
Super-Fast 3-Ruling Sets∗

Kishore Kothapalli1 and Sriram Pemmaraju2

1 International Institute of Information Technology, Hyderabad, India 500 032
kkishore@iiit.ac.in

2 Department of Computer Science, The University of Iowa, Iowa City, IA
52242-1419, USA, sriram-pemmaraju@uiowa.edu

Abstract
A t-ruling set of a graph G = (V,E) is a vertex-subset S ⊆ V that is independent and satisfies
the property that every vertex v ∈ V is at a distance of at most t from some vertex in S. A
maximal independent set (MIS) is a 1-ruling set. The problem of computing an MIS on a network
is a fundamental problem in distributed algorithms and the fastest algorithm for this problem is
the O(logn)-round algorithm due to Luby (SICOMP 1986) and Alon et al. (J. Algorithms 1986)
from more than 25 years ago. Since then the problem has resisted all efforts to yield to a sub-
logarithmic round algorithm. There has been recent progress on this problem, most importantly
an O(log ∆ ·

√
logn)-round algorithm on graphs with n vertices and maximum degree ∆, due

to Barenboim et al. (to appear FOCS 2012). The time complexity of this algorithm is sub-
logarithmic for ∆ = 2o(

√
logn).

We approach the MIS problem from a different angle and ask if O(1)-ruling sets can be
computed faster than the currently known fastest algorithm for an MIS? As an answer to this
question, we show how to compute a 2-ruling set of an n-vertex graph in O((logn)3/4) rounds.
We also show that the above result can be improved for special classes of graphs. For instance,
on high girth graphs (girth 6 or more), trees, and graphs of bounded arboricity, we show how
to compute 3-ruling sets in exp(O(

√
log logn)) rounds, O((log logn)2 · log log logn) rounds, and

O((log logn)3) rounds, respectively.
Our main technique involves randomized sparsification that rapidly reduces the graph degree

while ensuring that every deleted vertex is close to some vertex that remains. This technique
may have further applications in other contexts, e.g., in designing sub-logarithmic distributed
approximation algorithms. Our results raise intriguing questions about how quickly an MIS (or
1-ruling sets) can be computed, given that 2-ruling sets can be computed in sub-logarithmic
rounds.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases MIS, ruling sets, graph sparsification, distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.136

1 Introduction

Symmetry breaking is a fundamental theme in distributed computing and a classic example of
symmetry breaking arises in the computation of a maximal independent set (MIS) of a given
graph. About 25 years ago Alon et al. [1] and Luby [12] independently devised randomized
algorithms for the MIS problem, running in O(logn) communication rounds. Since then, all

∗ Part of this work was done while the first author was visiting the University of Iowa as an Indo-US
Science and Technology Forum Research Fellow. The work of the second author is supported in part by
National Science Foundation grant CCF 0915543.

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 136–147

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.136
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Kothapalli and S. Pemmaraju 137

attempts to devise an algorithm for MIS that runs in sub-logarithmic rounds (for general
graphs) have failed. Recently, Kuhn et al. [10] proved that there exist n-vertex graphs for
which any distributed algorithm, even randomized, that solves the MIS problem requires
Ω(
√

logn) communication rounds. Closing this gap between the O(logn) upper bound and
the Ω(

√
logn) lower bound is one of the fundamental challenges in distributed computing.

There has been some exciting recent progress in closing this gap. Barenboim et al. [5]
present an algorithm that runs in O(log ∆

√
logn) rounds on n-vertex graphs with maximum

degree ∆. This is sub-logarithmic for ∆ ∈ 2o(
√

logn). This result uses techniques developed
in a paper by Kothapalli et al. [8] for deriving an O(

√
logn)-round algorithm for computing

an O(∆)-coloring of a n-vertex graph with maximum degree ∆. Barenboim et al. [5] also
present an algorithm for computing an MIS on trees in O(

√
logn log logn) rounds. This is

a small improvement over an algorithm from PODC 2011 for computing an MIS on trees
due to Lenzen and Wattenhofer [11] that runs in O(

√
logn · log logn) rounds. Barenboim et

al. extend their result on MIS on trees to graphs with girth at least 6 and to graphs with
bounded arboricity.

A problem closely related to MIS, that also involves symmetry breaking at its core, is the
problem of computing t-ruling sets. A t-ruling set of a graph G = (V,E) is an independent
subset S of vertices with the property that every vertex v ∈ V is at a distance of at most
t from some vertex in S. Thus an MIS is a 1-ruling set1. In this paper we investigate the
distributed complexity of the problem of computing t-ruling sets for t = O(1) with the aim of
determining whether an O(1)-ruling set can be computed more efficiently than an MIS. For
general graphs and for various graph subclasses we show that it is indeed possible to compute
t-ruling sets, for small constant t, in time that is much smaller than the best currently
known running time for a corresponding MIS algorithm. In our first result, we present an
algorithm that computes a 2-ruling set in O((logn)3/4) rounds on general graphs. Thus we
have a sub-logarithmic algorithm for a seemingly minor “relaxation” of the MIS problem.
We improve on this result substantially for trees, graphs of girth at least 6, and graphs of
bounded arboricity. For all these subclasses, we present algorithms for computing 3-ruling
sets whose runtime (in rounds) is exponentially faster than the fastest currently known
corresponding MIS algorithms. For example, for trees our algorithm computes a 3-ruling set
in O((log logn)2 · log log logn) communication rounds, whereas the fastest currently known
algorithm for MIS on trees takes O(

√
logn log logn) rounds [5].

