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ABSTRACT

Property Testing of Boolean Functions

Jinyu Xie

The field of property testing has been studied for decades, and Boolean functions are

among the most classical subjects to study in this area. In this thesis we consider the prop-

erty testing of Boolean functions: distinguishing whether an unknown Boolean function

has some certain property (or equivalently, belongs to a certain class of functions), or is

far from having this property, where a distance parameter ϵ ∈ (0, 1) is used to set the

threshold for the latter statement. We study this problem under both the standard setting,

where the distance between functions is measured with respect to the uniform distribu-

tion, as well as the distribution-free setting, where the distance is measured with respect

to a fixed but unknown distribution. We obtain both new upper bounds and lower bounds

for the query complexity of testing various properties of Boolean functions:

• Under the standard model of property testing, we prove a lower bound of Ω̃(n1/3)

for the query complexity of any adaptive algorithm that tests whether an n-variable

Boolean function is monotone, improving the previous best lower bound of Ω̃(n1/4)

by Belov and Blais in [BB16]. We also prove a lower bound of Ω̃(n2/3) for adaptive

algorithms, and a lower bound of Ω̃(n) for non-adaptive algorithms with one-sided

errors that test unateness, a natural generalization of monotonicity. The latter lower

bound matches the previous upper bound proved by Chakrabarty and Seshadhri

[CS16], up to poly-logarithmic factors of n.

• We also study the distribution-free testing of k-juntas, where a function is a k-junta

if it depends on at most k out of its n input variables. The standard property test-

ing of k-juntas under the uniform distribution has been well understood: it has

been shown that, for adaptive testing of k-juntas (and some constant ϵ) the optimal

query complexity is Θ̃(k) [Bla09; CG04]; and for non-adaptive testing of k-juntas



it is Θ̃(k3/2) [Bla08; Che+17]. Both bounds are tight up to poly-logarithmic factors

of k. However, this problem is far from clear under the more general setting of

distribution-free testing. Previous results only imply an O(2k/ϵ)-query algorithm

for distribution-free testing of k-juntas, and besides lower bounds under the uni-

form distribution setting that naturally extend to this more general setting, no other

results were known from the lower bound side. We significantly improve these re-

sults with an Õ(k2/ϵ)-query adaptive distribution-free tester for k-juntas, as well as

an exponential lower bound of Ω(2k/3) for the query complexity of non-adaptive

distribution-free testers for this problem. These results illustrate the hardness of

distribution-free testing and also the significant role of adaptivity under this set-

ting.

• In the end we also study distribution-free testing of other basic Boolean functions.

Under the distribution-free setting, a lower bound of Ω̃(n1/5) was proved for test-

ing of (general) conjunctions, decision lists, and linear threshold functions by Glas-

ner and Servedio in [GS09], and anO(
√
n/ϵ)-query algorithm for testing monotone

conjunctions was shown byDolev and Ron in [DR11]. Building on techniques devel-

oped in [GS09] and [DR11], we improve these lower bounds to Ω̃(n1/3), and specifi-

cally for the class of conjunctions we present an adaptive algorithmwith query com-

plexity Õ(n1/3/ϵ5). For ϵ being the constant hidden in our lower bound proof, our

lower and upper bounds are tight for testing conjunctions, up to poly-logarithmic

factors of n.
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Chapter 1

Introduction

Property testing of Boolean functions was first introduced by Blum, Luby, and Rubinfeld

in [BLR93] and Rubinfeld and Sudan in [RS96]. It studies the problem of distinguishing

whether an unknown Boolean function satisfies a certain property (or equivalently, be-

longs to a certain class of functions), or is far from having this property. More precisely,

given an unknown Boolean function f : {0, 1}n → {0, 1} and a class C of functions over

the same domain (e.g., the class of functions that are monotone, which means that flipping

a variable from 0 to 1 can never change the output of the function from 1 to 0), we want to

know if f belongs to C or f is ϵ-far from C for some constant ϵ ∈ (0, 1). By ϵ-far we mean

the distance between f and any function g ∈ C, dist(f, g) := Prx[f(x) ̸= g(x)], is always

at least ϵ, with the probability taken over the uniform draw of x over {0, 1}n¹. We are

allowed to make queries to the black-box oracle of f : upon each query string x ∈ {0, 1}n,

the oracle returns the value of f(x) to us. The goal is to make as few queries as possible

to distinguish the two cases above.

Under this setting, there has been long lines of works studying scenarios with re-

spect to different choices of class C: [Dod+99; Gol+00; Fis+02; Fis04; BKR04; AC06;

Ail+07; HK08; RS09; BBM12; Bri+12; Ron+12; CS13a; CS13b; CS14; BRY13; CST14; KMS15;

Che+15; BB16] for monotonicity, [Gol+00; KS16; CS16; Bal+16; Bal+17] for unateness,

[Fis+04; Bla08; Bla09; CG04; Buh+13; STW15] for k-junta, [Mat+09; Mat+10; BBM12] for

threshold functions, and many more. There are still gaps remaining between best upper

¹In some high-level discussions, we may simply say f is far from C, when there exists some unspecified
constant ϵ such that dist(f, g) ≥ ϵ for all function g ∈ C.
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bounds and lower bounds (in terms of query complexity) for many of these problems. We

will review previous results and our contribution for testing of monotonicity, unateness,

and k-juntas in Sections 1.2 and 1.3.

A more general setting for this problem, called distribution-free testing, was intro-

duced by Goldreich, Goldwasser, and Ron in 1998 [GGR98]. Instead of measuring distance

between functions with respect to the uniform distribution over {0, 1}n, this new setting

assumes there is a fixed but unknown distribution D over {0, 1}n and the distance is cal-

culated with respect to D: distD(f, g) := Prx∼D[f(x) ̸= g(x)]. In order to gather the

missing information regarding the distribution D, we are also given the sampling oracle

access to D: each time the sampling oracle is triggered (with no input), it samples x from

D and returns x as response. We call this type of queries as sampling queries, and queries

to the black-box oralce as black-box queries. Fix a target class C, and given an unknown

function f and an unknown distribution D, we are interested in the total number of both

black-box queries to the oracle of f as well as sampling queries to the oracle ofD that one

needs to complete the task: distinguishing whether f belongs to C, or it is far from Cwith

respect to D. This model is clearly more general compared to the standard model, since

we can always fix the distribution D to be the uniform distribution over {0, 1}n.

This generalized model of distribution-free testing has been studied in [HK05; AC06;

HK07; GS09; HK04; HK08; DR11], and it was also inspired by similar models in computa-

tional learning theory like PAC learningmodel [Val84]. It has been shown in [GGR98] that

any proper PAC learning algorithm can be used for constructing distribution-free testing

algorithms for the same class. We will discuss more about previous results and our works

for distribution-free testing in Sections 1.3 and 1.4.

Before going into more detailed introductions and proofs, let’s first provide some

preparation in the next section.
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1.1 Preliminary

We introduce some formal definitions and notation in this section.

Throughout this thesis, we will restrict our attention to n-variable Boolean functions

that map {0, 1}n to {0, 1} for some positive integer n, unless otherwise specified. For

clarity of this thesis we will hide poly-logarithmic factors of n (and k for the sections

about testing k-juntas) as long as it won’t interfere with our discussion.

For two Boolean functions f, g : {0, 1}n → {0, 1} and a probability distribution D

over {0, 1}n, the distance between f and g with respect to distribution D is defined as:

distD(f, g) := Pr
z∼D

[f(z) ̸= g(z)].

For a class C of Boolean functions over {0, 1}n, we further define the distance between

f and C with respect to distribution D as:

distD(f,C) := min
g∈C

{distD(f, g)}.

Fix some constant ϵ ∈ (0, 1), we say f is ϵ-far fromCwith respect toD if distD(f,C) ≥

ϵ. Under the standard setting of property testing when we don’t specify the distribution

D, the distances are measured with respect to the uniform distribution by default.

Given the definition of distance, we can then define algorithms for testing certain

Boolean function properties (usually called testers) as follows:

Fix a class C of Boolean function and for some constant ϵ ∈ (0, 1), we define a standard

ϵ-tester for C as:

Definition 1.1.1. A randomized² algorithm A is an ϵ-tester for C, if given black-box oracle

access to an unknown Boolean function f :

²In this thesis we will always assume an algorithm is randomized, unless we state it is deterministic.
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• it accepts f with probability at least 2/3 if f ∈ C;

• it rejects f with probability at least 2/3 if f is ϵ-far from C.

We say a tester has one-sided errors if it always accepts f when f ∈ C. It is called

adaptive if the latter queries can depend on responses from previous queries, while on the

other hand, a tester is non-adaptive if it has to pre-select a set of queries, submit them to

the oracle at the same time, and make a decision (accept or reject) based on responses it

collects from the oracle. We also say an algorithm A ϵ-tests the given class C if it is an

ϵ-tester for C, and we are interested in the query complexity ofA, which is defined as how

many queries A needs to make to the black-box oracle of f .

In the distribution-free setting, we define a distribution-free ϵ-tester for C as:

Definition 1.1.2. A randomized algorithm B is a distribution-free ϵ-tester for C, if given

black-box oracle access to an unknown Boolean function f and sampling oracle access to an

unknown distribution D over {0, 1}n:

• it accepts f with probability at least 2/3 if f ∈ C;

• it rejects f with probability at least 2/3 if f is ϵ-far from C with respect to D.

Similarly, we say a distribution-free tester has one-sided errors if it always accepts f

when f ∈ C. We also say the algorithmB above ϵ-tests the given class under distribution-

free setting. The query complexity of B is usually defined as the total number of queries

it makes to either the black-box oracle of f or the sampling oracle of D, while for conve-

nience of our arguments we in fact will use an alternate definition: the maximum between

number of black-box queries used and number of sampling queries used, i.e.,B is a q-query

distribution-free tester if it makes at most q black-box queries and also at most q sampling

queries. We may also assume that, upon each sampling query, the oracle of D returns

x ∼ D as well as the value of f(x). It’s easy to see that both the new definition and new

assumption won’t change any asymptotic upper (or lower) bound we get.

4



Note that there is in fact no input from the algorithm side for queries to the sampling

oracles. Upon each input pair (f,D), one may assume without loss of generality that a

distribution-free tester consists of two phases: in the first phase, the algorithm draws a

certain number of sample pairs (x, f(x))with x ∼ D; in the second phase, it makes black-

box queries to oracle of f . In general, a query x ∈ {0, 1}n made by the algorithm in the

second phase may depend on sample pairs it receives in the first phase (e.g. it can choose

to query a string that is close to a sample string received in the first phase) and results of

queries to f made so far. Later in Chapter 3 we will prove lower bounds on non-adaptive

distribution-free testers. A distribution-free tester is said to be non-adaptive if its black-

box queries made in the second phase do not depend on results of previous black-box

queries, i.e., all queries during the second phase can be made in a single batch (though

we emphasize that they may depend on sample pairs the algorithm received in the first

phase).

We end this section with some basic notation that we will use throughout this thesis.

We will use lowercase letters like x, y to denote input strings of the functions, and

uppercase letters like A,B to denote sets (of indices, strings, etc.). A special set we will

use is [n] = {1, 2, . . . , n}, which is usually referred to the set of all n indices for input

(n-bit strings) of a Boolean function. There is a natural bi-jection between the ith input

variable and the index i for each i ∈ [n], therefore we may sometimes abuse the notation

and also say a variable xi is in A ⊂ [n] when i ∈ A, for convenience of the proofs. There

are also two special strings we will be using: 1n and 0n, which correspond to the all-1 and

all-0 string in {0, 1}n.

For any set A ⊂ [n], we write A to denote the complement of A with respect to [n],

and write {0, 1}A as the set of all Boolean strings of length |A| that are indexed by indices

in A. For any strings x, y ∈ {0, 1}n, we use xA ∈ {0, 1}A to denote the projection of x

over indices in A, and xA ◦ yA ∈ {0, 1}n to denote the string concatenated from xA and

5



yA. We also write x(A) ∈ {0, 1}n as the string obtained from x after negating all variables

in A. For the case when A = {i} for some i ∈ [n], we just write xA = xi (the ith bit of x)

and x(A) = x(i) for simplicity.

For two strings x, y ∈ {0, 1}n that differ on exactly one index i (i.e. y = x(i)), we say

(x, y) is an edge on the Boolean hypercube over {0, 1}n, and define i as its direction. We

also say this edge is a bi-chromatic edge of function f when f(x) ̸= f(y).

We write |x| as the Hamming weight of a string x ∈ {0, 1}, namely the number of 1’s

in x. For two strings x, y ∈ {0, 1}n, we write d(x, y) as the Hamming distance between

them, which is the number of indices that they differ on, and we use diff(x, y) ⊂ [n] to

denote the set of such indices. We also write x∨ y as the bitwise OR, x∧ y as the bitwise

AND, and x ⊕ y as the bitwise EXCLUSIVE-OR of two strings x and y. We also extend

such notation to be used between a string x ∈ {0, 1} and a partial string z ∈ {0, 1}A for

some A ⊂ [n[: for example, x⊕ z is used to denote the n-bit string x′ with x′
i = xi for all

i /∈ A and x′
i = xi ⊕ zi for all i ∈ A.

We use boldface letters like x to denote random variables and calligraphic letters like

D to denote a distribution. We write u ∼ D to indicate that the random variable u is

drawn from the distribution D. For any finite universe A (for example, {0, 1}n), we also

use u ∼ A to indicate that the random variable u is uniformly drawn from A . Given

two distributions P ,Q over A, we define the total variation distance between P and Q

as: dTV (P ,Q) = 1
2

∑
a∈A

|P(a)−Q(a)|.

Now we are ready to dive into our discussion about testing for various Boolean func-

tion classes.

1.2 Testing of monotonicity and unateness

We start with the classical problem of monotonicity testing. The definition of monotonic-

ity is given as follows:

6



Definition 1.2.1. For any two strings x, y ∈ {0, 1}n, we write x ≺ y if and only if xi ≤ yi

for all i ∈ [n]. A Boolean function f : {0, 1}n → {0, 1} is monotone, if and only if for any

two strings x, y ∈ {0, 1}n with x ≺ y, we have f(x) ≤ f(y).

Fix some function f , an obvious violation of f to monotonicity is a pair of two strings

x, y ∈ {0, 1}n such that either x ≺ y and f(x) > f(y), or x ≻ y and f(x) < f(y). We

call (x, y) as a violation pair in this case, and further define it as a violation edge when

(x, y) is an edge.

Property testing of monotonicity (or equivalently, testing of the class of monotone

functions) studies the problem of distinguishing whether an unknown Boolean function is

monotone or is far from monotone. It was first considered by Goldreich et al. in [Gol+00],

where they proposed a simple “edge tester” for this problem. The algorithm keeps repeat-

ing the following test for O(n/ϵ) times: uniformly samples x ∼ {0, 1}n and i ∼ [n] at

random, and rejects the input function f if (x, x(i)) is a violation edge of f . If no violation

is found the algorithm accepts the input in the end. Clearly this algorithm only has one-

sided errors, and it was shown that an input function that is ϵ-far from being monotone

gets rejected by this algorithm with high probability.

This was the best known algorithm for more than a decade, until Chakrabarty and Se-

shadhri proposed a more efficient algorithm with query complexity Õ(n7/8/ϵ3/2) [CS13a].

Instead of looking for violation edges this algorithm looked for violation pairs, and by

proving a new structural lemma regarding Boolean functions they were able to show that

Õ(n7/8/ϵ3/2) queries are enough to reject the input with high probability when the in-

put function is far from monotonicity. This strategy was then improved to obtain an

Õ(n5/6/ϵ4)-query algorithm by Chen et al. in [CST14] by introducing a more careful way

of picking the pairs.

This upper bound was further improved with an Õ(
√
n/ϵ2)-query algorithm by Khot

et al. in [KMS15], which is the most efficient algorithm for testing monotonicity known

to date. They continued to follow the “pair tester” strategy, but managed to show fewer
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queries suffice by introducing a new isoperimetric-type theorem for far-from-monotone

Boolean functions. Combined with the lower bound from [CST14] that will be discussed

in the next part, this result (almost) solved the optimal query complexity of non-adaptive

testing of monotonicity.

The algorithms mentioned above are all non-adaptive and have one-sided errors, since

they only reject the input when finding a violation to monotonicity, and their current

queries doesn’t depend on responses from previous queries.

On the lower bound side of testing monotonicity, Fisher et al. proved the first lower

bound of Ω(logn) for non-adaptive algorithms, and a lower bound of Ω(
√
n) when the

algorithm is also restricted to have one-sided errors, for some constant distance parameter

ϵ ∈ (0, 1) [Fis+02]. Chen et al. then improved the lower bound for general non-adaptive

algorithms to Ω̃(n1/5) in [CST14] and then to Ω̃(n1/2−c) in [Che+15] for any positive con-

stant c.

All these lower bounds are for non-adaptive algorithms, and only yield a lower bound

of Ω̃(logn) for adaptive algorithms. A recent breakthrough was made by Belovs and Blais

[BB16], where they exploited properties of Talagrand functions and proved a lower bound

of Ω̃(n1/4) for adaptive monotonicity testing.

For the more general setting of distribution-free testing, Halevy and Kushilevitz

showed in [HK05] an exponential lower bound for monotonicity testing under this setting,

which illustrates the hardness of distribution-free testing.

In Chapter 2 we will follow the work of [BB16] and present our new lower bound of

testing monotonicity adaptively [CWX17a], which is formally stated as follows:

Theorem 1.2.2. There exists some constant ϵ0 ∈ (0, 1) such that any adaptive algorithm that

ϵ0-tests monotonicity must make at least Ω̃(n1/3) queries.

We also want to mention that the techniques developed in the proof of Theorem 1.2.2

can be easily adapted to prove a tight Ω̃(n1/2) lower bound for non-adaptive monotonicity
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testing, which removes the −c in the exponent of [Che+15] and completely solves the

optimal query complexity of this problem for constant ϵ, if we ignore the poly-logarithmic

factors. We omit the details of this proof due to its similarity.

One generalized property frommonotonicity is called unateness. A function f is unate

if for every index i ∈ [n] f is either non-decreasing on the ith direction (flipping the

variable of input on index i from 0 to 1won’t flip the output from 1 to 0) or non-increasing

on the ith direction, or in other words:

Definition 1.2.3. A Boolean function f is unate if and only if there exists some vector r ∈

{0, 1}n such that g(x) = f(x⊕ r) is monotone.

We say an edge (x, x(i)) is monotone, if xi = 0 and f(x) goes from 0 to 1 after flipping

xi, or xi = 1 and f(x) goes from 1 to 0 after flipping xi; an edge (x, x(i)) is anti-monotone,

if xi = 0 and f(x) goes from 1 to 0 after flipping xi, or xi = 1 and f(x) goes from 0 to

1 after flipping xi. Then we know a typical violation to unateness consists of a pair of

edges (x, x(i)) and (y, y(i)) on the same ith direction for some i ∈ [n], while (x, x(i)) is

monotone and (y, y(i)) is anti-monotone.

The testing of unateness studies the problem of distinguishing whether an unknown

Boolean function is unate or is far from being unate. It was also first considered in

[Gol+00], where they proposed an O(n3/2/ϵ)-query algorithm for this task. The algo-

rithm works in a similar fashion as the edge tester for monotonicity and only rejects the

input when it finds a violation to unateness. Therefore this algorithm is non-adaptive and

has one-sided errors.

Later, by introducing adaptiveness into the algorithm Khot and Shinkar [KS16] were

able to design an Õ(n/ϵ)-query tester for unateness, and this work was then improve

by Chakrabarty and Seshadhri [CS16] with a new non-adaptive Õ(n/ϵ)-query algorithm.

This upper bound was further pushed to O(n/ϵ) (with a poly-logarithmic improvement)
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by Baleshzar et al. in their later work [Bal+17] studying the testing of unateness of real-

valued functions, and it was also shown to be optimal under this setting.

More recently, together with Chen andWaingarten, we showed in [CWX17b] an adap-

tive algorithm for testing unateness with query complexity Õ(n3/4/ϵ2). It has one-sided

errors and is the most efficient algorithm known to date (when 1/ϵ << n1/4).

On the lower bound side of unateness testing, the only result before our work was

Ω(
√
n/ϵ) by Baleshzar et al. [Bal+16] for non-adaptive tester with one-sided errors.

In Chapter 2 we will also present our new results regarding lower bounds of unateness

testing [CWX17a]:

Theorem 1.2.4. There exists some constant ϵ0 ∈ (0, 1) such that any adaptive algorithm that

ϵ0-tests unateness must make at least Ω̃(n2/3) queries.

Theorem 1.2.5. There exists some constant ϵ0 ∈ (0, 1) such that any non-adaptive algorithm

with one-sided errors that ϵ0-tests unateness must make at least Ω̃(n) queries.

These two results, combined with the Õ(
√
n/ϵ2)-query algorithm from [KMS15] for

testing monotoncity, show for the first time that testing unateness is computationally

harder (with a polynomial gap) than testing monotonicity in both adaptive setting as well

as non-adaptive setting with one-sided errors. The Ω̃(n) lower bound for the latter setting

matches the non-adaptive upper bound of [CS16] up to poly-logarithmic factors, for some

constant ϵ. Combined with the Õ(n3/4)-query algorithm given in our work [CWX17b], it

also shows that adaptivity helps for testing unateness.

However, for adaptive testing of both monotonicity and unateness, we note there are

still gaps remaining between the best upper bounds and lower bounds (for constant ϵ):

Õ(
√
n) vs. Ω̃(n1/3) for monotonicity, and Õ(n3/4) vs. Ω̃(n2/3) for unateness.
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1.3 Testing of k-juntas

Another well-known class of Boolean functions is the class of k-juntas: functions that

depend on at most k of its input variables.

Definition 1.3.1. Given a positive integer k < n, a Boolean function f : {0, 1}n → {0, 1}

is a k-junta if there exists a subset J = {i1, i2, . . . , ik} ⊂ [n] of size k and a function

g : {0, 1}k → {0, 1} such that f(x1, . . . , xn) = g(xi1 , . . . , xik) for all x = (x1, . . . , xn) ∈

{0, 1}n.

A crucial notion related to k-juntas is so-called relevant variables. Given some Boolean

function f , the ith input variable, for some i ∈ [n], is said to be relevant if f actually

depends on this variable, or in other words, if there exists some string x ∈ {0, 1}n such

that f(x) ̸= f(x(i)). Clearly a Boolean function f is k-junta if and only if the number of

f ’s relevant variables is at most k.

The testing of k-juntas studies the problem of distinguishing whether an unknown

function is a k-junta. Usually the more interesting case is when k << n (when there

are only a few relevant variables), and because of that we would prefer to have testing

algorithms with query complexity that is independent of n.

The testing of k-juntas was first considered in [Fis+04], where they proposed a non-

adaptive tester for k-juntas with query complexity Õ(k2/ϵ) ³. This upper bound was

then improved by Blais with an Õ(k3/2/ϵ)-query non-adaptive tester [Bla08] and an

O(k log k + k/ϵ)-query adaptive tester [Bla09]. The main idea of these algorithms was

randomly partitioning [n] into poly(k) many disjoint blocks, finding blocks that contain

relevant variables, and rejecting the input when (k+1) such blocks have been found (and

we are guaranteed that there are at least (k + 1) different relevant variables).

³As mentioned, here the query complexity is independent of n, and we hide poly-logarithmic factors of
k.
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The problem of testing k-juntas adaptively was solved (up to poly-logarithmic factors)

by combining Blais’s adaptive algorithm [Bla09] with Chockler and Gutfreund’s lower

bound of Ω(k) [CG04] (for some constant distance parameter ϵ). For the non-adaptive

case, Blais showed a lower bound of Ω(k/(ϵ log(k/ϵ)) for ϵ ≥ k/2k [Bla08] and Buhrman

et al. showed a lower bound of Ω(k log k) for constant ϵ [Buh+13]. More recently Servedio

et al. showed a lower bound of Ω( k log k
ϵc log(log(k)/ϵc)) for ϵ ∈ [k−ok(1), ok(1)] and any absolute

constant c < 1 [STW15]. This lower bound can be larger than the adaptive upper bound

of O(k log k + k/ϵ) obtained by Blais [Bla09] for certain choice of ϵ and it proved that

adaptivity helps for testing k-juntas. The difference of performance between these non-

adaptive lower bounds [Bla08; Buh+13; STW15] is however not big: they are essentially

Ω̃(k) for constant ϵ, while the best upper bound for non-adaptive testing of k-juntas is

Õ(k3/2/ϵ) from [Bla08]. We made a breakthrough in [Che+17] by showing a lower bound

of Ω̃(k3/2/ϵ) for this problem and matched the upper bound up to poly-logarithmic fac-

tors.

While standard property testing of k-juntas with respect to the uniform distribution

was very well understood, there were little results regarding this problemwhen we switch

to the more general setting of distribution-free testing.

The adaptive lower bound of Ω(k) [CG04] and non-adaptive lower bound of Ω̃(k3/2)

[Che+17] for testing under uniform distribution naturally extend to this more general

setting, but there was no other results on the lower bound side.

On the algorithm side, Halevy and Kushilevitz showed a way of building distribution-

free tester based on uniform-distribution testers and self-correctors [HK07], and Alon and

Weinstein proved that there is an O(2k)-query self-corrector for k-juntas [AA12]. Com-

bining these two results and the non-adaptive poly(k, 1/ϵ)-query testers for k-juntas un-

der uniform distribution we already know [Fis+04; Bla08], we get a non-adaptiveO(2k/ϵ)-

query distribution-free tester for k-juntas. That is the only algorithm we know prior to

our work.
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We significantly improve these bounds with the following new results [Che+18]:

Theorem 1.3.2. Given ϵ ∈ (0, 1) and any positive integer k < n, there is an adaptive

distribution-free tester with one-sided errors that ϵ-tests k-junta and makes at most Õ(k2/ϵ)

queries.

Theorem 1.3.3. Given k ≤ n/200 and ϵ0 = 1/3, any non-adaptive distribution-free tester

that ϵ0-tests k-junta must make at least Ω(2k/3) queries.

The two results show that adaptivity provides an exponential improvement for the

query complexity of distribution-free testing of k-juntas, which stands in sharp contrast

to the case of testing k-juntas under uniform distribution, where there is only a polynomial

gap. The exponential lower bound also illustrates the hardness of distribution-free testing,

just like what we saw in the case of monotonicity testing [HK05].

We will present the proofs of these two results in Chapter 3.

1.4 Distribution-free testing of monotone conjunctions

There is another line of works studying distribution-free testing of the class of monotone

conjunctions, defined as follows:

Definition 1.4.1. A Boolean function f : {0, 1}n → {0, 1} is a monotone conjunction if

there exists a subset S ⊂ [n] such that f(x) =
∧

i∈S xi. The special case when S = ∅ gives

a constant function that always equals to 1.

We use Mconj to denote the class of all monotone conjunctions over {0, 1}n. While

testing Mconj under uniform distribution only needs poly(1/ϵ) (independent of n) many

queries, Glasner and Servedio proved in [GS09] a lower bound of Ω̃(n1/5) for the query

complexity of adaptive distribution-free testers of Mconj with some constant distance

parameter ϵ ∈ (0, 1). Then Delov and Ron continued to attack this problem by giving an
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Õ(
√
n/ϵ)-query adaptive algorithm in [DR11]. There, however, remains a polynomial gap

between these two bounds, and we manage to close this gap and pin down the optimal

query complexity of this problem at Θ̃(n1/3) (for constant ϵ and with the poly-logarithmic

factors ignored) [CX15], by proving the two theorems as follows:

Theorem 1.4.2. Given ϵ ∈ (0, 1), there is an adaptive distribution-free tester with one-sided

errors that ϵ-tests Mconj and makes at most Õ(n1/3/ϵ5) queries.

Theorem 1.4.3. There exists some constant ϵ0 ∈ (0, 1) such that any adaptive distribution-

free tester that ϵ0-tests Mconj must make at least Ω̃(n1/3) queries.

We will present the proofs of these two theorems in Chapter 4.

We note that our results can also be extended to other classes of Boolean functions.

First, our upper bound can be extended to the class of general conjunctions (i.e. f is the

conjunction of a subset of literals in {x1, . . . , xn, x1, . . . , xn}, and let’s use Conj to denote

this class) via a reduction to the distribution-free testing of monotone conjucntions.

Theorem 1.4.4. Given ϵ ∈ (0, 1), there is an adaptive distribution-free tester with one-sided

errors that ϵ-tests Conj and makes at most Õ(n1/3/ϵ5) queries.

Second, our lower bound can be extended to the distribution-free testing of general

conjunctions, decision lists, as well as linear threshold functions (see their definitions in

Chapter 4). We follow the same strategy from Glasner and Servedio’s work [GS09] and

improve their lower bounds of Ω̃(n1/5) to Ω̃(n1/3) for these classes. For general conjunc-

tions, our bounds are also tight up to poly-logarithmic factors when ϵ is a constant.

Theorem 1.4.5. There exists some constant ϵ0 ∈ (0, 1) such that any adaptive distribution-

free tester that ϵ0-tests Conj must make at least Ω̃(n1/3) queries. The same lower bound

holds for testing decision lists and testing linear threshold functions.

We will also present proofs of these results in Chapter 4.
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1.5 Organization

In this thesis, we will discuss several new results on the property testing of monotonicity,

unateness, k-juntas, and classes of other basic Boolean functions like monotone conjunc-

tions, under both the standard setting and the distribution-free setting.

In Chapter 2 we will focus on the standard property testing under uniform distribu-

tion and discuss about our new lower bounds for the query complexity of testing mono-

tonicity and unateness. Then in Chapter 3 we will switch to the more general setting

of distribution-free testing and present our new upper bound and lower bound for the

query complexity of testing k-juntas under this setting. In Chapter 4 we will continue to

work under the distribution-free setting and present our results on other basic Boolean

functions like monotone conjunctions.

In the end we conclude our results and also discuss about open problems and possible

directions for related future work.
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Chapter 2

Testing of Monotonicity and Unateness

In this chapter, we will focus on the standard property testing with respect to uniform dis-

tributions and present our new lower bounds for testing two classical properties, mono-

tonicity and unateness . More precisely, we will show a lower bound of Ω̃(n1/3) for test-

ing of monotonicity and prove Theorem 1.2.2 in Section 2.2. Then we will show two lower

bounds for testing of uanteness and prove Theorem 1.2.4 and Theorem 1.2.5, in Section 2.3

and Section 2.4 respectively. We will end this chapter with some discussion in Section 2.5.

Let’s first start with some preparation.

2.1 Preparation

In this section we introduce some notation and tools that will be useful.

2.1.1 Notation and definition

We study property testing of monotonicity and unateness in this chapter. Recall that a

Boolean function f : {0, 1}n → {0, 1} is monotone, if for any two strings x, y ∈ {0, 1}n

such that x ≺ y (i.e., xi ≤ yi for every i ∈ [n]), we have f(x) ≤ f(y); f is unate if there

exists a string r ∈ {0, 1}n such that g(x) = f(x ⊕ r) is monotone. We use Mono and

Unate to denote the classes of monotone functions and unate functions, respectively.

Also recall that an edge (x, x(i)) is monotone with respect to a function f , if it is

bi-chromatic and satisfies the monotone conditions: either f(x) = 0, f(x(i)) = 1, and
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xi = 0 or f(x) = 1, f(x(i)) = 0, and xi = 1; it is anti-monotone if it is bi-chromatic but

not monotone.

Let’s fix an integerN to be defined later (it will be always set to 2
√
n in Section 2.2 and

set to (1 + 1/
√
n)n/4 in Section 2.3). We use ei, for each i ∈ [N ], to denote the string in

{0, 1}N with its kth entry being 0 if k ̸= i and 1 if k = i; we use ei,i′ , i, i′ ∈ [N ], i < i′, to

denote the string in {0, 1, ∗}N with its kth entry being 0 if k < i′ and k ̸= i, 1 if k = i or

i′, and ∗ if k > i′. We let ei (ei,i′) denote the string obtained from ei (ei,i′) by flipping its

0-entries to 1 and 1-entries to 0.

2.1.2 Distance to monotonicity and unateness

Now we review some characterizations of distance to monotonicity and unateness from

the literature:

Lemma 2.1.1 (Lemma 4 in [Fis+02]). Let f : {0, 1}n → {0, 1} be a Boolean function. Then

dist
(
f,Mono

)
= |M |

/
2n, whereM is the maximal set of disjoint violating pairs of f .

Lemma 2.1.2. Given f : {0, 1}n → {0, 1}, let (E+
i , E

−
i : i ∈ [n]) be a tuple of sets such

that (1) each set E+
i consists of monotone bi-chromatic edges (x, x(i)) along direction i with

xi = 0, f(x) = 0 and f(x(i)) = 1; (2) each set E−
i consists of anti-monotone bi-chromatic

edges (x, x(i)) along direction i with xi = 0, f(x) = 1 and f(x(i)) = 0; (3) all edges in these

2n sets are disjoint. Then dist
(
f,Unate

)
≥ 1

2n

∑n
i=1 min

{
|E+

i |, |E−
i |
}
.

