36 research outputs found

    Texture analysis of aggressive and nonaggressive lung tumor CE CT images

    Get PDF
    This paper presents the potential for fractal analysis of time sequence contrast-enhanced (CE) computed tomography (CT) images to differentiate between aggressive and nonaggressive malignant lung tumors (i.e., high and low metabolic tumors). The aim is to enhance CT tumor staging prediction accuracy through identifying malignant aggressiveness of lung tumors. As branching of blood vessels can be considered a fractal process, the research examines vascularized tumor regions that exhibit strong fractal characteristics. The analysis is performed after injecting 15 patients with a contrast agent and transforming at least 11 time sequence CE CT images from each patient to the fractal dimension and determining corresponding lacunarity. The fractal texture features were averaged over the tumor region and quantitative classification showed up to 83.3% accuracy in distinction between advanced (aggressive) and early-stage (nonaggressive) malignant tumors. Also, it showed strong correlation with corresponding lung tumor stage and standardized tumor uptake value of fluoro deoxyglucose as determined by positron emission tomography. These results indicate that fractal analysis of time sequence CE CT images of malignant lung tumors could provide additional information about likely tumor aggression that could potentially impact on clinical management decisions in choosing the appropriate treatment procedure

    Fractal and morphological processing for phase contrast MRI image of the aortic lumen

    Get PDF
    Магнітно-резонансна томографія (МРТ) – це метод відображення внутрішньої структури матеріальних об'єктів, заснований на явищі ядерного магнітного резонансу і широко застосовуваний у задачах медичної діагностики. Переваги МРТ перед рентгенівською комп'ютерною томографією складаються з можливості отримання необов'язково паралельних перерізів, з більш високою роздільною здатністю, та у відсутності шкідливого жорсткого променевого впливу на пацієнтів і обслуговуючий персонал. У цій роботі ми представляємо технології сегментацiï та шумоподавлення, розроблені для 3D MRТ-зображень, що базуються на методах фрактальної фільтрації та математичної морфології.Magnetic resonance imaging (MRI) is a method of displaying the internal structure of material objects, based on the phenomenon of nuclear magnetic resonance and widely used in the tasks of medical diagnostics. Advantages of MRI before X-ray computed tomography include the possibility of obtaining optionally parallel cross sections, with higher resolution, and in the absence of harmful rigid radiation effects on patients and attendants. In this work, we present segmentation and noise reduction technologies developed for 3D MRT images based on fractal filtration and mathematical morphology

    Modeling of process of wastewater treatment by electrocoagulation in non-isothermal conditions

    Get PDF
    Проаналізовано проблеми моделювання процесу очищення води в електрокоагуляційній камері в неізотермічних умовах. Визначено основні параметри для розрахунку тепло- та масопереносу в електрокоагуляторі. Побудовано математичну модель, що описує закономірності протікання процесів в електрокоагуляційній установці із уточненням оптимальних параметрів. Знайдено розв'язки відповідної модельної задачі з використанням асимптотичного наближення розв'язку відповідної крайової задачі та наведені результати комп'ютерного експерименту.The problems of modeling the process of water treatment in an electrocoagulation chamber in nonisothermal conditions are analyzed. The basic parameters for calculating the mass and heat transferin the electrocoagulator are determined. The mathematical model describing the patterns of process flow in the electrocoagulation installation with the specification of the optimal parameters of the process is constructed. The solutions of the corresponding model problem are found using the asymptotic approximation of the solution of the corresponding boundary value problem and the results of the computer experiment are given

    A Computational Tool for Quantitative Analysis of Vascular Networks

    Get PDF
    Angiogenesis is the generation of mature vascular networks from pre-existing vessels. Angiogenesis is crucial during the organism' development, for wound healing and for the female reproductive cycle. Several murine experimental systems are well suited for studying developmental and pathological angiogenesis. They include the embryonic hindbrain, the post-natal retina and allantois explants. In these systems vascular networks are visualised by appropriate staining procedures followed by microscopical analysis. Nevertheless, quantitative assessment of angiogenesis is hampered by the lack of readily available, standardized metrics and software analysis tools. Non-automated protocols are being used widely and they are, in general, time - and labour intensive, prone to human error and do not permit computation of complex spatial metrics. We have developed a light-weight, user friendly software, AngioTool, which allows for quick, hands-off and reproducible quantification of vascular networks in microscopic images. AngioTool computes several morphological and spatial parameters including the area covered by a vascular network, the number of vessels, vessel length, vascular density and lacunarity. In addition, AngioTool calculates the so-called “branching index” (branch points / unit area), providing a measurement of the sprouting activity of a specimen of interest. We have validated AngioTool using images of embryonic murine hindbrains, post-natal retinas and allantois explants. AngioTool is open source and can be downloaded free of charge

    CT Texture Analysis—Correlations With Histopathology Parameters in Head and Neck Squamous Cell Carcinomas