Our work raises intriguing questions on the possibility of faster MIS algorithms and on
the separation between the distributed complexity of O(1)-ruling sets and MIS. For example,
could we design algorithms for MIS that first compute a 2- or 3-ruling set and then quickly
convert that subset to a 1-ruling set? Is it possible that there are MIS algorithms for trees
and related graph subclasses that run in O(poly(log logn)) rounds? Alternately, could the
MIS problem be strictly harder than the problem of computing a t-ruling set for some small
constant t?

Our results should also be viewed in the context of results by Gfeller and Vicari [7].
These authors showed how to compute in O(log logn) rounds a vertex-subset T of a given
n-vertex graph G = (V,E) such that (i) every vertex is at most O(log logn) hops from some
vertex in T and (ii) the subgraph induced by T has maximum degree O(log5 n). One can use
the Barenboim et al. O(log ∆

√
logn)-round MIS algorithm on G[T] and sparsify T into an

O(log logn)-ruling set in an additional O(
√

logn · log logn) rounds. Thus, by combining the

1 In the definition of Gfeller and Vicari [7], a t-ruling set need not be independent, and what we call a
t-ruling set, they call an independent t-ruling set.

FSTTCS 2012

138 Super-Fast 3-Ruling Sets

Gfeller-Vicari algorithm with the Barenboim et al. algorithm one can compute an O(log logn)-
ruling set in general graphs in O(

√
logn · log logn) rounds. Our result can be viewed as

extending the Gfeller-Vicari result by using t = O(1) instead of t = O(log logn). Also worth
noting is the fact that Gfeller and Vicari use their O(log logn)-ruling set computation as
an intermediate step to computing an MIS on growth-bounded graphs. While the techniques
that work for growth-bounded graphs do not work for general graphs or for the other graph
subclasses we consider, this suggests the possibility of getting to an MIS via a t-ruling set for
small t.

Our technique involves a rapid sparsification of the graph while ensuring that nodes that
are removed from further consideration are close (within one or two hops) to some remaining
node. Using this technique we show how to reduce the degrees of graphs rapidly and after
sufficiently reducing the degrees, we can apply MIS algorithms due to Barenboim et al. [5]
that take advantage of the low maximum degree. For example, given a graph G = (V,E) and
a parameter ε, 0 < ε < 1, our sparsification procedure can run in O

(
log ∆

(logn)ε

)
rounds and

partition V into subsets M and W such that with high probability (i) G[M] has maximum
degree O(2(logn)ε) and (ii) every vertex in W has a neighbor in M . At this stage, we can
apply the MIS algorithm of Barenboim et al. [5] that runs in O(log ∆ ·

√
logn) rounds on

G[M]. Since ∆(G[M]) = O(2(logn)ε), this step takes O((logn)1/2+ε) rounds, leading to a
2-ruling set algorithm that runs in O

(
log ∆

(logn)ε + (logn)1/2+ε
)
rounds. Picking ε = 1/4 yields

the O((logn)3/4) rounds 2-ruling set algorithm mentioned above. We use a similar rapid
sparsification approach to derive faster ruling set algorithms for different graph subclasses.
We believe that the sparsification technique may be of independent interest in itself, especially
in designing distributed approximation algorithms that run in sub-logarithmic number of
rounds.

1.1 Model
We consider distributed systems that can be modeled by a graph G = (V,E) with the
vertices representing the computational entities and the edges representing communication
links between pairs of computational entities. We use the standard synchronous, message
passing model of communication in which each node, in each round, can send a possibly
distinct message along each incident edge. All of our algorithms are structured as a series of
“sparsification” steps interleaved with calls to subroutines implementing MIS algorithms on
low degree graphs, due to Barenboim et al. [5]. During the sparsification steps, each node
only needs to inform its neighbors of its membership in some set and therefore each node only
needs to send the same single bit to all of its neighbors. Therefore, communication during
the sparsification steps can be viewed as occuring in in a fairly restrictive communication
model in which each node is only allowed to (locally) broadcast a single bit to all neighbors.
However, some of the MIS algorithms in Barenboim et al. [5] run in the LOCAL model,
which allows each node to send a message of arbitrary size to each neighbor in each round.
Thus, due to their dependency on the MIS algorithms of Barenboim et al. [5], the algorithms
in this paper also require the use of the LOCAL model.

1.2 Definitions and Notation
Given a graph G = (V,E), we denote by N(v) the neighborhood of v and by degG(v) the
quantity |N(v)|. Let distG(u, v) refer to the shortest distance between any two vertices u and
v in G. For a subset of vertices V ′ ⊆ V , let G[V ′] be the subgraph induced by the subset V ′.

K. Kothapalli and S. Pemmaraju 139

Our calculations make use of Chernoff bounds for tail inequalities on the sum of independ-
ent random variables. In particular, let X :=

∑n
i=1 Xi with E[Xi] = p for each 1 ≤ i ≤ n.