Proof. By definition, the distance of f to unateness is given by

dist
(
f,Unate

)
= min

r∈{0,1}n
dist

(
fr,Mono

)
,

where fr(x) = f(x⊕ r). On the other hand, since all edges in the 2n sets E+
i and E−

i are
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disjoint, it follows from Lemma 2.1.1 that

dist
(
fr,Mono

)
≥ 1

2n

(∑
i:ri=0

∣∣E−
i

∣∣+ ∑
i:ri=1

∣∣E+
i

∣∣) ≥ 1

2n

n∑
i=1

min
{
|E+

i |, |E−
i |
}
.

This finishes the proof of the lemma.

2.1.3 Tree pruning lemmas

To prepare for our proofs later, now let’s consider a rather general setup where a q-query

deterministic algorithm A has oracle access to an object O drawn from a distribution D:

upon each query w, the oracle with an object O returns η(w,O), an element from a finite

set P. Such an algorithm can be equivalently viewed as a tree (let’s abuse the notation

a little bit and still call this tree A) of depth q, where each internal node u is labelled a

query w to make and has |P| edges (u, v) leaving u, each labelled a distinct element from

P. (In general the degree of u can be much larger than two; this is the case for all our

applications later since wewill introduce new oracles that upon a query string x ∈ {0, 1}n

returns more information than just f(x).) For this section we do not care about labels of

leaves ofA. GivenA, we present two basic pruning techniques that will help our analysis

of algorithms in our lower bound proofs.

Both lemmas share the following setup. Given A and a set E of edges of A we use LE

to denote the set of leaves ℓ that has at least one edge in E along the path from the root

to ℓ. Each lemma below states that if E satisfies certain properties with respect to D that

we are interested in, then

Pr
O∼D

[
O reaches a leaf in LE

]
= o(1). (2.1)

This will later allow us to focus on root-to-leaf paths that do not take any edge in E.

For each node u of treeA, we use Pr[u] to denote the probability ofO ∼ D reaching u.
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When u is an internal node with Pr[u] > 0we use q(u) to denote the following conditional

probability:

q(u) = Pr
O∼D

[
O follows an edge in E at u

∣∣∣O reaches u
]
=

∑
(u,v)∈E Pr[v]

Pr[u]
.

We start with the first pruning lemma; it is trivially implied by the second pruning

lemma, but we keep it because of its conceptual simplicity.

Lemma 2.1.3. GivenE, if q(u) = o(1/q) for every internal node u with Pr[u] > 0, then (2.1)

holds.

Proof. We can partition the set LE of leaves into LE =
∪

i∈[q] Li, where Li contains leaves

with its first edge from E being the ith edge along its root-to-leaf path. We also write Ei

as the set of edges in E at the ith level (i.e., they appear as the ith edge along root-to-leaf

paths). Then for each i,

Pr
O∼D

[
O reaches Li

]
≤

∑
(u,v)∈Ei

Pr[v] =
∑
u

∑
(u,v)∈Ei

Pr[v] =
∑
u

Pr[u] · o(1/q).

Note that the sum is over certain nodes u at the same depth (i − 1). Therefore,∑
u Pr[u] ≤ 1 and the proof is completed by taking a union bound over Li, i ∈ [q].

Next, for each leaf ℓ with Pr[ℓ] > 0 and the root-to-ℓ path being u1u2 · · ·uk+1 = ℓ, we

let q∗(ℓ) denote
∑

i∈[k] q(ui). The second pruning lemma states that (2.1) holds if q∗(ℓ) =

o(1) for all such ℓ.

Lemma 2.1.4. If every leaf ℓ of A with Pr[ℓ] > 0 satisfies q∗(ℓ) = o(1), then (2.1) holds.

Proof. The first part of the proof goes exactly the same as in the proof of the first lemma.

Let A′ be the set of internal nodes u with Pr[u] > 0. After a union bound over Li,

i ∈ [q],

Pr
O∼D

[
O reaches LE

]
≤
∑
u∈A′

Pr[u] · q(u).
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Let Lu be the leaves in the subtree rooted at u ∈ A′. We can rewrite Pr[u] as∑
ℓ∈Lu

Pr[ℓ]. Thus,

Pr
O∼D

[
O reaches LE

]
≤
∑
u∈A′

∑
ℓ∈Lu

Pr[ℓ] · q(u) =
∑
ℓ

Pr[ℓ] · q∗(ℓ),

where the last sum is over leaves ℓ with Pr[ℓ] > 0; the last equation follows by switching

the order of the two sums. The lemma follows from q∗(ℓ) = o(1) and
∑

ℓ Pr[ℓ] = 1.

2.2 An Ω̃(n1/3) lower bound for testing of monotonicity

In this section we will show any (adaptive) algorithm for monotonicity testing must make

at least Ω̃(n1/3) queries (for some constant distance parameter ϵ) and proveTheorem 1.2.2.

The proof follows Yao’s mini-max principle, and is heavily inspired by ideas from the lower

bound of Ω̃(n1/4) for monotonicity testing in [BB16].

We will start with some high level intuition of our proof in Section 2.2.1. Following

Yao’s principle, we then define two distributions Dyes and Dno over Boolean functions

in Section 2.2.2, such that each function drawn from distribution Dyes is monotone, and

most functions drawn from distribution Dno are far from monotone. In the end we show

in Section 2.2.3 that it’s hard for a deterministic algorithm to distinguish whether an input

function f is drawn from distribution Dyes or Dno with Õ(n1/3) queries to the black-box

oracle of f , which finishes the proof.

2.2.1 Intuition

We discuss about high level ideas behind our proof in this section. As mentioned, our

proof is heavily inspired by the lower bound proof for monotonicity testing in [BB16],

and let’s start by reviewing the hard functions they used (i.e., Talagrand’s random DNFs).

Employing Yao’s minimax principle as usual, the goal of [BB16] is to (1) construct a pair
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of distributions Dyes
∗ and Dno

∗ over Boolean functions from {0, 1}n to {0, 1} such that

f ∼ Dyes
∗ is always monotone while g ∼ Dno

∗ is Ω(1)-far from monotone with proba-

bility Ω(1); (2) show that no deterministic algorithm with a small number of queries can

distinguish them (see Lemma 2.2.5 later).

Let N = 2
√
n¹. A function f from Dyes

∗ is drawn using the following procedure. We

first sample a sequence of N random sub-hypercubes Hi in {0, 1}n. Each Hi is defined

by a random term Ti with x ∈ Hi if Ti(x) = 1, where Ti is the conjunction of
√
n

random variables sampled uniformly from [n] (so each Hi has dimension n −
√
n). By

a simple calculation most likely the Hi’s have little overlap between each other and they

together cover an Ω(1)-fraction of {0, 1}n. Informally we consider Hi’s together as a

random partition of {0, 1}n where each x ∈ {0, 1}n belongs to a unique Hi (for now do

not worry about cases when x lies in none or multiple Hi’s). Next we sample for each Hi

a random dictatorship function hi(x) = xki
with ki drawn uniformly from [n]. The final

function is f(x) = hi(x) for each x ∈ Hi (again do not worry about cases when x lies in

none or multiple Hi’s). A function g fromDno
∗ is drawn using the same procedure except

that each hi is now a random anti-dictatorship function hi(x) = xki
with ki sampled

uniformly from [n].

Note that the distributions sketched here are slightly different from [BB16] (see Section

2.5). For Dno
∗ in particular, instead of associating each Hi with an independent, random

anti-dictatorship hi, [BB16] draws
√
n anti-dictatorship functions in total and associates

eachHi with one of them randomly.² While this gives a connection to the noise sensitivity

results of [MO03] on Talagrand functions, it makes the functions harder to analyze and

generalize due to the correlation between hi’s.

¹N = 2
√
n is meant to be an integer. It won’t change the correctness of the proof (at least asymptotically

for large enough n) by switching this parameter to its nearest integer, and here we just assume N is an
integer for convenience. We will make the same assumption for all our future parameters like

√
n, n1/3 and√

n logn.

²Note that this is very close but also not exactly the same as the distributions used in [BB16]; see Section
2.5.
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By handling the cases when x belongs to none or multipleHi’s properly, one can show

f is always monotone. On the other hand, g is far from monotone as (intuitively) Hi’s are

mostly disjoint and within each Hi, g is anti-monotone due to the anti-dictatorship hi.

At a high level one can view the terms Ti together as an addressing function in the

construction of Dyes
∗ and Dno

∗, which maps each x to one of the N independent anti-

dictatorship functionshi, by randomly partitioning {0, 1}n using a long sequence of small

hypercubes Hi. Conceptually, this is the picture that we will follow to define our two-

level Talagrand functions. They will also be built using a random partition of {0, 1}n into

a sequence of small(er) hypercubes, with the property that (i) if one places a dictatorship

function in each hypercube independently at random, the resulting function is monotone,

and (ii) if one places a random anti-dictatorship function in each of them, the resulting

function is far from monotone with Ω(1) probability. The main difference lies in the way

how the partition is done and how the hypercubes are sampled.

Before introducing the two-level Talagrand function, we explain at a high-level why

the pair of distributions Dyes
∗ andDno

∗ are hard to distinguish (this will allow us to com-

pare them with our new functions and see why the latter are even harder to distinguish).

Consider the situation when an algorithm is given an x ∈ Hi’s with g(x) = hi(x) = 0 and

would like to identify the input function g in fact comes from Dno
∗. The most straight-

forward way to do this is to find a violating pair in Hi by flipping some 1’s of x to 0 and

hoping to see g(y) = 1 in the new y obtained. The algorithm faces the following dilemma:

1. on the one hand, the algorithm wants to flip as many 1’s of x as possible in order

to flip the hidden variable xki
associated with the anti-dictatorship function hi

(hi(x) = xki
) and make g(y) = 1;

2. on the other hand, it is very unlikely for the algorithm to flip many (say ω(
√
n logn))

1’s of x without moving y outside of Hi (which happens if one of the 1-entries flipped

lies in Ti), and when this happens, g(y) provides essentially no information about ki.
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So g is very resilient against such attacks. However, consider the case when x ∈ Hi and

hi(x) = 1; then, the algorithm may try to find a violating pair in Hi by flipping 0’s of x

to 1, and this time there is (almost) no limitation on how many 0’s of x one can flip! In

fact flipping 0’s to 1’s can never move y outside of Hi.³ In Section 2.5, we leverage this

observation to find a violation with Õ(n1/4) queries.

Now we describe the two-level Talagrand function. The random partitions we employ

below are more complex; they allow us to upperbound not only the number of 1’s of x

that an algorithm can flip (without moving outside of the hypercube) but also the number

of 0’s as well. We use Dyes and Dno to denote the two distributions.

To draw a function f from Dyes, we partition {0, 1}n into N2 random sub-hypercubes

as follows. First we sample as before N random
√
n-terms Ti to obtain Hi. After that,

we further partition eachHi, by independently samplingN random
√
n-clauses Ci,j , with

each of them being the disjunction of
√
n random variables sampled from [n] uniformly.

The termsTi and clausesCi,j together defineN2 sub-hypercubesHi,j : x ∈ Hi,j ifTi(x) = 1

and Ci,j(x) = 0. The rest is very similar. We sample a random dictatorship function hi,j

for each Hi,j ; the final function f has f(x) = hi,j(x) for x ∈ Hi,j .⁴ A function g from

Dno is drawn using the same procedure except that hi,j’s are independent random anti-

dictatorship functions. We call such functions two-level Talagrand functions, as one can

view each of them as a two-level structure with the top being a Talagrand DNF and the

bottom beingN Talagrand CNFs, one attached with each term of the top DNF. See Figure

2.2 for a visual depiction.

By a simple calculation, (most likely) the Hi,j’s have little overlap and cover an Ω(1)-

fraction of {0, 1}n. This is why g is far frommonotone. It will become clear after the formal

³While we tried to keep the high-level description here simple, there is indeed a truncation that is always
applied on g, where one set g(x) = 1 for |x| > (n/2) +

√
n, g(x) = 0 for |x| < (n/2) −

√
n, and keep

g(x) the same only when x lies in the middle layers with |x| between (n/2) −
√
n and (n/2) +

√
n. But

even with the truncation in place, one can take advantage of this observation and find a violation in g using
Õ(n1/4) queries. See details in Section 2.5

⁴Again, do not worry about cases when x lies in none or multiple Hi,j ’s.
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definition of Dyes that f is monotone; this relies on how exactly we handle cases when x

lies in none or multiple Hi’s.

Conceptually the construction of Dyes and Dno follows the same high-level picture:

the terms Ti and clauses Ci,j together serve as an addressing function, which we refer to

as amultiplexer in the proof (see Figure 2.1 for a visual depiction). It maps each string x to

one of theN2 independent and random dictatorship or anti-dictatorship hi∗,j∗ , depending

on whether the function is from Dyes or Dno. Terms Ti in the first level of multiplexing

determines i∗ and clauses Ci∗,j in the second level of multiplexing determines j∗. The

new two-level Talagrand functions are harder than those of [BB16] since, starting with a

string x ∈ Hi,j , not only flipping ω(
√
n logn)many 1’s would move it outside ofHi,j with

high probability (because the term Ti is most likely no longer satisfied), the same holds

when flipping ω(
√
n logn) many 0’s to 1 (because the clause Ci,j is most likely no longer

falsified). We will make the argument above more formal in the next two sections.

2.2.2 Distributions

As promised, in this section we present a pair of distributions Dyes and Dno supported on

Boolean functions f : {0, 1}n → {0, 1}. We then show that every f ∼ Dyes is monotone,

and f ∼ Dno is Ω(1)-far from monotone with probability Ω(1).

Let N = 2
√
n. A function f ∼ Dyes is drawn using the following procedure:

1. Sample a pair (T,C) ∼ E . The pair (T,C) is then used to define a multiplexer map

Γ = ΓT,C : {0, 1}n → (N ×N) ∪ {0∗, 1∗}.⁵ Both definitions of E and Γ will be

described next.

2. Sample H = (hi,j : i, j ∈ [N ]) from a distribution Eyes, where each hi,j is a

random dictatorship Boolean function that maps {0, 1}n to {0, 1}: hi,j(x) = xki,j

with ki,j sampled independently for each hi,j and uniformly at random from [n].

⁵We use 0∗ and 1∗ to denote two special symbols (instead of the Kleene closure of 0 and 1).
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f

Γ

h1,1

h1,2

h1,3

hN,N

T C x

f(x)

Figure 2.1: An illustration of the function f = fT,C,H and its dependency on T , C and H .

3. Finally, f = fT,C,H : {0, 1}n → {0, 1} is defined as follows: f(x) = 1 if |x| is greater

than (n/2) +
√
n; f(x) = 0 if |x| is less than (n/2)−

√
n; if |x| is between

(n/2)−
√
n and (n/2) +

√
n we define:

f(x) =


0 if Γ(x) = 0∗

1 if Γ(x) = 1∗

hΓ(x)(x) otherwise (i.e., Γ(x) ∈ N ×N )

On the other hand a function f = fT,C,H ∼ Dno is drawn using the same procedure,

with the only difference being that H = (hi,j : i, j ∈ [N ]) is drawn from Eno (instead

of Eyes): each hi,j(x) = xki,j
is a random anti-dictatorship function with ki,j drawn inde-

pendently and uniformly from [n].

Remark 1. Given the same truncation done in both Dyes and Dno, it suffices to show a

lower bound against algorithms that query strings in the middle layers only: (n/2)−
√
n ≤

|x| ≤ (n/2) +
√
n.

Next we describe the distribution E in details. E is uniform over all pairs (T,C) of the

following form: T = (Ti : i ∈ [N ]) with Ti : [
√
n] → [n] and C = (Ci,j : i, j ∈ [N ]) with

Ci,j : [
√
n] → [n]. We call Ti’s the (DNF) terms and Ci,j’s the (CNF) clauses. Equivalently,
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to draw a pair (T,C) ∼ E :

• For each i ∈ [N ], we sample a random term Ti by sampling Ti(k) independently

and uniformly from [n] for each k ∈ [
√
n], with Ti(k) viewed as the kth variable of

Ti.

• For each i, j ∈ [N ], we sample a random clause Ci,j by sampling Ci,j(k)

independently and uniformly from [n] for each k ∈ [
√
n], with Ci,j(k) viewed as

the kth variable of Ci,j .

Given a pair (T,C), we interpret Ti as a term and abuse the notation to write

Ti(x) =
∧

k∈[
√
n]

xTi(k)

as a Boolean function over n variables. We say x satisfies Ti when Ti(x) = 1. We inter-

pret each Ci,j as a clause and abuse the notation to write

Ci,j(x) =
∨

k∈[
√
n]

xCi,j(k)

as a Boolean function over n variables. Similarly we say x falsifies Ci,j when Ci,j(x) = 0.

Each pair (T,C) in the support of E defines a multiplexer map Γ = ΓT,C : {0, 1}n →

(N ×N) ∪ {0∗, 1∗}. Informally speaking, Γ consists of two levels: the first level uses the

terms Ti in T to pick the first index i′ ∈ [N ]; the second level uses the clauses Ci′,j in C to

pick the second index j′ ∈ [N ]. Sometimes Γ may choose to directly determine the value

of the function by setting Γ(x) ∈ {0∗, 1∗}.

Formally, (T,C) defines Γ as follows. Given an x ∈ {0, 1}n we have Γ(x) = 0∗ if

Ti(x) = 0 for all i ∈ [N ] and Γ(x) = 1∗ if Ti(x) = 1 for at least two different i’s in [N ].

Otherwise there is a unique i′ with Ti′(x) = 1, and the multiplexer enters the second level.

Next, we have Γ(x) = 1∗ if Ci′,j(x) = 1 for all j ∈ [N ] and Γ(x) = 0∗ if Ci′,j(x) = 0 for

at least two different j’s in [N ]. Otherwise there is a unique j′ ∈ [N ] with Ci′,j′(x) = 0

and in this case the multiplexer outputs Γ(x) = (i′, j′).
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f

T1 T2 T3 T4 TN

C2,1 C2,2 C2,3 C2,N

h2,1 h2,2 h2,3 h2,N

Figure 2.2: Picture of a function f in the support of Dyes and Dno. We think of evaluating
f(x) as following the arrows down the tree. The first level represents multiplexing x ∈
{0, 1}n with respect to the terms in T . If x satisfies no terms, or multiple terms, then
f outputs 0, or 1, respectively. If x satisfies Ti for a unique term Ti (T2 in the picture),
then we follow the arrow to Ti and proceed to the second level. If x falsifies no clause,
or multiple clauses, then f outputs 1, or 0, respectively. If x falsifies a unique clause Ci,j ,
then we follow the arrow to Ci,j and output hi,j(x).

This finishes the definition of Dyes and Dno. Figure 2.2 below gives a graphical repre-

sentation of such functions. We now prove the properties of Dyes and Dno promised at

the beginning.

Lemma 2.2.1. Every function f in the support of Dyes is monotone.

Proof. Consider f = fT,C,H with (T,C) from the support of E and H from the support of

Eyes. Let x ∈ {0, 1}n be a string with f(x) = 1 and xi = 0 for some i. Let x′ = x(i). We

show that f(x′) = 1.

First note that every term in T satisfied by x remains satisfied by x′; every clause

satisfied by x remains satisfied by x′. As a result if Γ(x) = 1∗ then Γ(x′) = 1∗ as well and

f(x′) = 1. If Γ(x) = (i, j) for some i, j ∈ [N ], then hi,j(x) = f(x) = 1. For this case

we have either Γ(x′) = 1∗ and f(x′) = 1, or f(x′) = hi,j(x
′) and hi,j(x

′) = hi,j(x) = 1

because hi,j here is a dictatorship function. This finishes the proof since Γ(x) cannot be

0∗ when f(x) = 1.
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Lemma 2.2.2. A function f ∼ Dno is Ω(1)-far-from monotone with probability Ω(1).

Proof. Fix a pair (T,C) from the support of E and an H from the support of Eno. Let

f = fT,C,H .

Consider the set X ⊂ {0, 1}n consisting of strings x in the middle layers (i.e., |x| ∈

[(n/2)±
√
n]) with f(x) = 1, Γ(x) = (i, j) for some i, j ∈ [N ] (instead of 0∗ or 1∗), and hi,j

being an anti-dictator function on the ki,jth variable for some ki,j ∈ [n] (so xki,j = 0). For

each x ∈ X , we write η(x) to denote the index ki,j for hi,j and use x∗ to denote x(η(x)).

(Ideally, we would like to conclude that (x, x∗) is a violating edge of f as hi,j(x
∗) = 0.

However, flipping one bit potentially may also change the value of the multiplexer map

Γ. So we need to further refine the set X .)

Next we define the following two events with respect to a string x ∈ X (with Γ(x) =

(i, j)):

• E1(x): This event happens when η(x) ̸= Ci,j(ℓ) for any ℓ ∈ [
√
n] (and thus,

Ci,j(x
∗) = 0);

• E2(x): This event happens when Ti′(x
∗) = 0 for all i′ ̸= i ∈ [N ].

We useX ′ to denote the set of strings x ∈ X such that both E1(x) and E2(x) happen.

The following claim shows that (x, x∗) for every x ∈ X ′ is a violating edge of f .

Claim 2.2.3. For each x ∈ X ′, (x, x∗) is a violating edge of f .

Proof. It suffices to show that f(x∗) = 0. As x satisfies a unique term Ti (Ti cannot have

η(x) as a variable because xη(x) = 0), it follows from E2(x) that x∗ uniquely satisfies the

same Ti. It follows from E1(x) that x∗ uniquely (among all Ci,j′ , j
′ ∈ [N ]) falsifies the

same clause Ci,j . As a result, f(x∗) = hi,j(x
∗) = 0.

Furthermore, the violating edges (x, x∗) induced by strings x ∈ X ′ are indeed disjoint.

This is because, given x∗, one can uniquely reconstruct x by locating hi,j using Γ(x∗) and
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flipping the ki,jth bit of x∗ if hi,j is an anti-dictator function over the ki,jth variable. There-

fore, it suffices to show that X ′ (as a random set) has size Ω(2n) with probability Ω(1),

over choices of (T,C) ∼ E and H ∼ Eno. The lemma then follows from the characteriza-

tion of [Fis+02] as stated in Lemma 2.1.1.

Finally we work on the size of X ′. Fix a string x ∈ {0, 1}n in the middle layers. The

next claim shows that, when (T,C) ∼ E andH ∼ Eno,X ′ contain xwithΩ(1) probability.

Claim 2.2.4. For each x ∈ {0, 1}n with (n/2)−
√
n ≤ |x| ≤ (n/2) +

√
n, we have

Pr
(T,C)∼E,H∼Eno

[
x ∈ X ′] = Ω(1).

Proof. Fix an x ∈ {0, 1}n in the middle layers. We calculate the probability of x ∈ X ′.

We equivalently partition the event of x ∈ X ′ into Θ(nN2) subevents indexed by

i, j ∈ [N ] and k ∈ [n] with xk = 0. Each subevent corresponds to 1) Condition on T:

both x and x(k) satisfy uniquely the term Ti; 2) Condition on C: both x and x(k) falsify

uniquely the clause Ci,j ; 3) Condition onH : hi,j is the anti-dictatorship function over the

kth variable. The probability that 3) happens is clearly 1/n.

The probability that 1) happens is at least

(
1−

(
n/2 +

√
n+ 1

n

)√
n
)N−1

×
(
n/2−

√
n

n

)√
n

= Ω

(
1

N

)
.

The probability that 2) happens is at least

(
1−

(
n/2 +

√
n

n

)√
n
)N−1

×
(
n/2−

√
n− 1

n

)√
n

= Ω

(
1

N

)
.

As a result, the probability of x ∈ X ′ is Ω(nN2) × Ω(1/N) × Ω(1/N) × Ω(1/n) =

Ω(1).

From Claim 2.2.4 and the fact that there are Ω(2n) strings in the middle layer, the ex-
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pected size ofX ′ isΩ(2n). ViaMarkov inequality we know |X ′| = Ω(2n)with probability

Ω(1). This finishes the proof.

Given Lemma 2.2.1, Lemma 2.2.2 and same argument from [BB16], Theorem 1.2.2 fol-

lows directly from the following lemma which we show in the rest of the section. For the

rest of the proof we fix the number of queries q = n1/3/log2 n.

Lemma 2.2.5. Let B be any q-query, deterministic algorithm with black-box oracle access to

f . Then

Pr
f∼Dyes

[
B accepts f

]
≤ Pr

f∼Dno

[
B accepts f

]
+ o(1).

Since f is truncated in both distributions, we may assume WLOG that B queries

strings in the middle layers only (i.e., strings x with |x| between (n/2) −
√
n and

(n/2) +
√
n).

2.2.3 Proof of Lemma 2.2.5

We prove Lemma 2.2.5 in this section. Let’s start with some more preparation for the

proof.

2.2.3.1 Signatures and the new oracle

Let (T,C) be a pair from the support of E andH be a tuple from the support of Eyes or Eno.

Towards Lemma 2.2.5, we are interested in deterministic algorithms that have black-box

oracle access to f = fT,C,H and attempt to distinguish Dyes from Dno (i.e., accept if H is

from Eyes and reject if it is from Eno).

For convenience of our lower bound proof, we assume below that the black-box oracle

returns more than just f(x) for each query x ∈ {0, 1}n; instead of simply returning f(x),

the oracle returns a 4-tuple (σ, τ, a, b) called the full signature of x ∈ {0, 1}n with respect

to (T,C,H) (see Definition 2.2.7 below). It will become clear later that f(x) can always

be derived correctly from the full signature of x and thus, query lower bounds against the
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new oracle carry over to the standard oracle. Once the new oracle is introduced, we may

actually ignore the function f and view any algorithm as one that has oracle access to the

hidden triple (T,C,H) and attempts to tell whether H is from Eyes or Eno.

We first give the syntactic definition of full signatures.

Definition 2.2.6. We use P to denote the set of all 4-tuples (σ, τ, a, b) with σ ∈ {0, 1, ∗}N

and τ ∈ {0, 1, ∗}N ∪ {⊥} and a, b ∈ {0, 1,⊥} satisfying the following properties:

1. σ is either 1) the all-0 string 0N ; 2) ei for some i ∈ [N ]; or 3) ei,i′ for some i, i′ ∈ [N ],

i < i′.

2. τ =⊥ if σ is of case 1) or 3). Otherwise (when σ = ei for some i), τ ∈ {0, 1, ∗}N is

either 1) the all-1 string 1N ; 2) ej for some j ∈ [N ]; or 3) ej,j′ for some j, j′ ∈ [N ],

j < j′.

3. a = b =⊥ unless: 1) If σ = ei and τ = ej for some i, j ∈ [N ], then a ∈ {0, 1} and

b =⊥; or 2) If σ = ei and τ = ej,j′ for some i ∈ [N ] and j, j′ ∈ [N ], j < j′, then

a, b ∈ {0, 1}.

Wenext define semantically the full signature of x ∈ {0, 1}n with respect to (T,C,H).

Definition 2.2.7 (Full signature). We say (σ, τ, a, b) is the full signature of a string x ∈

{0, 1}n with respect to (T,C,H) if it satisfies the following properties:

1. First, σ ∈ {0, 1, ∗}N is determined by T according to one of the following three cases:

1) σ is the all-0 string 0N if Ti(x) = 0 for all i ∈ [N ]; 2) If there is a unique i ∈ [N ]

with Ti(x) = 1, then σ = ei; or 3) If there are more than one index i ∈ [N ] with

Ti(x) = 1, then σ = ei,i′ with i, i′ ∈ [N ], i < i′ being the smallest two such indices.

We call σ the term signature of x.

2. Second, τ =⊥ if σ is of case 1) or 3) above. Otherwise, assuming that σ = ei,

τ ∈ {0, 1, ∗}N is determined by (Ci,j : j ∈ [N ]), according to one of the following

cases: 1) τ is the all-1 string 1N if Ci,j(x) = 1 for all j ∈ [N ]; 2) If there is a unique
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j ∈ [N ] with Ci,j(x) = 0, then τ = ej ; or 3) If there are more than one index j ∈ [N ]

with Ci,j(x) = 0, then τ = ej,j′ with j, j′ ∈ [N ], j < j′ being the smallest two such

indices. We call τ the clause signature of x.

3. Finally, a = b =⊥ unless: 1) If σ = ei and τ = ej for some i, j ∈ [N ], then

a = hi,j(x) and b =⊥; or 2) If σ = ei and τ = ej,j′ for some i, j, j′ ∈ [N ] and j < j′,

then a = hi,j(x) and b = hi,j′(x).

It follows from the definitions that the full signature of x with respect to (T,C,H) is

in P. We also define the full signature of a set of strings Q with respect to (T,C,H).

Definition 2.2.8. The full signature (map) of a set Q ⊆ {0, 1}n with respect to a triple

(T,C,H) is a map ϕ : Q → P such that ϕ(x) is the full signature of x with respect to

(T,C,H) for each x ∈ Q.

For simplicity, we will write ϕ(x) = (σx, τx, ax, bx) to specify the term and clause

signatures of x as well as the values of a and b in the full signature ϕ(x) of x. Intuitively

we may view ϕ as two levels of tables with entries in {0, 1, ∗}. The (unique) top-level table

“stacks” the term signatures σx, where each row corresponds to a string x ∈ Q and each

column corresponds to a term Ti in T . In the second level a table appears for a term Ti

if the term signature of some string x ∈ Q is ei. In this case the second-level table at Ti

“stacks” the clause signatures τx for each x ∈ Qwith σx = ei where each row corresponds

to such an x and each column corresponds to a clause Ci,j in C . (The number of columns

is still N since we only care about clauses Ci,j , j ∈ [N ] in the table at Ti.)

The lemma below shows that the new oracle is at least as powerful as the standard

oracle.

Lemma 2.2.9. Let (T,C) be from the support of E and H from the support of Eyes or Eno.

Given any string x ∈ {0, 1}n, fT,C,H(x) is determined by its full signature with respect to

(T,C,H).
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Proof. First if x does not lie in the middle layers, then f(x) is determined by |x|. Below

we assume that x lies in the middle layers. Let (σ, τ, a, b) be the full signature of x. There

are five cases:

1. (No term satisfied) If σ = 0N , then f(x) = 0.

2. (Multiple terms satisfied) If σ = ei,i′ for some i, i′ ∈ [N ], then f(x) = 1.

3. (Unique term satisfied, no clause falsified) If σ = ei for some i ∈ [N ] but τ = 1N ,

then f(x) = 1.

4. (Unique term satisfied, multiple clauses falsified) If σ = ei but τ = ej,j′ , for some

i, j, j′ ∈ [N ], then f(x) = 0.

5. (Unique term satisfied, unique clause satisfied) If σ = ei and τ = ej for some

i, j ∈ [N ], then f(x) = a.

This finishes the proof of the lemma.

Given Lemma 2.2.9, it suffices to consider deterministic algorithms with the new oracle

access to a hidden triple (T,C,H), and Lemma 2.2.5 follows directly from the following

lemma:

Lemma 2.2.10. Let B be any q-query algorithm with the new oracle access to (T,C,H).

Then

Pr
(T,C)∼E,H∼Eyes

[
B accepts (T,C,H)

]
≤ Pr

(T,C)∼E,H∼Eno

[
B accepts (T,C,H)

]
+ o(1).

Let’s fix the algorithm B for the rest of the proof. Equivalently we can view B as a

decision tree of depth q, and let’s abuse the notation to also denote this tree by B. Each

leaf of the treeB is labeled either “accept” or “reject.” Each internal node u ofB is labeled

with a query string x ∈ {0, 1}n, and each of its outgoing edges (u, v) is labeled a tuple

from P. We refer to such a tree as a signature tree.

As the algorithm executes, it traverses a root-to-leaf path down the treemaking queries

to the oracle corresponding to queries in the nodes on the path. For instance at node u,
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after the algorithm queries x and the oracle returns the full signature of x with respect

to the unknown (T,C,H), the algorithm follows the outgoing edge (u, v) with that label.

Once a leaf ℓ is reached, B accepts if ℓ is labelled “accept” and rejects otherwise. With B

fixed, here for simplicity for each valid triple (T,C,H) we just say (T,C,H) reaches a

node (or leaf) u in B, if the algorithm traverses this tree and reaches u when given oracle

access to (T,C,H).

Note that the number of children of each internal node is |P|, which is huge. Algo-

rithms with the new oracle may adapt its queries to the full signatures returned by the

oracle, while under the standard oracle, the queries may only adapt to the value of the

function at previous queries. Thus, while algorithms making q queries in the standard or-

acle model can be described by a tree of size 2q, q-query algorithms with this new oracle

are given by signature trees of size (2Θ(
√
n))q.

