.73 79.91 88.83

9 22.40 -8.07 83.86 8.78 77.60 87.38

10 20.63 7.75 91.93 14.68 79.37 88.50

11 16.33 13.56 97.29 14.33 83.67 91.11

12 21.45 8.34 91.66 15.40 78.55 87.99

13 9.76 -1.13 94.33 4.59 90.24 94.87

14 21.33 12.70 93.65 16.90 78.67 88.06

15 6.18 4.35 98.91 5.21 93.82 96.81

16 19.04 10.05 93.97 14.61 80.96 89.48

17 27.48 11.21 88.79 20.17 72.52 84.07

18 14.75 11.22 97.20 12.61 85.25 92.04

19 9.17 4.21 97.20 6.73 90.83 95.19
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Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
20 16.98 1.24 91.29 9.83 83.02 90.72

21 23.70 9.38 90.62 17.16 76.30 86.56

22 25.74 -9.38 81.23 10.36 74.26 85.23

23 10.91 5.06 96.61 8.04 89.09 94.23

24 15.01 9.44 96.22 12.07 84.99 91.89

25 11.79 -1.13 93.21 5.73 88.21 93.74

26 12.08 -1.16 93.03 5.88 87.92 93.57

27 15.46 1.54 92.32 9.07 84.54 91.62

28 19.09 10.07 93.96 14.64 80.91 89.45

29 19.58 7.51 92.49 13.97 80.42 89.15

30 12.89 4.70 95.30 8.98 87.11 93.11

31 15.08 9.49 96.20 12.13 84.92 91.85

32 15.83 5.90 94.10 11.14 84.17 91.40

33 15.11 7.71 95.37 11.46 84.89 91.83

34 9.98 -1.49 94.04 4.54 90.02 94.75

35 22.37 8.76 91.24 16.11 77.63 87.41

36 11.91 1.83 94.52 7.17 88.09 93.67

37 9.77 3.48 96.52 6.73 90.23 94.86

38 13.50 2.94 94.12 8.56 86.50 92.76

39 13.70 1.14 93.17 7.87 86.30 92.65

40 13.44 10.09 97.48 11.45 86.56 92.80

41 27.35 -14.68 77.98 8.60 72.65 84.16

42 25.98 16.13 91.93 20.84 74.02 85.07

43 10.10 8.63 98.77 9.08 89.90 94.68

44 24.21 9.63 90.37 17.56 75.79 86.23

45 12.56 5.29 95.77 9.04 87.44 93.30

46 34.94 21.29 87.23 28.08 65.06 78.83

47 12.58 8.60 97.30 10.41 87.42 93.29

48 15.32 7.37 95.09 11.44 84.68 91.71

49 24.54 15.04 92.48 19.61 75.46 86.01

50 14.15 3.09 93.82 9.00 85.85 92.39

51 41.24 29.85 85.07 34.48 58.76 74.03

52 17.28 -9.03 86.45 4.96 82.72 90.54

53 16.13 9.18 95.41 12.61 83.87 91.23

54 22.89 13.82 93.09 18.21 77.11 87.07

55 13.29 -4.63 90.73 4.86 86.71 92.88

56 25.75 13.52 90.99 19.85 74.25 85.22

192



Appendix A.

Table A.3 continued from previous page
Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
57 14.81 -10.13 87.34 2.82 85.19 92.00