The upper tail version of Chernoff bounds that we utilize is: Pr[X ≥ E[X] · (1 + ε)] ≤
exp(−E[X]ε2/3) for any 0 < ε < 1.

In our work, we derive a 3-ruling set algorithm for graphs with bounded arboricity. Let
the density of a graph G = (V,E), |V | ≥ 2, be the ratio d|E|/(|V | − 1)e. Let the density of a
single-vertex graph be 1. The arboricity of a graph G = (V,E), denoted a(G), can be defined
as a(G) := max{density(G′) | G′ is a subgraph of G}. By the celebrated Nash-Williams
decomposition theorem [14], the arboricity of a graph is exactly equal to the minimum number
of forests that its edge set can be decomposed into. For example, trees have arboricity one.
The family of graphs with arboricity a(G) = O(1) includes all planar graphs, graphs with
treewidth bounded by a constant, graphs with genus bounded by a constant, and the family
of graphs that exclude a fixed minor. A property of graphs with arboricity a(G) that has been
found useful in distributed computing [2, 3, 4] is that the edges of such graphs can be oriented
so that each node has at most a(G) incident edges oriented away from it. However, finding
such an orientation takes Ω

(
logn

log a(G)

)
rounds by a lower bound result due to Barenboim and

Elkin [2] and since we are interested in sub-logarithmic algorithms, we cannot rely on the
availability of such an orientation for a(G) = O(1).

1.3 Our Results
Here we summarize the results in this paper.
1. An algorithm, that with high probability, computes a 2-ruling set on general graphs

in O
(

log ∆
(logn)ε + (logn)1/2+ε

)
rounds for any 0 < ε < 1. Substituting ε = 1/4 into this

running time expression simplifies it to O((logn)3/4).
2. An algorithm, that with high probability, computes a 3-ruling set on graphs of girth at

least 6 in exp(O(
√

log logn)) rounds.
3. An algorithm, that with high probability, computes a 3-ruling set in

O((log logn)2 log log logn) rounds on trees.
4. An algorithm, that with high probability, computes a 3-ruling set on graphs of bounded

arboricity in O((log logn)3) rounds.

Note that all our results run significantly faster than currently known fastest corresponding
algorithms for MIS. In fact, for trees and graphs of bounded arboricity, our results improve
the corresponding results exponentially. This is illustrated further in Table 1.

Table 1 Comparison of the best known runtimes of distributed algorithms for MIS, O(log log n)-
ruling sets, and 3-ruling sets. It should be noted that the algorithm for general graphs described
in this paper computes a 2-ruling set. Also, we use the notation Õ(f(n)) as a short form for
O(f(n) · polylog(f(n))).

Graph Class MIS [5] O(log log n)-ruling 3-ruling set
sets [7] [This Paper]

General O(log ∆ ·
√

log n) O(
√

log n · log log n) O((log n)3/4)
Trees Õ(

√
log n) Õ((log log n)2)

Girth ≥ 6 O(log ∆ log log n + eO(
√

log log n)) eO(
√

log log n)

Bounded O(log ∆(log ∆ + log log n
log log log n

)) O((log log n)3)
arboricity
(a = O(1))

FSTTCS 2012

140 Super-Fast 3-Ruling Sets

1.4 Related Work
The work most closely related to ours, which includes the recent work of Barenboim et al. [5]
and the work of Gfeller and Vicari [7], has already been reviewed earlier in this section.

Other work on the MIS problem that is worth mentioning is the elegant MIS algorithm of
Métivier et al. [13]. In this algorithm, each vertex picks a real uniformly at random from the
interval [0, 1] and joins the MIS if its chosen value is a local maxima. This can be viewed as
a variant of Luby’s algorithm [12] and like Luby’s algorithm, runs in O(logn) rounds. Due
to its simplicity, this MIS algorithm is used in part by the MIS algorithm on trees by Lenzen
and Wattenhofer [11] and also by Barenboim et al. [5].

The MIS problem on the class of growth-bounded graphs has attracted fair bit of attention
[9, 7, 15]. Growth-bounded graphs have the property that the r-neighborhood of any vertex
v has at most O(rc) independent vertices in it, for some constant c > 0. In other words, the
rate of the growth of independent sets is polynomial in the radius of the “ball” around a
vertex. Schneider and Wattenhofer [15] showed that there is a deterministic MIS algorithm
on growth-bounded graphs that runs in O(log∗ n) rounds. Growth-bounded graphs have
been used to model wireless networks because the number of independent vertices in any
spatial region is usually bounded by the area or volume of that region. In contrast to growth-
bounded graphs, the graph subclasses we consider in this paper tend to have arbitrarily
many independent vertices in any neighborhood.

Fast algorithms for O(1)-ruling sets may have applications in distributed approximation
algorithms. For example, in a recent paper by Berns et al. [6] a 2-ruling set is computed as a
way of obtaining a O(1)-factor approximation to the metric facility location problem. Our
work raises questions about the existence of sub-logarithmic round algorithms for problems
such as minimum dominating set, vertex cover, etc., at least for special graph classes.

1.5 Organization of the Paper
The rest of the paper is organized as follows. Section 2 shows our result for general graphs.
Section 3 shows our results for graphs of girth at least 6, and for trees. Section 4 extends the
results of Section 3 to graphs of arboricity bounded by a constant.