We associate each node u in the tree B with a map ϕu : Qu → P where Qu is the set

of queries made along the path from the root to u so far (but not including the query in

u), and ϕu(x) is the label of the edge that the root-to-u path takes after querying x. We

will be interested in analyzing the following two quantities:

Pr
(T,C)∼E,H∼Eyes

[
(T,C,H) reaches u

]
and Pr

(T,C)∼E,H∼Eno

[
(T,C,H) reaches u

]
.

In particular, Lemma 2.2.10 would follow trivially if for every leaf ℓ of B:

Pr
(T,C)∼E,H∼Eyes

[
(T,C,H) reaches ℓ

]
≤ (1 + o(1)) · Pr

(T,C)∼E,H∼Eno

[
(T,C,H) reaches ℓ

]
.

(2.2)

However, (2.2) above does not hold in general. Our plan for the rest of the proof is to

prune an o(1)-fraction of leaves (measured in terms of their total probability under the

yes-case) and show (2.2) for the rest.

To better understand these probabilities, we need to first introduce some useful nota-

tion.
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2.2.3.2 Notation for full signature maps

Given a map ϕ : Q → P for some Q ⊆ {0, 1}n, we write ϕ(x) = (σx, τx, ax, bx) for each

x ∈ Q and use σx,i, τx,j to denote the ith entry and jth entry of σx and τx, respectively.

Note that τx,j is not defined if τx =⊥. (Below we will only be interested in τx,j if σx = ei

for some i ∈ [N ].)

Let’s introduce the following notation for ϕ: we say ϕ induces a tuple (I; J ;P ;R;A; ρ),

where

• The set I ⊆ [N ] is given by I = {i ∈ [N ] : ∃x ∈ Q with σx,i = 1}. (So in terms of

the first-level table, I consists of columns that contain at least one 1-entry.)

• J = (Ji ⊆ [N ] : i ∈ I) is a tuple of sets indexed by i ∈ I . For each i ∈ I , we have

Ji =
{
j ∈ [N ] : ∃x ∈ Q with σx = ei and τx,j = 0

}
.

(In terms of the second-level table at Ti, Ji consists of columns that contain at least

one 0-entry.) By the definition of P, each x with σx = ei can contribute at most

two j’s to Ji. Also x does not contribute any j to Ji if σx = ei,i′ or ei′,i, in which

case τx =⊥, or if σx = ei but τx = 1N . So in general Ji can be empty for some

i ∈ I .

• P = (Pi, Pi,j : i ∈ I, j ∈ Ji) is a tuple of two types of subsets of Q. For i ∈ I and

j ∈ Ji,

Pi =
{
x ∈ Q : σx,i = 1

}
and Pi,j =

{
x ∈ Q : σx = ei and τx,j = 0

}
.

(In terms of the first-level table, Pi consists of rows that are 1 on the ith column; in

terms of the second-level table for Ti, Pi,j consists of rows that are 0 on the jth

column.) Note that both Pi and Pi,j are not empty by the definition of I and Ji.

• R = (Ri, Ri,j : i ∈ I, j ∈ Ji) is a tuple of two types of subsets of Q. For i ∈ I and

j ∈ Ji,

Ri =
{
x ∈ Q : σx,i = 0

}
and Ri,j =

{
x ∈ Q : σx = ei and τx,j = 1

}
.
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(In terms of the first-level table, Ri consists of rows that are 0 on the ith column;

in terms of the second-level table at Ti, Ri,j consists of rows that are 1 on the jth

column.)

• A = (Ai,0, Ai,1, Ai,j,0, Ai,j,1 : i ∈ I, j ∈ Ji) is a tuple of subsets of [n]. For i ∈ I

and j ∈ Ji,

Ai,1 =
{
k ∈ [n] : ∀x ∈ Pi, xk = 1

}
and Ai,0 =

{
k ∈ [n] : ∀x ∈ Pi, xk = 0

}
Ai,j,1 =

{
k ∈ [n] : ∀x ∈ Pi,j, xk = 1

}
and Ai,j,0 =

{
k ∈ [n] : ∀x ∈ Pi,j, xk = 0

}
.

Note that all the sets are well-defined since Pi and Pi,j are not empty.

• ρ = (ρi,j : i ∈ I, j ∈ Ji) is a tuple of functions ρi,j : Pi,j → {0, 1}. For each

x ∈ Pi,j , we have ρi,j(x) = ax if τx = ej or τx = ej,j′ for some j′ > j; ρi,j(x) = bx

if τx = ej′,j for some j′ < j.

Intuitively I is the set of indices of terms with some string x ∈ Q satisfying the term Ti

as reported in σx (σx equals to 1 rather than ∗, though the latter may also have x satisfies

Ti), and Pi is the set of such strings while Ri is the set of strings x not satisfying Ti as

reported in σx. For each i ∈ I , Ji is the set of indices of clauses with some string x ∈ Pi

satisfying Ti uniquely and falsifying the clause Ci,j as reported in τx. Pi,j is the set of such

strings, and Ri,j is the set of strings x which satisfy Ti uniquely but also satisfy Ci,j as

reported in τx. We collect the following facts which are immediate from the definition.

Fact 2.2.11. Let (I; J ;P ;R;A; ρ) be the tuple induced by a map ϕ : Q → Σ. Then we have

• |I| ≤
∑

i∈I |Pi| ≤ 2|Q|.

• For each i ∈ I , |Ji| ≤
∑

j∈Ji |Pi,j| ≤ 2|Pi|.

• For each i ∈ I and j ∈ Ji, |Ri| and |Ri,j| are at most |Q| (as they are subsets of Q).

• For each i ∈ I and j ∈ Ji, Pi,j ⊆ Pi, Ai,0 ⊆ Ai,j,0, and Ai,1 ⊆ Ai,j,1.

Note that |I| and
∑

i∈I |Ji| can be strictly larger than |Q|, as some xmay satisfy more
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than one (but at most two) term with σx = ei,i′ and some x may falsify more than one

clause with τx = ej,j′ .

The sets in A are important for the following reasons:

Fact 2.2.12. Let ϕ : Q → P be the full signature map of Q with respect to (T,C,H). Then

• For each i ∈ I , Ti(k) ∈ Ai,1 for all k ∈ [
√
n] and Ti(x) = 0 for each x ∈ Ri.

• For each i ∈ I and j ∈ Ji, Ci,j(k) ∈ Ai,j,0 for all k ∈ [
√
n] and Ci,j(x) = 1 for each

x ∈ Ri,j .

Before moving back to the proof, we introduce the following consistency condition on

P .

Definition 2.2.13. Let (I; J ;P ;R;A; ρ) be the tuple induced by a map ϕ : Q → P. We

say that Pi,j for some i ∈ I and j ∈ Ji is 1-consistent if ρi,j(x) = 1 for all x ∈ Pi,j , and

0-consistent if ρi,j(x) = 0 for all x ∈ Pi,j ; otherwise we say Pi,j is inconsistent.

Let ϕ be the full signature map of Q with respect to (T,C,H). If Pi,j is 1-consistent,

the index k of the variable xk in the dictatorship or anti-dictatorship function hi,j must

lie in Ai,j,0 (when hi,j is an anti-dictator) or Ai,j,1 (when hi,j is a dictator); the situation is

similar if Pi,j is 0-consistent but would be more complicated if Pi,j is inconsistent. Below

we prune an edge whenever some Pi,j in P becomes inconsistent. This way we make sure

that Pi,j’s in every leaf left are consistent.

2.2.3.3 Tree pruning

Consider an edge (u, v) in B. Let ϕu : Q → P and ϕv : Q ∪ {x} → P be the maps

associated with u and v, with x being the query made at u and ϕv(x) being the label of

(u, v). Let (I; J ;P ;R;A; ρ) and (I ′; J ′;P ′;R′;A′; ρ′) be the two tuples induced by ϕu and

ϕv, respectively.

We list some easy facts about how (I; J ;P ;R;A; ρ) is updated to obtain

(I ′; J ′;P ′;R′;A′; ρ′).
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Fact 2.2.14. Let ϕv(x) = (σx, τx, ax, bx) for the string x queried at u. Then we have

• The new string x is placed in P ′
i if σx,i = 1, and is placed in P ′

i,j if σx = ei and

τx,j = 0.

• Each new set in P ′ (i.e., P ′
i with i /∈ I or P ′

i,j with either i /∈ I or i ∈ I but j /∈ Ji), if

any, is {x} and the corresponding set A′
i,1 or A

′
i,j,1 is {k : xk = 1} and A′

i,0 or A
′
i,j,0

is {k : xk = 0}.

• Each old set in P ′ (i.e., P ′
i with i ∈ I or P ′

i,j with i ∈ I and j ∈ Ji) either stays the

same or has x added to the set. For the latter case, {k : xk = 0} is removed from Ai,1

or Ai,j,1 and {k : xk = 1} is removed from Ai,0 or Ai,j,0 to obtain the new sets in A′.

Now we are ready to define a set of so-called bad edges of B, which will be used to

prune B. In the rest of the proof we use α to denote a large enough positive constant.

Definition 2.2.15. An edge (u, v) is called a bad edge if at least one of the following

events happens at (u, v) and none of these events happen along the path from the root to

u (letting ϕu and ϕv be the maps associated with u and v, x be the new query string at u,

(I; J ;P ;R;A; ρ) and (I ′; J ′;P ′;R′;A′; ρ′) be the tuples that ϕu and ϕv induce, respectively):

• For some i ∈ I ,
∣∣Ai,1 \ A′

i,1

∣∣ ≥ α
√
n logn.

• For some i ∈ I and j ∈ Ji,
∣∣Ai,j,0 \ A′

i,j,0

∣∣ ≥ α
√
n logn.

• For some i ∈ I and j ∈ Ji, Pi,j is 0-consistent but P ′
i,j is inconsistent (meaning that

x is added to Pi,j with ρi,j(y) = 0 for all y ∈ Pi,j but ρ′i,j(x) equals to 1 instead of 0).

• For some i ∈ I and j ∈ Ji, Pi,j is 1-consistent but P ′
i,j is inconsistent (meaning that

x is added to Pi,j with ρi,j(y) = 1 for all y ∈ Pi,j but ρ′i,j(x equals to 0 instead of 1).

Moreover, a leaf ℓ of B is bad if one of the edges along the root-to-ℓ path is bad; ℓ is good

otherwise.

The following pruning lemma states that the probability of (T,C,H) reaching a bad

leaf of B is o(1), when (T,C) ∼ E and H ∼ Eyes. We delay the proof to Section 2.2.3.5.
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Lemma 2.2.16 (Pruning Lemma). Pr(T,C)∼E,H∼Eyes
[
(T,C,H) reaches a bad leaf of B

]
=

o(1).

The pruning lemma allow us to focus on the good leaves ℓ of B only. In particular

we know that along the root-to-ℓ path the sets Ai,1 and Ai,j,0 each cannot shrink by more

than α
√
n lognwith a single query (otherwise the path contains a bad edge and ℓ is a bad

leaf). Moreover every set Pi,j in P at the end must remain consistent (either 0-consistent

or 1-consistent).

We use these properties to prove the following lemma in Section 2.2.3.4 for good leaves.

Lemma 2.2.17. For each good leaf ℓ of B, we have

Pr
(T,C)∼E,H∼Eyes

[
(T,C,H) reaches ℓ

]
≤ (1 + o(1)) · Pr

(T,C)∼E,H∼Eno

[
(T,C,H) reaches ℓ

]
.

Combining Lemma 2.2.16 and Lemma 2.2.17, we can prove Lemma 2.2.10 as follow:

Proof of Lemma 2.2.10. Let L be the set of leaves labeled “accept” in B and L∗ ⊂ L be the

good leaves among them. Below we hide (T,C) ∼ E in the subscript since it appears in

every probability.

Pr
H∼Eyes

[
B accepts (T,C,H)

]
=
∑
ℓ∈L

Pr
H∼Eyes

[
(T,C,H) reaches ℓ

]
≤
∑
ℓ∈L∗

Pr
H∼Eyes

[
(T,C,H) reaches ℓ

]
+ o(1)

≤ (1 + o(1)) ·
∑
ℓ∈L∗

Pr
H∼Eno

[
(T,C,H) reaches ℓ

]
+ o(1)

≤ Pr
H∼Eno

[
B accepts (T,C,H)

]
+ o(1),

where the second line follows from Lemma 2.2.16 and the third line follows from Lemma

2.2.17.
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2.2.3.4 Proof of Lemma 2.2.17 for good leaves

We prove Lemma 2.2.17 in this section. Let ℓ be a good leaf associated with ϕℓ and

(I; J ;P ;R;A; ρ) be the tuple that ϕℓ induces. Note that along the root-to-ℓ path, when

the sets Ai,0, Ai,1, Ai,j,0, Ai,j,1 are created for the first time in A, their sizes are always be-

tween (n/2) ±
√
n (since all queries made by B lie in the middle layers). As a result, it

follows from Definition 2.2.15 that for each i ∈ I and j ∈ Ji:

i) |Ai,1| ≥ (n/2)−O(|Pi| ·
√
n logn) and |Ai,j,0| ≥ (n/2)−O(|Pi,j| ·

√
n logn);

ii) |Ai,0|, |Ai,1|, |Ai,j,0|, |Ai,j,1| ≤ (n/2) +
√
n;

iii) Pi,j is consistent (either 1-consistent or 0-consistent).

Then we have the following claim:

Claim 2.2.18. For each i ∈ I and j ∈ Ji, |Ai,j,1| ≥ (n/2)−O
(
|Pi,j|2 ·

√
n logn

)
.

Proof. For any two strings x, y ∈ Pi,j , we have

∣∣{k ∈ [n] : xk = yk = 0}
∣∣ ≥ |Ai,j,0| ≥ (n/2)−O

(
|Pi,j| ·

√
n logn

)
.

As a result, it follows from |{k : yk = 0}| ≤ (n/2) +
√
n and Pi,j being nonempty that

∣∣{k ∈ [n] : xk = 1, yk = 0}
∣∣ ≤ O

(
|Pi,j| ·

√
n logn

)
.

Finally we have

|Ai,j,1| ≥
∣∣{k : xk = 1}

∣∣− ∑
y∈Pi,j\{x}

∣∣{k : xk = 1, yk = 0}
∣∣ ≥ (n/2)−O

(
|Pi,j|2 ·

√
n logn

)
.

(2.3)

This finishes the proof of the claim.

Additionally, notice that Ai,1 ⊆ Ai,j,1; thus from i) we have
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|Ai,j,1| ≥ |Ai,1| ≥ (n/2)−O
(
|Pi| ·

√
n logn

)
. (2.4)

The following claim is an immediate consequence of this fact and Claim 2.2.18.

Claim 2.2.19. For each i ∈ I and j ∈ Ji, we have∣∣|Ai,j,1| − |Ai,j,0|
∣∣ ≤ O

(√
n logn ·min

{
|Pi,j|2, |Pi|

})
Proof. We have from i) and ii) that

|Ai,j,1| − |Ai,j,0| ≤ (n/2) +
√
n−

(
(n/2)−O

(
|Pi,j| ·

√
n logn

))
= O

(
|Pi,j| ·

√
n logn

)
.

On the other hand, from ii), (2.3) and (2.4), we have

|Ai,j,0| − |Ai,j,1| ≤ O
(√

n logn ·min
{
|Pi,j|2, |Pi|

})
.

Note that |Pi,j| ≤ |Pi|. The lemma then follows.

We are now ready to prove Lemma 2.2.17.

Proof of Lemma 2.2.17. Let ℓ be a good leaf and let ϕ : Q → P be the map associated with

ℓ.

Let |E| denote the support size of E . We are interested in the following two probabil-

ities:

Pr
(T,C)∼E,H∼Eyes

[
(T,C,H) reaches ℓ

]
=

1

|E|
∑
(T,C)

Pr
H∼Eyes

[
(T,C,H) reaches ℓ

]
Pr

(T,C)∼E,H∼Eno

[
(T,C,H) reaches ℓ

]
=

1

|E|
∑
(T,C)

Pr
H∼Eno

[
(T,C,H) reaches ℓ

]
,

where the sum is over the support of E . Hence, it suffices to show that for each (T,C)
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such that

Pr
H∼Eyes

[
(T,C,H) reaches ℓ

]
> 0, (2.5)

we have the following inequality:

PrH∼Eno [(T,C,H) reaches ℓ ]
PrH∼Eyes [(T,C,H) reaches ℓ ]

≥ 1− o(1). (2.6)

Fix a pair (T,C) such that (2.5) holds. Recall that (T,C,H) reaches ℓ if and only if the

signature of each x ∈ Qwith respect to (T,C,H)matches exactly ϕ(x) = (σx, τx, ax, bx).

Given (2.5), the term and clause signatures of x are already known to match σx and τx

(otherwise the LHS of (2.5) is 0). The rest, i.e., ax and bx for each x ∈ Q, depends on

H = (hi,j : i, j ∈ [N ]) only.

Since ℓ is consistent, there is a ρi,j ∈ {0, 1} for each Pi,j such that every x ∈ Pi,j

should satisfy hi,j(x) = ρi,j . These are indeed the only conditions for H to match ax and

bx for each x ∈ Q, and as a result, below we give the conditions on H = (hi,j) for the

triple (T,C,H) to reach ℓ:

• For Eyes, (T,C,H) reaches ℓ, where H = (hi,j) and hi,j(x) = xki,j , if and only if

ki,j ∈ Ai,j,ρi,j for each i ∈ I and j ∈ Ji (so that each x ∈ Pi,j has hi,j(x) = ρi,j).

• For Eno, (T,C,H) reaches ℓ, where H = (hi,j) and hi,j(x) = xki,j , if and only if

ki,j ∈ Ai,j,1−ρi,j for each i ∈ I and j ∈ Ji (so that each x ∈ Pi,j has hi,j(x) = ρi,j).

With this characterization, we can rewrite the LHS of (2.6) as follows:

PrH∼Eno [(T,C,H) reaches ℓ ]
PrH∼Eyes [(T,C,H) reaches ℓ ]

=
∏

i∈I,j∈Ji

( |Ai,j,1−ρi,j |
|Ai,j,ρi,j |

)
=

∏
i∈I,j∈Ji

(
1 +

|Ai,j,1−ρi,j | − |Ai,j,ρi,j |
|Ai,j,ρi,j |

)
.

Thus, by applying Claim 2.2.19 and noting that |Ai,j,ρi,j | ≤ n (whether ρi,j = 0 or 1) we

43



have

PrH∼Eno [(T,C,H) reaches ℓ ]
PrH∼Eyes [(T,C,H) reaches ℓ ]

≥
∏

i∈I,j∈Ji

(
1−O

(
logn ·min{|Pi,j|2, |Pi|}√

n

))

≥ 1−O

(
logn√

n

) ∑
i∈I,j∈Ji

min
{
|Pi,j|2, |Pi|

}
.

As
∑

j |Pi,j| ≤ 2|Pi|,
∑

j∈Ji min
{
|Pi,j|2, |Pi|

}
is maximized if |Ji| = 2

√
|Pi| and |Pi,j| =√

|Pi|. Therefore we have

∑
i∈I,j∈Ji

min
{
|Pi,j|2, |Pi|

}
≤
∑
i∈I

2|Pi|3/2 ≤ O(q3/2),

since
∑

i |Pi| ≤ 2q. This finishes the proof of the lemma since q is chosen to ben1/3/ log2 n.

2.2.3.5 Proof of the pruning lemma

To complete our proof for the lower bound of monotonicity testing, we prove the pruning

lemma, Lemma 2.2.16, in this section.

LetE be the set of bad edges as defined in Definition 2.2.15 (recall that if (u, v) is a bad

edge, then the root-to-u path cannot have any bad edge). We split the proof of Lemma

2.2.16 into four lemmas, one lemma for each type of bad edges. To this end, we define four

sets of bad edges E1, E2, E3 and E4 (we follow the same notation of Definition 2.2.15): an

edge (u, v) ∈ E belongs to

1. E1 if |Ai,1 \ A′
i,1| ≥ α

√
n logn for some i ∈ I ;

2. E2 if |Ai,j,0 \ A′
i,j,0| ≥ α

√
n logn for some i ∈ I and j ∈ Ji;

3. E3 if it is not in E2 and for some i ∈ I and j ∈ Ji, Pi,j is 0-consistent but P ′
i,j is

inconsistent. When this happens we say (u, v) is E3-bad at (i, j);

4. E4 if it is not in E1 or E2 and for some i ∈ I and j ∈ Ji, Pi,j is 1-consistent but P ′
i,j
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is inconsistent. When this happens we say (u, v) is E4-bad at (i, j).

It is clear thatE = E1∪E2∪E3∪E4. (These four sets are not necessarily pairwise disjoint

though we did exclude edges of E2 from E3 and edges of E1 and E2 from E4 explicitly.)

Each lemma below states that the probability of (T,C) ∼ E and H ∼ Eyes taking an edge

in Ei is o(1). Lemma 2.2.16 then follows directly from a union bound over the four sets.

Lemma 2.2.20. The probability of (T,C) ∼ E and H ∼ Eyes taking an edge in E1 is o(1).

Proof. Let u be an internal node. We prove that, when (T,C) ∼ E and H ∼ Eyes, either

(T,C,H) reaches node u with probability 0 or

Pr
(T,C)∼E,H∼Eyes

[
(T,C,H) takes an E1-edge at u

∣∣∣ (T,C,H) reaches u
]
= o(1/q). (2.7)

Lemma 2.2.20 then follows from Lemma 2.1.3. Below we assume that the probability of

(T,C,H) reaching node u is positive. Let ϕ : Q → P be the map associated with u,

and let x ∈ {0, 1}n be the string queried at u. Whenever we discuss a child node v of u

below, we use ϕ′ :Q∪{x} → P to denote the map associated with v and (I; J ;P ;R;A; ρ)

and (I ′; J ′;P ′;R′;A′; ρ′) to denote the tuples ϕ and ϕ′ induce. (Note that v is not a specific

node but can be any child of u.)

Fix an i ∈ I . We upperbound by o(1/q2) the conditional probability of (T,C,H)

following an edge (u, v)with |Ai,1 \ A′
i,1| ≥ α

√
n logn. (2.7) follows directly from a union

bound over i ∈ I .

With i fixed, observe that any edge (u, v) has either A′
i,1 = Ai,1 or A′

i,1 = Ai,1 \ ∆i

with

∆i =
{
ℓ ∈ Ai,1 : xℓ = 0

}
⊆ Ai,1.

The latter happens if and only if P ′
i = Pi ∪ {x}. Therefore, we assume WLOG that

|∆i| ≥ α
√
n logn (otherwise the conditional probability is 0 for i), and now it suffices
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to upperbound by o(1/q2) the conditional probability of (T,C,H) taking an edge (u, v)

with P ′
i = Pi ∪ {x}.

To analyze this conditional probability for i ∈ I , we fix a triple (T−i, C,H), where we

use T−i to denote a sequence of N − 1 terms with only the ith term missing, such that

Pr
Ti

[
((T−i,Ti), C,H) reaches u

]
> 0,

where Ti is a term drawn uniformly at random. It suffices to prove for any fixed such

(T−i, C,H):

Pr
Ti

[
((T−i,Ti), C,H) reaches u and P ′

i = Pi ∪ {x}
]

(2.8)

≤ o(1/q2) · Pr
Ti

[
((T−i,Ti), C,H) reaches u

]
.

Recalling Fact 2.2.12, the latter event, ((T−i,Ti), C,H) reaching u, imposes two conditions

on Ti:

1. For each y ∈ Pi, Ti(y) = 1, and

2. For each z ∈ Ri, Ti(z) = 0.

Let U denote the set of all such terms T :
√
n → [n]. Then equivalently T ∈ U if and only

if

U : T (k) ∈ Ai,1 for all k ∈ [
√
n] and each z ∈ Ri has zT (k) = 0 for some k ∈ [

√
n].

Regarding the former event in (2.8), i.e. ((T−i,Ti), C,H) reaching u and P ′
i = Pi ∪ {x},

a necessary condition over Ti is the same as above but in addition we require Ti(x) = 1.

(Note that this is not a sufficient condition since for that we also need Ti to be one of the

first two terms that x satisfies, which depends on T−i.) Let V denote the set of all such

terms. Then T ∈ V if
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V : T (k) ∈ Ai,1 \∆i for all k ∈ [
√
n] and each z ∈ Ri has zT (k) = 0 for some k ∈ [

√
n].

In the rest of the proof we prove that |V |/|U | = o(1/q2), from which (2.8) follows.

Let m = logn. First we write U ′ to denote the following subset of U : T ′ ∈ U is in U ′ if

∣∣{k ∈ [
√
n] : T ′(k) ∈ ∆i}

∣∣ = m,

and it suffices to show |V |/|U ′| = o(1/q2). Next we define the following bipartite graph

G between U ′ and V (inspired by similar arguments of [BB16]): T ′ ∈ U ′ and T ∈ V

have an edge if and only if T ′(k) = T (k) for all k ∈ [
√
n] with T ′(k) /∈ ∆i. Each T ′ ∈ U ′

has degree at most |Ai,1 \∆i|m, as one can only move each T ′(k) ∈ ∆i to Ai,1 \∆i.

To lowerbound the degree of a T ∈ V , note that one only needs at most q many

variables of T to kill all strings in Ri (such that they don’t satisfy T ). Let H ⊂ [
√
n] be

any set of size at most q such that for each string z ∈ Ri, there exists a k ∈ H with

zT (k) = 0. ⁶ Then one can choose any m distinct indices k1, . . . , kℓ from H , as well as any

m (not necessarily distinct) variables t1, . . . , tℓ from ∆i, and let T ′ be a term where

T ′(k) =


ti k = ki for some i ∈ [m]

T (k) otherwise.

The resulting T ′ is in U ′ and (T, T ′) is an edge inG. As a result, the degree of T ∈ V is at

least (√
n− q

m

)
· |∆i|m.

By counting the number of edges in G from both sides and using |Ai,1| ≤ (n/2) +
√
n,

|U ′|
|V |

≥
(√

n− q

m

)
·
(

|∆i|
|Ai,1 \∆i|

)m

≥
(√

n

2m
· α

√
nm

(n/2) +
√
n

)m

> ω(q2),

⁶For example, since |Ri| ≤ q, one can set H to contain the smallest k ∈ [
√
n] such that zT (k) = 0, for

each z ∈ Ri.
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by choosing a large enough constant α > 0. This finishes the proof of the lemma.

Lemma 2.2.21. The probability of (T,C) ∼ E and H ∼ Eyes taking an edge in E2 is o(1).

Proof. The proof of this lemma is similar to that of Lemma 2.2.20. Let u be any internal

node of the tree. We prove that, when (T,C) ∼ E ,H ∼ Eyes, either (T,C,H) reaches u

with probability 0 or

Pr
(T,C)∼E,H∼Eyes

[
(T,C,H) takes an E2-edge at u

∣∣∣ (T,C,H) reaches u
]
= o(1/q). (2.9)

Assume below WLOG that the probability of (T,C,H) reaching u is positive.

Fix i ∈ I and j ∈ Ji. We upperbound the conditional probability of (T,C,H) taking

an edge (u, v) with |Ai,j,0 \ A′
i,j,0| ≥ α

√
n logn by o(1/q3). (2.9) then follows by a union

bound over i ∈ I and j ∈ Ji. Similarly let

∆i,j =
{
ℓ ∈ Ai,j,0 : xℓ = 1

}
⊆ Ai,j,0, (2.10)

and assume WLOG that |∆i,j| ≥ α
√
n logn (as otherwise the conditional probability is 0

for i, j). Then it suffices to upperbound the conditional probability of (T,C,H) going

along an edge (u, v) with P ′
i,j = Pi,j ∪ {x} by o(1/q3). The rest of the proof is symmetric

to that of Lemma 2.2.20.

Lemma 2.2.22. The probability of (T,C) ∼ E and H ∼ Eyes taking an edge in E3 is o(1).

Proof. We fix any pair (T,C) from the support of E and prove that

Pr
H∼Eyes

[
(T,C,H) takes an E3-edge

]
= o(1). (2.11)

The lemma follows by averaging (2.11) over all pairs (T,C) in the support of E . To prove

(2.11) we fix any internal node u such that the probability of (T,C,H) reaching u is
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positive, and prove that

Pr
H∼Eyes

[
(T,C,H) takes an E3-edge leaving u

∣∣∣ (T,C,H) reaches u
]
= o(1/q). (2.12)

(2.11) then follows by Lemma 2.1.3. Below we assume the probability of (T,C,H) reach-

ing u is positive.

We assumeWLOG that there is no edge inE along the root-to-u path; otherwise, (2.12)

is 0 (recall Definition 2.2.15). We follow the same notation used in the proof of Lemma

2.2.20, i.e., ϕu : Q → P as the map associated with u, x as the query made at u, and

(I; J ;P ;R;A; ρ) as the tuple induced by ϕu. We also write F to denote the set of pairs

(i, j) such that i ∈ I and j ∈ Ji.

Observe that since (T,C) is fixed, the term and clause signatures of every string are

fixed, and in particular the term and clause signatures (denoted σx and τx) of x are fixed.

We assumeWLOG that σx = ek for some k ∈ [N ] (otherwise xwill never be added to any

Pi,j when (T,C,H) leaves u and (2.12) is 0 by the definition of E3). In this case we write

D to denote the set of {(k, j) : τx,j = 0} with |D| ≤ 2. As a result, whenever (T,C,H)

takes an E3-edge leaving from u, this edge must be E3-bad at one of the pairs (k, j) ∈ D.

Thus, the LHS of (2.12) is the same as

∑
(k,j)∈D

Pr
H∼Eyes

[
(T,C,H) takes a (u, v) that is E3-bad at (k, j)

∣∣∣ (T,C,H) reaches u
]
.

(2.13)

To bound the conditional probability for (k, j) above by o(1/q), we assume WLOG

that (k, j) ∈ F (otherwise x would create a new Pk,j whenever (T,C,H) takes an edge

(u, v) leaving u, and such an edge cannot beE3-bad at (k, j)). Next we define (Ak,j,0 below

is well defined since (k, j) ∈ F )

∆k,j =
{
ℓ ∈ Ak,j,0 : xℓ = 1

}
.
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We may assume WLOG that |∆k,j| < α
√
n logn; otherwise (T,C,H) can never take an

edge (u, v) in E3 because E2-edges are explicitly excluded from E3. Finally, we assume

WLOG ρk,j(y) = 0 for all y ∈ Pk,j ; otherwise the edge (u, v) that (T,C,H) takes cannot

be E3-bad at (k, j).

With all these assumptions on (k, j) in place, we prove the following inequality:

Pr
H∼Eyes

[
(T,C,H) takes a (u, v) that is E3-bad at (k, j)

]
(2.14)

≤ |∆k,j|
|Ak,j,0|

· Pr
H∼Eyes

[
(T,C,H) reaches u

]
.

Given |∆k,j| = O(
√
n logn) and |Ai,j,0| ≥ (n/2) − O(q

√
n logn) = Ω(n) (since there is

no bad edge particularly no E2-edge, from the root to u), (2.12) follows by summing over

D, with |D| ≤ 2.

We work on (2.14) in the rest of the proof. Fix any tuple H−(k,j) (with its entry hk,j

missing) such that the probability of (T,C, (H−(k,j),h)) reaching u is positive, where

h(x) = xr is a random dictator function with the index r drawn from [n] uniformly. Then

(2.14) follows from

Pr
h

[
(T,C, (H−(k,j),h)) takes (u, v) that is E3-bad at (k, j)

]
(2.15)

≤ |∆k,j|
|Ak,j,0|

· Pr
h

[
(T,C, (H−(k,j),h)) reaches u

]
.

The event on the RHS, i.e., that (T,C, (H−(k,j),h)) reaches u, imposes the following con-

dition on the hidden index r associated with h (h(x) = xr): r ∈ Ak,j,0, since ρk,j(y) = 0

for all y ∈ Pk,j . Hence the probability on the RHS of (2.15) is |Ai,j,0|/n. On the other

hand, the event on the LHS of (2.15), that (T,C, (H−(i,j),h)) follows a (u, v) that is E3-

bad at (k, j), imposes the following necessary condition for r: r ∈ ∆k,j . ⁷ As a result, the

⁷Note that this is not a sufficient condition, because the other pair (k, j′) ∈ D may have |∆k,j′ | ≥
α
√
n logn.
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probability on the LHS of (2.15) is at most |∆k,j|/n. (2.15) then follows.

Lemma 2.2.23. The probability of (T,C) ∼ E and H ∼ Eyes taking an edge in E4 is o(1).

Proof. We fix a pair (T,C) from the support of E and prove that

Pr
H∼Eyes

[
(T,C,H) takes an E4-edge

]
= o(1). (2.16)

The lemma follows by averaging (2.16) over all (T,C) in the support of E . To prove (2.16),

fix a leaf ℓ such that the probability of (T,C,H) reaching ℓ is positive. Let u1 · · ·ut′ut′+1 =

ℓ be the root-to-ℓ path and let q(us), s ∈ [t′] denote the following conditional probability:

Pr
H∼Eyes

[
(T,C,H) takes an E4-edge leaving us

∣∣∣ (T,C,H) reaches us

]
.