58 27.47 17.30 91.35 22.12 72.53 84.08

59 17.86 6.76 93.24 12.66 82.14 90.19

60 22.01 8.60 91.40 15.83 77.99 87.64

61 12.46 4.53 95.47 8.67 87.54 93.35

62 19.47 7.46 92.54 13.88 80.53 89.21

63 19.05 7.27 92.73 13.56 80.95 89.47

64 12.69 -4.42 91.16 4.62 87.31 93.22

65 17.43 9.47 94.74 13.46 82.57 90.45

66 21.35 8.30 91.70 15.33 78.65 88.05

67 18.55 7.05 92.95 13.18 81.45 89.78

68 22.74 8.93 91.07 16.40 77.26 87.17

69 26.27 10.62 89.38 19.19 73.73 84.88

70 16.37 9.33 95.33 12.80 83.63 91.09

71 25.08 10.04 89.96 18.24 74.92 85.66

72 17.19 9.87 95.07 13.47 82.81 90.60

73 12.06 -1.42 92.92 5.75 87.94 93.58

74 17.33 6.53 93.47 12.26 82.67 90.51

75 29.25 16.89 89.87 23.12 70.75 82.87

76 14.69 5.43 94.57 10.30 85.31 92.07

77 14.25 5.25 94.75 9.97 85.75 92.33

78 17.38 6.55 93.45 12.30 82.62 90.48

79 13.96 5.13 94.87 9.76 86.04 92.50

80 16.36 6.12 93.88 11.53 83.64 91.09

81 22.19 10.08 91.93 16.49 77.81 87.52

82 18.25 6.93 93.07 12.95 81.75 89.96

83 12.84 4.68 95.32 8.94 87.16 93.14

84 14.39 5.31 94.69 10.08 85.61 92.25

85 16.76 6.29 93.71 11.84 83.24 90.85

86 35.68 15.60 84.40 27.00 64.32 78.29

87 15.78 5.88 94.12 11.10 84.22 91.43

88 16.17 6.04 93.96 11.39 83.83 91.21

89 19.30 7.38 92.62 13.75 80.70 89.32

90 13.19 4.82 95.18 9.19 86.81 92.94

91 36.00 15.79 84.21 27.28 64.00 78.05

92 16.52 6.19 93.81 11.65 83.48 91.00

93 21.81 8.51 91.49 15.68 78.19 87.76
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Table A.3 continued from previous page
Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
94 19.87 7.63 92.37 14.18 80.13 88.97

95 18.71 7.13 92.87 13.30 81.29 89.68

96 23.71 9.39 90.61 17.16 76.29 86.55

97 13.09 4.78 95.22 9.13 86.91 92.99

98 14.68 5.42 94.58 10.29 85.32 92.08

99 16.84 6.32 93.68 11.89 83.16 90.81

100 24.78 9.90 90.10 18.01 75.22 85.86

101 30.19 12.60 87.40 22.38 69.81 82.22

102 18.27 6.94 93.06 12.97 81.73 89.94

103 13.21 4.83 95.17 9.21 86.79 92.93

104 24.10 11.12 91.10 18.02 75.90 86.30

105 21.56 11.62 93.03 16.66 78.44 87.92

106 14.41 5.31 94.69 10.09 85.59 92.24

107 19.45 10.30 93.82 14.94 80.55 89.23

108 22.15 -5.27 85.24 10.02 77.85 87.54

109 24.52 -8.90 82.20 9.77 75.48 86.02

110 32.35 17.49 87.76 25.31 67.65 80.70

111 30.80 5.34 83.98 20.28 69.20 81.79

112 16.45 -7.20 87.76 5.43 83.55 91.04

113 13.14 -1.99 92.04 6.09 86.86 92.97

114 16.20 6.05 93.95 11.42 83.80 91.19

115 19.92 7.66 92.34 14.23 80.08 88.94

116 22.54 8.84 91.16 16.25 77.46 87.30

117 15.54 5.78 94.22 10.93 84.46 91.58

118 21.63 -7.77 84.46 8.42 78.37 87.87

119 20.04 7.71 92.29 14.32 79.96 88.86

120 18.00 6.82 93.18 12.77 82.00 90.11

121 20.38 9.13 92.70 15.05 79.62 88.65

122 23.62 -4.62 84.61 11.30 76.38 86.61

123 17.63 11.91 95.71 14.48 82.37 90.33

124 12.04 4.36 95.64 8.36 87.96 93.59

125 12.79 4.66 95.34 8.90 87.21 93.17

126 13.54 4.96 95.04 9.45 86.46 92.74

127 20.10 -7.18 85.64 7.73 79.90 88.83

128 22.46 11.13 92.21 17.02 77.54 87.35

129 19.50 7.47 92.53 13.90 80.50 89.20

130 18.43 7.00 93.00 13.09 81.57 89.85
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Table A.3 continued from previous page
Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
131 15.42 5.73 94.27 10.84 84.58 91.65