2 2-Ruling Sets in General Graphs

In this section we describe Algorithm RulingSet-GG, that runs in sub-logarithmic rounds
and computes a 2-ruling set in general graphs. The reader is encouraged to consult the
pseudocode of this algorithm while reading the following text. Let f be the quantity 2(logn)ε

for some parameter 0 < ε < 1. Let i∗ be the smallest positive integer such that f i∗+1 ≥ ∆.
Thus i∗ = dlogf ∆e − 1. It is also useful to note that i∗ = O

(
log ∆

(logn)ε

)
. The algorithm

proceeds in stages and there are i∗ stages, indexed by i = 1, 2, . . . , i∗. In Stage i, all “high
degree” vertices, i.e., vertices with degrees greater than ∆

fi , are processed. Roughly speaking,
in each stage we peel off from the “high degree” vertex set, a subgraph with degree bounded
above by O(f · logn). Following this we also peel off all neighbors of this subgraph. More
precisely, in Stage i each “high degree” vertex joins a set Mi with probability 6 logn·fi

∆ (Line
6). Later we will show (in Lemma 1) that with high probability any vertex that is in V at
the start of Stage i has degree at most ∆/f i−1. (This is trivially true for i = 1.) Therefore,
it is easy to see that any vertex in the graph induced by Mi has expected degree at most
O(f · logn). In fact, this is true with high probability, as shown in Lemma 2. This degree
bound allows the efficient computation of an MIS on the subgraph induced by Mi. Following

K. Kothapalli and S. Pemmaraju 141

the identification of the set Mi, all neighbors of Mi that are outside Mi are placed in a set
Wi (Line 9). Both sets Mi and Wi are then deleted from the vertex set V . The sets Wi play
a critical role in our algorithm. For one, given the probability 6 logn·fi

∆ of joining Mi, we can
show that with high probability every “high degree” vertex ends up either in Mi or in Wi.
This ensures that all “high degree” vertices are deleted from V in each Stage i. Also, the
sets Wi act as “buffers” between the Mi’s ensuring that there are no edges between Mi and
Mi′ for i 6= i′. As a result the graph induced by ∪iMi also has low degree, i.e., O(f · logn).
Therefore, we can compute an MIS on the graph induced by ∪iMi in “one shot” rather than
deal with each of the graphs induced by M1,M2, . . . one by one.

Given the way in which “high degree” vertices disappear from V , at the end of all i∗ stages,
the graph G induced by vertices that still remain in V would have shrunk to the point where
the maximum degree of a vertex in G is O(f). The algorithm ends by computing an MIS on
the graph induced by V ∪ (∪iMi). As mentioned before, the Mi’s do not interact with each
other or with V and therefore the degree of the graph induced by (∪iMi) ∪ V is O(f · logn).
We use the MIS algorithm due of Barenboim et al. [5] that runs in O(log ∆ ·

√
logn) rounds

for this purpose. Since ∆ = O(f · logn) and f = 2(logn)ε , this step runs in O((logn) 1
2 +ε)

rounds. In the algorithm described below, we denote by MIS-LOWDEG the subroutine that
implements the Barenboim et al. algorithm. We use H to denote a static copy of the input
graph G.

Algorithm RulingSet-GG(G = (V,E))
1. f ← 2(logn)ε ; H ← G

2. for i← 1, 2, . . . , i∗ do
/* Stage i */

3. Mi ← ∅; Wi ← ∅;
4. for each v ∈ V in parallel do
5. if degG(v) > ∆

fi then
6. Mi ←Mi ∪ {v} with probability 6 logn·fi

∆
7. for each v ∈ V in parallel do
8. if v ∈ N(Mi) \Mi then
9. Wi ←Wi ∪ {v}
10. V ← V \ (Mi ∪Wi)

end-for(i)
11. I ← MIS-LOWDEG(H[(∪iMi) ∪ V])

return I;

I Lemma 1. At the end of Stage i, 1 ≤ i ≤ i∗, with probability at least 1− 1
n5 all vertices

still in V have degree at most ∆
fi .

Proof. Consider a “high degree” vertex v, i.e., a vertex with degree more than ∆/f i, at the
start of Stage i. Then,

Pr[v is added to Mi ∪Wi] ≥ 1−
(

1− 6 logn · f i

∆

) ∆
fi

≥ 1− e−6·logn ≥ 1− 1
n6 .

Therefore, using the union bound, we see that with probability at least 1− 1
n5 all vertices in

V that have degree more than ∆/f i at the start of Stage i will join Mi ∪Wi in Stage i. J

I Lemma 2. Consider a Stage i, 1 ≤ i ≤ i∗. With probability at least 1− 2
n , the subgraph

induced by Mi (i.e., H[Mi]) has maximum degree 12 logn · f .