It then suffices to show for every such leaf ℓ,

∑
s∈[t′]

q(us) = o(1), (2.17)

since (2.16) would then follow by Lemma 2.1.4. To prove (2.17), we use t to denote the

smallest integer such that (ut+1, ut+2) is an edge inE1 orE2 with t = t′ by default if there

is no such edge along the path. By the choice of t, there is no edge in E1 or E2 along

u1 · · ·ut+1. For (2.17) it suffices to show

∑
s∈[t]

q(us) = o(1). (2.18)

To see this we consider two cases. If there is no E1, E2 edge along the root-to-ℓ path,

then the two sums in (2.17) and (2.18) are the same. If (ut+1, ut+2) is an edge in E1 or E2,

then q(us) = 0 if s ≥ t + 2 (since (u, v) /∈ E if there is already an edge in E along the

path to u). We claim that q(ut+1) must be 0 as well. This is because, given that (T,C) is

fixed and that (T,C,H) takes (ut+1, ut+2)with a positive probability, whenever (T,C,H)
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follows an edge (ut+1, v) from ut+1, v has the same term and clause signatures (σx, τx) as

ut+2 and thus, also has the same P andA (as part of the tuple its map induces). As a result

(ut+1, v) is also inE1 orE2 and cannot be an edge inE4 (recall that we explicitly excluded

E1 and E2 from E4). Below we focus on us with s ∈ [t] and upperbound q(us).

For each s ∈ [t] we write xs to denote the string queried at us and let

(Is; Js;P s;Qs;Rs; ρs) be the tuple induced by the map associated with us. We also write

Fs to denote the set of pairs (i, j)with i ∈ Is, j ∈ Js
i . Following the same arguments used

to derive (2.13) in the proof of Lemma 2.2.22, let Ds ⊆ Fs denote the set of at most two

pairs (i, j) such that xs is added to P s
i,j when (T,C,H) reaches us. Note that if xs just

creates a new Pi,j (so (i, j) /∈ Fs), (T,C,H)won’t take an E4-edge in this case and we do

not include it in Ds. As a result, whenever (T,C,H) takes an E4-edge (u, v), the latter

must be E4-bad at one of (i, j) ∈ Ds.

Next for each pair (i, j) ∈ Ds, we can follow the analysis of (2.14) to show that

Pr
H∼Eyes

[
(T,C,H) takes a (u, v) that is E4-bad at (i, j)

]
≤

|∆s
i,j|

|As
i,j,1|

· Pr
H∼Eyes

[
(T,C,H) reaches u

]
,

where the set ∆s
i,j is defined as ∆s

i,j =
{
k ∈ As

i,j,1 : x
s
k = 0

}
.

As there is no E1 or E2 edge along the path to us, we have by (2.4) that As
i,j,1 has size

Ω(n). Therefore we know

q(us) ≤ O(1/n) ·
∑

(i,j)∈Ds

∣∣∆s
i,j

∣∣ and
∑
s∈[t]

q(us) ≤ O(1/n) ·
∑
s∈[t]

∑
(i,j)∈Ds

∣∣∆s
i,j

∣∣. (2.19)

Let (I∗; J∗;P ∗;R∗;A∗; ρ∗) be the tuple induced by the map associated with ut+1 and

let F ∗ be the set of (i, j)with i ∈ I∗ and j ∈ J∗
i . We upperbound the second sum in (2.19)
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above by focusing on any fixed pair (i, j) ∈ F ∗ and observing that

∣∣A∗
i,j,1

∣∣+ ∑
s:(i,j)∈Ds

∣∣∆s
i,j

∣∣ ≤ (n/2) +
√
n.

This is because each ∆s
i,j and A∗

i,j,1 are pairwise disjoint and their union is indeed exactly

the number of 1-entries of the query string along the path that first creates Pi,j . The latter

is at most (n/2)+
√
n because we assumed that strings queried in the tree lie in the middle

layers. On the other hand,

∣∣A∗
i,j,1

∣∣ ≥ (n/2)−O
(√

n logn ·min
{
|P ∗

i,j|2, |P ∗
i |
})

.

This follows directly from (2.3) and (2.4) and our choice of t at the beginning of the proof

so that there is no E1 orE2 edge from u1 to ut+1. We finish the proof by plugging the two

inequalities into (2.19) and follow the same arguments used at the end of the proof of the

lemma for good leaves.

2.3 An Ω̃(n2/3) lower bound for testing of unateness

In this section we will show any (adaptive) algorithm for unateness testing must make at

least Ω̃(n2/3) queries (for some constant distance parameter ϵ) and prove Theorem 1.2.4.

The proof follows Yao’s mini-max priciple and the same idea from our lower bound proof

for monotonicity testing, with some adaptation to the case of unateness testing. We will

give some more intuition how we can push the lower bound of Ω̃(n1/3) for monotonicity

testing further to Ω̃(n2/3) after we define the new hard distributions Dyes andDno for the

proof in this section.

We will present our distributions Dyes and Dno in Section 2.3.1, and prove it is hard to

distinguish them with Õ(n2/3) queries in Section 2.3.2 to complete the proof.
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2.3.1 Distributions

In this section we describe a pair of distributions, Dyes and Dno, supported on Boolean

functions f : {0, 1}n → {0, 1} that will be used to obtain an adaptive lower bound for

unateness testing by applying Yao’s mini-max principle. In order to apply this principle

we also show in this section that any f ∼ Dyes is unate, and f ∼ Dno is Ω(1)-far from

being unate with probability Ω(1). Let N be the following parameter:

N =

(
1 +

1√
n

)n/4

≈ e
√
n/4.

A function f ∼ Dyes is drawn using the following procedure:

1. Sample a subset M ⊂ [n] uniformly at random from all subsets of size n/2.

2. Sample T ∼ E(M), which is a sequence of terms (Ti : i ∈ [N ]). T is then used to

define a multiplexer map Γ = ΓT : {0, 1}n → [N ] ∪ {0∗, 1∗}. Both definitions of

E(M) and ΓT will be described next.

3. Sample H = (hi : i ∈ [N ]) ∼ Eyes(M) according to the follows: for each i ∈ [N ],

hi : {0, 1}n → {0, 1} is a dictatorship function hi(x) = xki
with ki sampled

independently and uniformly from M. We will refer to hi as the dictatorship

function and xki
(or simply its index ki) as the special variable associated with the

ith term Ti.

4. Sample two strings r ∈ {0, 1}M and s ∈ {0, 1}M uniformly at random. Finally, we

define f = fM,T,H,r,s : {0, 1}n → {0, 1} as fM,T,H,r,s(x) = fM,T,H
(
x⊕ (r ◦ s)

)
, where

fM,T,H is defined as follows (with the truncation done first):

fM,T,H(x) =



0 if |xM| < (n/4)−
√
n

1 if |xM| > (n/4) +
√
n

0 if Γ(x) = 0∗

1 if Γ(x) = 1∗

hΓ(x)(x) otherwise (i.e., when Γ(x) ∈ [N ])
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A function f = fM,T,H,r,s ∼ Dno is drawn using a similar procedure, with the only

difference being that H = (hi : i ∈ [N ]) is sampled from Eno(M) instead of Eyes(M): each

hi is a dictatorship function hi(x) = xki
with probability 1/2 and an anti-dictatorship

hi(x) = xki
with probability 1/2, where ki is chosen independently and uniformly at

random from M. We will also refer to hi as the dictatorship or anti-dictatorship function

and xki
as the special variable associated with Ti.

Remark 2. Note that the truncation in fM,T,H,r,s is done after sampling r. As a result, we may

not assume all queries are made in the middle layers, like we did in Section 2.2.

Fixing an M ⊂ [n] of size n/2, we now describe T ∼ E(M) and ΓT : {0, 1}n →

[N ]∪{0∗, 1∗} to finish the description of the two distributions. Each term Ti in T, i ∈ [N ],

is drawn independently and is a random subset of M with each j ∈ M included with

probability 1/
√
n independently. We also abuse the notation and interpret each term Ti

as a Boolean function that is the conjunction of its variables:

Ti(x) =
∧
j∈Ti

xj.

Note that, for some technical reason that will become clear later in the proof of Lemma

2.3.21, the definition of terms here is slightly different from that used in the monotonicity

lower bound, though both are the conjunction of roughly
√
n/2 (

√
n in monotonicity)

variables. Given T, the multiplexer map ΓT : {0, 1}n → [N ]∪{0∗, 1∗} indicates the index

of the term Ti that is satisfied by x, if there is a unique one; it returns 0∗ if no term is

satisfied, or 1∗ if more than one terms are satisfied:

ΓT(x) =


0∗ ∀ i ∈ [N ], Ti(x) = 0

1∗ ∃ i ̸= j ∈ [N ], Ti(x) = Tj(x) = 1

i Ti(x) = 1 for a unique i ∈ [N ]
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Wegive some intuition for the reasonwhy the two distributions are hard to distinguish

and can be used to obtain amuch better lower bound for unateness testing, despite of being

much simpler than the two-level construction used in the previous section. Note thatDyes

andDno are exactly the same except that (1) inDyes, hi’s are random dictatorship or anti-

dictatorship functions (if one takes s into consideration) but are consistent in the sense

that all hi’s with the same special variable are either all dictatorship or anti-dictatorship

functions; (2) in contrast, whether hi is a dictatorship or anti-dictatorship is independent

for each i ∈ [N ] in Dno. Informally, the only way for an algorithm to be sure that f is

fromDno (instead ofDyes) is to find two terms with the same special variable xk (for some

k ∈ [n]) but one with a dictatorship and the other with an anti-dictatorship function over

xk. As a result, one can interpret our Ω̃(n2/3) lower bound (at a high level) as the product

of two quantities: the number of queries one needs to breach a term Ti (see Section 2.3.2.2

for details) and find its special variable, and the number of terms one needs to breach

in order to find two with the same special variable. This is different from monotonicity

testing since we are done once a term is breached there, and enables us to obtain a much

better lower bound for unateness testing.

Next we prove that f ∼ Dyes is unate and f ∼ Dno is far from unate with high proba-

bility.

Lemma 2.3.1. Every f in the support of Dyes is unate.

Proof. Given the definition of f = fM,T,H,r,s using fM,T,H , it suffices to show that fM,T,H

is monotone. The rest of the proof is similar to that of Lemma 2.2.1.

Lemma 2.3.2. A function f ∼ Dno is Ω(1)-far from unate with probability Ω(1).

Proof. Consider a fixed subset M ⊂ [n] of size n/2. It suffices to prove that, when T ∼

E(M) and H ∼ Eno(M), the function f = fM,T,H is Ω(1)-far from unate. This is due to

the fact that flipping variables of a function (as we apply EXLUSIVE-OR between input

strings with r ◦ s) does not change its distance to unateness.
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Fix T in the support of E(M) and H in the support of Eno(M). We let X ⊂ {0, 1}n

denote the set of x ∈ {0, 1}n in the middle layers (i.e. |xM | is within n/4±
√
n) such that

ΓT (x) = i for some i ∈ [N ] (rather than 0∗ or 1∗). For each x ∈ X with ΓT (x) = i, we

also let ρ(x) = k be the special variable associated with Ti (i.e., hi(x) = xk or hi(x) = xk).

As ρ(x) ∈ M and ΓT (x) depends only on variables in M , we have that

ΓT

(
x(ρ(x))

)
= ΓT (x),

i.e., after flipping the ρ(x)th bit of x, the new string still uniquely satisfies the same term

as x.

Let x∗ = x(ρ(x)) for each string x ∈ X . Then it’s easy to see x∗ ∈ X and (x∗)∗ = x.

The claim below shows that (x, x∗) is a bi-chromatic edge along the ρ(x)th direction. As

a result, one can decompose |X| into |X|/2 many disjoint bi-chromatic edges (x, x∗).

Claim 2.3.3. For all x ∈ X , (x, x∗) is a bi-chromatic edge of fM,T,H .

Proof. Let k = ρ(x) ∈ M . Then fM,T,H(x) and fM,T,H(x
∗) are either xk and x∗

k, or xk and

x∗
k. The claim follows directly from x∗ = x(k) and thus, x∗

k = xk.

For each k ∈ M , we partition strings x ∈ X with ρ(x) = k and f(x) = 0 into

X+
k =

{
x ∈ X : ρ(x) = k, xk = 0, f(x) = 0

}
and X−

k =
{
x ∈ X : ρ(x) = k, xk = 1, f(x) = 0

}
.

Note that for each x ∈ X+
k , (x, x∗) is a monotone (bi-chromatic) edge; for each x ∈

X−
k , (x, x∗) is an anti-monotone edge. Since all these |X|/2 edges are disjoint, by Lemma

2.1.2 we have:

dist
(
fM,T,H ,Unate

)
≥ 1

2n
·
∑
k∈M

min
{
|X+

k |, |X
−
k |
}
.
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Therefore, it suffices to show that with probabilityΩ(1) over T ∼ E(M) andH ∼ Eno(M),

both X+
k and X−

k (as random variables derived from T and H) have size Ω(2n/n) for every

k ∈ M .

To simplify the proof we introduce a new distribution E ′(M) that is the same as E(M)

but conditioned on that every Ti in T contains at least n1/3 elements. Our goal is to show

that

Pr
T∼E ′(M),H∼Eno(M)

[
∀k ∈ M , both X+

k and X−
k have size Ω(2n/n)

]
= Ω(1). (2.20)

This implies the desired claim over T ∼ E(M) as the probability of T ∼ E(M) lying in

the support of E ′(M) is at least 1− exp (−Ω(
√
n)). To see this is the case, the probability

of Ti having less than n1/3 many elements can be bounded from above by

Pr
[
|Ti| ≤ n1/3

]
=
∑

j≤n1/3

(
n/2

j

)
·
(
1− 1√

n

)n/2−j

·
(

1√
n

)j

≤ (n1/3 + 1) ·
(
n/2

n1/3

)
·
(
1− 1√

n

)n/2−n1/3

< e−0.49
√
n.

Taking a union bound over all N ≈ e
√
n/4 terms, we conclude that T ∼ E(M) lies in the

support of E ′(M) with probability at least 1− exp(−0.24
√
n).

In Claim 2.3.4, we prove a lower bound for the expectation of |X| (note that X only

depends on T):

Claim 2.3.4. We have

E
T∼E(M)

[
|X|
]
= Ω(2n) and E

T∼E ′(M)

[
|X|
]
= Ω(2n). (2.21)

Proof. By linearity of expectation, we have

E
T∼E(M)

[
|X|
]
=

∑
x in middle layers

Pr
T∼E(M)

[
x ∈ X

]
.
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Fix a string x ∈ {0, 1}n in themiddle layers (i.e., |xM | lies in n/4±
√
n). We decompose

the probability on the RHS for x into N disjoint subevents. The ith subevent corresponds

to Ti being the unique term which x satisfies. The probability of the ith subevent is at

least (
1− 1√

n

)n
4
+
√
n

×

(
1−

(
1− 1√

n

)n
4
−
√
n
)N−1

= Ω

(
1

N

)
.

As a result, the probability of x ∈ X isN ·Ω(1/N) = Ω(1). The first part of (2.21) follows

from the fact that there are Ω(2n) many strings x in the middle layers.

The second part of (2.21) follows from the first part and the fact that |X| ≤ 2n and

T ∼ E(M) does not lie in the support of E ′(M)with probability o(1) as shown above.

Let µ∗ = Ω(2n) be the expectation of |X| over T ∼ E ′(M), and let p be the probability

that |X| ≥ µ∗/2. Then we have

µ∗ ≤ p · 2n + (1− p) · (µ∗/2) ≤ p · 2n + µ∗/2

and thus, p = Ω(1). As a result, it suffices to consider a T in the support of E ′(M) that

satisfies |X| ≥ µ∗/2 and show that, over H ∼ Eno(M), all |X+
k | and |X−

k | are Ω(2n/n)

with probability Ω(1). To this end, we focus on X+
k and then use symmetry and a union

bound on all the n sets.

Given k ∈ M , T and its corresponding X (since X only depends on T) with |X| ≥

µ∗/2, we note that half of x ∈ X have xk = 0 (since whether x ∈ X only depends on xM )

and for each x ∈ X with xk = 0, the probability of x ∈ X+
k (over H) is 1/(2n). Hence,

the expectation of |X+
k | is |X|/4n ≥ µ∗/8n = Ω(2n/n). Let µ = |X|/4n. To obtain a

concentration bound on |X+
k |, we apply Hoeffding’s inequality over H ∼ Eno(M) in the

next claim.

Claim 2.3.5. For each k ∈ M , we have

Pr
H∼Eno(M)

[
µ− |X+

k | ≥ µ/2
]
≤ exp

(
−Ω
(
2n

1/3

/n2
))

.
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Proof. Consider the size ofX+
k as a function overh1, . . . ,hN for a particular fixed T in the

support of E ′(M) with |X| ≥ Ω(2n). We have that |X+
k | is a sum of independent random

variables taking values between 0 and 2n−n1/3
. This is because each term Ti has length at

least n1/3, and it can add at most bi ≤ 2n−n1/3
strings to |X+

k |. Then we have:

∑
i∈[N ]

b2i ≤ 2n−n1/3
∑
i∈[N ]

bi ≤ 22n−n1/3

.

Also the expectation of |X+
k | is µ because the choices in H partitions half of X into 2n

disjoint parts. We can now apply Hoeffding’s inequality:

Pr
H∼Eno(M)

[
µ− |X+

k | ≥
µ

2

]
≤ exp

(
−Ω(22n/n2)

22n−n1/3

)
= exp

(
−Ω
(
2n

1/3

/n2
))

This finishes the proof of the claim.

The same argument works for |X−
k |. (2.20) then follows from a union bound on k ∈ M

and both sets X+
k and X−

k . This finishes the proof of Lemma 2.3.2.

Given Lemma 2.3.1 and Lemma 2.3.2, our lower bound for testing unateness (Theorem

1.2.4) follows directly from the lemma below. We fix q = n2/3/log3 n as the number of

queries in the rest of the proof. The remainder of this section will prove the following

lemma.

Lemma 2.3.6. Let B be any q-query deterministic algorithm with black-box oracle access to

f . Then

Pr
f∼Dno

[
B rejects f

]
≤ Pr

f∼Dyes

[
B rejects f

]
+ o(1).

2.3.2 Proof of Lemma 2.3.6

We prove Lemma 2.3.6 in this section. Similar with the proof for lower bound of mono-

tonicity testing, here we also start with a few more definitions.
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2.3.2.1 Balanced decision trees

Let B be a q-query deterministic algorithm, i.e., a binary decision tree of depth at most q

in which each internal node is labeled a query string x ∈ {0, 1}n and each leaf is labelled

“accept” or “reject.” Each internal node u has one 0-child and one 1-child. For each internal

node u, we useQu to denote the set of strings queried so far (not including the query x to

be made at u).

Next we give the definition of a q-query treeB being balanced with respect to a subset

M ⊂ [n] of size n/2 and a string r ∈ {0, 1}M (as the M and r in the procedure that

generatesDyes andDno). After the definition we show that, when bothM and r are drawn

uniformly at random (as in the procedure), B is balanced with respect to M and r with

probability at least 1− o(1).

Definition 2.3.7 (Balance). We sayB is balancedwith respect to a subsetM ⊂ [n] of sizen/2

and r ∈ {0, 1}M if for every internal node u of B (letting x be the query at u) and every

Q ⊆ Qu, with

A =
{
k ∈ [n] : ∀y, y′ ∈ Q, yk = y′k

}
and A′ =

{
k ∈ [n] : ∀y, y′ ∈ Q∪{x}, yk = y′k

}
,

(2.22)

the set ∆ = A \ A′ having size at least n2/3 logn implies that

∆1 =
{
k ∈ ∆ ∩M : xk ⊕ rk = 0 and ∀y ∈ Q, yk ⊕ rk = 1

}
(2.23)

has size at least n2/3 logn/8.

Lemma 2.3.8. Let B be a q-query decision tree. Then B is balanced with respect to a subset

M ⊂ [n] of size n/2 and an r ∈ {0, 1}M, both drawn uniformly at random, with probability

at least 1− o(1)

Proof. Fix an internal node u and a Q ⊆ Qu such that |∆| ≥ n2/3 logn. Then the
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probability over the draw of M and r of ∆1 being smaller than n2/3 logn/8 is at most

exp(−Ω(n2/3 logn)) using the Chernoff bound. The lemma follows by a union bound as

there are at most O(2q) choices for u and 2q choices for Q.

Lemma 2.3.6 follows from the following lemma.

Lemma 2.3.9. FixM and r. Let B be a q-query tree that is balanced with respect toM and

r. Then we have

Pr
T,H∼Eno(M),s

[
B rejects fM,T,H,r,s

]
≤ Pr

T,H∼Eyes(M),s

[
B rejects fM,T,H,r,s

]
+ o(1). (2.24)

where T ∼ E(M) and s ∼ {0, 1}M .

Proof of Lemma 2.3.6 assuming Lemma 2.3.9. To simplify the notation, in the sequence of

equations below we ignore in the subscripts names of distributions from which certain

random variables are drawn when it is clear from the context. Using Lemma 2.3.8 and

Lemma 2.3.9, we have

Pr
M,T,H∼Eno(M),r,s

[
B rejects fM,T,H,r,s

]
≤ 1

2n/2 ·
(

n
n/2

) ·∑
M,r

Pr
T,H∼Eno(M),s

[
B rejects fM,T,H,r,s

]
≤ 1

2n/2 ·
(

n
n/2

) · ∑
M,r: balanced B

Pr
T,H∼Eno(M),s

[
B rejects fM,T,H,r,s

]
+ o(1)

≤ 1

2n/2 ·
(

n
n/2

) · ∑
M,r: balanced B

Pr
T,H∼Eyes(M),s

[
B rejects fM,T,H,r,s

]
+ o(1)

≤ Pr
M,T,H∼Eyes(M),r,s

[
B rejects fM,T,H,r,s

]
+ o(1).

This finishes the proof of Lemma 2.3.6.

To prove Lemma 2.3.9, we may consider an adversary that has M of size n/2 and

r ∈ {0, 1}M in hand and can come up with any q-query decision tree B as long as B is
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balanced with respect toM and r. Our goal is to show that any such treeB satisfies (2.24).

This inspires us to introduce the definition of balanced decision trees.

Definition 2.3.10 (Balanced Decision Trees). A q-query tree B is said to be balanced

(without specifying M and r here) if it is balanced with respect to M∗ = [n/2] and

r∗ = 0[n/2] ∈ {0, 1}M . Equivalently, for every internal node u of B and every Q ⊆ Qu (let-

ting A and A′ denote the sets as defined in (2.22)), if∆ = A \A′ has size at least n2/3 logn,

then the set ∆1 as defined in (2.23) usingM∗ and r∗ has size at least n2/3 logn/8.

With Definition 2.3.10 in hand, we use the following lemma to prove Lemma 2.3.9.

Lemma 2.3.11. Let B′ be a balanced q-query decision tree. Then we have

Pr
T,H∼Eno(M∗),s

[
B′ rejects fM∗,T,H,r∗,s

]
≤ Pr

T,H∼Eyes(M∗),s

[
B′ rejects fM∗,T,H,r∗,s

]
+ o(1), (2.25)

where T ∼ E(M∗) and s ∼ {0, 1}M∗ .

Proof of Lemma 2.3.9 assuming Lemma 2.3.11. Let B be a q-query tree from the statement

of Lemma 2.3.9 that is balanced with respect to M and r ∈ {0, 1}M , which are not neces-

sarily the same as M∗ and r∗. Then we use B,M and r to define a new q-query tree B′

that is balanced (with respect to M∗ and r∗): B′ is obtained by replacing every query x

made in B by x′, where x′ is obtained by first doing an XOR of xwith r over indices inM

and then reordering the indices of the new x using a bijection between M and M∗. Then

it’s easy to see B′ is balanced, and the LHS of (2.24) for B is the same as the LHS of (2.25)

for B′. The same holds for the RHS of (2.24) and (2.25) as well. Lemma 2.3.9 then follows

from Lemma 2.3.11.

For simplicity in notation, we fix M and r to be [n/2] and 0[n/2] in the rest of the

section. We also write E for E(M), Eyes for Eyes(M), and Eno for Eno(M). Given T in the
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support of E , H from the support of Eyes or Eno, and s ∈ {0, 1}M , we write

fT,H,s =: fM,T,H,r,s

for convenience. Then the goal (2.25) of Lemma 2.3.11 becomes

Pr
T,H∼Eno,s

[
B rejects fT,H,s

]
≤ Pr

T,H∼Eyes,s

[
B rejects fT,H,s

]
+ o(1),

where T ∼ E and s ∼ {0, 1}M in both probabilities.

Remark 3. Since B works on fT,H,s and r is all-0, the multiplexer ΓT is first truncated ac-

cording to |xM |, the number of 1’s in the first n/2 indices. As a consequence, we may now

assume without loss generality from now on that B only queries strings x that have |xM |

lying between n/4±
√
n. We will refer to them as strings in the middle layers in the rest of

the section.

2.3.2.2 Balanced signature trees

At a high level we proceed in a similar fashion as in the proof ofmonotonicity lower bound.

We first define a new and stronger oracle model that returns more than just f(x) ∈ {0, 1}

for each query x ∈ {0, 1}n. Upon each query x ∈ {0, 1}n, the oracle returns the so-called

signature of x ∈ {0, 1}n with respect to (T,H, s) when hidden function is fT,H,s (and it

will become clear that fT,H,s(x) is determined by the signature of x); in addition, the oracle

also reveals the special variable k of a term Ti when the latter is breached (see Definition

2.3.17). Note that the revelation of special variables is new in the proof of unateness lower

bound compared to that of monotonicity lower bound. On the other hand, the definition

of signatures in this section is much simpler due to the single-level construction of the

multiplexer map.

After the introduction of the stronger oracle model, ideally we would like to prove that
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every q-query deterministic algorithm C with access to the new oracle can only have at

most o(1) advantage in rejecting the function fT,H,s when T ∼ E ,H ∼ Eno and s ∼ {0, 1}M

as compared to T, H ∼ Eyes and s. It turns out that we are only able to prove this when C

is represented by a so-called balanced signature tree, a definition closely inspired by that

of balanced decision trees in Definition 2.3.10. This suffices for us to prove Lemma 2.3.11

since only balanced decision trees are considered there.

Recall the definition of ei and ei,i′ from Section 2.1.1 (but with N = (1 + 1/
√
n)n/4

now). We first define signatures syntactically and then semantically. The two definitions

below are simpler than their counterparts in Section 2.2 (as we only have one level of

multiplexing in ΓT ). By Remark 3, we can assume without loss of generality that every

string queried lies in the middle layers.

Definition 2.3.12. We use P to denote the set of all triples (σ, a, b), where σ ∈ {0, 1, ∗}N

and a, b ∈ {0, 1,⊥} satisfy the following properties:

1. σ is either 1) the all 0-string 0N , 2) ei for some i ∈ [N ], or 3) ei,i′ for some i, i′ ∈ [N ],

i < i′.

2. If σ is of case 1), then a = b =⊥. If σ is of case 2), then a ∈ {0, 1} and b =⊥. Lastly,

if σ is of case 3), then we have a, b ∈ {0, 1}.

Definition 2.3.13. We say (σ, a, b) ∈ P is the signature of a string x ∈ {0, 1}n in the middle

layers with respect to (T,H, s) if it satisfies the following properties:

1. σ ∈ {0, 1, ∗}N is set according to the following three cases: 1) σ = 0N if Ti(x) = 0

for all i ∈ [N ]; 2) σ = ei if Ti(x) = 1 is the unique term that is satisfied by x; 3)

σ = ei,i′ if i < i′ and Ti(x) = Ti′(x) = 1 are the first two terms that are satisfied by

x.

2. If σ is in case 1), then a = b =⊥; if σ is in case 2) with σ = ei, then a = hi(x⊕ s) ⁸

and b =⊥; if σ is in case 3) with σ = ei,i′ , then a = hi(x⊕ s) and b = hi′(x⊕ s).

⁸Recall that x⊕ s is the n-bit string obtained from x after an XOR with s over indices in M .
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The signature map of a set Q ⊂ {0, 1}n of strings in the middle layers with respect to

(T,H, s) is the map ϕ : Q → P such that ϕ(x) is the signature of x with respect to (T,H, s)

for each x ∈ Q.

Next we show that fT,H,s(x) is uniquely determined by the signature of x. Thus, the

new oracle is at least as powerful as the standard one. The proof is similar to that of

Lemma 2.2.9.

Lemma 2.3.14. Let T be from the support of E , H be from the support of Eyes or Eno and

s ∈ {0, 1}M . Given an x ∈ {0, 1}n in the middle layers, fT,H,s(x) is uniquely determined

by the signature (σ, a, b) of x with respect to (T,H, s).

Proof. Let f = fT,H,s. We consider the following three cases:

1. (No term is satisifed) If σ = 0N , then f(x) = 0.

2. (Unique term satisfied) If If σ = ei for some i ∈ [N ], then f(x) = hi(x⊕ s) = a.

3. (Multiple terms satisfied) If σ = ei,i′ for some i < i′ ∈ [N ], then f(x) = 1.

This finishes the proof of the lemma.

We have defined the signature of x with respect to (T,H, s), which is the first thing

that the new oracle returns upon a query x. Let Q ⊂ {0, 1}n be a set of strings in the

middle layers (and considerQ as the set of queries made so far by an algorithm). Next we

define terms breached by Q with respect to a triple (T,H, s). Upon a query x, the new

oracle checks if there is any term(s) newly breached after x is queried; if so, the oracle also

reveals its special variable in M .

For this purpose, let ϕ : Q → P be the signature map of Q with respect to (T,H, s),

where ϕ(x) = (σx, ax, bx). We say ϕ induces a 5-tuple (I;P ;R;A; ρ) if it satisfies the

following properties:

• The set I ⊆ [N ] is given by
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I =
{
i ∈ [N ] : ∃x ∈ Q with σx,i = 1

}
.

• P = (Pi : i ∈ I) and R = (Ri : i ∈ I) are two tuples of subsets of Q. For each

i ∈ I ,
Pi =

{
x ∈ Q : σx,i = 1

}
and Ri =

{
x ∈ Q : σx,i = 0

}
.

• A = (Ai, Ai,0, Ai,1 : i ∈ I) is a tuple of subsets of [n], such that for each i ∈ I ,

Ai = Ai,0 ∪ Ai,1 and

Ai,1 =
{
k ∈ [n] : ∀x ∈ Pi, xk = 1

}
and Ai,0 =

{
k ∈ [n] : ∀x ∈ Pi, xk = 0

}
.

• ρ = (ρi : i ∈ I) is a tuple of functions ρi : Pi → {0, 1} with ρi(x) = ax if either

σx = ei or σx = ei,i′ for some i′ > i, and ρi(x) = bx if σx = ei′,i for some i′ < i, for

each x ∈ Pi (ρi(x) gives us the value of hi(x⊕ s) for each x ∈ Pi).

The following fact is reminiscent of Fact 2.2.12.

Fact 2.3.15. Let ϕ : Q → P be the signature map of Q with respect to (T,H, s). Then for

each i ∈ I , we have Ti ⊆ Ai,1 ∩ M , Ti(x) = 0 for all x ∈ Ri, and hi(x ⊕ s) = ρi(x) for

each x ∈ Pi.

We introduce the similar concept of consistency as in Definition 2.2.13.

Definition 2.3.16. Let (I;P ;R;A; ρ) be the tuple induced by ϕ : Q → P. For each i ∈ I ,

we say Pi is 1-consistent if ρi(x) = 1 for all x ∈ Pi, and 0-consistent if ρi(x) = 0 for

all x ∈ Pi. We say Pi is consistent if it is either 1-consistent or 0-consistent; we say Pi is

inconsistent otherwise.

We are now ready to define terms breached by Q with respect to (T,H, s).

Definition 2.3.17 (Breached Terms). LetQ ⊂ {0, 1}n be a set of strings in the middle layers.

Let T be from the support of E , H be from the support of Eyes or Eno, and s ∈ {0, 1}M . Let

(I;P ;R;A; ρ) be the tuple induced by the signature map of Q with respect to (T,H, s). We

say the ith term is breached by Q with respect to (T,H, s), for some i ∈ I , if at least one of
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the following two events happens: (1) Pi is inconsistent or (2) |Ai ∩M | ≤ n/10. We say the

ith term is safe if it is not breached.

