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Data mining framework for fatty liver disease classification in ultrasound:
A hybrid feature extraction paradigm

1

2

U. Rajendra Acharyaa)
3

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore4

S. Vinitha Sreeb)
5

Global Biomedical Technologies Inc., California 956616

Ricardo Ribeiroc)
7

Institute for Systems and Robotics and Escola Superior de Tecnologia da Saúde de Lisboa8

Ganapathy Krishnamurthid)
9

Mayo Clinic, Rochester, Minnesota10

Rui Tato Marinhoe)
11

Liver Unit, Department of Gastroenterology and Hepatology, Hospital de Santa Maria, Medical School
of Lisbon, Lisbon, Portugal

12

13

João Sanchesf)
14

Institute for Systems and Robotics and Instituto Superior Técnico, Lisbon, Portugal15

Jasjit S. Surig)
16

Global Biomedical Technologies, California 95661 and Biomedical Engineering Department, Idaho State
University, Idaho

17

18

(Received 25 September 2011; revised 30 April 2012; accepted for publication 14 May 2012;
published XX XX XXXX)

19

20

Purpose: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected
early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonogra-
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Q2

phers are required to accurately interpret the liver ultrasound images, lack of the same will result
in interobserver variability. For more objective interpretation, high accuracy, and quick second opin-
ions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is
to develop one such CAD technique for accurate classification of normal livers and abnormal livers
affected by FLD.
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Methods: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel
combination of significant features based on the texture, wavelet transform, and higher order spectra
of the liver ultrasound images in various supervised learning-based classifiers in order to determine
parameters that classify normal and FLD-affected abnormal livers.
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Results: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver
ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the
decision tree classifier.
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Conclusions: This high accuracy added to the completely automated classification procedure makes
the authors’ proposed technique highly suitable for clinical deployment and usage. © 2012 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4725759]
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Key words: fatty liver disease, computer aided diagnostic technique, texture, higher order spectra,
discrete wavelet transform
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I. INTRODUCTION40

Fatty liver disease (FLD) or hepatic steatosis is a condi-41

tion which is characterized by the presence of vacuoles of42

triglyceride fat in liver cells. This accumulation of fat hap-43

pens through a process called steatosis in which there is ab-44

normal retention of lipids in the cells. Some of the key causes45

of FLD are chronic alcohol consumption, obesity due to in-46

sulin resistance, and metabolic syndrome.1, 2 There are two47

major types of FLD based on the contribution of alcohol,48

namely, alcoholic steatosis and nonalcoholic fatty liver dis-49

ease (NAFLD). NAFLD is progressively prevalent in West-50

ern countries and affects people of all ages and ethnicities.3, 4
51

Both alcoholic and nonalcoholic FLD, if left undetected and 52

untreated, will progress to advanced liver diseases like inflam- 53

mation (steatohepatitis), cirrhosis, and liver cancer. However, 54

if found and treated early, FLD may be reversible. There- 55

fore, early detection is of utmost importance in order to 56

save patients from unwanted anxiety and also to reduce costs 57

associated with providing treatments for advanced liver dis- 58

eases. Liver biopsy is currently the standard for the assess- 59

ment of steatosis. It is, however, invasive, uncomfortable, and 60

prone to sampling errors.5–7 The noninvasive techniques in- 61

clude ultrasound, computed tomography (CT), and magnetic 62

resonance imaging (MRI). Even though these methods have 63

shown promise in detecting fatty infiltration in the liver, they 64
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2 Theriault-Lauzier et al.: Partial scan noise asymmetry 2