FSTTCS 2012

142 Super-Fast 3-Ruling Sets

Proof. We condition on the event that all vertices that are in V at the beginning of Stage i
have degree at most ∆

fi−1 . For i = 1, this event happens with probability 1 and for i > 1,
Lemma 1 implies that this event happens with probability at least 1 − 1/n5. Consider a
vertex v ∈ V that is added to Mi. Let degMi

(v) denote the degree of vertex v in H[Mi].
Then, E[degMi

(v)] ≤ ∆
fi−1 · 6 logn·fi

∆ = 6 logn · f. Here we use the fact that degG(v) ≤ ∆
fi−1

for all v ∈ V at the start of Stage i. Since vertices join Mi independently, using Chernoff
bounds we conclude that Pr[degMi

(v) ≥ 12 logn · f] ≤ 1/n2. Therefore, with probability
at least 1 − 1/n the maximum degree of H[Mi] is at most 12 logn · f . We now drop the
conditioning on the event that all vertices that are in V at the beginning of Stage i have
degree at most ∆

fi−1 and use Lemma 1 and the union bound to obtain the lemma. J

I Theorem 3. Algorithm RulingSet-GG computes a 2-ruling set of the input graph G in
O(log ∆

(logn)ε + (logn)1/2+ε) rounds.

Proof. It is easy to see that every stage of the algorithm runs in O(1) communication rounds.
Since there are i∗ stages and since i∗ = O

(
log ∆

(logn)ε

)
, the running time of the stages all

together is O
(

log ∆
(logn)ε

)
. From Lemma 1 we see that the vertex set V remaining after all

i∗ stages induces a graph with maximum degree f with high probability. From Lemma
2 we see that the maximum degree of every H[Mi] is bounded above by O(f · logn) with
high probability. Furthermore, since there is no interaction between any pair of Mi’s and
also between V and the Mi’s, the maximum degree of the graph induced by (∪iMi) ∪ V is
also O(f · logn). Therefore, with high probability, the MIS computation at the end of the
algorithm takes O((logn)1/2+ε) rounds using [5, Theorem 4.3]. Together these observations
yield the claimed running time.

To see that I is a 2-ruling set, first observe that every vertex v ends up in Mi ∪Wi for
some 1 ≤ i ≤ i∗ or remains in V until the end. If v ends up in Wi, it is at most 2 hops from
a vertex in I that belongs to the MIS of H[Mi]. Otherwise, v is at most 1 hop away from a
vertex in I. J

Using ε = 1/4 in the above theorem results in Corollary 4. A further optimization on the
choice of ε for graphs with degree in 2ω(

√
logn) is shown in Corollary 5.

I Corollary 4. Algorithm RulingSet-GG computes a 2-ruling set of the input graph G in
O((logn)3/4) rounds.

I Corollary 5. (i) For a graph G with ∆ = 2O(
√

logn), Algorithm RulingSet-GG computes
a 2-ruling set of the input graph G in O((logn)1/2+ε) rounds for any ε > 0. (i) For a graph
G with ∆ = 2ω(

√
logn), Algorithm RulingSet-GG computes a 2-ruling set of the input

graph G in O((logn)1/4
√

log ∆) rounds.

Proof. We get (i) by simply plugging ∆ = 2O(
√

logn) into the running time expression from
Theorem 3. (ii) In this case, we know that log ∆ = ω(

√
logn) and log ∆ ≤ logn. Consider

the two expressions log ∆
(logn)ε and (logn)1/2+ε in the running time expression from Theorem

3. At ε = 0 the first term is larger and as we increase ε, the first term falls and the second
term increases. By the time ε = 1/4 the second term is larger. We find a minimum value by
equating the two terms and solving for ε. This yields an “optimal” value of

ε = log log ∆
2 log logn −

1
4

and plugging this into the running time expression yields the running time bound of
O((logn)1/4 ·

√
log ∆) rounds. J

K. Kothapalli and S. Pemmaraju 143

3 3-Ruling Sets for High Girth Graphs and Trees

Our goal in this section is to devise an O(1)-ruling set algorithm for high girth graphs and
trees that is much faster than the 2-ruling set algorithm for general graphs from the previous
section. In Algorithm RulingSet-GG we allow the graph induced by Mi to have degree as
high as O(f · logn) where f = 2(logn)ε . Computing an MIS on a graph with degree as high
as this is too time consuming for our purposes. We could try to reduce f , but this will result
in a corresponding increase in the number of stages. Therefore, we need to use additional
ideas to help simultaneously keep the maximum degree of the graphs H[∪iMi] small and
also the number of stages small.

Let G = (V,E) be a graph with n vertices, maximum degree ∆, and girth at least 6.
Let i∗ be the smallest positive integer such that ∆1/2i

∗

≤ 6 · logn. It is easy to check that
i∗ = O(log log ∆).

Let M1 and M2 be disjoints subsets of V such that the maximum vertex degree in G[M1]
and in G[M2] is bounded by O(logn). We use MIS-TWOSTAGE(G,M1,M2) to denote a call to
the following algorithm for computing an MIS on G[M1 ∪M2].
1. Compute an MIS I1 on G[M1] using the algorithm of Barenboim et al. ([5], Theorem

7.2).
2. Compute an MIS I2 on G[M2 \ N(I1)] using the algorithm of Barenboim et al. ([5],

Theorem 7.2).
3. return I1 ∪ I2.
This algorithm runs in exp(O(

√
log logn)) rounds since the maximum degree in G[M1]

and in G[M2] is bounded by O(logn) and therefore by Theorem 7.2 [5] each of the MIS
computations requires exp(O(

√
log logn)) rounds. If G were a tree, then we could use

Theorem 7.3 in Barenboim et al. [5], which tells us that we can compute an MIS on a tree
with maximum degree O(logn) in O(log logn · log log logn) rounds. From this we see that a
call to MIS-TWOSTAGE(G,M1,M2) runs in O(log logn · log log logn) rounds when G is a tree.