We can now finish the formal definition of our new oracle model. Upon each query x,

the oracle first returns the signature of xwith respect to the hidden triple (T,H, s). It then

examines if there is any newly breached term(s) (by Definition 2.3.17 there can be at most

two such terms since x can be added to at most two Pi’s) and return the special variable

k ∈ M of the newly breached term(s). As a result, ifQ is the set of queries made so far, the

information returned by the new oracle can be summarized as a 6-tuple (I;P ;R;A; ρ; δ),

where

1. (I;P ;R;A; ρ) is the tuple induced by the signature map of Q with respect to

(T,H, s);

2. Let IB ⊆ I be the set of indices of terms breached by Q, and let IS = I \ IB denote

the safe terms. Then δ : IB → M satisfies that k = δ(i) is the special variable of

the ith term in hi.

We view a q-query deterministic algorithm C with access to the new oracle as a sig-

nature tree, in which each leaf is labeled “accept” or “reject” and each internal node u is

labeled a query string x ∈ {0, 1}n in themiddle layers. Each internal node u has |P|·O(n2)

children with each of its edges (u, v) labeled by (1) a triple (σ, a, b) ∈ P as the signature of

x with respect to the hidden (T,H, s), and (2) the special variable of any newly breached

(at most two) term(s). Each node u is associated with a setQu as the set of queries made so

far (not including x), its signature map ϕ : Qu → P, and a tuple (I;P ;R;A; ρ; δ) (induced

by ϕ) as the summary of all information received from the oracle so far. (Note that one

can fully reconstruct the signature map ϕ from (I;P ;R;A; ρ) so it is redundant to keep ϕ.

We keep it because sometimes it is (notation-wise) easier to work with ϕ directly.) Similar

with the proof of monotonicity lower bound, for simplicity we also say the triple (T,H, s)
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reaches a node (or leaf) u in C if the algorithm reaches u given access to the new oracle

with respect to this triple.

Finally we define balanced signature trees.

Definition 2.3.18 (Balanced Signature Trees). We say that a signature tree C is balanced

if for any internal node u of C (letting x be the query to make and (I;P ;R;A; ρ; δ) be the

summary so far) and any i ∈ I , ∆ = {j ∈ Ai : xj disagrees with yj of y ∈ Pi} having size

at least n2/3 logn implies that ∆1 = {k ∈ ∆ ∩M : xk = 0 and ∀y ∈ Pi, yk = 1} has size

at least n2/3 logn/8.

Note that the definition above is weaker compared to Definition 2.3.10 of balanced

decision trees, in the sense that the condition on ∆1 in the latter applies to any subset of

queries Q ⊆ Qu (instead of only Pi’s). Lemma 2.3.11 follows from the lemma below on

balanced signature trees.

Lemma 2.3.19. Let C be a q-query balanced signature tree. Then we have

Pr
T,H∼Eno,s

[
C rejects (T,H, s)

]
≤ Pr

T,H∼Eyes,s

[
C rejects (T,H, s)

]
+ o(1). (2.26)

Proof of Lemma 2.3.11 assuming Lemma 2.3.19. Let B be a q-query balanced decision

tree. We use B to obtain a q-query algorithm C with access to the new oracle by sim-

ulating B as follows: each time a string x is queried, C uses the signature of x returned

by the oracle to extract f(x) (using Lemma 2.3.14) and then continue the simulation of B.

One can verify that the corresponding signature tree ofC is balanced and the probabilities

of C rejecting (T,H, s) in both cases are the same as B.

Before moving on to the proof of Lemma 2.3.19, let us remark on how the new oracle

may help an algorithm distinguish between functions in Dyes and Dno. Suppose that a

deterministic algorithm C is at some internal node u with a tuple (I;P ;R;A; ρ; δ). For

each breached i ∈ IB , the algorithm knows that hi is either a dictator or anti-dictator
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with special variable xk with k = δ(i). By inspecting the yk of a y ∈ Pi and ρi(y), the

algorithm can also deduce whether hi(x ⊕ s) is xk or xk. The former suggests that xk is

monotone and the latter suggests that xk is anti-monotone.

However, unlike monotonicity testing, observing hi(x ⊕ s) = xk has no indication

on whether f is drawn from Dyes or Dno: indeed hi(x ⊕ s) is equally possible to be xk

or xk in both distributions because of the random bit sk. But if the algorithm observes a

so-called collision, i.e. i, i′ ∈ IB such that hi(x ⊕ s) = xk and hi′(x ⊕ s) = xk, then one

can safely assert that the hidden function belongs toDno. This gives us the crucial insight

(as sketched earlier in Section 2.3.1) that leads to a higher unateness testing lower bound

than monotonicity testing: for testing monotonicity, deducing that a variable goes in an

anti-monotone direction suffices for a violation; for testing unateness, however, one needs

to find a collision in order to observe a violation. While the proof of Lemma 2.3.19 is quite

technical, it follows the intuition that with q queries, it is hard for a balanced signature

tree to find a collision in breached terms IB , and when no collision is found, it is hard to

tell where the hidden function is drawn from.

2.3.2.3 Tree pruning

To prove Lemma 2.3.19 on a given balanced q-query signature tree C , we start by identi-

fying a set of bad edges of C and using them to prune the tree.

Definition 2.3.20. An edge (u, v) in C is a bad edge if at least one of the following

events happens at (u, v) and none of these events happens along the root-to-u path (letting

x be the string queried at u, and (IB ∪ IS;P ;R;A; ρ; δ) and (I ′B ∪ I ′S;P
′;R′;A′; ρ′; δ′) be

the summaries at u and v, respectively):

1. For some i ∈ IS , |Ai \ A′
i | ≥ n2/3 logn;

2. |I ′B| > n1/3
/
logn; or

3. There exist two distinct indices i, j ∈ I ′B with δ′(i) = δ′(j).
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We say a leaf ℓ of C is a good leaf if there is no bad edge along the root-to-ℓ path;

otherwise, ℓ is bad. The following lemma allows us to focus on good leaves. We defer the

proof to Section 2.3.2.5.

Lemma 2.3.21 (Pruning Lemma). Let C be a balanced q-query signature tree. Then

Pr
T,H∼Eno,s

[
(T,H, s) reaches a bad leaf

]
= o(1).

We prove the following lemma for good leaves in Section 2.3.22:

Lemma 2.3.22. For any good leaf ℓ of C , we have

Pr
T,H∼Eno,s

[
(T,H, s) reaches ℓ

]
≤ (1 + o(1)) · Pr

T,H∼Eyes,s

[
(T,H, s) reaches ℓ

]
.

Assuming Lemma 2.3.21 and Lemma 2.3.22, we can prove Lemma 2.3.19:

Proof of Lemma 2.3.19 assuming Lemma 2.3.21 and Lemma 2.3.22. LetL be the set of leaves

of C that are labeled “reject” and let L∗ ⊆ L be the good ones in L. Then we have

Pr
T,H∼Eno,s

[
C reject (T,H, s)

]
=
∑
ℓ∈L

Pr
T,H∼Eno,s

[
(T,H, s) reaches ℓ

]
≤
∑
ℓ∈L∗

Pr
T,H∼Eno,s

[
(T,H, s) reaches ℓ

]
+ o(1)

≤ (1 + o(1)) ·
∑
ℓ∈L∗

Pr
T,H∼Eyes,s

[
(T,H, s) reaches ℓ

]
+ o(1)

≤ (1 + o(1)) · Pr
T,H∼Eyes,s

[
C rejects (T,H, s)

]
+ o(1)

≤ Pr
T,H∼Eyes,s

[
C rejects (T,H, s)

]
+ o(1),

where we used Lemma 2.3.21 in the second line and Lemma 2.3.22 in the third line.
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2.3.2.4 Proof of Lemma 2.3.22 for good leaves

The proof of Lemma 2.3.22 is similar in spirit to Lemma 2.2.17 for monotonicity.

Fix a good leaf ℓ in C . We let Q be the set of queries made along the root-to-ℓ path,

ϕ : Q → P be the signature map of Q with ϕ(x) = (σx, ax, bx) for each x ∈ Q, and let

(IB ∪ IS;P ;R;A; ρ; δ) be the summary associated with ℓ. Since ℓ is a good leaf, there are

no bad edges along the root-to-ℓ path. Combining this with the definition of breached/safe

terms, we have the following list of properties:

1. For each i ∈ IS , |Ai ∩M | ≥ n/10;

2. Every i ∈ IS is either 1-consistent or 0-consistent;

3. |IB| ≤ n1/3
/
logn; and

4. For any two distinct indices i, j ∈ IB , we have δ(i) ̸= δ(j).

Let D = {δ(i) : i ∈ IB} ⊂ M be the special variables of breach terms. We have

|D| = |IB|.

Next we fix a tuple T from the support of E such that the probability of (T,H, s)

reaching ℓ is positive, when H ∼ Eno and s ∼ {0, 1}M . It then suffices to show that

Pr
H∼Eyes,s

[
(T,H, s) reaches ℓ

]
≥ (1− o(1)) Pr

H∼Eno,s

[
(T,H, s) reaches ℓ

]
. (2.27)

The properties below follow directly from the assumption that the probability of (T,H, s)

reaching ℓ is positive when H ∼ Eno and s ∼ {0, 1}M :

1. For every x ∈ Q and i ∈ [N ] such that σx,i ∈ {0, 1}, we have Ti(x) = σx,i; and

2. For each i ∈ IB , letting k = δ(i), there exists a bit b such that ρi(x) = xk ⊕ b for all

x ∈ Pi.

For each i ∈ IB ∪ IR we pick a string yi from Pi arbitrarily as a representative and let

αi = ρi(yi).
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We first derive an explicit expression for the probability over Eno in (2.27). To this end,

we note that, given properties listed above, (T,H, s) (with H ∼ Eno and s ∼ {0, 1}M )

reaches ℓ iff

1. For each i ∈ IS , let k be the special variable of hi. Then we have k ∈ Ai ∩M .

Furthermore, hi is a dictatorship function if yi,k ⊕ sk = αi or an anti-dictatorship

if yi,k ⊕ sk ̸= αi;

2. For each i ∈ IB , the special variable of hi is the same as k = δ(i) and similarly, hi

is a dictatorship function if yi,k ⊕ sk = αi or an anti-dictatorship if yi,k ⊕ sk ̸= αi.

Thus, once s is fixed, there is exactly one choice of hi for each i ∈ IB and |Ai∩M | choices

of hi for each i ∈ IS . Since there are (n/2) · 2 choices overall for each hi, the probability

over Eno in (2.27) is (
1

n

)|IB |

·
∏
i∈IS

(
|Ai ∩M |

n

)
.

Next we work on the more involved probability over Eyes in (2.27). Given properties

listed above (T,H, s) (with s ∼ {0, 1}M and H ∼ Eyes so every hi is a dictatorship func-

tion) reaches ℓ iff

1. For each i ∈ IS , let k be the special variable of the dictatorship function hi. Then

we have k ∈ Ai ∩M and sk satisfies that yi,k ⊕ sk = αi;

2. For each i ∈ IB , the special variable of hi is the same as k = δ(i) and we always

have yi,k ⊕ sk = αi.

Note that once s = s is fixed, these are independent conditions over hi’s (among the

overall n/2 choices for each hi). As a result, we can rewrite the probability for Eyes as

E
s∼{0,1}M

[∏
i∈I

Zi

]
, (2.28)

where Zi’s are (correlated) random variables that depend on s. For each i ∈ IB , Zi = 2/n

if
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αi = yi,δ(i) ⊕ sδ(i)

and Zi = 0 otherwise. For each i ∈ IS , we have

Zi =
|{k ∈ Ai ∩M : yi,k ⊕ sk = αi}|

n/2

For some technical reason, for each i ∈ IS , let Bi be the following random set that depends

on s:

Bi =
{
k ∈ (Ai ∩M) \D : yi,k ⊕ sk = αi

}
.

Using |D| = |IB|, we may now simplify (2.28) by:

E
s∼{0,1}M

[∏
i∈I

Zi

]
=

1

2|IB | ·
(
2

n

)|IB |

E
s∼{0,1}M\D

[ ∏
i∈IS

Zi

]

≥
(
1

n

)|IB |

E
s∼{0,1}M\D

[ ∏
i∈IS

(
|Bi|
n/2

)]
.

Therefore, it remains to show that

E
s∼{0,1}M\D

[ ∏
i∈IS

(
2|Bi|

|Ai ∩M |

)]
≥ 1− o(1). (2.29)

Next we further simplify (2.29) by introducing new, simpler random variables. We may

re-write

|Bi| =
∑

k∈(Ai∩M)\D

Xi,k, where Xi,k =


1 if yi,k ⊕ sk = αi

0 otherwise

For each i ∈ IS and k ∈ (Ai ∩M) \D, let Yi,k and Yi be the following random variables:

Yi,k =
1− 2Xi,k + 2τi

|Ai ∩M |
and Yi =

∑
k∈Ai∩M\D

Yi,k, where τi =
|Ai ∩M ∩D|

2|(Ai ∩M) \D|
.

(Note that |(Ai ∩ M) \ D| is Ω(n) so τi’s are well-defined.) A simple derivation shows
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that

∏
i∈IS

(
2|Bi|

|Ai ∩M |

)
=
∏
i∈IS

1−
∑

k∈(Ai∩M)\D

Yi,k

 =
∏
i∈IS

(
1− Yi

)
. (2.30)

Using the fact that each fraction on the LHS is between 0 and 2, we have that Yi always

satisfies |Yi| ≤ 1. The difficulty in lowerbounding (2.30) is that Yi’s are not independent.

But with a fixed i, Yi,k’s are indeed independent with respect to the randomness in s, and

each Yi,k is either

1

|Ai ∩M |
+O

(
1

n5/3 logn

)
or − 1

|Ai ∩M |
+O

(
1

n5/3 logn

)

with equal probabilities, where we used the fact that |Ai ∩ M | = Ω(n) and |D| ≤

n1/3/ logn.

For each i ∈ IS , let Wi be the random variable defined as

Wi =


Yi if |Yi| ≤ log2 n/

√
n

2|IS| otherwise

We prove the following claim that helps us avoid the correlation between Yi’s.

Claim 2.3.23. The following inequality always holds:

∏
i∈IS

(
1− Yi

)
≥
(
1− o(1)

)
·

(
1−

∑
i∈IS

Wi

)
.

Proof. The inequality holds trivially if |Yj| ≥ log2 n/
√
n for some j ∈ IS . This is because

|Yi| ≤ 1 and thus, the LHS is nonnegative. On the other hand Wj = 2|IS| implies that

the RHS is negative even when every other Wi is −1. So we may assume that |Yi| ≤

log2 n/
√
n for every i. We defer the proof for this case to Claim 5.1.1 in Section 5.1.

Given Claim 2.3.23, it suffices to upperbound the expectation of each Wi over s ∼
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{0, 1}M\D:

E
s∼{0,1}M\D

[
Wi

]
≤ E

s∼{0,1}M\D

[
Yi

]
+
(
2|IS|+ 1

)
· Pr

s

[
Yi ≥ log2 n/

√
n
]
= O

(
1

n2/3 logn

)
(2.31)

where we used |IS| ≤ n2/3 and that the probability of Yi ≥ log2 n/
√
n is superpolyno-

mially small, by a Chernoff bound. Our goal, (2.29), then follows directly from (2.31) and

Claim 2.3.23.

2.3.2.5 Proof of the pruning lemma

Let E be the set of bad edges in C . We start by partitioning E into three (disjoint) sub-

sets E1, E2 and E3 according the the event that happens at (u, v) ∈ E. Let (u, v) ∈ E

and let (IB ∪ IS;P ;R;A; ρ; δ) and (I ′B ∪ I ′S;P
′;R′;A′; ρ′; δ′) be the summaries associated

with u and v, respectively. Then

1. (u, v) ∈ E1 if for some i ∈ IS , we have |Ai \ A′
i| ≥ n2/3 logn;

2. (u, v) ∈ E2 if (u, v) /∈ E1 and |I ′B| ≥ n1/3/logn; or

3. (u, v) ∈ E3 if (u, v) /∈ E1 ∪ E2 and for two different indices i, j ∈ I ′B , we have

δ(i) = δ(j).

Note that E1, E2 and E3 are disjoint. Moreover, by the definition of bad edges none of

these events happens at any edge along the root-to-u path.

Our plan is to show that the probability of (T,H, s), as T ∼ E ,H ∼ Eno and

s ∼ {0, 1}M , passing through an edge in Ei is o(1) for each i. The pruning lemma then

follows from a union bound.

For edge sets E1 and E3, we show that for any internal node u of C , the probability

of (T,H, s) taking an edge (u, v) that belongs to E1 or E3 is at most o(1/q), conditioning

on (T,H, s) reaching u when T ∼ E ,H ∼ Eno and s ∼ {0, 1}M . This allows us to apply

Lemma 2.1.3. We handleE2 using a different argument by showing that, roughly speaking,
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IB goes up with very low probability after each round of query and thus, the probability

of |IB| reaching n1/3/ logn is o(1).

Edge Set E1. Fix an internal node u of C . We show that the probability of (T,H, s)

leaving u with an E1-edge, conditioning on it reaching u, is o(1/q). It then follows from

Lemma 2.1.3 that the probability of (T,H, s) passing through an E1-edge is o(1).

Let x be the query made at u, and let (IB∪IS;P ;R;A; ρ; δ) be the summary associated

with u. Fix an index i ∈ IS . We upperbound by o(1/q2) the conditional probability of

(T,H, s) taking an E1-edge with |Ai \ A′
i| ≥ n2/3 logn. The claim follows by a union

bound on i ∈ IS (as |I| = O(q)).

Note that either A′
i = Ai or A′

i = Ai \∆, where

∆ =
{
k ∈ Ai : xk disagrees with yk of y ∈ Pi

}
.

Thus, a necessary condition for |Ai \ A′
i| ≥ n2/3 logn to happen is |∆| ≥ n2/3 logn and

Ti(x) = 1.

Since C is balanced, |∆| ≥ n2/3 logn implies that

∆1 =
{
k ∈ Ai ∩M : xk = 0 and yk = 1, y ∈ Pi

}
has size at least n2/3 logn/8. On the other hand, fix any triple (T−i, H, s), where T−i is a

tuple of N − 1 terms with Ti missing, H is from the support of Eno and s ∈ {0, 1}M such

that

Pr
Ti

[
((T−i,Ti), H, s) reaches u

]
> 0, (2.32)

where Ti is drawn by including each index in M with probability 1/
√
n. It suffices to

show that

Pr
Ti

[
((T−i,Ti), H, s) reaches u and Ti(x) = 1

]
≤ o(1/q2)·Pr

Ti

[
((T−i,Ti), H, s) reaches u

]
.

(2.33)
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For this purpose, note that given (2.32), the event on the RHS of (2.33) happens at Ti if and

only if Ti is a subset of A∗
i,1 = Ai,1 ∩ M and Ti(y) = 0 for every y ∈ Ri; we use U to

denote the set of all such terms Ti (U cannot be empty by (2.32)). On the other hand, the

event on the LHS of (2.33) happens if and only if Ti further avoids picking variables from

∆1, i.e. Ti ⊆ A∗
i,1 \∆1. We use V to denote the set of all such Ti’s. To prove (2.33), note

that we can take any Ti in V , add an arbitrary subset of ∆1, and the result must be a set

in U . As a result we have (note that the bound is very loose here)

Pr[Ti ∈ V ]

Pr[Ti ∈ U ]
≤
(
1− 1√

n

)|∆1|

= o(1/q2).

This finishes the proof for E1. Next we work on the edge set E3.

Edge set E3. Fix an internal node u of C . We show that the probability of (T,H, s)

leaving u with an E3-edge, conditioning on it reaching u, is o(1/q). By definition, we can

assume that there is no bad edge along the root-to-u path and thus, |IB| ≤ n1/3/ logn and

IB has no collision, i.e. there are no distinct i, j ∈ IB such that δ(i) = δ(j). For (T,H, s)

to leave uwith anE3-edge, it must be the case that some (at most two) terms are breached

after the query x and a collision happens (either between a newly breached term and a

term in IB , or between the two newly breached terms).

Fix a pair (T, s), where T is from the support of E and s ∈ {0, 1}M , such that (T,H, s)

reaches u with a non-zero probability when H ∼ Eno. It suffices to show that

Pr
H

[
(T,H, s) reaches u and a collision happens

]
≤ o(1/q) · Pr

H

[
(T,H, s) reaches u

]
.

(2.34)

Note that the set of (at most two) i ∈ IS such that x is added to Pi after it is queried is

determined by T (if x starts a new Pi, then this i is safe for sure). If there exists no such

i, then the probability on the LHS of (2.34) is 0 since no term is newly breached and we

are done. Below we prove (2.34) for the case when i ∈ IS is the only index such that x is
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added to Pi. The case when there are two such i’s can be handled similarly.

The proof of (2.34) easily follows from the following simple but useful claim:

Claim 2.3.24. Let T and s be such that (T,H, s) reaches u with non-zero probability when

H ∼ Eno. Then conditioning on reaching u, hi has its special variable uniformly distributed

in Ai ∩M .

Proof. As i ∈ IS , Pi is consistent. For (T,H, s) to reach u, the only condition on hi and

its special variable k is that (1) if yk ⊕ sk = ρi(y) for some y ∈ Pi, then hi is a dictatorship

function xk; (2) if yk⊕ sk ̸= ρi(y) for some y ∈ Pi, then hi is an anti-dictatorship function

xk. Given T and s, there are |Ai ∩M | choices for hi among the 2 · (n/2) choices and they

are all equally likely.

Our goal, (2.34), follows easily from |Ai ∩ M | = Ω(n) since i ∈ IS , Claim 2.3.24,

|IB| ≤ n1/3/ logn, our choice of q = n2/3/ log3 n, and the fact that, for the event on the

LHS to happen, the special variable of hi must fall inside IB .

Edge set E2. Let (u, v) be a bad edge in E2 with |I ′B| ≥ n1/3/ logn. We decompose I ′B

intoK and L: i ∈ I ′B is inK if at the edge (u′, v∗) along the root-to-v path where i becomes

newly breached, we have |A∗
i ∩M | ≤ n/10, where A∗

i is the set at v∗, and i ∈ I ′B is in L

otherwise (i.e. |A∗
i ∩M | > n/10 but P ∗

i at v∗ becomes inconsistent after the query at u′).

The claim below shows that K is small:

Claim 2.3.25. For every E2-bad edge (u, v), we have |K| ≤ O(n1/3/ log2 n).

Proof. Fix an i ∈ K and let (u′, v∗) be the edge along the root-to-v path where i becomes

breached. Note that when Ai is first created along the path, Ai = M and |Ai ∩M | = n/2

(since at that time Pi consists of a single string). As we walk down the root-to-v∗ path,

every time a string is added to Pi, the size of Ai can only drop by n2/3 logn (otherwise,

this edge is an E1-edge, contradicting with the assumption that (u, v) ∈ E2 since edges

in E1 are excluded from E2 and (u, v) is the first bad edge along the root-to-v path) and
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thus, |Ai ∩ M | can drop by at most n2/3 logn for each new query. Combine this with

|A∗
i ∩M | ≤ n/10, we have that |P ∗

i | at v∗ is at least

1 +
n/2− n/10

n2/3 logn
= Ω

(
n1/3

logn

)
.

Using the fact that each of the q queries can be added to at most two Pi’s, we have

|K| ≤ 2q

Ω(n1/3/ logn)
= O

(
n1/3

log2 n

)
.

This finishes the proof of the claim.

It follows directly from Claim 2.3.25 that every bad (u, v) ∈ E2 has |L| ≥

n1/3/(2 logn). This inspires us to consider the following random process of walking

down the tree C from its root, with respect to (T,H, s) over T ∼ E , H ∼ Eno, and

s ∼ {0, 1}M . As we walk down an edge (u, v) of C , letting (IB ∪ IS;P ;R;A; ρ; δ) and

(I ′B∪I ′S;P ′;R′;A′; ρ′; δ′) be the summaries associatedwith u and v, if |Ai\A′
i| ≥ n2/3 logn

for some i ∈ IS , then we fail and terminate the random process; if not we add the newly

breached term(s) i with |A′
i ∩M | > n/10 (so P ′

i becomes inconsistent), if any, to L. We

succeed if |L| ≥ n1/3/(2 logn), and it suffices for us to show that we succeed with proba-

bility o(1) over T,H and s.

For the analysis, let u be an internal node of C , and fix any pair (T, s) such that

(T,H, s) can reach u with a non-zero probability. As discussed earlier, the set of (at most

two) Pi, i ∈ IS , that the query string x joins is determined only by T . If one of them has

|Ai \ A′
i| ≥ n2/3 logn then the process would always fail; otherwise, we have that L can

grow by at most two and this happens with probability (over the randomness of H but

conditioning on (T,H, s) reaching u) at most

p = O

(
n2/3 logn

n

)
= O

(
logn
n1/3

)
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because |Ai ∩M | = Ω(n) (i ∈ IS), the special variable of hi is uniform over Ai ∩M by

Claim 2.3.24, and for i to be added to L (P ′
i becomes inconsistent), the special variable of

hi must lie in Ai \ A′
i (of size at most n2/3 logn).

In summary, after each query the random process either fails, or if it does not fail, L

can grow by at most two with probability at most p. Therefore, the probability that we

succeed is at most

Pr
m∼Bin(q,p)

[
2m ≥ n1/3

2 logn

]
= o(1),

where m ∼ Bin(q, p) is the Binomial distribution with q trials: for each trial m increases

by 1 independently with probability p. The probability above is o(1) since q = n2/3/log3 n

and p = O(logn/n1/3).

This finishes the proof that (T,H, s) passes through an edge in E2 with probability

o(1).

2.4 An Ω̃(n) lower bound for non-adaptive testing of

unateness

In this section we prove Theorem 1.2.5: an Ω̃(n) lower bound on the query complexity

of testing unateness for non-adaptive algorithms with one-sided errors. Our argument is

an adaptation of Theorem 19 of [Fis+02] to the setting of unateness, with one additional

observation that allows us to obtain a higher lower bound. For the rest of the section, we

fix q = n/log2 n.

Let’s first describe a distribution Dno supported on Boolean functions f over n + 2

variables. We then show that every f ∼ Dno is Ω(1)-far from unate. A function f ∼ Dno

is drawn by first drawing an index i ∼ [n] uniformly at random, and then letting f = fi,
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Figure 2.3: An illustration of fi : {0, 1}n+2 → {0, 1}. The first two bits index the sub-
cubes.

where for each x ∈ {0, 1}n:

fi(0, 0, x) = 0,

fi(0, 1, x) = xi,

fi(1, 0, x) = xi,

fi(1, 1, x) = 1.

In order to simplify the notation, given a, b ∈ {0, 1} and i ∈ [n], we write fi,ab : {0, 1}n →

{0, 1} to denote the function fi,ab(x) = fi(a, b, x) that agrees with fi when a and b are

the first two bits of the input.

Figure 2.3 gives a simple visual representation of fi. We show that fi is the Ω(1)-far

from unate.

Lemma 2.4.1. For all i ∈ [n], fi is Ω(1)-far from unate.

Proof. This is immediate from Lemma 2.1.2, because there are Ω(2n) monotone edges in

the (i+2)th direction of fi, as well asΩ(2n) anti-monotone edges in the (i+2)th direction

of fi.
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We consider non-adaptive, deterministic q-query algorithm B with one-sided errors

that, given oracle access to a Boolean function f , tries to distinguish whether f is unate

or far from being unate. Note that such an algorithm B simply consists of a pre-selected

set of q query strings x1, . . . , xq⁹, as well as a decision procedure which outputs “accept”

or “reject” given f(xk) for each k ∈ [q]. Furthermore, since B only has one-sided errors,

B outputs “reject” only if it observes a violation to unateness (which is equivalent to what

we described in the introduction), defined as follows:

Definition 2.4.2. A violation to unateness for a function f : {0, 1}n → {0, 1} is a function

v : {0, 1}n → ({0, 1}n)2, such that for each r ∈ {0, 1}n: v(r) = (x, y) where x, y ∈ {0, 1}n

and

x⊕ r ≺ y ⊕ r and f(x) = 1, f(y) = 0.

Intuitively, a violation to unateness consists of a violation to monotonicity, for every

possibly orientation r ∈ {0, 1}n. We refer to f r : {0, 1}n → {0, 1} as the function f r(x) =

f(x ⊕ r), for any r ∈ {0, 1}n. So a violation to unateness for f consists of a violation to

monotonicity for each f r, r ∈ {0, 1}n.

Thus, we may equivalently view the algorithm B with oracle access to f : {0, 1}n →

{0, 1} works in the following way:

1. Query the oracle with queries Q = {x1, . . . , xq} ⊂ {0, 1}n.

2. If there exists a violation to unateness of f , v : {0, 1}n → ({0, 1}n)2 where the image

of v, {v(r) : r ∈ {0, 1}n}, is a subset of Q × Q, then output “reject”; otherwise,

output “accept”.

Note that if B does not find a violation (in which case it always outputs “accept”), then

there exists some unate function f ′ : {0, 1}n → {0, 1} which is consistent with Q (i.e.,

f ′(xk) = f(xk) for all k ∈ [q]). In order to say that B does not find a violation, it suffices

⁹Here we use xi to denote different strings, rather than powers of x.
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to exhibit some r ∈ {0, 1}n such that B does not find a violation to monotonicity of f r.

Given Lemma 2.4.1, Theorem 1.2.5 follows from the following lemma:

Lemma 2.4.3. For any q-query non-adaptive algorithm B, there exists some r ∈ {0, 1}n+2

such that with probability 1− o(1) over i ∼ [n], B does not observe any violations to mono-

tonicity of f r
i .

Proof of Theorem 1.2.5 assuming Lemma 2.4.3 and Lemma 2.4.1. Lemma 2.4.3 implies that

with probability 1 − o(1) over the draw of f ∼ Dno, B does not observe any violation

to unateness, since there is some r ∈ {0, 1}n+2 where B does not observe any violation

for monotonicity of fr. Thus, any q-query algorithm B does not output “reject” on inputs

drawn from Dno with probability at least 2
3
. By combining Lemma 2.4.1 this finishes the

proof of Theorem 1.2.5.

We now proceed to prove Lemma 2.4.3. For two strings y, z ∈ {0, 1}n, recall we write

the Hamming distance between y and z as d(y, z) = |{k ∈ [n] : yk ̸= zk}|. We first show

the following lemma:

Lemma 2.4.4. For any q strings x1, . . . , xq ∈ {0, 1}n, there exists an r ∈ {0, 1}n such that

for any j, k ∈ [q], if xj ⊕ r ≺ xk ⊕ r, then d(xj, xk) ≤ 2 logn.

Proof. Consider a random n-bit r ∼ {0, 1}n. Suppose xj and xk have d(xj, xk) > 2 logn.

Then:

Pr
r∼{0,1}n

[
xj ⊕ r ≺ xk ⊕ r

]
< 2−2 logn = n−2,

since if xj and xk differ at index i ∈ [n], ri can only take one of two possible values to

make xk
i ≤ xj

i . Thus we can union bound over all possible pairs of queries with distance

at least 2 logn to obtain

Pr
r∼{0,1}n

[
∃j, k ∈ [q], d(xj, xk) > 2 logn and xj ⊕ r ≺ xk ⊕ r

]
< n2/n2 = 1.
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Therefore, there exists an r such that for all j, k ∈ [q], xj ⊕ r ≺ xk ⊕ r implies d(xj, xk) >

2 logn.

Then we are ready to prove Lemma 2.4.3:

Proof of Lemma 2.4.3. Consider a non-adaptive, deterministic algorithm B making q

queries y1, . . . , yq ∈ {0, 1}n+2, and let x1, . . . , xq be the last n bits of these strings (there

may be duplicates among these strings but we keep them labeled differently). We will

focus on x1, . . . , xq and refer to the sub-functions that they query. For example xk will

query the sub-function fab corresponding to a = yk1 and b = yk2 . We may partition the set

of queries Q = {x1, . . . , xq}, according to the sub-function queried:

Q00 = {xk ∈ Q : yk1 = yk2 = 0}

Q01 = {xk ∈ Q : yk1 = 0, yk2 = 1}

Q10 = {xk ∈ Q : yk1 = 1, yk2 = 0}

Q11 = {xk ∈ Q : yk1 = yk2 = 1}.

Let r ∈ {0, 1}n be the string such that all comparable pairs among x1 ⊕ r, . . . , xq ⊕ r

have distance at most 2 logn, which is guaranteed to exist by Lemma 2.4.4. We will show

that when r′ = (0, 0, r) ∈ {0, 1}n+2, with probability 1 − o(1) over the draw of i ∼ [n],

B does not observe any violation to monotonicity of f r′

i .

Consider any i ∈ [n] and one possible violation to monotonicity, given by the pair

(xk, xj) where

yk ⊕ r′ ≺ yj ⊕ r′ and f r′

i (yk) = 1, f r′

i (yj) = 0

Then xk /∈ Q00 and xj /∈ Q11 since f r
i,00 and f r

i,11 are the constant 0 and 1 functions,

respectively. Additionally, if xj ∈ Q00, then xk ∈ Q00 since r′1 = r′2 = 0, but this

contradicts the fact that f r′
i (yk) = 1, so xj /∈ Q00. Similarly, xk /∈ Q11.