    Get PDF
    Introduction: Texture analysis is an emergent imaging technique to quantify heterogeneity in radiological images. It is still unclear whether this technique is capable to reflect tumor microstructure. The present study sought to correlate histopathology parameters with texture features derived from contrast-enhanced CT images in head and neck squamous cell carcinomas (HNSCC).Materials and Methods: Twenty-eight patients with histopathological proven HNSCC were retrospectively analyzed. In every case EGFR, VEGF, Hif1-alpha, Ki67, p53 expression derived from immunhistochemical specimen were semiautomatically calculated. Furthermore, mean cell count was estimated. Texture analysis was performed on contrast-enhanced CT images as a whole lesion measurement. Spearman's correlation analysis was performed, adjusted with Benjamini-Hochberg correction for multiple tests.Results: Several texture features correlated with histopathological parameters. After correction only CT texture joint entropy and CT entropy correlation with Hif1-alpha expression remained statistically significant (ρ = −0.60 and ρ = −0.50, respectively).Conclusions: CT texture joint entropy and CT entropy were associated with Hif1-alpha expression in HNSCC and might be able to reflect hypoxic areas in this entity

    Estimation of trabecular bone parameters in children from multisequence MRI using texture-based regression

    Get PDF
    PURPOSE: This paper presents a statistical approach for the prediction of trabecular bone parameters from low-resolution multisequence magnetic resonance imaging (MRI) in children, thus addressing the limitations of high-resolution modalities such as HR-pQCT, including the significant exposure of young patients to radiation and the limited applicability of such modalities to peripheral bones in vivo. METHODS: A statistical predictive model is constructed from a database of MRI and HR-pQCT datasets, to relate the low-resolution MRI appearance in the cancellous bone to the trabecular parameters extracted from the high-resolution images. The description of the MRI appearance is achieved between subjects by using a collection of feature descriptors, which describe the texture properties inside the cancellous bone, and which are invariant to the geometry and size of the trabecular areas. The predictive model is built by fitting to the training data a nonlinear partial least square regression between the input MRI features and the output trabecular parameters. RESULTS: Detailed validation based on a sample of 96 datasets shows correlations >0.7 between the trabecular parameters predicted from low-resolution multisequence MRI based on the proposed statistical model and the values extracted from high-resolution HRp-QCT. CONCLUSIONS: The obtained results indicate the promise of the proposed predictive technique for the estimation of trabecular parameters in children from multisequence MRI, thus reducing the need for high-resolution radiation-based scans for a fragile population that is under development and growth

    Feature Definition and Comprehensive Analysis on the Robust Identification of Intraretinal Cystoid Regions Using Optical Coherence Tomography Images

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Currently, optical coherence tomography is one of the most used medical imaging modalities, offering cross-sectional representations of the studied tissues. This image modality is specially relevant for the analysis of the retina, since it is the internal part of the human body that allows an almost direct examination without invasive techniques. One of the most representative cases of use of this medical imaging modality is for the identification and characterization of intraretinal fluid accumulations, critical for the diagnosis of one of the main causes of blindness in developed countries: the Diabetic Macular Edema. The study of these fluid accumulations is particularly interesting, both from the point of view of pattern recognition and from the different branches of health sciences. As these fluid accumulations are intermingled with retinal tissues, they present numerous variants according to their severity, and change their appearance depending on the configuration of the device; they are a perfect subject for an in-depth research, as they are considered to be a problem without a strict solution. In this work, we propose a comprehensive and detailed analysis of the patterns that characterize them. We employed a pool of 11 different texture and intensity feature families (giving a total of 510 markers) which we have analyzed using three different feature selection strategies and seven complementary classification algorithms. By doing so, we have been able to narrow down and explain the factors affecting this kind of accumulations and tissue lesions by means of machine learning techniques with a pipeline specially designed for this purpose.Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia e Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project, Ayudas para la formación de profesorado universitario (FPU), grant ref. FPU18/02271; Ministerio de Ciencia e Innovación, Government of Spain through the research project with reference PID2019-108435RB-I00; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, Grupos de Referencia Competitiva, grant ref. ED431C 2020/24 and through the postdoctoral grant contract ref. ED481B 2021/059; Axencia Galega de Innovación (GAIN), Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidade da Coruña/CISUGXunta de Galicia; ED431C 2020/24Xunta de Galicia; ED481B 2021/059Xunta de Galicia; IN845D 2020/38Xunta de Galicia; ED431G 2019/0

    Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer

    Get PDF
    AbstractRadiomics is being explored for potential applications in radiation therapy. How various imaging protocols affect quantitative image features is currently a highly active area of research. To assess the variability of image features derived from conventional [three-dimensional (3D)] and respiratory-gated (RG) positron emission tomography (PET)/computed tomography (CT) images of lung cancer patients, image features were computed from 23 lung cancer patients. Both protocols for each patient were acquired during the same imaging session. PET tumor volumes were segmented using an adaptive technique which accounted for background. CT tumor volumes were delineated with a commercial segmentation tool. Using RG PET images, the tumor center of mass motion, length, and rotation were calculated. Fifty-six image features were extracted from all images consisting of shape descriptors, first-order features, and second-order texture features. Overall, 26.6% and 26.2% of total features demonstrated less than 5% difference between 3D and RG protocols for CT and PET, respectively. Between 10 RG phases in PET, 53.4% of features demonstrated percent differences less than 5%. The features with least variability for PET were sphericity, spherical disproportion, entropy (first and second order), sum entropy, information measure of correlation 2, Short Run Emphasis (SRE), Long Run Emphasis (LRE), and Run Percentage (RPC); and those for CT were minimum intensity, mean intensity, Root Mean Square (RMS), Short Run Emphasis (SRE), and RPC. Quantitative analysis using a 3D acquisition versus RG acquisition (to reduce the effects of motion) provided notably different image feature values. This study suggests that the variability between 3D and RG features is mainly due to the impact of respiratory motion

    Radiological evaluation of biomarkers for renal cell carcinoma

    Get PDF
    Role of MRI DWI sequences in the evaluation of early response to neo- angiogenesis inhibitors in metastatic renal cell carcinoma Purpose: Angiogenesis inhibitors have a potential role in treating metastatic renal cell carcinoma, but it is still not clear why some patients don't respond. Our objective was to look for DWI parameters able to identify patients with metastatic renal cell carcinoma who would not benefit from target therapy. RECIST1.1 was considered as Reference Standard. Methods & Materials: We prospectively enrolled 43 patients candidate to start angiogenesis inhibitors with at least one target lesion and who underwent 1,5T MRI examination with multiple bvalues DWI sequences (0,40,200,300,600): one week before (t0), 2 weeks after (t2) and 8 weeks (t8) after treatment beginning. ADC value was calculated drawing ROIs on 3 different planes. 33 patients with 38 lesions had suitable data for comparative evaluation. Results: At T8 follow-up 9 patients had partial response (PR), 20 table disease (SD), 4 progression disease (PD); average progression free survival was 272 days. PD group, as compared to DC or to PR showed significantly lower ADC values at b40 at t0 (p<0.05): we can assess that more vascularised lesions are more responsive to treatment. PD group have significantly lower ADC values then both other groups, at t0, t2 and t8, for all b-values (p<0.05). PFS and OS correlates well with ADC, in particular OS with ADC b40 at t0 (r=0,69). Coclusions: Results show that PD group has significantly lower ADC values than PR or DC everytime (t0, t2, t8) At t0 there is a better correlation between PFS or OS & ADC than PFS & dimensional criteria. ADC at t0 may help selecting patients with promising good response to angiogenesis inhibitors. Moreover at t0 and at t2 ADC has the potential to select patients who wouldn't benefit from angiogenesis inhibitors Nowadays, in the era of target therapy, it is crucial to select patients potentially responders. We have to look at cost/benefit ratio and at increasing costs of treatment options. DWI has the potential role to identify patients whose's tumor wouldn't benefit from target therapy, adding a value (ADC) to other imaging (e.g. DCE-MRI, texture imaging) and clinical parameters (e.g. miRNA) in a hypothetic multiparametric analysis.CT Texture Analysis in Clear Cell Renal Cell Carcinoma: a Radiogenomics Prospective Purpose: The aim of this study was to investigate whether quantitative parameters obtained from CT Texture Analysis (CTTA) correlate with expression of miRNA in clear cell Renal Cell Carcinoma (ccRCC). Methods and Materials: In a retrospective single centre study, multiphasic CT examination (with arterial, portal, equilibrium and urographic phases) was performed on 20 patients with clear cell renal carcinomas (14 men and 6 women; mean age 65 years ± 13). Measures of heterogeneity were obtained in post-processing by placing a ROI on the entire tumour and CTTA parameters such as entropy, kurtosis, skewness, mean, mean of positive pixels, and SD of pixel distribution histogram were measured using multiple filter settings. Quantitative data were correlated with the expression of miRNAs obtained from the same cohort of patients: 8 fresh frozen samples and 12 formalin-fixed paraffin-embedded samples (miR-21-5p, miR-210-3p, miR-185-5p, miR-221-3p, miR-145-5p). Both evaluations (miRNAs and CTTA) were performed on tumour tissues as well as on normal cortico-medullar tissues. Analysis of Variance with linear multiple regression model methods were obtained with SPSS statistic software. For all comparisons, statistical significance was assumed p<0.05 Results: We evidenced that CTTA has robust parameters (e.g. entropy, mean, sd) to distinguish normal from pathological tissues. Moreover, a higher coefficient of determination between entropy and miR-21-5p expression (R2 =0,25) was evidenced in tumour tissues as compared to normal tissues (R2 =0,15). Interestingly, excluding four patients with extreme over-expression of miR-21-5p, excellent relation between entropy and miR21-5p levels was found specifically in tumour samples (R2= 0,64; p<0.05). Conclusion: Entropy and miRNA-21-5p show promising correlation in ccRCC; in addiction CTTA features, in particular mean and entropy show a statistically significant increase in ccRCC as compared with normal renal parenchyma
    corecore