In our previous algorithm, Algorithm RulingSet-GG, we used degree ranges (∆
f ,∆],

(∆
f2 ,

∆
f], etc. Here we use even larger degree ranges: (∆1/2,∆], (∆1/4,∆1/2], etc. The al-

gorithm proceeds in stages and in Stage i all vertices with degrees in the range (∆1/2i ,∆1/2i−1]
are processed. To understand the algorithm and why it works consider what happens in
Stage 1. (It may be helpful to consult the pseudocode of Algorithm RulingSet-HG while
reading the following.) In Line 6 we allow “high degree” vertices (i.e., those with degree more
than

√
∆) to join a set M1 with a probability 6 logn

∆ . This probability is small enough that it
ensures that the expected maximum degree of the subgraph induced by M1 is O(logn). In
fact, this also holds with high probability, as shown in Lemma 8. However, as can be seen
easily, there are lots of “high degree” vertices that have no neighbor in M1. We use two ideas
to remedy this situation. The first idea is to allow “low degree” vertices (i.e., those with
degree at most

√
∆) also to join a set M2, with the somewhat higher probability of 6 logn√

∆
(Line 7). This probability is low enough to ensure that the graph induced by M2 has O(logn)
maximum degree, but it is also high enough to ensure that if a “high degree” node has lots
of “low degree” neighbors, it will see some neighbor in M2, with high probability. This still
leaves untouched “high degree” vertices with lots of “high degree” neighbors. To deal with
these vertices, we remove not just the neighborhood of M1, but also the 2-neighborhood of
M1. The fact that G has a high girth ensures that a “high degree” vertex that has many
“high degree” neighbors has lots of vertices in its 2-neighborhood. This allows us to show that
such “high degree” vertices are also removed with high probability. The above arguments
are formalized in Lemma 6. We repeat this procedure for smaller degree ranges until the

FSTTCS 2012

144 Super-Fast 3-Ruling Sets

W

M

M

1

2

High DegreeLow Degree

Figure 1 Figure showing one iteration of Algorithm RulingSet-HG. The figure shows the sets
M1, M2 and W .

degree of the graph that remains is poly-logarithmic. Figure 1 shows one iteration of the
algorithm. Pseudocode of our algorithm appears as Algorithm RulingSet-HG below.

Algorithm RulingSet-HG(G = (V,E))
1. I ← ∅
2. for i = 1, 2, · · · , i∗ do

/* Stage i */
3. M1 ← ∅; M2 ← ∅; W ← ∅
4. for v ∈ V in parallel do
5. if deg(v) > ∆1/2i then
6. M1 ←M1 ∪ {v} with probability 6·logn

∆1/2i−1

else if deg(v) ≤ ∆1/2i then
7. M2 ←M2 ∪ {v} with probability 6·logn

∆1/2i

8. I ← I ∪ MIS-TWOSTAGE(G,M1,M2)
9. for v ∈ V \ (M1 ∪M2) in parallel do
10. if dist(v,M1 ∪M2) ≤ 2 then
11. W ←W ∪ {v}
12. V ← V \ (M1 ∪M2 ∪W)

end-for(i)
13. I ← I ∪ MIS(G)

return I;

In the following, we analyze Algorithm RulingSet-HG. We show in Lemma 6 that all
nodes of degree at least ∆1/2i can be processed in the ith iteration. This is followed by
Lemma 8 that argues that the degree of G[M1 ∪M2] is O(logn), and finally Theorem 9 that
shows our result for graph of girth at least 6 and trees.

I Lemma 6. For 1 ≤ i ≤ i∗, with probability at least 1− 1/n2, all vertices still in V have
degree at most ∆1/2i at the end of iteration i.

Proof. Consider a vertex v ∈ V at the start of iteration i that has degree greater than ∆1/2i .
Vertex v can have one of two types:
Type I : v is of Type I if at least half of v’s neighbors have degree greater than ∆1/2i .
Type II : v is of Type II if fewer than half of v’s neighbors have degree greater than ∆1/2i .

If v is of Type I, then there are at least 1/2 · ∆1/2i · ∆1/2i = ∆1/2i−1
/2 vertices in v’s

2-neighborhood. Here we use the fact that G has girth at least 6. Now note that any

K. Kothapalli and S. Pemmaraju 145

vertex u in v’s 2-neighborhood is added to M1 ∪ M2 with probability at least 6 logn
∆1/2i−1 .

Therefore, the probability that no vertex in v’s 2-neighborhood is added toM1∪M2 is at most
(1− 6 logn

∆1/2i−1)|N2(v)|, where N2(v) denotes the 2-neighborhood of vertex v. Here we use the fact
that vertices are added toM1∪M2 independently. Using the lower bound |N2(v)| ≥ ∆1/2i−1

/2,

we see that Pr[v is added to M1∪M2∪W] ≥ 1−
(

1− 6·logn
∆1/2i−1

)∆1/2i−1

2 ≥ 1−e−3·logn = 1− 1
n3 .