85



Additionally, if xk ∈ Q01 (or Q10) and xj ∈ Q10 (or Q01), yk and yj are incomparable,

so yk ⊕ r′ and yj ⊕ r′ are incomparable. Also, for any i ∈ [n], either f r
i,01 or f r

i,10 is

monotone, so it suffices to consider pairs (xk, xj) where either both xk, xj ∈ Q01, or both

xk, xj ∈ Q10. Consider the case f r
i,10 is monotone (and as a result, both xk and xj are in

Q01), since the other case is symmetric. Therefore, it suffices to show that with probability

1 − o(1) over the choice of i ∼ [n], B does not observe any violations to monotonicity

for f r
i,01 from queries in Q01.

Similarly to [Fis+02], consider the graph of the queries where two queries xj′ and xk′

are connected if xj′ ⊕ r and xk′ ⊕ r are comparable. Additionally, consider a spanning

forest T over this graph. For any i ∈ [n], if f r
i,01(x

j′) ̸= f r
i,01(x

k′) when xj′ and xk′ are

connected in T , then there exists an edge in T , (z, w), where f r
i,01(z) ̸= f r

i,01(w). Thus, it

suffices to upperbound the probability that some edge (z, w) in T has f r
i,01(z) ̸= f r

i,01(w)

over the draw of i ∼ [n], and this only happens when z ⊕ r and w ⊕ r differ at index i.

We have:

Pr
i∼[n]

[
∃ (z, w) ∈ T : f r

i,01(z) ̸= f r
i,01(w)

]
≤ q · 2 logn

n

since the two end points of each edge have Hamming distance at most 2 logn (recall our

choice for r). We union bound over at most q edges in T to conclude that with probability

at least 1 − 2q logn/n over the draw of i ∼ [n], B does not observes a violation to

monotonicity for f r
i,01 inQ01. When q = n/log2 n, this probability is at least 1−o(1).

2.5 Disscussion

In this section, we provide some intuition why the analyses of [BB16] and this thesis

for lower bound of monotonicity testing are tight. In particular, we sketch algorithms to

find violating pairs in the far-from-monotone functions from the distributions considered.

While these arguments imply that a new construction (of hard distributions) is needed for

an improved lower bound of monotonicity testing, we haven’t reached similar conclusions
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regarding testing of unateness (potentially we can prove an improved lower bound with

the same construction in Section 2.3 and a new analysis). Therefore we will focus on

monotonicity testing in this section, and we will maintain this discussion at a high level.

2.5.1 An O(n1/4)-query algorithm for distributions of [BB16]

Belovs and Blais define a pair of distributions Dyes
∗ and Dno

∗ over n-variable Boolean

functions. To describe Dyes
∗ and Dno

∗, recall Talagrand’s random DNF [Tal96] (letting

N = 2
√
n): A function f drawn from Tal is the disjunction of N terms Ti, i ∈ [N ], where

each Ti is the conjunction of
√
n variables sampled independently and uniformly from

[n].

Next we use Tal to define Tal±. To draw a function g from Tal±, one samples an

f from Tal and a random
√
n-subset S of [n]. ¹⁰ Then g(x) = f(x(S)), where x(S) is the

string obtained from x by flipping each variable in S. Equivalently variables in Ti ∩ S

appear negated in the conjunction of Ti. The Dyes
∗ distribution is then the truncation of

Tal, and the Dno
∗ distribution is the truncation of Tal±. Every f ∼ Dyes

∗ is monotone by

definition; [BB16] shows that g ∼ Dno
∗ is far from monotone using the extremal noise

sensitivity property of Talagrand functions [MO03].

We now sketch an O(n1/4)-query algorithm that rejects g ∼ Dno
∗ with high probabil-

ity. Note that the description below is not a formal analysis; the goal is to discuss the main

idea behind the algorithm. Let g be a function in the support of Dno
∗ defined by Ti and

S with T ′
i = Ti \ S. Then the algorithm starts by sampling a random string x ∈ {0, 1}n

in the middle layers with g(x) = 1. It is likely (Ω(1) probability by a simple calculation)

that:

1. x satisfies a unique term T ′
k among all T ′

i ’s.

2. Tk ∩ S contains a unique ℓ ∈ [n].

¹⁰Formally, S is sampled by including each element of [n] independently with probability 1/
√
n.
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3. Tk = T ′
k ∪ {ℓ} and x has xℓ = 0 (since g(x) = 1).

Fix x = x that satisfies these properties, and let A0 and A1 denote the set of 0-indices

and 1-indices of x, respectively. Then T ′
k ⊆ A1 and ℓ ∈ A0.

The first stage of the algorithm goes as follows:

Stage 1. Repeat the following for n1/4 times: Pick a random subset R ⊂ A1 of size
√
n and query g(x(R)). By 1) and 2) above, g(x(R))) = 1 if and only if R ∩ T ′

k = ∅,

which happens with Ω(1) probability. Let A′
1 denote A1 after removing those

indices of R with g(x(R))) = 1 encountered. Then we have T ′
k ⊂ A′

1 and most

likely, C = A1 \ A′
1 has size Θ(n3/4).

After the first stage, with high probability the algorithm has shrunk A1 by Θ(n3/4) while

still making sure that variables of T ′
k lie in the new (smaller)A1. Again, assume such event

happens and fix such smaller A1 (as well as the set of variables C removed from A1). In

the second stage, the algorithm takes advantage of the smaller A1 to search for ℓ in A0,

with each query essentially covering Θ(n3/4) indices of A0:

Stage 2. Randomly partition A0 into O(n1/4) many disjoint parts A0,1,A0,2, . . .,

each of size |C| = Θ(n3/4). For each A0,j , query g(x(A0,j∪C)). For each A0,j with

ℓ /∈ A0,j , g must return 1; for the A0,h with ℓ ∈ A0,h, g returns 0 with Ω(1)

probability¹¹ and when this happens, the algorithm has found an O(n3/4)-size

subset A0,h of A0 containing ℓ. Let y = x(A0,h∪C), and we have g(y) = 0.

Note that the algorithm cannot directly query g(x(A0,h)) since the new string will be out-

side of the middle layers (unless |A0,h| = O(
√
n), in which case one needs Ω(

√
n) queries

to coverA0). This is only achieved by flippingA0,h and C at the same time but in opposite

directions (and that’s why we need the first stage to shrink A1 and get C). In the last

stage, the algorithm will find a violation to monotonicity of g, by providing z ≺ y with

g(z) = 1.

¹¹Informally speaking, this is because the values of g(x) and g(y) essentially become independent when
x and y are far from each other.
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Stage 3. Randomly partition A0,h into O(n1/4) many disjoint parts ∆1,∆2, . . .,

each of size O(
√
n). For each ∆i, query g(y(∆i)). There always exists some

∆i ∋ ℓ, and we have g(y(∆i)) = 1 with probability Ω(1). When this happens for

∆i = ∆i, we have z = y(∆i) ≺ y and g(z) = 1, as desired.

2.5.2 An O(n1/3)-query algorithm for our distributions

The idea sketched above can be applied to our far from monotone distribution Dno from

Section 2.2. It is slightly more complicated, since now the algorithmmust attack two levels

of Talagrand functions, which will incur the query cost of Õ(n1/3) rather than O(n1/4).

Similarly to Section 2.5.1 above, we will give a high level description rather than a formal

analysis. The goal is to show the main obstacle one faces in improving the lower bound.

Assume g is in the support ofDno. The algorithm works in stages and follows a similar

pattern to the one described in Section 2.5.1 above. We may assume the algorithm has a

string x ∈ {0, 1}n where x satisfies a unique term Ti, and falsifies no clauses, so g(x) = 1

(this happens with Ω(1) probability for a random string x).

Stage 1. Repeat the following for n1/3 times: pick a random subset R ⊂ A1 of size
√
n and query g(x(R)). Let A′

1 denote A1 after removing those indices of R with

g(x(R))) = 1 encountered. Then we have Ti ⊂ A′
1 and most likely, C1 = A1 \ A′

1

has size Θ(n5/6). Suppose this is the case and let’s fix the new (smaller) set

A1 = A1 (as well as C1).

The following stage will be repeated for n1/6 many times, and each makes n1/6 many

queries.

Stage 2. Pick a random subset C0 ⊂ A0 of size n5/6. Let y = x(C1∪C0) and query

g(y). With probability Ω(1), g(y) satisfies the unique term Ti (as did x), falsifies a

unique clause Ci,j , and g(y) = hi,j(y) = 0. Additionally, with probability

Ω(n−1/6), hi,j(y) = yℓ, where ℓ ∈ C0.
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Ti

C1

C

Ci,j

C0

ℓ

Figure 2.4: A visual representation of the algorithm for finding violations in the two-level
Talagrand construction. The whole rectangle represents the set [n], which is shaded for
indices which are set to 1, and clear for indices which are set to 0 (at the beginning of
Stage 1, indices on the left of the centerline are set to 1’s, and indices on the right are set
to 0’s). Ti is the unique term satisfied and Ci,j is the unique clause falsified. The functions
hi,j is an anti-dictator of index ℓ. The sets illustrated represent the current knowledge at
the end of Stage 3 of the algorithm. Note that |C1| = Θ(n5/6), |C| = Θ(n2/3), |C0| = n5/6,
|Ti| = |Ci,j| = Θ(

√
n).

Overall the event ℓ ∈ C0 happens with probability Ω(1) since we repeat Stage 2 for n1/6

times. Fixing C0, y and ℓ such that the above event happens, we will likely find a violation

with help of them as follows:

Stage 3. Repeat the following for n1/6 times: pick a random subset R ⊂ A0 \ C0 of

size
√
n and query g(y(R)). Let A′

0 denote A0 \ C0 after removing those indices of

R with g(y(R)) = 0. Let C = (A0 \ C0) \ A′
0, where very likely |C| = Θ(n2/3). Fix

C = C such that it’s of size Θ(n2/3). Our sets satisfy the following three

conditions: 1) Ti ⊂ A1, 2) Ci,j ⊂ A′
0 ∪ C1 \ C0, and 3) ℓ ∈ C0. See Figure 2.4 for a

visual representation of these sets.

Stage 4. Partition C0 into O(n1/6) many disjoint parts C0,1, C0,2, . . . , each of size

Θ(n2/3) and query g(y(C0,j∪C)). For each C0,j with ℓ /∈ C0,j and no new terms are

satisfied, g must return 0. If for some sets C0,j , g returns 1, then either ℓ ∈ C0,j and
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no new terms are satisfied, or new terms are satisfied; however, we can easily

distinguish these cases with a statistical test.

The final stage is very similar to the final stage of Section 2.5.1. After Stage 4, we assumewe

have found a set C0,j containing ℓ. We further partition C0,j (when g(y(C0,j∪C)) = 1) into

O(n1/6) parts of size
√
n to find a violation. One can easily generalize the above algorithm

sketch to O(1)-many levels of Talagrand. This suggests that the simple extension of our

construction toO(1)many levels (which still gives a far-from-monotone function) cannot

achieve lower bounds better than Ω̃(n1/3).
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Chapter 3

Distribution-free Testing of k-juntas

In this chapter we will start to discuss about the more general problem of distribution-

free testing. As the first example, we will study testing of k-juntas under this setting.

We will present an adaptive distribution-free tester for k-juntas with query complexity

Õ(k2/ϵ) (independent of n), and also show that any non-adaptive distribution-free testers

for k-juntas must make at least Ω̃(2k/3) queries (for some constant distance parameter

ϵ). Combining these two results together we know adaptivity provides an exponential im-

provement (in terms of query complexity) for this problem, which stands in sharp contrast

to the standard uniform distribution testing of k-juntas. More formally, we will start with

some preparation in Section 3.1. Then we will present our algorithm and prove Theorem

1.3.2 in Section 3.2, and present the proof of our lower bound, stated as Theorem 1.3.3, in

Section 3.3.

3.1 Preparation

In this section we give some formal definitions and notation that will be useful.

We study the distribution-free testing of k-juntas in this chapter. Recall that a Boolean

function f is a k-junta if it depends on at most k variables. More precisely, f is a k-

junta if there exists a subset J = {i1, . . . , ik} ⊂ [n] of size k and a Boolean function

g : {0, 1}k → {0, 1} over k variables such that f(x1, . . . , xn) = g(xi1 , . . . , xik) for all

x = (x1, . . . , xn) ∈ {0, 1}n.

We say that a Boolean function f is a literal if f depends on exactly one variable, i.e.
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Procedure BinarySearch(f, x, y)
Input: Black-box oracle access to f : {0, 1}n → {0, 1} and two strings x, y ∈ {0, 1}n
with f(x) ̸= f(y).
Output: Two strings x′, y′ ∈ {0, 1}n with f(x′) ̸= f(y′) and x′ = y′(i) for some
i ∈ diff(x, y).

1. Let B = diff(x, y) ⊆ [n].
2. If |B| = 1 return x and y.
3. Partition (arbitrarily) B into B1 and B2 of size ⌊|B|/2⌋ and ⌈|B|/2⌉,

respectively.
4. Query f(x(B1)).
5. If f(x) ̸= f(x(B1)), return BinarySearch(f, x, x(B1)).
6. Otherwise, return BinarySearch(f, x(B1), y).

Figure 3.1: Description of the standard binary search procedure.

for some i ∈ [n], we have that either f(x) = xi for all x or f(x) = xi for all x. Note that

the two constant (all-1 and all-0) functions are one-juntas but are not literals.

We will often work with restrictions of Boolean functions. Given f : {0, 1}n →

{0, 1}, B ⊆ [n] and a string z ∈ {0, 1}B , the restriction of f over B by z, denoted by

f ↾z , is the Boolean function g : {0, 1}B → {0, 1} defined by g(x) = f(x ◦ z) for all

x ∈ {0, 1}B . We will also use the term “block” to refer to a nonempty subset of [n], which

should be interpreted as a nonempty subset of the n input variables of a Boolean function

f : {0, 1}n → {0, 1}. The following definition of distinguishing pairs and relevant blocks

will be heavily used in our algorithms.

Definition 3.1.1 (Distinguishing pairs and relevant blocks). Given x, y ∈ {0, 1}n, a Boolean

function f , and a block B ⊆ [n], we say that (x, y) is a distinguishing pair of f for B if

xB = yB (and therefore diff(x, y) ⊂ B) and f(x) ̸= f(y). We say B is a relevant block of f

if such a distinguishing pair exists for B (or equivalently, the influence of B in f is positive).

When B = {i} is a relevant block we simply say that the ith variable is a relevant variable

of f .

Clearly an empty set B can never has a distinguish pair, and from now on whenever

94



we say there is a set with a distinguish pair, it can be assumed to be a (nonempty) block

automatically.

An important ingredient of our algorithms is the following binary search procedure

(see Figure 3.1): it takes as input two strings x, y ∈ {0, 1}n with f(x) ̸= f(y), makes

O(logn) queries on f , and returns a pair of strings x′, y′ ∈ {0, 1}n with f(x′) ̸= f(y′) and

x′ = y′(i) for some i ∈ diff(x, y), i.e., a distinguishing pair for the ith variable for some

i ∈ diff(x, y).

3.2 An Õ(k2/ϵ)-query distribution-free testers of k-juntas

In this section, we present an adaptive distribution-free tester of k-juntas with query com-

plexity Õ(k2/ϵ) and prove Theorem 1.3.2. We start with some high level ideas in Section

3.2.1. Then as a warm-up we present a simple algorithm called SimpleDJunta (with query

complexity that depends on n) for our task in Section 3.2.2. Based on ideas from SimpleD-

Junta and the uniform distribution tester of [Bla09] we give more intuition behind our

main algorithm MainDJunta with query complexity Õ(k2/ϵ) in Section 3.2.3. In the end

we present our main algorithmMainDJunta and proof of its correctness in Sections 3.2.4,

3.2.5 and 3.2.6.

3.2.1 High level ideas

We give some high level ideas behind our algorithms in this section.

It will become clear later that all our algorithms reject a function f only when they

have found k + 1 distinct relevant variables (or disjoint relevant blocks). When this hap-

pens, it means that f cannot be a k-junta. Therefore our algorithms only has one-sided

errors, and here for intuition we will focus on showing that they reject the input pair

(f,D) with high probability when f is ϵ-far from k-juntas with respect to D.
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As a first step toward our Õ(k2/ϵ)-query main algorithm, in Section 3.2.2 we first

present a simple adaptive algorithm called SimpleDJunta, that distribution-free tests k-

juntas using O(k/ϵ + k logn) queries. SimpleDJunta uses binary search and is an adap-

tation to the distribution-free setting from the uniform-distribution algorithm of [Bla09]

with some simplification (we conduct standard bit-wise binary search rather than block-

wise binary search that is much harder to analyze and will be discussed later). The al-

gorithm maintains a set I of relevant variables: a string x ∈ {0, 1}n has been found for

each i ∈ I such that f(x) ̸= f(x(i)), and the algorithm rejects only when |I| becomes

larger than k. In each round, the algorithm samples a string x ∼ D and a random subset

R ⊂ I uniformly at random (by including each variable in I into R with probability 1/2

independently). We will show in Lemma 3.2.3 that, if f is far from k-juntas with respect

to D, then f(x) ̸= f(x(R)) with high probability as long as |I| ≤ k. With such a pair

(x, x(R)) in hand, it is straightforward to find a new relevant variable using binary search

over indices in R (see Figure 3.1), with at most logn additional queries. Then we can show

with high probability the size of I will continue to grow until |I| > k and the algorithm

will reject.

As discussed in the introduction the more interesting case for testing k-juntas is when

k << n, and we would prefer to have algorithms with query complexity that is indepen-

dent of n. In order to achieve this, clearly one must employ a more efficient approach than

binary search over Ω(n) indices (since most likely the set R has size Ω(n) for the range of

k we are interested in). In the uniform-distribution setting this is accomplished in [Bla09]

by first randomly partitioning the variable space [n] into s = poly(k/ϵ) disjoint blocks

B1, . . . , Bs of variables and carrying out binary search over blocks (see Figure 3.2) rather

than over individual indices; this reduces the cost of each binary search to log(k/ϵ). The

algorithmmaintains a set of relevant blocks: two strings x, y ∈ {0, 1}n have been found for

each such blockB which satisfy f(x) ̸= f(y) and diff(x, y) ⊆ B, and the algorithm rejects

when more than k relevant blocks have been found. In each round the algorithm samples
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two strings x, y uniformly at random conditioned on their agreeing with each other on

the relevant blocks that have already been found in previous rounds; if f(x) ̸= f(y),

then the binary search over blocks is performed to find a new relevant block. To establish

the correctness of this approach [Bla09] employs a detailed and technical analytic argu-

ment based on the influence of indices and the Efron-Stein orthogonal decomposition of

functions over product spaces. This machinery is well suited for dealing with product dis-

tributions, and indeed the analysis of [Bla09] goes through for any product distribution

over {0, 1}n (and even for more general finite domains and ranges). However, it is far from

clear how to extend this machinery to work for the completely unstructured distributions

D that must be handled in the distribution-free model.

Procedure BlockBinarySearch(f, x, y;B1, . . . , Br)
Input: Black-box oracle access to f : {0, 1}n → {0, 1}, two strings x, y ∈ {0, 1}n with
f(x) ̸= f(y), and a sequence of pairwise disjoint blocks B1, . . . , Br for some r ≥ 1
with diff(x, y) ⊆ B1 ∪ · · · ∪Br.
Output: Two strings x′, y′ ∈ {0, 1}n with f(x′) ̸= f(y′) and diff(x, y) ⊆ Bi for some
i ∈ [r].

1. If r = 1 return x and y.
2. Let t = ⌊r/2⌋ and B be the intersection of diff(x, y) and B1 ∪ · · · ∪Bt.
3. Query f(x(B)).
4. If f(x) ̸= f(x(B)), return BlockBinarySearch(f, x, x(B);B1, . . . , Bt).
5. Otherwise, return BlockBinarySearch(f, x(B), y;Bt+1, . . . , Br).

Figure 3.2: Description of the blockwise version of the binary search procedure.

The main result from [Bla09] is stated as the following theorem (and we will use it

later):

Theorem 3.2.1. There exists anO((k/ϵ)+k log k)-query algorithm UniformJunta(f, k, ϵ)

with one-sided errors that, upon black-box oracle access to a Boolean function f , rejects with

probability at least 2/3 when f is ϵ-far from k-juntas under the uniform distribution. More-

over, it rejects only when it has found k+1 pairwise disjoint blocks and a distinguishing pair

of f for each of them.
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Our main distribution-free junta testing algorithm, denoted as MainDJunta, draws

ideas from both SimpleDJunta and the uniform-distribution tester of [Bla09]. To avoid the

logn cost, the algorithm carries out binary search over blocks rather than over individual

indices, and maintains a set of disjoint relevant blocks B1, . . . , Bℓ, i.e., for each Bj a pair

of strings xj and yj have been found such that they agree with each other over variables

in Bj and satisfy f(xj) ̸= f(yj). Let wj be the projection of xj (and yj) over Bj and let

gj be the Boolean function over {0, 1}Bj obtained from f by setting variables in Bj to wj .

For clarity we assume further that every function gj is very close to a literal (i.e. there

exists some ij ∈ Bj and τ ∈ {xij , xij} such that gj(x) = τ for all x ∈ {0, 1}Bj ) under the

uniform distribution. (To justify this assumption we note that if gj is far from every literal

under the uniform distribution, then it is easy to split Bj further into two relevant blocks

using the uniform-distribution algorithm of [Bla09].) Let I = {ij : j ∈ [ℓ]}. Even though

the algorithm does not know I , there is indeed a way to draw uniformly random subsets

R of I . First we draw a partition of Bj into Pj and Qj uniformly at random, for each j.

Since gj is close to a literal, it is not difficult to figure out whether Pj or Qj contains the

hidden variable (with index) ij . Let’s assume ij ∈ Pj for every j. Then the union of all

Qj’s together with a uniformly random subset of B1 ∪ · · · ∪Bℓ, denoted by R, turns out

to be a uniformly random subset of I . With R in hand, Lemma 3.2.3 for SimpleDJunta

implies that f(x) ̸= f(x(R)) with high probability when x ∼ D, and when this happens,

the algorithm can carry out binary search over blocks to increase the number of relevant

blocks by one. We can then show with high probability the number of relevant blocks

we found will continue to grow until there are more than k such blocks (corresponding

to |I| > k), in which case the algorithm will reject. In Section 3.2.3 we will explain the

intuition behind the main algorithm in more detail.
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3.2.2 Warmup: an O(k/ϵ+ k logn)-query tester

As a warmup, we present in this section a simple distribution-free algorithm SimpleD-

Junta for testing k-juntas. It uses O(k/ϵ+ k logn) queries and only has one-sided errors.

The idea behind SimpleDJunta and its analysis (Lemma 3.2.3) will be useful in the next

few sections where we present our main algorithm to remove the dependency of query

complexity on n.

The algorithm SimpleDJunta maintains a set I ⊂ [n] such that a distinguishing pair

has been found for each i ∈ I (i.e., I is a set of relevant variables of f discovered so

far). The algorithm sets I = ∅ at the beginning and rejects only when |I| reaches k + 1,

which implies immediately that f cannot be a k-junta. Therefore the algorithm only has

one-sided errors. SimpleDJunta proceeds round by round: in each round it draws a pair

of random strings x and y with xI = yI , and if f(x) ̸= f(y), the standard binary search

procedure is used on x and y to find a distinguishing pair for a new relevant variable (with

index) i ∈ I , which is then added to I .

We present the description of this algorithm in Figure 3.3.

Algorithm SimpleDJunta(f,D, k, ϵ)
Input: Black-box oracle access to a Boolean function f : {0, 1}n → {0, 1}, sampling
access to a probability distribution D over {0, 1}n, a positive integer k, and a distance
parameter ϵ > 0.
Output: Either “accept” or “reject.”

1. Set I = ∅.
2. Repeat 8(k + 1)/ϵ times:

2.1 Sample x ∼ D and a subset R of I uniformly at random. Set y = x(R).
2.2 If f(x) ̸= f(y), then run the standard binary search on x, y to find a

distinguishing pair for a new relevant variable i ∈ R ⊆ I . Set I = I ∪ {i}.
2.3 If |I| > k, then halt and output “reject.”

3. Halt and output “accept.”

Figure 3.3: Description of the distribution-free testing algorithm SimpleDJunta for k-
juntas.
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The following theorem establishes the correctness of this algorithm.

Theorem 3.2.2. (i) The algorithm SimpleDJuntamakesO(k/ϵ+k logn) queries and always

accepts when f is a k-junta. (ii) It rejects with probability at least 2/3 if f is ϵ-far from k-

juntas with respect to D.

Proof. For part (i), note that the algorithm has k/ϵ rounds but only runs binary search (and

costsO(logn) queries) at most k+1 times, which implies it makes at mostO(k/ϵ+k logn)

queries in total. The rest of part (i) is immediate from the description of the algorithm.

For part (ii), it suffices to show that when |I| ≤ k at the beginning of a round, a new

relevant variable is discovered in this round with high probability. For this purpose we

use the following simple but crucial lemma and note the fact that x and y in step 2.1 of

SimpleDJunta can be equivalently drawn by first sampling x ∼ D and w ∼ {0, 1}n and

then setting y = xI ◦wI (the way we draw x and y in Figure 3.3 via R ∼ I makes it easier

to connect with the main algorithm in the next section).

Lemma 3.2.3. If f is ϵ-far from k-juntas with respect to D, then for any I ⊂ [n] of size at

most k, we have

Pr
x∼D,w∼{0,1}n

[
f(x) ̸= f(xI ◦wI)

]
≥ ϵ/2. (3.1)

Before proving Lemma 3.2.3, we use it to finish the proof of part (ii). Assuming

Lemma 3.2.3 and that f is ϵ-far from k-juntas with respect to D, for each round with

|I| ≤ k the algorithm finds a new relevant variable with probability at least ϵ/2. Using

a coupling argument, the probability that the algorithm rejects f (i.e., |I| reaches k + 1

during the 8(k + 1)/ϵ rounds) is at least the probability that

8(k+1)/ϵ∑
i=1

Zi ≥ k + 1,

where Zi’s are i.i.d. {0, 1}-variables that are 1 with probability ϵ/2. It follows from the

Chernoff bound that the latter probability is at least 2/3. This finishes the proof of the
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theorem.

Proof of Lemma 3.2.3. Let I be a subset of [n] of size at most k. To prove (3.1) for I , we

use I and f to define the following Boolean function h : {0, 1}n → {0, 1}: for each

x ∈ {0, 1}n we set:

h(x) := argmax
b∈{0,1}

{
Pr

w∼{0,1}n

[
f(xI ◦wI) = b

]}
,

where we break ties arbitrarily. Then for any x ∈ {0, 1}n, we have:

Pr
w∼{0,1}n

[
f(xI ◦wI) = h(x)

]
≥ 1/2. (3.2)

Based on this we then know that:

Pr
x∼D,w∼{0,1}n

[
f(x) ̸= f(xI ◦wI)

]
=

∑
z∈{0,1}n

Pr
x∼D

[
x = z

]
· Pr
w∼{0,1}n

[
f(z) ̸= f(zI ◦wI)

]
≥

∑
z∈{0,1}n

Pr
x∼D

[
x = z

]
·
(
(1/2) · 1

[
f(z) ̸= h(z)

])
=(1/2) · Pr

x∼D

[
f(x) ̸= h(x)

]
≥ ϵ/2,

where the first inequality follows from (3.2) and the second inequality follows from the

assumption that f is ϵ-far from k-juntas with respect to D and the fact that h is a k-

junta (since it only depends on variables in I and |I| ≤ k). This finishes the proof of this

lemma.

3.2.3 Intuition and preparation for an Õ(k2/ϵ)-query tester

Based on ideas of SimpleDJunta from the previous section, we give some more intuition

behind our main algorithm in this section. Again our main algorithm only has one-sided
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errors, and in this section we only focus on showing the algorithm rejects the input pair

(f,D) with high probability when f is ϵ-far from k-juntas with respect to D.

Recall that the factor of logn in the query complexity of SimpleDJunta is due to the use

of the standard binary search procedure. To avoid it, one could choose to terminate each

call to binary search early (just like the algorithm of [Bla09]) but this ends up giving us

relevant blocks of variables instead of exact relevant variables. To highlight the challenge,

imagine that the algorithm has found so far ℓ ≤ k many pairwise disjoint relevant blocks

Bj , j ∈ [ℓ], i.e., it has found a distinguishing pair for each block Bj . By definition, each

Bj must contain at least one relevant variable ij ∈ Bj . However, we do not know exactly

which variable in Bj is ij , and thus it is not clear how to draw a set R from I uniformly

at random, where I = {ij : j ∈ [ℓ]} (as what we did in SimpleDJunta), in order to apply

Lemma 3.2.3 to discover a new relevant block. It seems that we are facing a dilemma when

trying to improve SimpleDJunta and remove the logn factor: on one hand, unless we pin

down a set of relevant variables (the set I), it is not clear how to draw a random set from

its complement; on the other hand, pinning down a single relevant variable using the

standard binary search procedure would already cost logn queries.

To explain the main idea behind our Õ(k2/ϵ)-query algorithm, let’s assume again that

ℓ ≤ k many disjoint relevant blocks B1, . . . , Bℓ have been found so far, and we have a

distinguishing pair (xj, yj) for each Bj , j ∈ [ℓ] (satisfying that diff(xj, yj) ⊆ Bj and

f(xj) ̸= f(yj) by definition). Let

wj =
(
xj
)
Bj

=
(
yj
)
Bj

∈ {0, 1}Bj .

Next let us assume further that for each j ∈ [ℓ] the function gj := f↾wj is a literal, i.e. either

gj(z) = zij for all z ∈ {0, 1}Bj or gj(z) = zij for all z ∈ {0, 1}Bj , for some unknown

variable ij ∈ Bj . (While this may seems very implausible, we make this assumption for

now and explain below why it is not too far from real situations after excluding some
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corner cases.)

To make progress, we draw a random two-way partition of each Bj into Pj and Qj ,

i.e., each i ∈ Bj is added to Pj or Qj with probability 1/2 (so Pj and Qj are disjoint and

Bj = Pj ∪Qj). Pj or Qj can be empty, but it will become clear later that this won’t affect

our algorithm and analysis since we will only be dealing with sets with distinguish pairs,

which are guaranteed to be non-empty. We make three simple but crucial observations to

increase the number of disjoint relevant blocks by one.

1. Since gj is assumed to be a literal on the ij-th variable (and by the definition of gj

we have query access to gj), it is easy to tell whether ij ∈ Pj or ij ∈ Qj , simply by

picking an arbitrary string x ∈ {0, 1}Bj and comparing gj(x) with gj(x
(Pj)). The

following subroutine WhereIsTheLiteral will be used to distinguish the two cases

in our main algorithm:

Subroutine WhereIsTheLiteral(g, P,Q)
Input: Black-box oracle access to a Boolean function g over {0, 1}B with P,Q
being a partition of B.
Output: Either a distinguishing pair of g for P , a distinguishing pair for Q, or
“fail.”

1. Draw x ∼ {0, 1}B uniformly at random.
2. If g(x) ̸= g(x(P )), return (x, x(P )) as a distinguishing pair for P .
3. Draw y ∼ {0, 1}B uniformly at random.
4. If g(y) ̸= g(y(Q)), return (y, y(Q)) as a distinguishing pair for Q.
5. Otherwise return “fail.”

Figure 3.4: Description of the subroutine WhereIsTheLiteral.

Below we assume that the algorithm uses WhereIsTheLiteral and correctly

determines whether ij is in Pj or Qj for all j ∈ [ℓ]. We let Sj denote the set (block)

among Pj and Qj that contains ij , and let Tj denote the other one. We also assume

below that the algorithm has obtained a distinguishing pair of gj for each block Sj .
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2. Next we include each element of B1 ∪ · · · ∪Bℓ into a random set T independently

with probability 1/2. Crucially, the way that Pj and Qj were drawn, and the above

assumption that Sj contains ij , implies that

R := T ∪ T1 ∪ · · · ∪ Tℓ

is indeed a uniform random subset of I (recall that I = {ij : j ∈ [ℓ]}) since other

than those in I , each variable is included in R independently with probability 1/2.

If we draw a random string x ∼ D, then Lemma 3.2.3 implies that f(x) ̸= f(y),

where y = x(R), with probability at least ϵ/2.

3. Finally, assuming that f(x) ̸= f(y) (with diff(x, y) = R), running the blockwise

binary search on x, y and blocks T,T1, . . . ,Tℓ will lead to a distinguishing pair for

one of these blocks and will only require O(log ℓ) ≤ O(log k) queries. If it is a

distinguishing pair for T, then we can add T to the list of relevant blocks

B1, . . . , Bℓ and they remain pairwise disjoint. If it is a distinguish pair for Tj for

some j ∈ [ℓ], then we can replace Bj in the list by Sj and Tj , each with a new

distinguishing pair we found (recall that a distinguishing pair has already been

found for each Sj in the first step). In either case the number of pairwise disjoint

relevant blocks grows by one.