are insensitive in detecting steatosis of less than 25%–30%.865

In the case of ultrasound, FLD causes increased echogenicity66

on ultrasound causing the liver to appear brighter than the cor-67

tex of the ipsilateral kidney.9 Ultrasound has a sensitivity of68

around 82%–94% and specificity greater than 82% for detect-69

ing a fatty liver.10–13 Even though ultrasound is more sensitive70

than CT,14 it is less specific and also has poor visualization in71

obese patients.72

In the case of CT imaging, hepatic steatosis produces an at-73

tenuation that is lower for the hepatic parenchyma than for the74

surrounding blood vessels, spleen, and the kidneys, thereby75

enabling the visualization of the presence of the steatotic liver.76

CT is limited by the calibrations required for different scan-77

ners and interobserver variabilities. MRI presents anatomical78

information of the imaged liver and magnetic resonance spec-79

troscopy (MRS) provides a biochemical component.15 MR80

has demonstrated that it can detect small fat fractions of less81

than 33%.16 However, MR techniques, especially MRS, can82

be technically challenging. A good MRS of the liver requires83

good spatial resolution, high SNR, and adequate compensa-84

tion for or elimination of patient motion.85

Among all these modalities, ultrasound is the most com-86

monly used modality due to its widespread availability in cur-87

rent clinical practice. In order to improve the specificity of88

ultrasound and also to address the interobserver variability89

issue that is common in medical image interpretation, com-90

puter aided diagnostic (CAD) or data mining techniques can91

be developed to more objectively and accurately detect the92

presence or absence of FLD in ultrasound images of liver.93

These techniques use the acquired ultrasound images to ex-94

tract meaningful and discriminative features that are capable95

of adequately distinguishing a normal liver from an abnor-96

mal liver that is affected by FLD. These features are fed to97

supervised learning-based classifiers to train the classifiers to98

enable them to learn the parameters that effectively differenti-99

ate the patterns belonging to either of the classes. Thereafter,100

these learned parameters are used to classify new liver images101

into normal and abnormal categories. FLD affects the entire102

liver or a lobe of the liver, and hence, causes changes in the103

texture of the liver in the B-mode ultrasound (US) images. As104

indicated earlier, due to failure in fat metabolism, there is an105

increase in the deposition of fat in the liver which in turn gives106

rise to an increased brightness in the ultrasound and results107

in changes in the image texture.2 Therefore, texture of the108

image has been studied as one of the key distinguishing fea-109

tures in this work. We have also extracted higher order spec-110

tral (HOS) features that characterize the nonlinearity in the111

images and discrete wavelet transform (DWT)-based features112

that quantify the changes occurring in the time-frequency do-113

main of the images. We have demonstrated that a combina-114

tion of these three types of features which extract significant115

information from the liver images is capable of discriminat-116

ing normal and abnormal liver images with high classification117

accuracy. These features have been briefed in Sec. II.B.118

The block diagram of the proposed CAD technique, named119

Symtosis, is shown in Fig. 1. In the offline training system, the120

acquired ultrasound liver images in the training set are prepro-121

cessed, and three sets of features, namely, HOS, texture, and122

FIG. 1. Block diagram of the proposed Symtosis system for fatty liver dis-
ease detection; the blocks outside the dotted shaded rectangular box represent
the flow of offline training system, and the blocks within the dotted box rep-
resent the online real-time system.

DWT, are extracted from the images in the Feature Extraction 123

step. In the Feature Selection step, in order to reduce the di- 124

mensionality of the extracted feature set and to select only 125

unique and highly discriminating features, the extracted fea- 126

tures are subjected to the Student’s t-test and only signifi- 127

cant features are selected to form the final feature set. During 128

Offline Classification, the significant feature set and the 129

ground truth of whether the images belong to normal or abnor- 130

mal cases (as predicted by doctors or by lab results) are used 131

as inputs to several supervised learning-based classifiers in or- 132

der to train them to determine appropriate parameters for dif- 133

ferentiating both classes based on the features. The obtained 134

Training Parameters are the output of the offline training sys- 135

tem. In the online real-time system, which is the one that 136

will be used by the end-user, the test images are preprocessed 137

and the features reported as significant by the offline system 138

are calculated from the test images. Subsequently, in the 139

Online Classification step, the training parameters from the 140

offline system are used on the calculated features to determine 141

the class of the images. The resultant class labels are used to 142

determine five performance measures, namely, accuracy, sen- 143

sitivity, specificity, and positive predictive value (PPV), and 144

area under the receiver operating characteristic curve (AUC). 145

Definitions of these measures are given in Sec. II.D. 146
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3 Theriault-Lauzier et al.: Partial scan noise asymmetry 3

The key contributions of this paper are the (a) develop-147

ment of a completely automated CAD technique for detec-148

tion of FLD in ultrasound liver images and (b) determination149

of a powerful combination of highly representative features150

for achieving high accuracy for automatic classification of the151

liver disease.152

The paper is organized as follows. In Sec. II, we describe153

the data acquisition, extracted features, statistical techniques,154

and the classifiers. In Sec. III, we present the significant fea-155

tures and classification results. Section IV summarizes key156

findings in related studies in literature and compares and dis-157

cusses the results obtained in this work. We conclude the158

paper in Sec. V.159

II. MATERIALS AND METHODS160

In this section, we describe the data used in this work, and161

present brief descriptions of the features extracted, statistical162

techniques used, and the classifiers evaluated. The MATLAB163

software was used for coding and analysis in this work.164

II.A. Patient data165

One hundred ultrasound liver images were used for clas-166

sifier development and evaluation in this work. Among these167

100 cases, 58 were abnormal (affected by FLD) and 42 were168

normal images. The ultrasound images of normal and fatty169

livers were acquired by expert operators with the ultrasound170

equipment in a hospital facility. All the images were collected171

from routine cases and were consecutively recruited. No chal-172

lenges were faced during patient recruitment. The ultrasound173

images were obtained by a Philips CX c© 50 ultrasound ma-174

chine. All images were captured with 1024 × 1024 pixels175

with a gray level resolution of 8 bits/pixel. Images were stored176

in the Digital Imaging and Communications in Medicine (DI-177

COM) format. The default computer interface given by the178

manufacturer was used for the input of patient data and fur-179

ther ultrasound image acquisition. The broadband curved ar-180

ray transducer C5-1 from Philips c© was used. It is composed181

by 160 piezoelectric elements with a curved array shape, and182

had the operating frequency range from 1 to 5 MHz.183

A calibration procedure and an ultrasound machine set-184

tings preset were developed before the data collection phase,185

in order to obtain reproducible results. To perform the calibra-186

tion and consequent preset, images from 20 normal liver pa-187

tients, according to the laboratorial analysis and with a body188

mass index (BMI) within the normal range (18.5–24.9), were189

scanned. Different imaging conditions were trained, mainly190

transducer frequency, gain, time gain compensation (TGC),191

dynamic range, focus, and depth. Using this procedure it192

is believed that standardization in all image acquisition is193

achieved, as reported by Kadah et al.17
194

The established ultrasound machine preset for this study,195

after the calibration step, was set by using a fundamental fre-196

quency of 3.5 MHz, an image depth of 15 cm, and two focal197

zones were used and set at the central portion of the image198

(7.5 cm). The dynamic range was set at 70 dB and the gain199

was variable, according to the patient biotype. TGC was set200

FIG. 2. Normal liver images (left column) and abnormal liver images
(right column).