132 13.05 -4.55 90.91 4.76 86.95 93.02

133 16.06 6.00 94.00 11.31 83.94 91.27

134 20.99 11.26 93.24 16.19 79.01 88.27

135 13.08 -4.56 90.88 4.78 86.92 93.00

136 8.22 -4.65 93.49 1.95 91.78 95.72

137 15.99 5.97 94.03 11.26 84.01 91.31

138 21.02 -7.54 84.93 8.15 78.98 88.25

139 19.55 -6.97 86.06 7.49 80.45 89.17

140 12.43 4.52 95.48 8.65 87.57 93.37

141 8.59 -4.87 93.19 2.05 91.41 95.51

142 12.85 4.69 95.31 8.95 87.15 93.13

143 24.57 9.80 90.20 17.84 75.43 85.99

144 20.02 7.70 92.30 14.30 79.98 88.88

145 24.96 6.40 88.49 16.83 75.04 85.74

146 17.83 9.31 94.41 13.63 82.17 90.21

147 25.70 17.84 92.86 21.20 74.30 85.26

148 19.35 7.40 92.60 13.79 80.65 89.29

149 15.88 -5.59 88.82 5.92 84.12 91.37

150 19.36 10.24 93.85 14.87 80.64 89.28

151 11.93 5.00 96.00 8.58 88.07 93.66

152 19.74 11.59 94.21 15.58 80.26 89.05

153 12.24 4.44 95.56 8.51 87.76 93.48

154 22.88 -8.26 83.49 9.00 77.12 87.08

155 12.52 -4.36 91.29 4.55 87.48 93.32

156 15.69 5.84 94.16 11.04 84.31 91.49

157 13.18 4.82 95.18 9.19 86.82 92.95

158 14.50 -5.08 89.84 5.35 85.50 92.18

159 22.63 -12.86 81.64 6.32 77.37 87.24

160 13.95 5.13 94.87 9.76 86.05 92.50

161 15.10 5.60 94.40 10.60 84.90 91.83

162 16.17 2.98 92.56 10.11 83.83 91.20

163 14.38 -6.80 89.12 4.38 85.62 92.25

164 11.76 1.57 94.49 6.97 88.24 93.75

165 18.31 -11.85 84.59 4.03 81.69 89.92

166 13.38 -5.96 90.07 4.23 86.62 92.83

167 17.53 -7.70 86.92 5.84 82.47 90.40
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Table A.3 continued from previous page
Case No. VOE % RVD % TPVF % FPVF % Jaccard % Dice %
168 17.05 9.77 95.11 13.36 82.95 90.68

169 12.77 4.65 95.35 8.89 87.23 93.18

170 15.74 5.86 94.14 11.07 84.26 91.46

171 12.91 4.71 95.29 8.99 87.09 93.10

172 12.69 -4.42 91.17 4.62 87.31 93.23

173 14.59 5.39 94.61 10.23 85.41 92.13

174 16.48 6.17 93.83 11.63 83.52 91.02

Mean 17.94 5.04 92.24 11.89 82.06 90.03

Table A.3: Overview of the proposed liver vessels extraction results based on 3x3
Gaussian filter preprocessing step obtained over the entire dataset
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Results of Liver lesion Characterisation/Classification

This appendix displays the liver lesion characterisation/classification results for the
used whole dataset (Dataset I and Dataset II), using the Logistic Regression (LR) and
Linear Discriminant Analysis (LDA) Classifier.