Coming back to the assumption we made earlier, although gj is very unlikely to be a

literal, it must fall into one of the following three cases: (1) close to a literal; (2) close to

a (all-0 or all-1) constant function; or (3) far from 1-juntas. Here in all cases “close” and

“far” are measured with respect to the uniform distribution over {0, 1}Bj . As we discuss

in more detail in the rest of this section, with some more careful probability analysis the

above arguments generalize to the case in which every gj is only close to (rather than

exactly equal to) a literal. On the other hand, if one of the blocks Bj is in case (2) or

(3), then by using the fact that we have a distinguishing pair for Bj it is easy to split Bj

104



Subroutine Literal(g)
Input: Black-box oracle access to a Boolean function g over {0, 1}C , where C has a
distinguishing pair of g.
Output: “True” (indicating g is close to a literal) or disjoint nonempty subsets C ′, C∗ of
C and a distinguishing pair of g for each.

1. Repeat log k + 6 times:

• If UniformJunta(g, 1, γ := 1/(8k)) rejects, then return the two disjoint
blocks and distinguishing pairs associated with them found by
UniformJunta.

2. Let (x, y) be the distinguishing pair for C .
3. Repeat log k + 3 times:

• Draw a random partition C′,C∗ of C and query g(x(C′)), g(x(C∗)), g(y(C
′)),

g(y(C
∗)).

• If g(x(C′)) = g(x(C∗)) ̸= g(x), then return C′,C∗ and (x, x(C′)) and (x, x(C∗))
as their distinguishing pairs.

• If g(y(C
′)) = g(y(C

∗)) ̸= g(y), then return C′,C∗ and (y, y(C
′)) and (y, y(C

∗)) as
their distinguishing pairs.

4. Return “True.”

Figure 3.5: Description of the subroutine Literal.

into two blocks and find a distinguishing pair for each of them (For example, for case (3)

this can be done by running Blais’s uniform-distribution junta testing algorithm [Bla09].).

More precisely, the subroutine Literal in Figure 3.5 will be used to handle these three cases

(determine which case we are in and handle it correspondingly).

Here the algorithm UniformJunta(g, k, ϵ) comes from Theorem 3.2.1, and we only use

the special case when k = 1.

Following ideas above we can then show that, for each round, our algorithm can make

progress with high probability by increasing the number of pairwise disjoint relevant

blocks by one. The algorithm basically keeps repeating these steps until the number of

such blocks reaches k + 1, in which case the algorithm will reject.

105



3.2.4 Description of the main algorithm and the proof of correctness

Our algorithm MainDJunta(f,D, k, ϵ) is described in Figure 3.6.

It maintains two collections of blocks V = {B1, . . . , Bv} and U = {C1, . . . , Cu} for

some nonnegative integers v and u. They are set to be ∅ at the beginning, and we will

prove the following conditions for V and U are always satisfied as the algorithm runs:

(A). B1, . . . , Bv, C1, . . . , Cu ⊆ [n] are pairwise disjoint (nonempty) blocks of

variables;

(B). A distinguishing pair has been found for each of these blocks. For notational

convenience we use (xj, yj) to denote the distinguishing pair for each Bj and

(xC , yC) to denote the distinguishing pair for each block C ∈ U . We also use the

following notation:

wj :=
(
xj
)
Bj

=
(
yj
)
Bj

∈ {0, 1}Bj and wC :=
(
xC
)
C
=
(
yC
)
C
∈ {0, 1}C ,

and we let gj := f↾wj and gC := f↾wC be Boolean functions over {0, 1}Bj and

{0, 1}C , respectively.

Throughout the algorithm and its analysis, we set a key parameter γ := 1/(8k). Blocks

in V are intended to be those that have been “verified” to satisfy the condition that gj is

γ-close to a literal (xij or xij for some unknown variable ij ∈ Bj) under the uniform

distribution, while blocks in U have not been verified yet so they may not satisfy this

condition. More formally, at any point in the execution of the algorithm we say that the

algorithm is in good condition if its current collections V and U satisfy conditions (A), (B)

and the following condition:

(C). Every gj , j ∈ [v], is γ-close to a literal under the uniform distribution over

{0, 1}Bj .
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Obviously our algorithm starts in good condition, and we will show that it remains in

good condition with high probability as the algorithm runs.

The algorithm MainDJunta(f,D, k, ϵ) starts with V = U = ∅ and proceeds round by

round. For each round, we consider two different situations that this round may get into:

we define it is a type-1 round if u = |U | = 0 (corresponding to step 2.1 of MainDJunta),

and it is a type-2 round if u > 0 (corresponding to step 2.2). For a type-1 round (with

u = 0), as described in Figure 3.6 we will draw partitions Pj and Qj from each Bj ∈ V

and then runWhereIsTheLiteral on gj (the function defined forBj in condition (B) above),

Pj and Qj to determine if there is a relevant variable in Pj or Qj . Then depending on the

results we will follow the idea sketched in Section 3.2.3 and run blockwise binary search

on blocks we carefully selected, hoping to increase the number of relevant blocks we can

find (note that the whole process and argument still work even when V = ∅.). We will

prove the following lemma for this case in Section 3.2.5:

Lemma 3.2.4. Assume that f is ϵ-far from k-juntas with respect to D and MainD-

Junta(f,D, k, ϵ) is in good condition at the beginning of a type-1 round with u = 0 and

v ≤ k. Then it always remain in good condition at the end of this round. Moreover, letting

V ′ and U ′ be the two corresponding collections of blocks at the end of this round, we have

either |V ′| = v and |U ′| = 1, or |V ′| = v − 1 and |U ′| = 2 with probability at least ϵ/4.

For the case when the algorithm is in a type-2 round (with u ≥ 1), we pick an arbitrary

block C from U and check whether gC is close to a literal under the uniform distribution

by using the subroutine Literal. Wewill prove the following lemma for this case in Section

3.2.6:

Lemma 3.2.5. Assume that f is ϵ-far from k-juntas with respect to D and MainD-

Junta(f,D, k, ϵ) is in good condition at the beginning of a type-2 round with u > 0 and

v + u ≤ k. Then with probability at least 1 − 1/(64k), one of the following two events

107



Algorithm MainDJunta(f,D, k, ϵ) with the same input / output as SimpleDJunta in
Figure 3.3.

1. Initialization: Set V = U = ∅, r1 = 64k/ϵ and r2 = 3(k + 1).
2. Repeat the following until r1 = 0 or r2 = 0:

Let V = {B1, . . . , Bv} and U = {C1, . . . , Cu}. Let xj, yj, wj, gj, x
C , yC , wC ,

gC be the corresponding strings and functions for each Bj ∈ V and C ∈ U
as described above in condition (B).

2.1 If u = 0, then:
2.1.1 Set r1 to be r1 − 1.
2.1.2 For each j ∈ [v]:

* Draw a random partition Pj,Qj of Bj and run
WhereIsTheLiteral(gj, Pj,Qj).

* If a distinguishing pair of gj for Pj is returned, set Sj = Pj and
Tj = Qj ;

* Else if a distinguishing pair of gj for Qj is returned, set Sj = Qj

and Tj = Pj ;
* Otherwise “fail” is returned. Then skip this round and go back to
the beginning of step 2.

2.1.3 Draw x ∼ D and a subset T of B1 ∪ · · · ∪Bv uniformly at random.
Let y = x(R) with R = T ∪ T1 ∪ · · · ∪ Tv. Skip this round and go back
to the beginning of step 2 if f(x) = f(y); otherwise run the blockwise
binary search on x and y with blocks T,T1, . . . ,Tv:
* If a distinguishing pair of f for T is returned, then add T to U .
* Otherwise a distinguishing pair (x∗, y∗) of f for Tj∗ is returned
for some j∗ ∈ [v]. Then Remove Bj∗ from V and add both Sj∗ and
Tj∗ to U .

2.2 Otherwise u > 0, then:
2.2.1 Set r2 to be r2 − 1.
2.2.2 Pick a block C ∈ U arbitrarily; let (x, y) be its distinguishing pair,

w = xC and g = f↾w. Run Literal(g):
* If Literal(g) returns “true,” remove C from U and add it to V .
* Otherwise Literal(g) returns disjoint subsets C ′, C∗ of C , each
with a distinguish pair of f . Then remove C from U and add both
C ′ and C∗ to U .

2.3 If |V |+ |U | ≥ k + 1, then halt and output “reject.”

3. Halt and output “accept.”

Figure 3.6: Description of the distribution-free testing algorithm MainDJunta for k-
juntas.
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happens at the end of this round (letting V ′ and U ′ be the two corresponding collections of

blocks at the end of this round):

1. The algorithm remains in good condition with |V ′| = v + 1 and |U ′| = u− 1;

2. The algorithm remains in good condition with |V ′| = v and |U ′| = u+ 1.

Assuming Lemma 3.2.4 and Lemma 3.2.5 for now, we are ready to prove the correctness

of MainDJunta.

Theorem 3.2.6. (i) The algorithmMainDJuntamakes Õ(k2/ϵ) queries and always accepts f

when it is a k-junta. (ii) It rejects with probability at least 2/3 when f is ϵ-far from k-juntas

with respect to D.

Proof of Theorem 3.2.6 Assuming Lemmas 3.2.4 and Lemma 3.2.5. MainDJunta has one-

sided errors since it rejects f only when it has found k + 1 pairwise disjoint relevant

blocks (in either U or V ) of f .

The number of queries it makes for each type-1 round (corresponding to step 2.1 of

MainDJunta) is O(k) + O(log k) = O(k), and for each type-2 round it’s O(k log k +

log k) = O(k log k). Since the number of type-1 rounds is at most r1 = 64k/ϵ and the

number of type-2 rounds is at most r2 = O(k), we know the query complexity of MainD-

Junta is O(k2/ϵ+ k2 log k) = Õ(k2/ϵ). This finishes the proof for (i).

In the rest of the proof we assume f is ϵ-far from k-juntas with respect to D and it’s

enough to show that our algorithm rejects f with probability at least 2/3.

For this purpose we introduce a simple potential function F to measure the progress:

F (V, U) := 3|V |+ 2|U |.

Clearly each round of the algorithm is either of type-1 (when |U | = 0) or of type-2 (when

|U | > 0). By Lemma 3.2.4, if the algorithm is in good condition at the beginning of a type-1

round, then the algorithm always ends this round in good condition and with probability
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at least ϵ/4 the potential function F goes up by at least one (in which case we say that

the algorithm succeeds in this type-1 round). By Lemma 3.2.5, if the algorithm is in good

condition at the beginning of a type-2 round, then with probability at least 1 − 1/(64k)

the algorithm ends this round in good condition and F goes up by at least one (in which

case we say it succeeds in this type-1 round).

Note thatF is 0 at the beginning (V = U = ∅) and that wemust have |U |+|V | ≥ k+1

(and thus, the algorithm rejects) when the potential function F reaches 3(k + 1) or above.

As a result, a necessary condition for the algorithm to accept is that one of the following

two events happens:

E1: At least one of the type-2 rounds fails.

E2: E1 does not happen (so the algorithm succeeds in every type-2 round and

remains in good condition all the time). In order to keep F below 3(k + 1) in the

end there are at most 3k + 2 many type-2 rounds and exactly 64k/ϵ many type-1

rounds (so that the algorithm can finish), while the algorithm succeeds in at most

3k + 2 many type-1 rounds out of them.

By a union bound, the probability that E1 happens is at most:

3(k + 1) · 1/(64k) ≤ 6k · 1/(64k) < 1/8.

With a coupling argument we can also show the probability thatE2 happens is at most

the probability that
64k/ϵ∑
i=1

Zi ≤ 3k + 2,

where Zi’s are i.i.d. {0, 1}-valued random variables that take 1 with probability ϵ/4. The

expectation of the sum from LHS is 16k, and it follows from the Chernoff bound this

probability is at most: (using 3k + 2 ≤ 5k)

exp

(
−
(
11

16

)2

· 16k
2

)
= exp

(
−121k

32

)
< exp(−3) < 1/8.
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Finally it follows from a union bound that the algorithm rejects with probability at least

2/3 when f is ϵ-far from k-juntas with respect to D. This finishes the proof.

3.2.5 Proof of Lemma 3.2.4

We prove Lemma 3.2.4 in this section. Let’s start with a lemma for the subroutine

WhereIsTheLiteral (Figure 3.4):

Lemma 3.2.7. Assume that g : {0, 1}B → {0, 1} is γ-close (with respect to the uniform

distribution) to a literal xi or xi for some i ∈ B. If i ∈ P , thenWhereIsTheLiteral(g, P,Q)

returns a distinguishing pair of g for P with probability at least 1 − 4γ; If i ∈ Q, then it

returns a distinguishing pair of g for Q with probability at least 1− 4γ.

Proof. Let K be the set of strings x ∈ {0, 1}B such that g(x) disagrees with the literal

which it is γ-close to (so |K| ≤ γ · 2|B|). We work on the case when i ∈ Q; the proof

when i ∈ P is similar.

Following the description of WhereIsTheLiteral, it returns a distinguishing pair for

Q if

g(x) = g(x(P )) and g(y) ̸= g(y(Q)).

Note that this holds if all four strings fall outside of K (in which case g agrees with the

literal xi or xi with i ∈ Q) and thus, the probability that it does not hold is at most the

probability that at least one of these four strings falls inside K . The latter by a union

bound is at most 4γ since each of these four strings is uniformly over {0, 1}B when x, y

are drawn uniformly at random from {0, 1}B . This finishes the proof of the lemma.

We are now ready to prove Lemma 3.2.4.

Proof of Lemma 3.2.4. First, it is easy to verify that if the algorithm MainDJunta starts a

type-1 round in good condition, then it ends it in good condition. This is because we never

add blocks to V in type-1 rounds, and whenever a block is added to U , it is disjoint from
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other blocks and we have found a distinguishing pair for it (note that for the last case in

step 2.1.3 of MainDJunta we have found a distinguish pair for Sj∗ in step 2.1.2).

By definition of good condition we know each block Bi ∈ V is verified, i.e., it is γ-

close to some literal xij or xij . It then follows from Lemma 3.2.7 and a union bound that,

for any sequence of partitions Pj and Qj of Bj picked at the beginning of step 2.1.2 of

MainDJunta, the probability that for each j ∈ [v] the set Sj chosen according to output

of WhereIsTheLiteral contains the variable ij is at least (recall that γ = 1/(8k))

1− 4γ · v ≥ 1− 4γ · k = 1/2.

Conditioning on such event happens, and with T uniformly drawn from B1 ∪ · · · ∪Bv

and random partitions Pj,Qj drawn for eachBj in step 2.1.2 and 2.1.3 of MainDJunta, the

random set R = T
∪

T1 . . .
∪

Tv is uniform over all subsets of I , where I = {ij : j ∈ [v]}.

Following Lemma 3.2.3 and the fact that f is ϵ-far from k-juntas with respect to D and

v ≤ k, we know that with x drawn according to D in step 2.1.3 the probability that

f(x) ̸= f(x(R)) is at least ϵ/2. Overall we know the algorithm has f(x) ̸= f(y) in step

2.1.3 with probability at least ϵ/4. Given this, the lemma is immediate by inspection of

rest of our algorithm.

3.2.6 Proof of Lemma 3.2.5

We prove Lemma 3.2.5 in this section, which also finishes the proof of correctness of our

algorithm.

Proof of Lemma 3.2.5. First it follows from the description of the subroutine Literal(g)

(Figure 3.5) that it either returns “true” or a pair of nonempty disjoint subsets C ′, C∗ of

C and a distinguishing pair of g for each of them (see Theorem 3.2.1 for the algorithm

UniformJunta). Now let C ∈ U be the block picked in step 2.2.2 of MainDJunta.
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If g is γ-close to a literal, then it is easy to verify that one of the two events described

in Lemma 3.2.5 will happen no matter what Literal(g) outputs (the second event happens

if two disjoint non-empty subsets of C are returned, each with a distinguishing pair of

g; we are also safe when Literal outputs “true” and the algorithm moves C from U to V ,

which makes the first event happens, since in this case g is indeed γ-close to a literal). So

we focus on the other two cases in the rest of the proof: g is γ-far from 1-juntas or g is

γ-close to a (all-1 or all-0) constant function. In both cases we show below that the second

event described in Lemma 3.2.5 happens with high probability: the algorithm remains in

good condition at the end of this round with |V ′| = |V | and |U ′| = |U |+1. Let’s call this

event E.

When g is γ-far from 1-juntas under the uniform distribution, we know one of the

log k + 6 calls to UniformJunta in Literal(g) rejects with probability at least

1− (1/3)log k+6 > 1− 1/(64k).

It’s easy to verify that event E will happen when this happens.

When g is γ-close to a constant function (say the all-1 function), we have g disagrees

with this all-1 function on either string x or y in the distinguishing pair for C (say it’s

g(x) = 0). Let K be the set of strings in {0, 1}C that disagree with the all-1 function, and

then we know |K| ≤ γ · 2|C|. Step 3 of Literal(g) has g(x(C′)) = g(x) or g(x(C∗)) = g(x)

only when one of x(C′) or x(C∗) lies in K . As both strings are distributed uniformly over

{0, 1}C when C′ and C∗ are random partitions of C , this happens with probability at most

2γ by a union bound. Therefore among the log k + 3 runs of step 3 of Literal, a random

partition C′,C∗ of C and a distinguishing pair of g for each of them are returned with

probability at least

1− (2γ)log k+3 = 1− (1/(4k))log k+3 > 1− (1/4)log k+3 = 1− 1/(64k2).
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Again, it’s easy to verify that event E will happen when this happens.

This finishes the proof of Lemma 3.2.5.

3.3 An Ω(2k/3) lower bound for non-adaptive

distribution-free testing of k-juntas

In this section we prove an Ω(2k/3) lower bound for the non-adaptive distribution-free

testing of k-juntas that was stated as Theorem 1.3.3. We start with some notation. Given

a sequence Y = (yi : i ∈ [q]) of q strings in {0, 1}n and a Boolean function ϕ : {0, 1}n →

{0, 1}, we write ϕ(Y ) to denote the q-bit string α with αi = ϕ(yi) for each i ∈ [q]. We

also write Y = (yi : i ∈ [q]) ∼ Dq to denote a sequence of q independent draws from the

same probability distribution D.

Let q = 2k/3, and let k and n be two positive integers that satisfy k ≤ n/200. We

may further assume that k is at least some absolute constant C (to be specified later) since

otherwise, the claimed Ω(2k/3) lower bound on query complexity holds trivially. Our

goal is then to show that there exists no q-query non-adaptive distribution-free tester of

k-juntas even when the distance parameter ϵ is 1/3.

Our proof will follow similar ideas as Yao’s mini-max principle. We will define in

Section 3.3.1 a pair of probability distributions YES and NO over pairs (ϕ,D), where ϕ

is a Boolean function and D is a distribution over {0, 1}n. For clarity we use (f,D) to

denote pairs drawn from YES and (g,D) to denote pairs drawn fromNO. We show that

(1) Every (f,D) ∼ YES satisfies that f is a k-junta (Lemma 3.3.2); (2) With probability

1−ok(1), (g,D) ∼ NO satisfies that g is 1/3-far from k-juntas with respect toD (Lemma

3.3.3).

Unlike other lower bound proofs in the previous chapter that follow from Yao’s princi-

ple, to prove Theorem 1.3.3 we will be dealing with a special class of algorithms which we

call two-phase algorithms, due to our definition of non-adaptive distribution-free testers.
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More formally, we define two-phase algorithms as follows: an algorithm A is a q-

query two-phase algorithm if it consists of two deterministic mapsA1 andA2 and decides

to either accept or reject each input pair (ϕ,D) (where again ϕ : {0, 1}n → {0, 1} and

D is a probability distribution over {0, 1}n) as follows: upon an input pair (ϕ,D), the

algorithm receives in the first phase a sequence Y = (yi : i ∈ [q]) of q strings (which

should be thought of as random samples drawn from D) and a binary string α = ϕ(Y ) of

length q. In the second phase, the algorithm A uses the first map A1 to obtain a sequence

of q strings Z = (zi : i ∈ [q]) = A1(Y, α), and feeds them to the black-box oracle. Once

the query results β = ϕ(Z) are back, A2(Y, α, β) returns either 0 or 1 (notice that we

do not need to include Z as an input of A2 since it is determined by Y and α) in which

cases the algorithm A either rejects or accepts, respectively. It can be easily seen that a

non-adaptively distribution-free tester T works in the same way as above, except that the

two maps T1 and T2 it contains can be randomized.

Given the description above, unlike typical deterministic algorithms, whether a two-

phase algorithm A accepts or not depends on not only (ϕ,D) but also the sample strings

Y ∼ Dq it draws. Formally we have

Pr
[
A accepts (ϕ,D)

]
= Pr

Y∼Dq

[
A2

(
Y, ϕ(Y), ϕ

(
A1(Y, ϕ(Y))

))
= 1
]
.

Then we can show that, to prove Theorem 1.3.3, it suffices to prove the following main

technical lemma, which informally says that any q-query two-phase algorithm must be-

have similarly when it gets input (f,D) ∼ YES versus (g,D) ∼ NO:

Lemma 3.3.1. Any q-query two-phase algorithm A satisfies:∣∣∣ Pr
(f,D)∼YES

[
A accepts (f,D)

]
− Pr

(g,D)∼NO

[
A accepts (g,D)

] ∣∣∣ ≤ 1/4. (3.3)

Proof of Theorem 1.3.3 Assuming Lemma 3.3.1, Lemma 3.3.2 and Lemma 3.3.3. Assume for

a contradiction that there exists a q-query non-adaptive distribution-free tester T that

115



ϵ-tests k-juntas when ϵ = 1/3. Then it follows from Lemma 3.3.2 and Lemma 3.3.3 that

Pr
(f,D)∼YES

[
T accepts (f,D)

]
− Pr

(g,D)∼NO

[
T accepts (g,D)

]
≥ 1/3− ok(1),

since the first probability is at least 2/3 and the second is at most

1/3
(
1− ok(1)

)
+ ok(1) ≤ 1/3 + ok(1).

Following our definition of two-phase algorithms, T can be simulated by a randommixture

of q-query two-phase algorithms, and there must exist a q-query two-phase algorithm A

that satisfies

Pr
(f,D)∼YES

[
A accepts (f,D)

]
− Pr

(g,D)∼NO

[
A accepts (g,D)

]
≥ 1/3− ok(1),

a contradiction with Lemma 3.3.1 when k is sufficiently large.

Here is the high level ideas behind the construction of our distributions YES andNO

and how we prove Lemma 3.3.1. In making a draw either from YES or from NO, first

m = Θ(2k logn) strings are selected uniformly at random from {0, 1}n to form a set S,

and the distribution D in both YES and NO is set to be the uniform distribution over S.

Also in both YES andNO, a “background” k-junta h is selected uniformly at random by

first picking a set J of k variables at random and then a random truth table for h over the

variables in J. We view the variables in J as partitioning {0, 1}n into 2k disjoint sections

depending on how they are set.

In the case of a draw from YES , the Boolean function f that goes with the above-

described D is simply the background junta f = h. In the case of a draw from NO,

the function g that goes with D is formed by modifying the background junta h in the

following way (roughly speaking; see Section 3.3.1 for precise details): for each z ∈ S,

we toss a fair coin b(z) and set the value of g(z′) for each string z′ that belongs to the
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same section as z and lies within Hamming distance 0.4n from z (including z itself) to

b(z) (see Figure 3.7). Note that the value of g at each string in S is a fair coin toss, which

is completely independent of the background junta h. Using the choice of m it can be

argued that with high probability g is 1/3-far from k-juntas with respect to D when

(g,D) ∼ NO.

The rough idea of why a pair (f,D) ∼ YES is difficult for a q-query two-phase algo-

rithmA to distinguish from a pair (g,D) ∼ NO is as follows. Intuitively, in order forA to

distinguish the no-case from the yes-case, it must obtain two strings x1, x2 that belong to

the same section but are labeled differently. Since there are 2k sections but q is only 2k/3,

by the birthday paradox it is very unlikely thatA obtains two such strings among the first q

samples Y = (y1, . . . , yq) drawn from the distributionD. In fact, in both the yes-case and

no-case, writing (ϕ,D) to denote the (function, distribution) pair, the distribution of the

q pairs (y1,ϕ(y1)), . . . , (yq,ϕ(yq)) will be statistically very close to (x1, b1), . . . , (xq, bq)

where each pair (xj, bj) is independently drawn uniformly from {0, 1}n×{0, 1}. Roughly

speaking, this implies that the sample pairs (yi,ϕ(yi)) from the sampling oracle have no

useful information about the set J of variables that the background junta depends on, and

we cannot distinguish whether we are in the yes-case or no-case solely based on them.

What about the q strings z1, . . . , zq that A feeds to the black-box oracle? It is also

unlikely that any two strings from y1, . . . , yq, z1, . . . , zq belong to the same section but are

labeled differently. Fix an i ∈ [q], and we give some intuition why it is very unlikely that

there is any j such that zi lies in the same section as yj and has f(zi) ̸= f(yj) (via a union

bound, the same intuition handles all i ∈ [q]). Intuitively, since the random samples from

the sampling oracle provide no useful information about the set J defining the background

junta, the only thing that A can do in selecting zi is to choose how far it lies, in terms of

Hamming distance, from the strings in y1, . . . , yq (which, recall, are uniform random). Fix

j ∈ [q]: if zi is within Hamming distance 0.4n from yj , then if zi lies in the same section

as yj it will be labeled the same way as yj whether we are in the yes- case or the no-
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case. On the other hand, if zi is farther than 0.4n in Hamming distance from yj , then

it is overwhelmingly likely that zi will lie in a different section from yj (since it is very

unlikely that all 0.4n of the flipped variables avoid the set J of size k). We will formally

define distributions YES and NO in the next section and prove Lemma 3.3.1 in Section

3.3.2.

3.3.1 The YES and NO distributions

Given J ⊆ [n], we partition {0, 1}n into sections (with respect to J ) where the z-section,

z ∈ {0, 1}J , consists of those x ∈ {0, 1}n which have xJ = z. We write JUNT AJ to

denote the uniform distribution over all juntas over J . More precisely, a Boolean function

h : {0, 1}n → {0, 1} drawn fromJUNT AJ is generated as follows: for each z ∈ {0, 1}J ,

a bit b(z) is chosen independently and uniformly at random, and for each x ∈ {0, 1}n the

value of h(x) is set to b(xJ).

Letm := 36 ·2k lnn. We start with YES . A pair (f,D) drawn from YES is generated

as follows:

1. First we draw independently a subset J of [n] of size k uniformly at random and a

subset of strings S ⊂ {0, 1}n of size m uniformly at random.

2. Next we draw f ∼ JUNT AJ and set D to be the uniform distribution over S.

For technical reasons that will become clear in Section 3.3.2 we use YES∗ to denote the

probability distribution supported over triples (f,D, J), with (f,D, J) ∼ YES∗ being

generated by the same two steps above (so the only difference is that we include J in

elements of YES∗).

The following observation is straight-forward from the definition of YES .

Lemma 3.3.2. The function f is a k-junta for every pair (f,D) in the support of YES .

We now describe NO. A pair (g,D) drawn from NO is generated as follows:
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1. We draw J and S in the same way as the first step of YES .

2. Next we draw h ∼ JUNT AJ and a map γ : S → {0, 1} uniformly at random by

choosing a bit independently and uniformly at random for each string in S. We

usually refer to h as the “background junta.”

3. The distribution D is set to be the uniform distribution over S, which is the same

as YES . The function g : {0, 1}n → {0, 1} is defined using h, S and γ as follows:

(a) For each string y ∈ S, set g(y) = γ(y);

(b) For each string x /∈ S, if there exists no y ∈ S with yJ = xJ and

d(x, y) ≤ 0.4n, set g(x) = h(x); otherwise we set g(x) = 1 if there exists

such a y ∈ S with γ(y) = 1, and set g(x) = 0 if every such y ∈ S has

γ(y) = 0. (The choice of the tie-breaking rule here is not important; we just

pick one to make sure that g is well defined in all cases.)

Similarly we let NO∗ denote the distribution supported on triples (g,D, J) that are gen-

erated above.

See Figure 3.7 for an illustration of a function drawn fromNO. To gain some intuition,

we first note that about half of the strings z ∈ S have g(z) disagree with the value of the

background junta on the section it lies in. With such a string z in hand (from one of the

samples received in the first round), an algorithm may attempt to find a string w that lies

in the same section as z but satisfies g(z) ̸= g(w). If such a string is found, the algorithm

knows for sure that (g,D) is from the NO distribution and can safely reject the input.

However, finding such a w is not easy because one must flip more than 0.4n bits of z,

but without knowing the variables in J it is hard to keep w in the same section as z after

flipping this many bits.

Next we prove that with high probability, (g,D) ∼ NO satisfies that g is 1/3-far from

k-juntas with respect to D:
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Figure 3.7: A schematic depiction of how {0, 1}n is labeled by a function g fromNO. The
domain {0, 1}n is partitioned into 2k sections corresponding to different settings of the
variables in J ; each section is a vertical strip in the figure. Shaded regions correspond
to strings where g evaluates to 1 and unshaded regions to strings where g evaluates to 0.
Each string in S is a black dot and the value of g on each such string is chosen uniformly
at random. Since in this figure the truncated circles are disjoint, the tie-breaking rule does
not come into effect, and for each z ∈ S all strings in its section within distance at most
0.4n (the strings in the truncated circle around z) have the same value as z. The value
of g on other strings is determined by the background junta h which assigns a uniform
random bit to each section.

Lemma 3.3.3. With probability at least 1 − ok(1), (g,D) ∼ NO is such that g is 1/3-far

from k-juntas with respect to the distribution D .

Proof. Fix a k-junta h, i.e. any set I ⊂ [n] with |I| = k and any 2k-bit truth table over

variables in I . We have that distD(g, h) is precisely the fraction of strings z ∈ S such that

γ(z) ̸= h(z). Since each bit γ(z) is drawn independently and uniformly at random, we

have that

Pr
(g,D)∼NO

[
distD(g, h) ≤ 1/3

]
= Pr

j∼Bin(m,1/2)

[
j ≤ m/3

]
,

which, recalling that m = 36 · 2k lnn, by a standard Chernoff bound is at most e−m/36 =

n−2k . The result follows by a union bound over all (at most)

(
n

k

)
· 22k ≤ nk · 22k = ok(n

2k)

possible k-juntas h over n variables. This finishes the proof of the lemma.
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Given Lemma 3.3.2 and Lemma 3.3.3, to prove Theorem 1.3.3 it remains only to prove

Lemma 3.3.1.

3.3.2 Proof of Lemma 3.3.1

The following definitions will be useful. Let Y = (yi : i ∈ [q]) be a sequence of q strings

in {0, 1}n, α be a q-bit string, and J ⊂ [n] be a set of variables of size k. We say that

(Y, α, J) is consistent if

αi = αj for all i, j ∈ [q] with yiJ = yjJ . (3.4)

Given a consistent triple (Y, α, J), we write JUNT AY,α,J to denote the uniform distri-

bution over all juntas h over J that are consistent with (Y, α). More precisely, a draw of

h ∼ JUNT AY,α,J is generated as follows: for each z ∈ {0, 1}J , if there exists a yi such

that yiJ = z, then h(x) is set to αi for all x ∈ {0, 1}n with xJ = z; if no such yi exists,

then a uniform random bit b(z) is chosen independently and h(x) is set to b(z) for all x

with xJ = z.

To prove Lemma 3.3.1, let’s fix a q-query two-phase algorithm A and let A1 and A2

be the two deterministic algorithms that A consists of. We first derive from A a new

randomized algorithm A′ that works on triples (ϕ,D, J) from the support of either YES∗

or NO∗. Again for clarity we use ϕ to denote a function from the support of YES/YES∗

or NO/NO∗, f to denote a function from YES/YES∗ and g to denote a function from

NO/NO∗.

In addition to being randomized, A′ differs from A in two important ways:

1. Like A, A′ receives samples Y ∼ Dq and ϕ(Y); but unlike A, A′ also receives J for

free.

2. Unlike A, A′ does not make any black-box queries but simply runs on the triple

(Y, ϕ(Y), J) it receives at the beginning. So formally A′ is a randomized algorithm
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that runs on triples (Y, α, J), where Y = (yi : i ∈ [q]) is a sequence of q strings, α

is a q-bit string, and J ⊂ [n] is a set of variables of size k, and outputs “accept” or

“reject.”

A detailed description of the randomized algorithm A′ running on (Y, α, J) is as follows:

1. First, if (Y, α, J) is not consistent, A′ immediately halts and rejects (simply

because this can never happen if (Y, α, J) is obtained from a triple (f,D, J) in the

support of YES∗). Otherwise A′ applies A1 on (Y, α) to obtain a sequence

Z = (Zi : i ∈ [q]) of q strings.