to its central position and kept constant through the exam- 201

inations, eliminating this variable parameter. Acquiring US 202

images only from the right liver lobe also allowed standardiz- 203

ing the acquisition protocol. According to patient biotype, dif- 204

ferent transducer orientation angles were performed, using as 205

protocol the same liver anatomical landmarks. Patients were 206

positioned in supine, comfortable, and asked to breathe gen- 207

tly, avoiding major patient motion. 208

The ground truth as to whether each image was normal 209

or abnormal was determined manually by the operators and 210

confirmed by indicators obtained from laboratory analysis. A 211

region of interest (ROI) of 128 × 128 pixels along the medial 212

axis was extracted from each image. Typical images of normal 213

and abnormal liver are shown in Fig. 2. 214

II.B. Grayscale feature extraction 215

II.B.1. HOS-based features 216

Higher order spectra-based features quantify the nonlinear 217

behavior of a process.18 Pixels in the ultrasound images are 218

very randomly distributed with possible nonlinear interactions 219

among the frequency components and perhaps some form of 220

phase coupling. These random distributions cannot be fully 221

described by second-order measures, but the HOS features are 222

capable of capturing these distributions. They are useful in Q3223

detecting nonlinear coupling and deviation from Gaussianity, 224

and features derived from HOS can be made invariant to shift, 225

rotation, and amplification. The HOS of Gaussian signals are 226

statistically zero thus making HOS more robust to Gaussian 227

noise.19 Therefore, we have chosen HOS as one of the key 228

features for quantifying the subtle changes in the normal and 229

abnormal images. 230

Higher order statistics deal with higher order moments (or- 231

der greater than two) and nonlinear combinations of these 232

higher order moments, called the higher order cumulants. The 233

bispectrum, which is the spectrum of the third order cumu- 234

lants, is one of the most commonly used HOS features. Prior 235

to the calculation of the bispectrum, the preprocessed images 236

Medical Physics, Vol. 39, No. 7, July 2012
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FIG. 3. Principal domain region (�) used for the computation of the bispec-
trum for real signals.

were first subjected to Radon transform.20 This transform de-237

termines the line integrals along many parallel paths in the238

image from different angles θ by rotating the image around239

its center. Hence, the intensities of the pixels along these lines240

are projected into points in the resultant transformed signal.241

Thus, the Radon transform converts a 2D image into a 1D242

signal at various angles. This 1D signal is then used to deter-243

mined the bispectrum, which is a complex valued function of244

two frequencies f1 and f2 given by245

B(f1, f2) = E[X(f1)X(f2)X∗(f1 + f2)], (1)

where X(f ) is the Fourier transform of the signal studied, E[.]246

stands for the expectation operation, and * stands for the con-247

jugate operator. As per the equation, the bispectrum is the248

product of the three Fourier coefficients. The function exhibits249

symmetry, and is computed in the nonredundant/principal do-250

main region � as shown in Fig. 3.251

The bispectrum phase entropy 21–23 obtained from the bis-252

pectrum is used as one of the features in this work. This bis-253

pectrum phase entropy (ePRes) is defined as254

eP Res =
∑

n
p(ψn) log(p(ψn)), (2)

where255

p(ψn) = 1

L

∑
�

l(φ(B(f1, f2)) ∈ ψn), (3)

256

ψn = {φ| − π + 2πn/N ≤ φ < −π + 2π (n + 1)/N},
n = 0, 1, . . . , N − 1,

(4)

where L is the number of points within the region �, φ is the257

phase angle of the bispectrum, and l(.) is an indicator function258

which gives a value of 1 when the phase angle is within the259

range depicted by ψn in Eq. (4). In this work, we calculated260

the Radon transformed signals for every 1◦ step size and then261

determined the phase entropy of these signals. Entropies are262

generally used to characterize the regularity or irregularity of263

the pixels in the image. If the resulting Radon transformed264

signal obtained from the liver image at a particular angle is265

perfectly periodic and predictable, then the consequent phase266

entropy would be zero. As the signal becomes more random,267

the entropy increases.24 In this work, it was observed that the268

normal images had more randomness than the abnormal im- 269

ages (Sec. III.A). 270

II.B.2. Texture-based features 271

The presence of various granular structures in the liver 272

ultrasound images makes the use of image texture analysis 273

techniques suitable for liver image classification. In most im- 274

age processing applications, assumptions are made regarding 275

the uniformity of gray-level intensity values in the image. In 276

real applications, most images have a variation in gray lev- 277

els which are repetitive and these variations are characterized 278

as the texture of the image.25 The most commonly used tex- 279

ture matrices are the gray level co-occurrence matrix (GLCM) 280

and the run length matrix. We have calculated one homogene- 281

ity feature from the GLCM (Ref. 26) and three features from 282

the run length matrix.27 These features are described briefly 283

below. 284

Texture homogeneity: The gray level co-occurrence ma- 285

trix of an image of size m × n is defined as follows: 286

Cd (i, j ) =
∣∣∣∣∣
{

(p, q), (p + �x, q + �y) : I (p, q) = i

I (p + �x, q + �y) = j

}∣∣∣∣∣ , (5)

where (p, q), (p + �x, q + �y) belong to m × n, d = (�x, 287

�y), and |. . . | denotes the set cardinality. The probability of a 288

pixel with a gray level intensity value i having a pixel with a 289

gray level intensity value j at a distance (�x, �y) away in an 290

image is defined as 291

Pd (i, j ) = Cd (i, j )∑
<i>

∑
<j> Cd (i, j )