Results of Lesion Characterisation

This section presents the evaluation results of the proposed multiple ROIs framework
to characterise liver lesion using portal phase and multiphase CT images. Two types of
classifiers (Logistic Regression (LR) and Linear Discriminant Analysis (LDA)) were
used to characterise liver lesion. In addition, the tenfold cross-validation method was
adopted to evaluate the framework.
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Logistic Regression (LR) Classifier

Figure B.1 depicts the lesion characterisation accuracy comparison between single ROI
and Multiple ROIs based on tenfold cross-validation method and LR classifier, using
portal phase CT image.

Figure B.1: The accuracy comparison between single ROI and Multiple ROIs to pre-
dict the high-level features using the portal phase CT image where tenfold cross-
validation method and LR classifier was adopted.
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Figure B.2 shows the lesion characterisation accuracy comparison between single
ROI and Multiple ROIs based on tenfold cross-validation method and LR classifier,
using Multiphase CT image.

Figure B.2: The accuracy comparison between single ROI and Multiple ROIs to predict
the high-level features using the multiphase CT image where tenfold cross-validation
method and LR classifier was adopted.
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Figure B.3 illustrates the evaluation of proposed liver lesion characterisation frame-
work based on Multiple ROIs comparison by using portal phase and multiphase CT
images. The LR classifier was used to predict the high-level features and the accuracy
of prediction was estimated using a tenfold cross-validation.

Figure B.3: The accuracy comparison of the proposed Multiple ROIs to predict the
high-level features by using portal phase and multiphase CT image where tenfold
cross-validation method and LR classifier was adopted.
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Linear Discriminant Analysis (LDA) Classifier

Figure B.4 depicts the lesion characterisation accuracy comparison between single ROI
and Multiple ROIs based on tenfold cross-validation method and LDA classifier, us-
ing portal phase CT image.

Figure B.4: The accuracy comparison between single ROI and Multiple ROIs to pre-
dict the high-level features using the portal phase CT image where tenfold cross-
validation method and LDA classifier was adopted.
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Figure B.5 shows the lesion characterisation accuracy comparison between single
ROI and Multiple ROIs based on tenfold cross-validation method and LDA classifier,
using Multiphase CT image.

Figure B.5: The accuracy comparison between single ROI and Multiple ROIs to predict
the high-level features using the multiphase CT image where tenfold cross-validation
method and LDA classifier was adopted.
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Figure B.6 illustrates the evaluation of proposed liver lesion characterisation frame-
work based on Multiple ROIs comparison using portal phase and multiphase CT im-
ages. The LDA classifier was used to predict the high-level features and the accuracy
of prediction was estimated using a tenfold cross-validation.

Figure B.6: The accuracy comparison of the proposed Multiple ROIs to predict the
high-level features by using portal phase and multiphase CT image where tenfold
cross-validation method and LDA classifier was adopted.
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In summary

Figure B.7 depicts the evaluation comparison of the proposed Multiple ROIs for liver
lesion characterisation framework based on three different types of classifiers using
portal phase CT images.

Figure B.7: The accuracy of proposed Multiple ROIs framework comparison between
three different types of classifiers using portal phase CT image where tenfold cross-
validation method was adopted.

Figure B.8 displays the evaluation comparison of the proposed Multiple ROIs for
liver lesion characterisation framework based on three different types of classifiers
using multiphase CT images.

Figure B.8: The accuracy of proposed Multiple ROIs framework comparison between
three different types of classifiers using multiphase CT image where tenfold cross-
validation method was adopted.
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Results of Lesion

This section presents the evaluation results of the proposed framework to classify liver
lesion using portal phase and multiphase CT images. Two types of classifiers (Logistic
Regression (LR) and Linear Discriminant Analysis (LDA)) were used to characterise
liver lesion. In addition, the tenfold cross-validation method was adopted to evaluate
the framework.

Logistic Regression (LR) Classifier

Table B.1 depicts comparison between all of the proposed configurations to classify
liver lesion from portal phase CT image. The LR classifier performance was evaluated
by adopting tenfold cross-validation method.

