23 research outputs found

    Mildly Exponential Lower Bounds on Tolerant Testers for Monotonicity, Unateness, and Juntas

    Full text link
    We give the first super-polynomial (in fact, mildly exponential) lower bounds for tolerant testing (equivalently, distance estimation) of monotonicity, unateness, and juntas with a constant separation between the "yes" and "no" cases. Specifically, we give ∙\bullet A 2Ω(n1/4/ε)2^{\Omega(n^{1/4}/\sqrt{\varepsilon})}-query lower bound for non-adaptive, two-sided tolerant monotonicity testers and unateness testers when the "gap" parameter ε2−ε1\varepsilon_2-\varepsilon_1 is equal to ε\varepsilon, for any ε≥1/n\varepsilon \geq 1/\sqrt{n}; ∙\bullet A 2Ω(k1/2)2^{\Omega(k^{1/2})}-query lower bound for non-adaptive, two-sided tolerant junta testers when the gap parameter is an absolute constant. In the constant-gap regime no non-trivial prior lower bound was known for monotonicity, the best prior lower bound known for unateness was Ω~(n3/2)\tilde{\Omega}(n^{3/2}) queries, and the best prior lower bound known for juntas was poly(k)\mathrm{poly}(k) queries.Comment: 20 pages, 1 figur

    An ~O(n) Queries Adaptive Tester for Unateness

    Get PDF
    We present an adaptive tester for the unateness property of Boolean functions. Given a function f:{0,1}^n -> {0,1} the tester makes O(n log(n)/epsilon) adaptive queries to the function. The tester always accepts a unate function, and rejects with probability at least 0.9 if a function is epsilon-far from being unate

    Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs

    Get PDF
    We introduce a new model for testing graph properties which we call the rejection sampling model. We show that testing bipartiteness of n-nodes graphs using rejection sampling queries requires complexity Omega~(n^2). Via reductions from the rejection sampling model, we give three new lower bounds for tolerant testing of Boolean functions of the form f : {0,1}^n -> {0,1}: - Tolerant k-junta testing with non-adaptive queries requires Omega~(k^2) queries. - Tolerant unateness testing requires Omega~(n) queries. - Tolerant unateness testing with non-adaptive queries requires Omega~(n^{3/2}) queries. Given the O~(k^{3/2})-query non-adaptive junta tester of Blais [Eric Blais, 2008], we conclude that non-adaptive tolerant junta testing requires more queries than non-tolerant junta testing. In addition, given the O~(n^{3/4})-query unateness tester of Chen, Waingarten, and Xie [Xi Chen et al., 2017] and the O~(n)-query non-adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri [Roksana Baleshzar et al., 2017], we conclude that tolerant unateness testing requires more queries than non-tolerant unateness testing, in both adaptive and non-adaptive settings. These lower bounds provide the first separation between tolerant and non-tolerant testing for a natural property of Boolean functions

    Almost Optimal Testers for Concise Representations

    Get PDF
    We give improved and almost optimal testers for several classes of Boolean functions on n variables that have concise representation in the uniform and distribution-free model. Classes, such as k-Junta, k-Linear, s-Term DNF, s-Term Monotone DNF, r-DNF, Decision List, r-Decision List, size-s Decision Tree, size-s Boolean Formula, size-s Branching Program, s-Sparse Polynomial over the binary field and functions with Fourier Degree at most d. The approach is new and combines ideas from Diakonikolas et al. [Ilias Diakonikolas et al., 2007], Bshouty [Nader H. Bshouty, 2018], Goldreich et al. [Oded Goldreich et al., 1998], and learning theory. The method can be extended to several other classes of functions over any domain that can be approximated by functions with a small number of relevant variables

    Almost Optimal Distribution-Free Junta Testing

    Get PDF
    We consider the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0,1}^n. Chen, Liu, Servedio, Sheng and Xie [Zhengyang Liu et al., 2018] showed that the distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorithm that makes O~(k^2)/epsilon queries. In this paper, we give a simple two-sided error adaptive algorithm that makes O~(k/epsilon) queries

    Almost Optimal Distribution-Free Sample-Based Testing of k-Modality

    Get PDF
    corecore