If v is of Type II, then more than half of v’s neighbors have degree less than or equal to ∆1/2i .
Each such “low degree” neighbor is added to M2 with probability 6 logn/∆1/2i . Therefore,

Pr[v is added to M1 ∪M2 ∪W] ≥ 1−
(

1− 6·logn
∆1/2i

)∆1/2i

2 ≥ 1− e−3·logn = 1− 1
n3 . In either

case, v is added to M1 ∪M2 ∪W with probability at least 1− 1/n3. Therefore, by the union
bound every node of degree greater than ∆1/2i is added to M1 ∪M2 ∪W with probability at
least 1− 1/n2. Therefore, at the end of iteration i, with probability at least 1− 1/n2, there
are no vertices in V with degree more than ∆1/2i . J

I Corollary 7. With probability at least 1 − 1/n2, after all i∗ iterations of the for-loop in
Algorithm RulingSet-HG, the graph G has maximum degree at most 6 logn.

I Lemma 8. Consider an arbitrary iteration 1 ≤ i ≤ i∗ and let H = G[M1 ∪M2]. With
probability at least 1− 2/n, the maximum degree of a vertex in H[Mj], j = 1, 2 is at most
12 · logn.

Proof. We condition on the event that all vertices that are in V at the beginning of an
iteration i have degree at most ∆1/2i−1 . For i = 1, this event happens with probability 1 and
for i > 1, Lemma 6 implies that this event happens with probability at least 1−1/n2. Consider
a vertex v ∈ V that is added to M1. Let degM1(v) denote the degree of vertex v in G[M1].
Then, E[degM1(v)] ≤ ∆1/2i−1 · 6·logn

∆1/2i−1 = 6 · logn. Here we use the fact that deg(v) ≤ ∆1/2i−1

for all v ∈ V at the start of iteration i. Similarly, for a vertex v ∈ V that is added to M2, let
degM2(v) denote the degree of vertex v inG[M2]. Then, E[degM2(v)] ≤ ∆1/2i · 6·logn

∆1/2i = 6·logn.
Here we use the fact that v is added to M2 only if deg(v) ≤ ∆1/2i . Since vertices join M1
independently, using Chernoff bounds we conclude that Pr[degM1(v) ≥ 12 · logn] ≤ 1/n2.
Similarly, we conclude that Pr[degM2(v) ≥ 12 · logn] ≤ 1/n2. Therefore, with probability
at least 1− 1/n the maximum degree of G[M1 ∪M2] is at most 12 logn. We now drop the
conditioning on the event that all vertices that are in V at the beginning of iteration i have
degree at most ∆1/2i−1 and use Lemma 6 and the union bound to obtain the lemma. J

I Theorem 9. Algorithm RulingSet-HG computes a 3-ruling set of G. If G is a graph
with girth at least 6 then RulingSet-HG terminates in exp(O(

√
log logn)) rounds with high

probability. If G is a tree then RulingSet-HG terminates in O((log logn)2 · log log logn)
rounds with high probability.

Proof. Consider a vertex v ∈ V that is added to M1 ∪M2 ∪W in some iteration i. Since
the algorithm computes an MIS on G[M1 ∪M2] and since every vertex in W is at most 2
hops (via edges in G) from some vertex in M1 ∪M2, it follows that v is at distance at most
3 from a vertex placed in I in iteration i. A vertex that is not added to M1 ∪M2 ∪W ends
up in the graph whose MIS is computed (in Line 13) and is therefore at most 1 hop away
from a vertex in I. Thus every vertex in V is at most 3 hops away from some vertex in I.

The total running time of the algorithm is i∗ times the worst case running time the call to
the MIS subroutine in Line 8 plus the running time of the call to the MIS subroutine in Line 13.
This implies that in the case of graphs of girth at least 6, Algorithm RulingSet-HG runs in

FSTTCS 2012

146 Super-Fast 3-Ruling Sets

exp(O(
√

log logn))·O(log log ∆) = exp(O(
√

log logn)) rounds. In the case of trees, Algorithm
RulingSet-HG runs in O(log log ∆ · log logn · log log logn) = O((log logn)2 · log log logn)
rounds. J

4 Graphs with Bounded Arboricity

In the previous section, we used the fact that the absence of short cycles induces enough
independence so that in each iteration, with high probability the “high degree” nodes join the
setM1∪M2∪W . This has allowed us to process nodes of degrees in the range (∆1/2i ,∆1/2i−1]
in iteration i. In this section, we show that a 3-ruling set can be computed even in the presence
of short cycles provided the graph has an arboricity bounded by O(logk n) for a constant k.
The algorithm we use for this case is essentially similar to that of Algorithm RulingSet-HG
from Section 3. Recall from Section 3 that i∗ refers to the smallest positive integer such that
∆1/2i

∗

≤ 6 · logn. We make the following changes to Algorithm RulingSet-HG to adapt it
to graphs of arboricity a = a(G).