. (6)

The homogeneity of the image is now defined as 292

Ch =
∑

i

∑
j

(
Pd (i, j )

1 + |i − j |
)

. (7)

The homogeneity measures the closeness of the distribu- 293

tion of the co-occurrence matrix elements to the main diago- 294

nal. A homogenous image will give rise to a Pd(i, j) clustered 295

around the main diagonal. In other words, the similarity be- 296

tween two pixels that are (�x, �y) apart is measured by the 297

homogeneity feature. 298

Texture run percentage (TexRL): The run percentage is 299

a texture property derived from the run length matrix of an 300

image. The run length matrix Pθ contains all the elements, 301

where the gray level value i has the run length j continuous 302

in direction θ .27 Often the direction θ is set as 0◦, 45◦, 90◦, 303

or 135◦. The run percentage is defined as the total number of 304

runs in the image divided by the total number of pixels in the 305

image as depicted in Eq. (8): 306

TexRL =
∑Ng

i=1

∑Nr

j=1 Pθ (i, j )

Np

. (8)

Run percentage has the lowest value for images with the 307

most linear structure. Here, Pθ (i,j) is the element of the run 308

length matrix, Np is the total number of pixels in the image, 309

Medical Physics, Vol. 39, No. 7, July 2012
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Ng is the number of gray levels in the image, and Nr is the310

number of different run lengths that occur.311

Short run emphasis (SRE): Based on the run length ma-312

trix, the short run emphasis is defined as313

SRE =
∑Ng

i−1

∑Nr

j=1
Pθ (i,j )

j 2∑Ng

i−1

∑Nr

j=1 Pθ (i, j )
, (9)

where the index i runs over the gray level values in the image314

and the index j runs over the run length. Higher values of j,315

i.e., long run lengths will contribute less to the sum in Eq. (9)316

and consequently higher sum emphasizes short runs.317

Gray level nonuniformity (GLNU): The gray level318

nonuniformity is defined as319

GLNU =
∑Ng

i=1

(∑Nr

j=1 Pθ (i, j )
)2

∑Ng

i=1

∑Nr

j=1 Pθ (i, j )
. (10)

The gray level nonuniformity squares the run lengths for320

each gray value. Hence, longer run lengths will make signifi-321

cant contributions to the summation, i.e., uniform images will322

have higher values of this sum as compared to images that are323

nonuniform in their gray levels.324

II.B.3. DWT-based features325

A wavelet transform is the representation of a function by326

wavelets, which are scaled and translated copies of a basic327

wavelet shape called the “mother wavelet.” Mother wavelets328

are functions that are localized in both time and frequency and329

have varying amplitudes during a limited time period and very330

low or zero amplitude outside that time period. Wavelet trans-331

forms such as continuous wavelet transform (CWT), DWT,332

and wavelet packet decomposition (DWT) determine a lim-333

ited number of wavelets coefficients that adequately describe334

the image. Two-dimensional DWT was used in this work.335

DWT analyzes the image at different frequency bands with336

different resolutions by decomposing the image into coarse337

approximation and detail information. The approximation co-338

efficients are obtained by passing the image through a low339

pass filter (LPF), and the detail coefficients are obtained by340

filtering the image using a high pass filter (HPF). This decom-341

position is done recursively on the low pass approximation342

coefficients obtained at each level until the desired number of343

iterations is reached.344

An illustration of DWT is given in Fig. 4. The rows of345

the image I are convolved using a LPF and the columns of346

the convolved output are down-sampled, i.e., only the even347

indexed columns are retained for further filtering. Next, the348

down-sampled columns are passed through another LPF, the349

output of which is again sampled to keep the even indexed350

rows alone. These are the approximation coefficients cA1351

at level 1. Similarly, the down-sampled columns are passed352

through a HPF, sampled to retain the even indexed rows alone353

to get the horizontal detail coefficients cH1. In a similar fash-354

ion, the rows of the image I are high passed filtered and pro-355

FIG. 4. DWT decomposition.