SN SP ACC PPV NPV Overall
ACC

Malignant 0.775 0.883 0.775 0.849 0.822
Lesion ROI

Benign 0.883 0.775 0.883 0.822 0.849
0.833

Malignant 0.900 0.883 0.900 0.867 0.912
DOF

Benign 0.883 0.900 0.883 0.912 0.867
0.891

Malignant 0.900 0.926 0.900 0.911 0.916
Multiple ROIs

Benign 0.926 0.900 0.926 0.916 0.911
0.914

Malignant 0.913 0.947 0.913 0.936 0.927
Multiple ROIs + DOF

Benign 0.947 0.913 0.947 0.927 0.936
0.931

Table B.1: Summary of lesion classification results obtained by tenfold cross-
validation and LR classifier using portal phase CT image.

Table B.2 presents comparison between all of the proposed configurations to clas-
sify liver lesion from Multiphase CT image. The LR classifier performance was eval-
uated by adopting tenfold cross-validation method.

SN SP ACC PPV NPV Overall
ACC

Malignant 0.800 0.904 0.800 0.877 0.842
Lesion ROI

Benign 0.904 0.800 0.904 0.842 0.877
0.856

Malignant 0.913 0.915 0.913 0.901 0.925
DOF

Benign 0.915 0.913 0.915 0.925 0.901
0.914

Malignant 0.900 0.936 0.900 0.923 0.917
Multiple ROIs

Benign 0.936 0.900 0.936 0.917 0.923
0.920

Malignant 0.938 0.957 0.938 0.949 0.947
Multiple ROIs + DOF

Benign 0.957 0.938 0.957 0.947 0.949
0.948

Table B.2: Summary of lesion classification results obtained by tenfold cross-
validation and LR classifier using multiphase CT image.
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Linear Discriminant Analysis (LDA) Classifier

Table B.3 depicts comparison between all of the proposed configurations to classify
liver lesion from portal phase CT image. The LDA classifier performance was evalu-
ated by adopting tenfold cross-validation method.

SN SP ACC PPV NPV Overall
ACC

Malignant 0.775 0.851 0.775 0.816 0.816
Lesion ROI

Benign 0.851 0.775 0.851 0.816 0.816
0.816

Malignant 0.875 0.883 0.875 0.864 0.892
DOF

Benign 0.883 0.875 0.883 0.892 0.864
0.879

Malignant 0.888 0.904 0.888 0.888 0.904
Multiple ROIs

Benign 0.904 0.888 0.904 0.904 0.888
0.897

Malignant 0.900 0.904 0.900 0.889 0.914
Multiple ROIs + DOF

Benign 0.904 0.900 0.904 0.914 0.889
0.902

Table B.3: Summary of lesion classification results obtained by tenfold cross-
validation and LDA classifier using portal phase CT image.

Table B.4 presents comparison between all of the proposed configurations to clas-
sify liver lesion from Multiphase CT image. The LDA classifier performance was
evaluated by adopting tenfold cross-validation method.

SN SP ACC PPV NPV Overall
ACC

Malignant 0.800 0.872 0.800 0.842 0.837
Lesion ROI

Benign 0.872 0.800 0.872 0.837 0.842
0.839

Malignant 0.888 0.904 0.888 0.888 0.904
DOF

Benign 0.904 0.888 0.904 0.904 0.888
0.897

Malignant 0.913 0.926 0.913 0.913 0.926
Multiple ROIs

Benign 0.926 0.913 0.926 0.926 0.913
0.920

Malignant 0.925 0.947 0.925 0.937 0.937
Multiple ROIs + DOF

Benign 0.947 0.925 0.947 0.937 0.937
0.937

Table B.4: Summary of lesion classification results obtained by tenfold cross-
validation and LDA classifier using multiphase CT image.
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In summary

Figure B.9 depicts the overall accuracy comparison between all of the proposed con-
figuration to classify liver lesion from portal phase CT image. The LR, LDA and SVM
classifier were evaluated by adopting tenfold cross-validation method.