In iteration i, for 1 ≤ i ≤ i∗, a node v that has a degree at least ∆1/2i joins the set M1
with probability 6·a logn

∆1/2i−1 . (See Line 6 of Algorithm RulingSet-HG.)
In iteration i, for 1 ≤ i ≤ i∗, a node v with degree less than ∆1/2i joins M2 with
probability 6·a logn

∆1/2i . (See Line 7 of Algorithm RulingSet-HG).

In the following, we show lemmas equivalent to Lemma 6 and 8 for a graph with
a ∈ O(logk n) for a constant k.

I Lemma 10. Consider any iteration i for 1 ≤ i ≤ i∗. With probability at least 1− 1
n2 , all

nodes still in V have degree at most ∆1/2i at the end of iteration i.

Proof. For i = 0, we see that each vertex has degree at most ∆ with probability 1. Hence,
the lemma holds for i = 0. Let us assume inductively that the lemma holds through the first
i− 1 iterations and let us consider the ith iteration.

Consider a node v still in V at the start of iteration i that has degree at least ∆1/2i . We
distinguish between two cases. Recall that for a vertex v, N2(v) refers to the 2-neighborhood
of v.

v has at least half its neighbors each with degree at least ∆1/2i . In this case, we notice
that v has at least ∆1/2i−1

/2a nodes at a distance of 2 from v. Otherwise, the graph
induced by the set N(v)∪N2(v) has an arboricity greater than a, which is a contradiction.
Each of the vertices u ∈ N2(v) joins M1∪M2 with probability at least 6·a logn

∆1/2i−1 . Therefore,

Pr(v ∈M1 ∪M2 ∪W) ≥ 1− (1− 6·a logn
∆1/2i−1)∆1/2i−1

/2a ≥ 1− e6 logn/2 = 1− 1/n3.
v has at most half its neighbors each with degree at least ∆1/2i . In this case, each such
neighbor of v joinsM2 with probability c·a logn

∆1/2i . Therefore, we can compute the probability

that v ∈M1 ∪M2 ∪W as follows. Pr(v ∈M1 ∪M2 ∪W) ≥ 1− (1− 6·a logn
∆1/2i)∆1/2i/2a ≥

1− e6 logn/2 = 1− 1/n3.

In either case we see that v joins M1 ∪M2 ∪W with a probability of 1/n3. Using the
union bound, as in the proof of Lemma 6, vertices still in V have degree at most ∆1/2i with
probability at most 1− 1

n2 . J

Lemma 8 also holds with the change that the graph H[Mj] for j = 1, 2 as defined in
Lemma 8 has a degree at most 12 · a logn. Since a ∈ O(logk n), the above degree is in

K. Kothapalli and S. Pemmaraju 147

O(logk+1 n), with high probability. The following theorem can be shown along the lines of
Theorem 9.

I Theorem 11. Algorithm RulingSet-HG computes a 3-ruling set of a graph G of arboricity
a = O(1) in O((log logn)3) rounds.

References
1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm

for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986.
2 L. Barenboim and M. Elkin. Sublogarithmic distributed MIS algorithm for sparse graphs

using nash-williams decomposition. In Proc. ACM PODC, pages 25–34, 2008.
3 L. Barenboim and M. Elkin. Distributed (δ + 1)-coloring in linear (in δ) time. In Proc.

ACM STOC, pages 111–120, 2009.
4 L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in polylogarithmic

time. In Proc. ACM PODC, pages 410–419, 2010.
5 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of

distributed symmetry breaking. In Proc. of IEEE FOCS, 2012, (to appear).
6 Andrew Berns, James Hegeman, and Sriram V. Pemmaraju. Super-fast distributed al-

gorithms for metric facility location. In Proc. ICALP(2), pages 428–439, 2012.
7 Beat Gfeller and Elias Vicari. A randomized distributed algorithm for the maximal in-

dependent set problem in growth-bounded graphs. In Proc. ACM PODC, pages 53–60,
2007.

8 K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. Distributed coloring in
O(
√

logn) bit rounds. In Proc. IPDPS, 2006.
9 F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer. Fast deterministic distributed

maximal independent set computation in growth-bounded graphs. In Proc. of Distribtued
Computing, pages 273–287, 2008.

10 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower
and upper bounds. CoRR, abs/1011.5470, 2010.

11 Christoph Lenzen and Roger Wattenhofer. Mis on trees. In Proc. ACM PODC, pages
41–48, 2011.

12 M. Luby. A simple parallel algorithm for the maximal independent set. SIAM Journal on
Computing, 15:1036–1053, 1986.

13 Y. Métivier, J.M. Robson, N. Saheb-Djahromi, and A. Zemmari. An optimal bit complexity
randomised distributed mis algorithm. In Proc. SIROCCO, pages 323–337, 2009.

14 C. Nash-Williams. Decompositions of finite graphs into forests. J. London Math, 39(12),
1964.

15 Johannes Schneider and Roger Wattenhofer. A log-star distributed maximal independent
set algorithm for growth-bounded graphs. In Proc. ACM PODC, pages 35–44, 2008.

FSTTCS 2012

	Introduction
	Model
	Definitions and Notation
	Our Results
	Related Work
	Organization of the Paper

	2-Ruling Sets in General Graphs
	3-Ruling Sets for High Girth Graphs and Trees
	Graphs with Bounded Arboricity