cessed through a set of low pass and high pass filters to get 356

the vertical detail coefficients cV1 and diagonal detail coeffi- 357

cients cD1, respectively. In our work, we calculated the aver- 358

ages of each set of coefficients cA1, cH1, cV1, and cD1 at level 359

1, and again found the average of these individual averages. 360

This overall average value was used as a feature. 361

II.C. Classification paradigm in Symtosis system 362

Most of the supervised learning-based classifiers have a 363

black box approach to determining the end results, i.e., the 364

end-user would not be able to comprehend how the classi- 365

fier determined the output class label from the input features. 366

On the contrary, both decision tree (DT) and Fuzzy classi- 367

fiers output feature-based rules for classifying future samples, 368

and hence, are more comprehendible to the end-user. Medical 369

practitioners, who are the end-users of such CAD-based di- 370

agnostic software, would prefer the classification protocol to 371

be more transparent in order to have confidence in the output. 372

Therefore, we chose these two classifiers in this work. 373

Decision Tree: In the case of DT, the input features are 374

used to construct a tree, and then a set of rules for the different 375

classes are derived from the tree. More details on how to con- 376

struct a decision tree using features can be found in Refs. 28 377

and 29. The obtained rules are used to predict the class of a 378

new data. 379

Fuzzy classifier: In the case of Fuzzy classifier, a sub- 380

tractive clustering technique was used to generate a Fuzzy 381

inference system (FIS).30 The FIS structure contains if–then 382

rules that specify a relationship between the input and out- 383

put fuzzy sets. Each input and output has as many member- 384

ship functions as the number of clusters. The clustering tech- 385

nique estimates the number of clusters and the cluster centers 386

in the examined dataset. Radius parameter is used to indicate 387

a cluster center’s range of influence in each of the data di- 388

mensions. The determined is used to perform fuzzy inference 389

Medical Physics, Vol. 39, No. 7, July 2012
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TABLE I. Mean ± standard deviation (SD) values of the significant features for the normal and abnormal classes
using Symtosis system.

Features Normal (mean ± SD) Abnormal (mean ± SD) p-value

SRE 0.869 ± 3.105 × 10–2 0.821 ± 4.125× 10–2 <0.0001
ePRes(12◦) 4.770 ± 3.993× 10–2 4.504 ± 6.623× 10–2 <0.0001
DWTMean1sym4 19.1 ± 8.35 11.7 ± 5.06 <0.0001

calculations of the test data. In this work, we implemented a390

Sugeno-type fuzzy inference system.31
391

II.D. Statistical analysis392

In order to select unique and highly discriminating fea-393

tures, the Student’s t-test was used to select the features that394

were significantly different between the normal and abnormal395

cases. In this test, initially, for each feature, the null hypoth-396

esis is assumed to consider that the mean of the feature from397

the normal class is equal to the mean of the feature from the398

abnormal class. Subsequently, the t-statistic, which is the ratio399

of difference between the means of two classes to the standard400

error between class means, and the corresponding p-value401

are calculated. The p-value is the probability of rejecting the402

null hypothesis given that the null hypothesis is true. A low403

p-value (less than 0.01 or 0.05) indicates rejection of null hy-404

pothesis, which implies that the means are not equal in both405

classes and are significantly different, and hence, the feature406

is significant.407

Sensitivity, specificity, positive predictive value, and accu-408

racy were calculated to evaluate the performance of the clas-409

sifiers. True negative (TN) is the number of normal samples410

identified as normal. True positive (TP) is the number of ab-411

normal samples identified as abnormal. False negative (FN),412

on the other hand, is the number of abnormal samples identi-413

fied as normal and False positive (FP) is the number of nor-414

mal samples identified as abnormal. Sensitivity, which is the415

probability that a test will produce a positive result when used416

on abnormal population, is calculated as TP/(TP + FN) and417

specificity, which is the probability that a test will produce a418

negative result when used on normal disease-free population,419

is determined as TN/(TN + FP). PPV, which is the probability420

that the patient is abnormal when restricted to those patients421

who test positive, is calculated as TP/(TP + FP), and accu-422

racy, which is the ratio of the number of correctly classified423

samples to the total number of samples, is calculated as (TP424

+ FP)/(TP + FP + TN + FN).425

Another important performance measure is the area un-426

der the receiver operating characteristic (ROC) curve, called427

AUC. The ROC curve is obtained by calculating the sensi-428

tivity and specificity of a classifier at different cut-off values429

and plotting sensitivity vs (1-specificity).32 (1-specificity) is430

called the false positive rate (FPR). A classifier that perfectly431

discriminates between the two classes would yield a curve432

that coincides with the left and top sides of the plot. This433

means that sensitivity is high and the FPR is low. A classi-434

fier that is completely useless would give a straight line that435

follows a diagonal path from the bottom left corner to the top 436

right corner. Generally, the curve will lie somewhere between 437

these extremes because of the overlap of the values in the two 438

classes. The goodness of a classifier is assessed by determin- 439

ing the AUC. For an ideal test, the AUC would be 1. For a 440

useless classifier, which follows the diagonal ROC curve, the 441

AUC would be 0.5 which is equivalent to having sensitivity 442

and specificity of 0.5 (50%). Hence, in practice, the closer the 443

AUC is to 1.0, the better the classifier is, and the closer the 444

AUC is to 0.5, the worse the classifier is.33
445

III. RESULTS 446

III.A. Significant features 447

As shown in Table I, all the three selected features had 448

statistically significant differences between the abnormal and 449

normal classes, as indicated by the low p-value (<0.01). The 450

table also presents the mean and standard deviation of all 451

the features. In the case of HOS-based features, one phase 452

entropy-based feature obtained for Radon transform angle 453

θ = 12◦, denoted in Table I as ePRes(12◦), was found to be 454

significant. In the case of texture features, only the short run 455

emphasis (SRE) was found to be significant. To obtain the 456

DWT features, around 54 mother wavelets were studied to 457

find the mean value of the level 1 coefficients. Among them, 458

the mean of the coefficients obtained at level one of decom- 459

position using the sym4 mother wavelet was found to be sig- 460

nificantly different between the two classes. In the case of ab- 461

normal images, all the features have registered lower values 462

compared to that of the normal cases. 463

III.B. Symtosis classification results 464

In view of the low sample size, threefold stratified cross- 465

validation was employed to obtain robust classifiers. In this 466

resampling technique, the entire dataset is randomly split into 467

three equal parts, each part containing the same proportion 468

of samples from both the classes. No image is repeated in 469

any of the parts. In the first fold, two parts of the data are 470

used for training the classifier, and the remaining one part is 471

used for testing the trained classifier and to obtain the per- 472

formance measures. This procedure is repeated twice, using a 473

new test set each time. The average of the performance mea- 474

sures obtained during each fold is taken to be the final values 475

of the performance measures. To be specific, ∼10 normal and 476

15 abnormal cases are used in each fold. Classification accu- 477

racy, sensitivity, specificity, PPV, and AUC were used as the 478
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TABLE II. Symtosis classification results (the listed values are average of
values obtained in the three folds) TN: true negatives, FN: false negatives,
TP: true positives, FP: false positives, A: accuracy, PPV: positive predictive
value, Sn: sensitivity, Sp: specificity.