Figure B.9: The overall accuracy of liver lesion classification framework comparison
between three different types of classifiers using portal CT image where tenfold cross-
validation method was adopted.

Figure B.10 depicts the accuracy comparison between all of the proposed config-
uration to classify liver malignant lesion from portal phase CT image. The LR, LDA
and SVM classifier were evaluated by adopting tenfold cross-validation method.

Figure B.10: The accuracy of liver malignant lesion classification comparison be-
tween three different types of classifiers using portal CT image where tenfold cross-
validation method was adopted.

207



Appendix B.

Figure B.11 depicts the accuracy comparison between all of the proposed configu-
ration to classify liver benign lesion from portal phase CT image. The LR, LDA and
SVM classifier were evaluated by adopting tenfold cross-validation method.

Figure B.11: The accuracy of liver benign lesion classification comparison be-
tween three different types of classifiers using portal CT image where tenfold cross-
validation method was adopted.

Figure B.12 depicts the overall accuracy comparison between all of the proposed
configuration to classify liver lesion from Multiphase CT image. The LR, LDA and
SVM classifier were evaluated by adopting tenfold cross-validation method.

Figure B.12: The overall accuracy of liver lesion classification framework comparison
between three different types of classifiers using multiphase CT image where tenfold
cross-validation method was adopted.

Figure B.13 depicts the accuracy comparison between all of the proposed config-
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uration to classify liver malignant lesion from Multiphase phase CT image. The LR,
LDA and SVM classifier were evaluated by adopting tenfold cross-validation method.

Figure B.13: The accuracy of liver malignant lesion classification comparison be-
tween three different types of classifiers using multiphase CT image where tenfold
cross-validation method was adopted.

Figure B.14 depicts the accuracy comparison between all of the proposed configu-
ration to classify liver benign lesion from Multiphase phase CT image. The LR, LDA
and SVM classifier were evaluated by adopting tenfold cross-validation method.

Figure B.14: The accuracy of liver benign lesion classification comparison between
three different types of classifiers using multiphase CT image where tenfold cross-
validation method was adopted.
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Daněk, O., Matula, P., Maška, M., and Kozubek, M. (2012). Smooth chan–vese seg-
mentation via graph cuts. Pattern Recognition Letters, 33(10):1405–1410.

Dankerl, P., Cavallaro, A., Tsymbal, A., Costa, M. J., Suehling, M., Janka, R.,
Uder, M., and Hammon, M. (2013). A retrieval-based computer-aided diagnosis
system for the characterization of liver lesions in ct scans. Academic radiology,
20(12):1526–1534.

Das, A. and Sabut, S. K. (2016). Kernelized fuzzy c-means clustering with adaptive
thresholding for segmenting liver tumors. Procedia Computer Science, 92:389–395.

Davenport, K. P., Blanco, F. C., and Sandler, A. D. (2012). Pediatric malignancies:
neuroblastoma, wilm’s tumor, hepatoblastoma, rhabdomyosarcoma, and sacroc-
cygeal teratoma. Surgical Clinics of North America, 92(3):745–767.

Davis, G. L., Dempster, J., Meler, J. D., Orr, D. W., Walberg, M. W., Brown, B., Berger,
B. D., O’Connor, J. K., and Goldstein, R. M. (2008). Hepatocellular carcinoma:
management of an increasingly common problem. In Baylor University Medical
Center. Proceedings, volume 21, page 266. Baylor University Medical Center.

Dawant, B. M., Li, R., Lennon, B., and Li, S. (2007). Semi-automatic segmentation
of the liver and its evaluation on the miccai 2007 grand challenge data set. 3D
Segmentation in The Clinic: A Grand Challenge, pages 215–221.

Depeursinge, A., Kurtz, C., Beaulieu, C., Napel, S., and Rubin, D. (2014). Predicting
visual semantic descriptive terms from radiological image data: preliminary results
with liver lesions in ct. IEEE transactions on medical imaging, 33(8):1669–1676.
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