170 research outputs found

    A Geneaology of Correspondence Analysis: Part 2 - The Variants

    Get PDF
    In 2012, a comprehensive historical and genealogical discussion of correspondence analysis was published in Australian and New Zealand Journal of Statistics. That genealogy consisted of more than 270 key books and articles and focused on an historical development of the correspondence analysis,a statistical tool which provides the analyst with a visual inspection of the association between two or more categorical variables. In this new genealogy, we provide a brief overview of over 30 variants of correspondence analysis that now exist outside of the traditional approaches used to analysethe association between two or more categorical variables. It comprises of a bibliography of a more than 300 books and articles that were not included in the 2012 bibliography and highlights the growth in the development ofcorrespondence analysis across all areas of research

    Numerical Optimization for Symmetric Tensor Decomposition

    Full text link
    We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued vectors. Algebraic methods exist for computing complex-valued decompositions of symmetric tensors, but here we focus on real-valued decompositions, both unconstrained and nonnegative, for problems with low-rank structure. We discuss when solutions exist and how to formulate the mathematical program. Numerical results show the properties of the proposed formulations (including one that ignores symmetry) on a set of test problems and illustrate that these straightforward formulations can be effective even though the problem is nonconvex

    Combinatorial problems in solving linear systems

    Get PDF
    42 pages, available as LIP research report RR-2009-15Numerical linear algebra and combinatorial optimization are vast subjects; as is their interaction. In virtually all cases there should be a notion of sparsity for a combinatorial problem to arise. Sparse matrices therefore form the basis of the interaction of these two seemingly disparate subjects. As the core of many of today's numerical linear algebra computations consists of the solution of sparse linear system by direct or iterative methods, we survey some combinatorial problems, ideas, and algorithms relating to these computations. On the direct methods side, we discuss issues such as matrix ordering; bipartite matching and matrix scaling for better pivoting; task assignment and scheduling for parallel multifrontal solvers. On the iterative method side, we discuss preconditioning techniques including incomplete factorization preconditioners, support graph preconditioners, and algebraic multigrid. In a separate part, we discuss the block triangular form of sparse matrices

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation

    Extensions of independent component analysis for natural image data

    Get PDF
    An understanding of the statistical properties of natural images is useful for any kind of processing to be performed on them. Natural image statistics are, however, in many ways as complex as the world which they depict. Fortunately, the dominant low-level statistics of images are sufficient for many different image processing goals. A lot of research has been devoted to second order statistics of natural images over the years. Independent component analysis is a statistical tool for analyzing higher than second order statistics of data sets. It attempts to describe the observed data as a linear combination of independent, latent sources. Despite its simplicity, it has provided valuable insights of many types of natural data. With natural image data, it gives a sparse basis useful for efficient description of the data. Connections between this description and early mammalian visual processing have been noticed. The main focus of this work is to extend the known results of applying independent component analysis on natural images. We explore different imaging techniques, develop algorithms for overcomplete cases, and study the dependencies between the components by using a model that finds a topographic ordering for the components as well as by conditioning the statistics of a component on the activity of another. An overview is provided of the associated problem field, and it is discussed how these relatively small results may eventually be a part of a more complete solution to the problem of vision.reviewe
    • 

    corecore