TN FN TP FP A (%) PPV (%) Sn (%) Sp (%)

Feature combination A: All features except the HOS feature ePRes(12◦)
DT 8 6 9 2 65.3 78.5 57.8 76.7
Fuzzy 9 4 11 1 77.3 88.8 71.1 86.7

Feature combination B: All features except the DWT feature DWTMean1sym4

DT 10 2 13 0 93.3 100 88.9 100
Fuzzy 9 2 13 1 86.7 92.7 84.4 90.0

Feature combination C: All features except the texture feature SRE
DT 10 2 13 0 93.3 100 88.9 100
Fuzzy 9 3 12 1 84.0 94.4 77.8 93.3

Feature combination D: All features
DT 10 2 13 0 93.3 100 88.9 100
Fuzzy 9 2 13 1 86.7 90.8 86.7 86.7

performance measures to select the optimal classifier for this479

work. Table II presents the classification results obtained. In480

order to study the effect of each of the features on the perfor-481

mance measures, in Table II, we have presented the perfor-482

mance measures obtained using all features except the HOS483

feature ePRes(12◦), measures obtained using all features ex-484

cept the DWT feature DWTMean1sym4, measures obtained us-485

ing all features except the texture feature SRE, and also those486

measures obtained using all the features.487

The maximum accuracy that could be achieved using all488

the features except the HOS feature (ePRes(12◦)) was only489

65.3% using the DT classifier and 77.3% using the Fuzzy490

classifier (feature combination A in Table II). However, this491

accuracy increased significantly to 93.3% using DT classi-492

fier and 86.7% using the Fuzzy classifier on inclusion of493

the HOS feature during training (feature combination D in494

Table II). This significant increase in the accuracy demon-495

strates the capabilities of the HOS feature that were high-496

lighted in Sec. II.B. The significant difference in the value497

of this phase entropy HOS feature for both classes of im-498

ages (Table I) indicates that there are variations in the non-499

linear dynamics in the image captured from a normal liver500

and that from a liver affected by FLD. The phase entropy fea-501

ture has clearly captured these different nonlinear interactions502

in both the normal and abnormal liver images. The DWT fea-503

ture (DWTMean1sym4), on the other hand, did not have such504

a significant impact on the accuracy as evident from Table II.505

It can be seen that the performance measures obtained with506

and without the DWT feature are almost the same for both507

the classifiers (Feature Combinations B and D in Table II). A508

similar case was observed in case of the SRE feature (Fea-509

ture Combinations C and D in Table II). Moreover, we also510

performed classification with the inclusion of four individual511

DWT coefficients (averages of each set of coefficients cA1,512

cH1, cV1, and cD1 at level 1) instead of using their average.513

The classification accuracy was still lower than 90% (results514

not shown in Table II). Furthermore, when we trained the clas-515

sifiers with only the HOS feature, we obtained a low accu-516

FIG. 5. ROC curves of the DT and Fuzzy classifiers using Symtosis.

racy of around 64% for both classifiers (not shown in Table 517

II). This indicates that either all three features or ePRes(12◦) 518

and DWTMean1sym4 features or ePRes(12◦) and SRE features 519

should be used in the DT classifier to obtain the highest ac- 520

curacy of 93.3%. This is because classifiers present different 521

class separability based on the features input to them. From 522

our experience, we inferred that the DT classifier provides 523

good separability between the two classes with Feature Com- 524

binations B, C, and D in the table. 525

Moreover, the average AUC of the DT classifier was 0.933 526

and that of the Fuzzy classifier was 0.883. These values indi- 527

cate the excellent performance of these classifiers. The ROC 528

curves are depicted in Fig. 5. 529

IV. DISCUSSION 530

A few studies have been carried out to automatically clas- 531

sify diffuse liver diseases. We present a summary of these 532

studies here and in Table III. Kyriacou et al.34 used the 533

texture feature algorithms such as fractal dimension texture 534

analysis (FDTA), the spatial gray level dependence matri- 535

ces (SGLDM), the gray level difference statistics (GLDS), 536

the gray level run length statistics (RUNL), and first order 537

gray level parameters (FOP) to classify three sets of ultra- 538

sound liver images, namely, fatty, cirrhosis, and normal (30 539

samples each). A ROI of 32 × 32 pixels in size was se- 540

lected by an expert physician before feature extraction was 541

done. The combination of FDTA and SGLDM features in a 542

KNN classifier resulted in an accuracy of 82.2%. In another 543

study by the same group,35 they applied the algorithms on 544

four sets of images, namely, normal, fatty, cirrhosis, and hep- 545

atoma. They obtained the highest accuracy of 80% using a 546

combination of RUNL, SGLDM, and FDTA in the KNN clas- 547

sifier. On using a novel neural network classifier based on 548

geometrical fuzzy sets, the same group36 demonstrated an ac- 549

curacy of 82.67% in classifying normal, fatty, and cirrhotic 550

liver images. 551

In a study by Badawi et al.,37 eight features, namely, the 552

mean gray level, the percentile 10%, the contrast, the angular 553
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TABLE III. Summary of studies that presented various CAD techniques for liver image classification.

