204 research outputs found

    Super-Fast 3-Ruling Sets

    Get PDF
    A tt-ruling set of a graph G=(V,E)G = (V, E) is a vertex-subset SVS \subseteq V that is independent and satisfies the property that every vertex vVv \in V is at a distance of at most tt from some vertex in SS. A \textit{maximal independent set (MIS)} is a 1-ruling set. The problem of computing an MIS on a network is a fundamental problem in distributed algorithms and the fastest algorithm for this problem is the O(logn)O(\log n)-round algorithm due to Luby (SICOMP 1986) and Alon et al. (J. Algorithms 1986) from more than 25 years ago. Since then the problem has resisted all efforts to yield to a sub-logarithmic algorithm. There has been recent progress on this problem, most importantly an O(logΔlogn)O(\log \Delta \cdot \sqrt{\log n})-round algorithm on graphs with nn vertices and maximum degree Δ\Delta, due to Barenboim et al. (Barenboim, Elkin, Pettie, and Schneider, April 2012, arxiv 1202.1983; to appear FOCS 2012). We approach the MIS problem from a different angle and ask if O(1)-ruling sets can be computed much more efficiently than an MIS? As an answer to this question, we show how to compute a 2-ruling set of an nn-vertex graph in O((logn)3/4)O((\log n)^{3/4}) rounds. We also show that the above result can be improved for special classes of graphs such as graphs with high girth, trees, and graphs of bounded arboricity. Our main technique involves randomized sparsification that rapidly reduces the graph degree while ensuring that every deleted vertex is close to some vertex that remains. This technique may have further applications in other contexts, e.g., in designing sub-logarithmic distributed approximation algorithms. Our results raise intriguing questions about how quickly an MIS (or 1-ruling sets) can be computed, given that 2-ruling sets can be computed in sub-logarithmic rounds

    Cascaded regression with sparsified feature covariance matrix for facial landmark detection

    Get PDF
    This paper explores the use of context on regression-based methods for facial landmarking. Regression based methods have revolutionised facial landmarking solutions. In particular those that implicitly infer the whole shape of a structured object have quickly become the state-of-the-art. The most notable exemplar is the Supervised Descent Method (SDM). Its main characteristics are the use of the cascaded regression approach, the use of the full appearance as the inference input, and the aforementioned aim to directly predict the full shape. In this article we argue that the key aspects responsible for the success of SDM are the use of cascaded regression and the avoidance of the constrained optimisation problem that characterised most of the previous approaches.We show that, surprisingly, it is possible to achieve comparable or superior performance using only landmark-specific predictors, which are linearly combined. We reason that augmenting the input with too much context (of which using the full appearance is the extreme case) can be harmful. In fact, we experimentally found that there is a relation between the data variance and the benefits of adding context to the input. We finally devise a simple greedy procedure that makes use of this fact to obtain superior performance to the SDM, while maintaining the simplicity of the algorithm. We show extensive results both for intermediate stages devised to prove the main aspects of the argumentative line, and to validate the overall performance of two models constructed based on these considerations

    The Cleo Rich Detector

    Full text link
    We describe the design, construction and performance of a Ring Imaging Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones with a novel ``sawtooth''-shaped exit surface. Photons in the wavelength interval 135--165 nm are detected using multi-wire chambers filled with a mixture of methane gas and triethylamine vapor. Excellent pion/kaon separation is demonstrated.Comment: 75 pages, 57 figures, (updated July 26, 2005 to reflect reviewers comments), to be published in NIM

    A Multi-Stage Adaptive Sampling Scheme for Passivity Characterization of Large-Scale Macromodels

    Get PDF
    This paper proposes a hierarchical adaptive sampling scheme for passivity characterization of large-scale linear lumped macromodels. Here, large-scale is intended both in terms of dynamic order and especially number of input/output ports. Standard passivity characterization approaches based on spectral properties of associated Hamiltonian matrices are either inefficient or non-applicable for large-scale models, due to an excessive computational cost. This paper builds on existing adaptive sampling methods and proposes a hybrid multi-stage algorithm that is able to detect the passivity violations with limited computing resources. Results from extensive testing demonstrate a major reduction in computational requirements with respect to competing approaches

    A Multi-Stage Adaptive Sampling Scheme for Passivity Characterization of Large-Scale Macromodels

    Get PDF
    This paper proposes a hierarchical adaptive sampling scheme for passivity characterization of large-scale linear lumped macromodels. Here, large-scale is intended both in terms of dynamic order and especially number of input/output ports. Standard passivity characterization approaches based on spectral properties of associated Hamiltonian matrices are either inefficient or non-applicable for large-scale models, due to an excessive computational cost. This paper builds on existing adaptive sampling methods and proposes a hybrid multi-stage algorithm that is able to detect the passivity violations with limited computing resources. Results from extensive testing demonstrate a major reduction in computational requirements with respect to competing approaches.Comment: Submitted to the IEEE Transactions on Components, Packaging and Manufacturing Technolog

    FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices

    Full text link
    Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by 48%48\% to 78%78\% and energy consumption by 37%37\% to 69%69\% compared with the state-of-the-art compression algorithms.Comment: Accepted by SenSys '1
    corecore