Authors Modality/classes Features/classifier Accuracy

Kyriacou et al.34 Ultrasound/fatty, cirrhosis, normal 11 texture features/KNN classifier 82.2%
Kyriacou et al.35 Ultrasound/fatty, cirrhosis, normal,

hepatoma
10 texture features/KNN classifier 80.0%

Kyriacou et al.36 Ultrasound/fatty, cirrhosis, normal 12 texture feature algorithms/neural network classifier based
on geometrical fuzzy sets

82.7%

Badawi et al.37 Ultrasound/normal, fatty, cirrhotic 8 numerical quantitative features from ultrasound/Fuzzy
classifier

Accuracy not reported;
Sensitivity: 96.0%

Wan and Zhou38 Ultrasound/normal, cirrhotic 32 wavelet packet transform-based features/SVM classifier 85.8%
Lee et al.39 Ultrasound/normal, hepatoma, cirrhosis Fractal feature vector based on M-band wavelet

transform/hierarchical classifier
96.7%

Ribeiro and Sanches40 Ultrasound envelope RF image/normal,
fatty

3 intensity and texture features/Bayes classifier 95%

Yeh et al.41 Ultrasound images of fresh human liver
samples/steatosis and nonsteatosis

Gray-level concurrence and nonseparable wavelet
transform/support vector machine classifier

90.5%

Mougiakakou et al.42 CT/normal, cyst, hemangioma,
hepatocellular carcinoma

5 sets of texture-based features/multiple classifier system
using five neural networks

93.8%

Lin.44 Age, blood tests/normal, liver disease CART to detect presence of liver disease, CBR to diagnose
the type of liver disease

90.0%

Lin45 Age, blood tests/normal, liver disease ANN to detect presence of liver disease, CBR + AHP to
diagnose the type of disease

94.6%

In this work Ultrasound/normal, fatty 3 texture, wavelet transform and higher order spectra
features; decision tree classifier

93.3%

second moment, the entropy, the correlation, the attenuation,554

and the speckle separation, were extracted from 140 ultra-555

sound images belonging to either normal, fatty, and cirrhotic556

livers and fed to a fuzzy classifier. Ninety six percent sensi-557

tivity was obtained for classification of the fatty livers. These558

results were higher than those obtained by the same group on559

using other classifiers.17 Wan and Zhou38 extracted the mean560

and energy from the subimages obtained from wavelet packet561

transform applied images. Thirty two such features from 390562

normal and 200 cirrhosis samples were used in a SVM classi-563

fier and an accuracy of 85.79% was obtained. Wavelet trans-564

form resulted in only 77.65% accuracy.565

Lee et al.39 classified normal, hepatoma, and cirrhosis ul-566

trasound images using fractal feature vector based on M-band567

wavelet transform. Having tested their methodology using568

various classifiers, they observed that a hierarchical classifier569

was 96.7% accurate in the classifying normal and abnormal570

liver images. Ribeiro and Sanches40 used original RF signal571

generated by the ultrasound probe, and used the resulting RF572

image to estimate a despeckled image from which one inten-573

sity feature was extracted and a speckle image from which574

two texture features were obtained. On evaluating the tech-575

nique with 10 normal and 10 fatty samples, in a Bayes classi-576

fier, they obtained an accuracy of 95%. Yeh et al.41 developed577

a CAD technique to determine the steatosis grade in high fre-578

quency ultrasound liver images of 19 samples obtained sur-579

gically. They extracted image features from gray-level con-580

currence and nonseparable wavelet transform and fed them581

to a support vector machine classifier. An accuracy of 90.5%582

was registered for the classification of steatosis and nonsteato-583

sis samples. On evaluating Haralick’s statistical texture fea-584

tures extracted from 76 normal and 24 fatty ultrasound liver585

images, two features, namely, maximum probability and uni- 586

formity were found to be highly significant.42
587

Mougiakakou et al.43 have used CT liver images to clas- 588

sify normal liver, cyst, hemangioma, and hepatocellular carci- 589

noma. They extracted several texture-based features from 147 590

ROIs and used genetic algorithm to select significant features. 591

On classifying the samples using a system of five neural net- 592

works, they obtained 93.75% accuracy for the validation set 593

and 90.63% for the test set. They also incorporated their algo- 594

rithm in diagnosis software called DIAGNOSIS.44
595

An intelligent model that detects the presence of liver dis- 596

ease using classification and regression tree (CART) and clas- 597

sifies the type of liver disease in the detected cases using 598

a case-based reasoning (CBR) technique was developed by 599

Lin.45 The model was developed using 340 samples and com- 600

parative study was done using 170 samples. It was found that 601

CART had an accuracy of 92.94% in the detection of the 602

presence of liver disease. A 90% diagnostic accuracy was 603

registered by CBR in classifying the type of disease. They 604

concluded that the CART rules can help the physician in 605

liver disease detection, whereas CBR had the capability of 606

retrieving the most similar case in the database in order to 607

solve new cases. Lin and Chuang46 developed a similar in- 608

telligent liver diagnosis model using artificial neural network 609

(ANN) instead of CART for detecting the presence of liver 610

disease and integrated analytic hierarchy process (AHP) with 611

CBR for diagnosing the type of disease. Using 39 clinical 612

features from 300 patients as inputs to a three-layer back- 613

propagation ANN, 98.04% accuracy was obtained in detect- 614

ing the presence or absence of liver disease. AHP integrated 615

with CBR could detect the type of disease with 94.57% 616

accuracy. 617
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A review of the literature indicates that ultrasound is the618

most commonly used modality for liver imaging, and most619

data mining-based studies use the ultrasound images34–40 to620

characterize the liver tissue. Hence, we used ultrasound im-621

ages in our work. Among the ultrasound-based studies34–40, it622

is evident that the accuracy obtained in Refs. 34–38 is not as623

high as what we have obtained in our work. The limitation of624

the work by Lee et al.39 is that prior to the image analysis, the625

region of interest covering the liver parenchyma without ma-626

jor blood vessels, acoustic shadowing, or any type of distor-627

tion was chosen manually by a physician. Hence, the process628

is not completely automated unlike our work. In Ref. 40, all629

the features were derived from the images obtained from en-630

velope RF images, whereas in our work we used the B-mode631

ultrasound images directly for feature extraction. This reduces632

the computational complexity of the algorithm. Moreover, in633

all these studies except Ref. 40, the proposed algorithms were634

for classifying normal livers from other abnormal classes like635

fatty, cirrhosis, and hepatoma. In our current work, Symtosis636

system is used for classification of normal vs fatty liver dis-637

ease. We intend to extend our technique for other abnormal638

classes in our future studies. Two of the major advantages of639

the proposed technique over the other studies in the literature640

are the determination of the unique and promising combina-641

tion of these three features for obtaining high classification642

accuracy and the demonstration of the powerful capabilities643

of the HOS feature in improving liver image classification ac-644

curacy. Moreover, to obtain robust classification accuracies,645

we have used threefold cross-validation technique unlike most646

studies in the literature which used hold-out technique that re-647

sults in less robust performance measures.648

In our Symtosis design work, on using all the features in-649

cluding the HOS feature, the DT classifier resulted in high ac-650

curacy of 93.3% and balanced sensitivity (88.9%) and speci-651

ficity (100%) values. The classification results indicate that652

the classification accuracy is influenced not only by the choice653

of features (type and number) but also on the choice of the654

classifier. We believe that by adding more relevant features we655

can improve the overall performance of our classifier. In fu-656

ture, a larger dataset from a multiethnic population would be657

studied. A variety of texture features and WPT-based features658

would be analyzed to improve the accuracy. We also intend to659

incorporate, in future, the information about the aggressive-660

ness of the disease in the abnormal cases in order to more661

clearly understand how the features discriminate the normal662

and abnormal cases. We plan to use the speckle images ob-663

tained from the envelope radio frequency (RF) images to664

extract the features to investigate if the accuracy may be im-665

proved further at the expense of a slighter higher computa-666

tional cost.667

In spite of these limitations, the following are the key fea-668

tures of the proposed Symtosis CAD-based technique. (a) The669

technique is fully automated and does not require any seg-670

mentation to select the region of interest. Traditional ultra-671

sound liver images are the only input required. (b) The nov-672

elty of the work lies in the fact that this is the first study that673

has exploited the HOS features and the combination of three674

features for FLD detection. We have demonstrated the util-675

ity and power of these features by evaluating the performance 676

of the classifiers by training them without and with the HOS 677

feature. It is evident that the accuracy significantly increased 678

from 65.3% to 93.3% on including the HOS feature for clas- 679

sifier development and evaluation. (c) A high classification 680

accuracy has been obtained (93.3%) with 100 samples. This 681

emphasizes the discriminating capability of the significant 682

features used. To account for the small sample size, we have 683

employed the cross-validation data resampling technique in 684

order to build robust classifiers. (d) The high classification 685

accuracy has been achieved using only three features, mak- 686

ing the entire process computationally less complex and cost- 687

effective. (e) No additional cost is needed to incorporate the 688

built classifier into a physician’s computer. Executable soft- 689

ware can be written and it can be downloaded from the inter- 690

net easily. (f) No expert training is necessary to operate the 691

software. The user has to only input the acquired liver ultra- 692

sound image, and the software will output the class label. 693

V. CONCLUSIONS 694

In this paper, we explored the possibility of a CAD-based 695

technique called Symtosis for the classification of normal and 696

liver affected by fatty liver disease (abnormal cases). The 697

combination of image texture, higher order spectra, and dis- 698

crete wavelet transform-based features that were extracted 699

from the liver ultrasound images was used for training the 700

classifier. Among the extracted features, three highly discrim- 701

inatory significant features alone were used to train and build 702

two supervised learning-based classifiers. Using only three 703

features, the DT classifier presented a high accuracy of 93.3%. 704

The sensitivity and specificity were 88.9% and 100%, respec- 705

tively. It can be seen that significant performance measures 706

have been obtained using a considerably large dataset. Since 707

the technique is fully automated and highly user friendly, it 708

can be easily used in clinical practice. We believe that with the 709

inclusion of more representative features, it should be possi- 710

ble to improve the current accuracy of the technique. In future, 711

we intend to evaluate the proposed technique using a larger 712

dataset containing images from different patients acquired by 713

different operators and containing images belonging to vari- 714

ous pathologies. 715
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