2. Next, A′ draws h′ ∼ JUNT AY,α,J . (This is the only part of A′ that is

randomized.)

3. Finally, A′ runs A2(Y, α,h
′(Z)) and accepts the input if A2 outputs 1; otherwise it

rejects.

From the description of A′ above, whether it accepts a triple (ϕ,D, J) or not depends on

both the randomness of Y and h′. Formally we have

Pr
[
A′ accepts (ϕ,D, J)

]
= Pr

Y,h′

[
(Y,α, J) is consistent and A2

(
Y,α,h′(Z)

)
= 1
]
.

Lemma 3.3.1 follows immediately from the following three lemmas (note that the

marginal distribution of (f,D) in YES∗ (or (g,D) inNO∗) is the same as YES (orNO)).

In all three lemmas we assume thatA is a q-query two-phase algorithmwhileA′ is the ran-

domized algorithm derived from A as described above.

Lemma 3.3.4 (A′ behaves similarly on YES∗ and NO∗). We have

∣∣∣ Pr
(f,D,J)∼YES∗

[
A′ accepts (f,D, J)

]
− Pr

(g,D,J)∼NO∗

[
A′ accepts (g,D, J)

]∣∣∣ ≤ 1/8.
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Lemma 3.3.5 (A and A′ behave identically on YES and YES∗, respectively). We have

Pr
(f,D,J)∼YES∗

[
A accepts (f,D)

]
= Pr

(f,D,J)∼YES∗

[
A′ accepts (f,D, J)

]
. (3.5)

Lemma 3.3.6 (A and A′ behave similarly on NO and NO∗, respectively). We have

∣∣∣ Pr
(g,D,J)∼NO∗

[
A accepts (g,D)

]
− Pr

(g,D,J)∼NO∗

[
A′ accepts (g,D, J)

]∣∣∣ ≤ 1/8.

We start with the proof of Lemma 3.3.4, which says that a limited algorithm such asA′

(that doesn’t make black-box queries) cannot effectively distinguish between a draw from

YES∗ versus NO∗:

Proof of Lemma 3.3.4. Since A′ runs on (Y, α, J), it suffices to show that the distributions

of (Y,α, J) induced from YES∗ and NO∗ have small total variation distance. For this

purpose we first note that the distributions of (Y, J) induced from YES∗ and NO∗ are

identical: in both cases, Y and J are independent; J is a uniform random subset of [n] of

size k; Y is obtained by first uniformly sampling a subset S of {0, 1}n of size m and then

uniformly drawing a sequence of q strings from S with replacement.

Fix a pair (Y, J) in the support of (Y, J). We say Y = (yi : i ∈ [q]) is scattered by J

if yiJ ̸= yjJ for all i ̸= j ∈ [q]. In particular this implies that no string appears more than

once in Y . The following claim, whose proof we defer, shows that Y is scattered by J with

high probability.

Claim 3.3.7. We have that Y is scattered by J with probability at least 1−O(2−k/3).

Fix any (Y, J) in the support of (Y, J) such that Y is scattered by J . We claim that the

distributions ofα conditioning on (Y, J) = (Y, J) in the YES∗ case and theNO∗ case are

identical, from which it follows that the total variation distance between the distributions

of (Y,α, J) in the two cases is at mostO(2−k/3) ≤ 1/8when k is sufficiently large. Indeed

α is uniform over strings of length q in both cases. This is trivial forNO∗. For YES∗ note
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that α is determined by the random k-junta f ∼ JUNT AJ ; the claim follows from the

assumption that Y is scattered by J .

Proof of Claim 3.3.7. We fix J and show that Y is scattered by J with high probability. As

strings of Y are drawn one by one, the probability of yi colliding with one of the previous

samples is at most (i− 1)/m ≤ q/m. By a union bound, all strings in Y are distinct with

probability at least

1− q · (q/m) = 1− q2/m = 1−O(2−k/3).

Conditioning on this event,Y = (yi) is distributed precisely as a uniform random sequence

from {0, 1}n with no repetition and thus each pair (yi, yj) is distributed uniformly over

pairs of distinct strings in {0, 1}n. As a result, we have

Pr
[
yiJ = yjJ

]
=

2n−k − 1

2n − 1
≤ 1

2k
.

By a union bound over
(
q
2

)
pairs we have that the probability of Y being scattered by J is

at least (
1−O(2−k/3)

)
·
(
1−

(
q

2

)
· 2−k

)
≥ 1−O(2−k/3).

This finishes the proof of the claim.

Next we prove Lemma 3.3.5.

Proof of Lemma 3.3.5. The first probability in (3.5) is equal to the probability that

A2

(
Y,α, f

(
A1(Y,α

))
= 1,

where (f,D, J) ∼ YES∗, Y ∼ Dq and α = f(Y). For the second probability, since the
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triple (f,D, J) ∼ YES∗ is always consistent, we can rewrite it as the probability that

A2

(
Y,α,h′(A1(Y,α)

))
= 1,

where (f,D, J) ∼ YES∗, Y ∼ Dq , α = f(Y) and h′ ∼ JUNT AY,α,J.

To show that these two probabilities are equal, we first note that the distributions of

(Y,α, J) are identical. Fixing any triple (Y, α, J) in the support of (Y,α, J), which must

be consistent, we claim that the distribution of f conditioning on (Y,α, J) = (Y, α, J) is

exactly JUNT AY,α,J . This is because, for each z ∈ {0, 1}J , if yiJ = z for some yi in Y ,

then we have f(x) = αi for all strings x with xJ = z; otherwise, we have f(x) = b(z)

for all x with xJ = z, where b(z) is an independent and uniform bit. This is the same

as how h′ ∼ JUNT AY,α,J is generated. It follows directly from this claim that the two

probabilities are the same. This finishes the proof of this lemma.

Finally we prove Lemma 3.3.6, the most difficult among the three lemmas:

Proof of Lemma 3.3.6. Similar to the proof of Lemma 3.3.5, the first probability is the prob-

ability that

A2

(
Y,α, g

(
A1(Y,α

))
= 1,

where (g,D, J) ∼ NO∗ and α = g(Y), while the second probability is the probability

that

(Y,α, J) is consistent and A2

(
Y,α,h′(A1(Y,α)

))
= 1,

where (g,D, J) ∼ NO∗, Y ∼ Dq, α = g(Y), and h′ ∼ JUNT AY,α,J. We note that the

distributions of (Y,α, J,D) in the two cases are identical.

The following definition is crucial: we say a tuple (Y, α, J,D) in the support of

(Y,α, J,D) is good if it satisfies the following three conditions (S below is the support of

D):
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E0: Y is scattered by J .

E1: Let Z = A1(Y, α). Then every z in Z and every x in S \ Y have

d(x, z) > 0.4n. (In S \ Y we abuse the notation and use Y as a set that contains all

strings in the sequence Y .)

E2: If a string z in Z satisfies zJ = yJ for some y in Y , then we must have

d(y, z) ≤ 0.4n.

We delay the proof of the following claim to the end.

Claim 3.3.8. We have that (Y,α, J,D) is good with probability at least 7/8.

Fix any good (Y, α, J,D) in the support and let Z = A1(Y, α). We finish the proof

by showing that the distribution of g(Z), a binary string of length q, conditioning on

(Y,α, J,D) = (Y, α, J,D) is the same as that of h′(Z) with h′ ∼ JUNT AY,α,J . This

combined with Claim 3.3.8 implies that the difference of the two probabilities has absolute

value at most 1/8.

To see this is the case we partition strings of Z into Zw, where each Zw is a nonempty

set that contains all z in Z with zJ = w ∈ {0, 1}J . For each Zw, we consider the following

two cases:

1. If there exists no string y in Y with yJ = w, then by E1 strings in Zw are all far

(with Hamming distance more than 0.4n) from strings of S in this section and

thus, g(z) = b(w) for some independent and uniform random bit b(w), for all

strings z ∈ Zw (z can be close to some string in Y from other section, but that

won’t affect the value of g(z) according to our definition).

2. If there exists a y in Y with yJ = w (which must be unique by E0), say yi, then by

E1 and E2 strings in Zw are all close to y and far from other strings of S in this

section. As a result, we have g(z) = αi for all strings z ∈ Zw.

So the conditional distribution of g(Z) is identical to that of h′(Z) with h′ ∼

JUNT AY,α,J . This finishes the proof of the lemma.
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Proof of Claim 3.3.8. We bound the probabilities of (Y,α, J,D) violating each of the three

conditions E0, E1 and E2 and apply a union bound. By Claim 3.3.7, E0 is violated with

probability O(2−k/3).

For E1, we fix a pair (Y, α) in the support and let ℓ ≤ q be the number of distinct

strings in Y and let Z = A1(Y, α). Conditioning on Y = Y , S \ Y is a uniformly random

subset of {0, 1}n \ Y of size m − ℓ. Instead of working with S \ Y, we let T denote a

set obtained by including distinct elements from m − ℓ many independent and uniform

random draws from {0, 1}n (with replacements).

On the one hand, the total variation distance between S \ Y and T is exactly the prob-

ability that either (1) T ∩ Y is nonempty or (2) |T| < m − ℓ. By two union bounds, (1)

happens with probability at most (m− ℓ) · (ℓ/2n) ≤ mq/2n and (2) happens with proba-

bility at most (m/2n) ·m. As a result, the total variation distance is at most (mq+m2)/2n.

On the other hand, the probability that one of the strings of T has Hamming distance at

most 0.4n with one of the strings of Z is at most mq · exp(−n/100) by a Chernoff bound

followed by a union bound. Thus, the probability of violating E1 is at most (using the

assumption that k ≤ n/200)

(mq +m2)/2n +mq · exp(−n/100) = O
(
2−n/300 ln2 n

)
.

For E2, we fix a pair (Y, α) in the support and let Z = A2(Y, α). Because J is inde-

pendent from (Y,α), it remains a subset of [n] of size k drawn uniformly at random. For

each pair (y, z) with y from Y and z from Z that satisfy d(y, z) > 0.4n, the probability of

yJ = zJ over the uniform random draw of J is at most

(
0.6n
k

)(
n
k

) ≤ (0.6)k.

Since there are at most q2 many such pairs, it follows from a union bound that the proba-

bility of violating E2 is at most q2 · (0.6)k ≤ e−0.04k.
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Finally the lemma follows from a union bound when k (and thus, n) is sufficiently

large.
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Chapter 4

Distribution-free Testing of Monotone Conjunctions

In this chapter we will continue to discuss about distribution-free testing, with respect

to another class called monotone conjunctions. We will start with some preparation in

Section 4.1. Then we will show that any distribution-free tester of monotone conjunctions

need to make at least Ω̃(n1/3) queries (for some constant distance parameter ϵ) in Section

4.2, and also provide an Õ(n1/3/ϵ5)-query adaptive distribution-free tester for the same

problem in Section 4.3, which pins down the optimal query complexity of this problem at

Θ̃(n1/3) for some constant ϵ, if we ignore the poly-logarithmic factors. In the end we will

also extend our proofs (mostly lower bound proofs) to other classes of Boolean functions

such as general conjunctions, decision lists and linear threshold functions in Section 4.4.

4.1 Preparation

Let’s first introduce some formal definitions and useful notation in this section.

We focus on the distribution-free testing of Mconj, the class of all monotone conjunc-

tions (or monotone monomials as in [DR11]): f : {0, 1}n → {0, 1} is in Mconj if there

exists a subset S ⊆ [n] with

f(z1, . . . , zn) =
∧
i∈S

zi.

Note that f is the all-1 function when S is empty. In addition to monotone conjunctions

we will also talk about the distribution-free testing of general conjunctions, decision lists,

and linear threshhold functions:

• We say f : {0, 1}n → {0, 1} is a general conjunction if there exist two sets
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S, S ′ ⊆ [n] with

f(z1, . . . , zn) =

(∧
i∈S

zi

)∧(∧
i∈S′

zi

)
.

.

• A decision list f : {0, 1}n → {0, 1} of length k over Boolean variables z1, . . . , zn is

defined by a sequence of k pairs (ℓ1, β1), . . . , (ℓk, βk) and a bit βk+1, where

βi ∈ {0, 1} for all i ∈ [k + 1] and each ℓi is a literal in {z1, . . . , zn, z1, . . . , zn}.

Given any z ∈ {0, 1}n, f(z) is determined in the following way: f(z) = βi if

i ∈ [k] is the smallest index such that ℓi is made true by z; if no ℓi is true then

f(z) = βk+1.

• We say f : {0, 1}n → {0, 1} is a linear threshold function if there exist

w1, w2, . . . , wn, θ ∈ R such that f(z) = 1 if w1z1 + · · ·+wnzn ≥ θ and f(z) = 0 if

w1z1 + · · ·+ wnzn < θ.

We use Conj, Dlist, Ltf to denote the class of general conjunctions, decision lists, and

linear threshold functions, respectively.

Given a distribution D over {0, 1}n we use D(z) to denote the probability of a string

z in {0, 1}n and D(C) to denote the total probability of strings in C ⊆ {0, 1}n. We also

call D(z) as the weight of z under the distribution D.

For each string x ∈ {0, 1}n, we call x a 0-string (with respect to a Boolean function

f ) if f(x) = 0, and write f−1(0) to denote the set of all 0-strings; we call x a 1-string if

f(x) = 1, and write f−1(1) to denote the set of 1-strings. We also call f(x) as the label

of x by the function f .

For both our lower and upper bound proofs, it is easier to use the language of sets.

Given z ∈ {0, 1}n:

Zero(z) =
{
i ∈ [n] : zi = 0

}
.

For convenience we abuse the notation and allow f to take as input a subset of [n]: f(E) is

defined as f(z)with z ∈ {0, 1}n andE = Zero(z). This should be clear from the context,

since we use lowercase letters for strings and uppercase letters for sets. We call A a 0-set
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Procedure MC-Search (f, x)
Input: Black-box oracle access to f : {0, 1}n → {0, 1} and one string x ∈ f−1(0).
Output: Either an index i ∈ Zero(x) such that f({i}) = 0, or nil.

1. Let Z = Zero(x). If Z = ∅, return nil; if |Z| = 1, output the only index in Z .
2. While |Z| ≥ 2 do the following:

– Let Z0 be the subset of Z that contains the smallest ⌈|Z|/2⌉ indices in Z ,
and Z1 = Z \ Z0.

– Query both f(Z0) and f(Z1).
– If f(Z0) = 0, set Z = Z0; if f(Z0) = 1 but f(Z1) = 0, set Z = Z1;

otherwise, return nil.
3. Return the only element that remains in Z .

Figure 4.1: MC-Search procedure from Dolev and Ron [DR11].

if f(A) = 0, and B a 1-set if f(B) = 1.

As shown in the figure above we will use a deterministic procedure calledMC-Search

as an important ingredient of our algorithm, and it is also needed in the argument of our

lower bound proof. This procedure was introduced by Dolev and Ron in [DR11] (we name

it differently to distinguish it from other binary search procedures in this thesis). Given a

string x ∈ f−1(0), it uses binary search and tries to find a single index i ∈ Zero(x) such

that f({i}) = 0. We can easily note that such an index i always exists if f is in Mconj.

We record the following property of MC-Search :

Property 4.1.1. MC-Search uses O(logn) many queries. Given as an input x ∈ f−1(0), it

returns either nil or an index i ∈ Zero(x) such that f({i}) = 0. The former never happens

if f ∈ Mconj.

Given x ∈ f−1(0), we write h(x) ∈ [n] ∪ {nil} to denote the output of MC-Search

running on (f, x) (h(·) is well-defined since the procedure is deterministic). We follow

[DR11] and call x ∈ f−1(0) an empty string (with respect to f ) if h(x) = nil. We say

MC-Search fails on (f, x) when h(x) = nil, and call h(x) ∈ [n] the representative index of

x (with respect to f ) when it doesn’t fail.
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4.2 Lower bound for distribution-free testing of

monotone conjunctions

In this section we present an Ω̃(n1/3) lower bound for distribution-free testing of mono-

tone conjunctions (and some constant distance parameter ϵ) and prove Theorem 1.4.3. We

start with some high level ideas in Section 4.2.1. Then following Yao’s mini-max principle,

just like before we define two distributions YES and NO in Section 4.2.2, and show it’s

hard to distinguish the two distributions in Sections 4.2.3 to complete the proof.

4.2.1 High level ideas

Wedefine two distributionsYES andNO over pairs (f,D), where f is a Boolean function

mapping from {0, 1}n → {0, 1} andD is a distribution over {0, 1}n. The two distributions

have the following properties:

1. Each draw (f,Df ) from YES satisfies that f ∈ Mconj;

2. Each draw (g,Dg) from NO satisfies that g is 1/3 far from Mconj with respect to

Dg.

Then following Yao’s mini-max principle and definition of distribution-free testers, to

prove Theorem 1.4.3 it’s enough to prove the following lemma:

Lemma 4.2.1. For q = n1/3/ log3 n and any deterministic algorithm T that, upon each input

pair (f,D), makes at most q queries to the sampling oracle of D and at most q queries to

the black-box oracle of f , we have:

| Pr
(f,Df)∼YES

[T accepts (f,Df)]− Pr
(g,Dg)∼NO

[T accepts (g,Dg)]| ≤ 1/4.

The construction of distributions YES and NO as well as the proof of Lemma 4.2.1

are based on ideas from the Ω̃(n1/5) lower bound proof by Glasner and Servedio [GS09].
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Let’s briefly review their proof first, and then explain how we improve this lower bound.

For both distributions they sample m = n2/5 pairwise disjoint sets Ci ⊂ [n] of size

ℓ = n2/5 uniformly at random, and let R be the union of all Ci’s, i ∈ [m]. For each

i ∈ [m] they further randomly partition Ci into Ci = Ai

∪
Bi with |Ai| = |Bi|, and

sample a special index αi ∈ Ai uniformly at random. Let ai, bi, ci be the strings with

Ai = Zero(ai),Bi = Zero(bi),Ci = Zero(ci)¹, for i ∈ [m]. Then for a draw (f,Df)

from distribution YES , f(x) is defined as the conjunction of xj for all j ̸∈ R, as well as

all xαi
for i ∈ [m], and the distribution Df puts 2/(3m) and 1/(3m) weights on bi and ci

respectively for each i ∈ [m]; for a draw (g,Dg) from distribution NO, the distribution

Dg is defined as being uniform over the 3m strings ai, bi, ci for i ∈ [m], and g is defined

the same as f drawn from YES , except for the following special case g is simply defined

as the conjunction of xj for all j ̸∈ R: for each i ∈ [m] such that xαi
= 0, x sets at least

s = logn variables (with indices in) in Ai to 0 and all variables in Bi to 1.

Then for each draw (f,Df) ∼ YES , f sets f(ai) = f(ci) = 0, f(bi) = 1 for i ∈ [m],

and f is obviously a monotone conjunction as promised. For each draw (g,Dg) ∼ NO,

it’s easy to verify that g(ai) = g(bi) = 1 and g(ci) = 0 for i ∈ [m]. Each tuple (ai, bi, ci)

violates the property of monotone conjunctions since ai ∧ bi = ci, and at least one of the

values of g(ai), g(bi), g(ci) must be changed in order to make g a monotone conjunction.

Then since the distribution Dg is uniform over the 3m strings ai, bi, ci for i ∈ [m], we

know g is 1/3-far from Mconj with respect to Dg.

Following Yao’s mini-max principle it’s then enough to show that any deterministic

and adaptive algorithm that, upon each input pair (f,D), makes at most q = Ω̃(n1/5) <<√
ℓ/s queries to the sampling oracle ofD and at most q queries to the black-box oracle of

f , cannot distinguish whether (f,D) is drawn from distribution YES or NO with high

probability.

Let’s fix an input pair (f,D) drawn from either distributionYES orNO. As discussed

¹Recall the definition of Zero(·) as the set of indices set to 0 in the input string.
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before, one can always assume the algorithm makes all queries to the sampling oracle

before making queries to the black-box oracle, and each query to the sampling oracle

gives us a random string x drawn from D as well as its label f(x) by the function. We

will simply call responses of these queries from the sampling oracle as samples. Then the

proof can be completed with the following three arguments:

• Following birthday paradox and the fact that q <<
√
ℓ =

√
m, we can assume the

algorithm gets at most one sample from each triple (ai, bi, ci). Then clearly the q

samples give no information about whether the input is drawn from distribution

YES or NO: they are just some random strings either with ℓ 0’s and a label of 0

by f , or with ℓ/2 0’s and a label of 1 by f , and there is no overlap between the

variables those strings set to 0. We call the samples with ℓ 0’s as long samples, and

the samples with ℓ/2 0’s as short samples.

• After receiving the q samples, the algorithm can make q queries to the black-box

oracle. Let Z be the set of indices i that there exists a string x in the samples with

xi = 0. Then the algorithm can not risk putting 0’s on indices outside Z in a future

black-box query. This is because for both distributions putting a 0 on any index out-

side R will immediately let the function evaluate to 0 and gives us no information.

Recall when we draw (f,D) from either distribution YES or NO, R is uniformly

drawn from [n], and the algorithm has a probability of roughly 1−|R|/n >> 1−1/q

to put a 0 outside R if it puts a 0 outside Z². With at most q future queries to make,

this risk is too high to take. Now we just assume the algorithm never puts 0’s on

indices outside Z .

• Finally we can further sort the possibilities that the algorithm can distinguish the

distributions YES andNO into the following two rare events (note that for each i,

at most one of ai, bi or ci is in the samples):

²In actual arguments we may consider the distributions conditioning on receiving the random samples,
but here for intuition we just keep it simple
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– With a long sample (ci, 0) for some i ∈ [m] in hand, the algorithm makes a

query that sets at least s variables including the one with index αi³ in Ci to 0

(and all other variables to 1), and none of them actually lie in Bi. This event

enables us to distinguish the distributions YES and NO because setting αi

to 0 should always let the function f evaluate to 0 if the input (f,D) is from

distribution YES , while for the case when (f,D) is from distribution NO,

the new query meets the special condition described in definition of NO and

will let f evaluate to 1. However, since we don’t know how Ci is split into Ai

and Bi, we can show with a union bound over q choices for i and q choices

for future queries that such kind of events happen with probability at most

q2/2s << 1.

– With a short sample (z, 1) in hand (either ai or bi for some i ∈ [m]), the al-

gorithm makes a query that sets less than s variables in Zero(z) to 0 (and all

other variables to 1), and gets a label 0 for this query. This event enables us

to distinguish the distributions YES and NO because it only happens when

(f,D) is drawn from NO, z = ai for some i ∈ [m], and the αith variable is

one of the less than s variables that are set to 0 in this new query. For such

event the algorithm doesn’t know where αi is, and the best it can do to make

this event happen is to put at most s 0’s in each Zero(z) for at most q short

samples z it gets, trying to hit αi for some i. With q future queries, such kind

of events happen with probability at most 2q2 · s/ℓ << 1.

Note that to make the argument above to work, we needm >> q2, l >> q2 and |R|·q ≥ n

where |R| = m · l. This essentially gives q = Ω̃(n1/5). So Glasner and Servedio had the

optimal parameters for this argument.

We are able to further improve this lower bound of Ω̃(n1/5) to Ω̃(n1/3), mainly by

³We can always identify αi from ci following MC-Search described in the preparation section.
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making two changes to the construction above: 1. the sets Ci don’t have to be pairwise

disjoint. By allowing Ci to slightly overlap with each other, we have |R| << m · l and get

room for more and larger sets Ci. 2. we allow the algorithm to set a few variables outside

Z to 0 so that we get R as large as Ω(n), again making more room for Ci’s. These two

changes enable us to increase q to Ω̃(n1/3) in the argument above and achieve a better

lower bound. As one can expect, these changes make the proof more complicated as well,

and wemanage to handle the proof by bringing better mini-structure into the construction

of distributions.

4.2.2 The distributions YES and NO

In this section we present construction for the two distributions YES andNO. We define

the following useful parameters:

h :=
n2/3

2 log2 n
, r := n1/3 log2 n, ℓ := n2/3 + 2, m := n2/3, and s := log2 n.

Then a draw (f,Df) from distribution YES is obtained from the following procedure:

1. Select a set R ⊂ [n] of size hr + 2m = n/2 + 2n2/3 uniformly at random.

2. Select 2m distinct indices (α1, . . . ,αm,β1, . . . ,βm) from R uniformly at random.

We will refer (α1, . . . ,αm) as special indices.

3. Partition R′ = R\{α1, . . . ,αm,β1, . . . ,βm} into r sets of size h uniformly at ran-

dom. We call each set as a block.

4. For each i ∈ [m], select distinct 2 log2 n blocks uniformly at random (choices for

different i are independent). LetC′
i be the union of them, and letCi = C′

i

∪
{αi,βi}.

Thus |Ci| = ℓ.

5. For each i ∈ [m], select distinct log2 n blocks from C′
i uniformly at random, and

let Ai be the union of them together with αi. Let Bi = Ci\Ai. Then (Ai,Bi) is a

partition of Ci, and |Ai| = |Bi| = ℓ/2.
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6. Define f1, f2 : {0, 1}n → {0, 1} as follows:

f1(x1, . . . , xn) =
∧
j ̸∈R

xj and f2(x1, . . . , xn) =
∧
i∈[m]

xαi
.

7. Define f : {0, 1}n → {0, 1} as f(x) = f1(x) ∧ f2(x) for each x ∈ {0, 1}n.

8. Finally we define Df as: for each i ∈ [m], let ai, bi, ci be the strings such that

Ai = Zero(ai),Bi = Zero(bi) and Ci = Zero(ci). We put weights of 2/(3m) on

bi and 1/(3m) on ci under distribution Df. All other strings in {0, 1}n have zero

weights in Df.

Then clearly for any draw (f,Df) ∼ YES we have have f(ai) = 0, f(bi) = 1, f(ci) = 0

for each i ∈ [m], and f is always a monotone conjunction as promised.

A draw (g,Dg) from distribution NO is obtained from the following procedure:

1. Follow the first six steps in procedure define above for distribution YES to sample

and get R,Ai,Bi,Ci, ai, bi, ci,αi,βi, f1, f2 for i ∈ [m].

2. Define a string x ∈ {0, 1}n is i-special for some i ∈ [m], if the following two

statements hold:

a) at least 3 log2 n/4 blocks in Ai contain (strictly) more than s indices j with

xj = 0;

b) at least 3 log2 n/4 blocks in Bi contain at most s indices j with xj = 0.

3. Define g′ : {0, 1}n → {0, 1} as g′(x) = 1 if f2(x) = 0 but x is i-special for every i

satisfying xαi
= 0; g′(x) = f2(x) otherwise.

4. Define g : {0, 1}n → {0, 1} as g(x) = f1(x) ∧ g′(x) for each x ∈ {0, 1}n.

5. Finally we define Dg as: for each i ∈ [m], we put weights of 1/(3m) on each of ai,

bi, and ci under distribution Dg. All other strings in {0, 1}n have zero weights in

Dg.
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Same as the above discussion for Ω̃(n1/5) lower bound from [GS09], for each draw

(g,Dg) ∼ NO we have g(ai) = 1, g(bi) = 1, and g(ci) = 0 for i ∈ [m], and g is always

1/3-far from Mconj with respect to Dg.

Now it’s enough to prove Lemma 4.2.1 for the rest of this proof.

4.2.3 Proof of Lemma 4.2.1

The proof for Lemma 4.2.1 is mostly based on ideas from [GS09], but with some adaption

to our new construction of distributions YES and NO. Given an algorithm T specified

in Lemma 4.2.1, we will derive a new deterministic algorithm T ′ from T that has no access

to the black-box oracle. We will then show that such an algorithm T ′ cannot distinguish

the two distributions YES and NO (Lemma 4.2.2) but T ′ agrees with T most of the time

(Lemma 4.2.3 and Lemma 4.2.10), from which Lemma 4.2.1 follows.

Let q = n1/3/ log3 n, and for now let’s fix an input pair (f,D) drawn from either

distribution YES or NO.

First we define a strong sampling oracle based on the original sampling oracle of D.

Upon each query, the sampling oracle of D returns a string x drawn from D as well as

its label f(x). According to the definition of distributions YES and NO, when the input

pair (f,D) is drawn from one of the two distributions, the label f(x) for this sample is

essentially redundant: f(x) = 0 if |Zero(x)| = ℓ, f(x) = 1 if |Zero(x)| = ℓ/2, and

we always have |Zero(x)| ∈ {ℓ, ℓ/2}. Also, for the case when |Zero(x)| = ℓ and no

matter the input is drawn from which distribution, we know x = ci for some i ∈ [m] and

we can always run MC-Search from the last section on x to get a special index αi ∈ Ci.

Given these intuitions, we define a strong sampling oracle based on the original sampling

oracle of D as follows: upon each query, the new oracle samples x from D, and returns

(Zero(x), αi)⁴ for the unique special index αi ∈ Zero(x), if |Zero(x)| = ℓ; it returns

⁴We note that for the lower bound proof it’s also easier to work with the language of sets, so here we
return Zero(x) rather than x itself.
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(Zero(x), nil) otherwise (so no extra information for this case). Clearly, to prove Lemma

4.2.1 it’s enough to prove it for algorithms with access to this strong sampling oracle ofD

as well as the black-box oracle of f , since we are getting extra information from this new

oracle.

Let T be a deterministic algorithm specified from the statement of Lemma 4.2.1, and

without loss of generality we assume T starts by making q queries to the strong sampling

oracle of D. Let Q = {(Di,γi) : i ∈ [q]} be the sequence of responses (again let’s call

them as samples) T gets from the oracle, where Di’s are sets Zero(x) corresponding to

sample strings x and γi’s are either empty or special indices returned from the oracle. For

each fixedQ, let Γ = Γ(Q) be the set of special indices T gets fromQ, and let S = S(Q) =∪
i∈[q] Di and I = I(Q) ⊂ [q] be the set of i ∈ [q] such that |Di| = ℓ/2.

Given these definitions, we now define a new deterministic algorithm T ′ based on T

and with no access to the black-box oracle of f . In addition to the sequence of samples

Q for the first q sampling queries, it also receives R used in the procedure constructing f

(no matter the input comes from which distribution). Given a fixedQ andR, T ′ simulates

the behavior of T after receiving Q as follows: whenever T makes a query z ∈ {0, 1}n,

T ′ doesn’t query the black-box oracle but instead using p(z, R,Q) as the response to this

query and proceed asT would do upon receiving this response, where p(z, R,Q) is defined

as:

p(z,R,Q) =


0, if zi = 0 for some i ∈ [n]\R or i ∈ Γ(Q);

1, otherwise.

We can show the following lemma that the algorithm T ′ described above (with no

access to the black-box oracle) cannot distinguish the two distributions YES and NO

with high probability:

Lemma 4.2.2. For any deterministic algorithm T ∗ that, upon each input pair (f,D), receives
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R and a sequence Q of q samples from the strong sampling oracle of D but has no access to

the black-box oracle of f , we have:

| Pr
(f,Df)∼YES

[T ∗ accepts (f,Df)]− Pr
(g,Dg)∼NO

[T ∗ accepts (g,Dg)]| = o(1).

Proof of Lemma 4.2.2. We prove a stronger statement by giving the following extra infor-

mation to T ∗ for free, upon each input pair (f,D) drawn from YES or NO:

J =
((

Ci, {Ai, Bi}, {αi, βi}
)
: i ∈ [m]

)
.

Note that {Ai, Bi} is given to T ∗ but they are not labelled (T ∗ doesn’t know which one

of the two sets is Ai). The same holds for {αi, βi}. Also R is revealed in J as R = ∪iCi.

After receiving J , T ∗ receives a sequence of q samples Q and now needs to either accept

or reject with no other information about (f,D). We show that T ∗ cannot distinguish

YES and NO.

By definition, the distribution of J when (f,D) ∼ YES is the same as that when

(f,D) ∼ NO, and we use J to denote such distribution of J. Given a tuple J drawn from

J , we use QJ to denote the distribution of the sequence of q samples Q conditioning on

J = J when (f,D) ∼ YES , and use Q′
J to denote the distribution of Q conditioning on

J = J when (f,D) ∼ NO. We show that for any fixed J ,

∣∣∣∣ Pr
Q∼QJ

[
T ∗ accepts (J,Q)

]
− Pr

Q∼Q′
J

[
T ∗ accepts (J,Q)

] ∣∣∣∣ = o(1).

The lemma then follows because procedures for YES and NO induce the same distribu-

tion J of J .

It suffices to show that QJ and Q′
J are close to each other for any fixed tuple J . For

this purpose, we say a sequence Q = ((Di, γi) : i ∈ [q]) has no collision with respect to J

if no two setsDi andDj ofQ come from {Ak, Bk, Ck}with the same k. On the one hand,
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using the birthday paradox and our choices of q <<
√
m, Q ∼ QJ has a collision with

probability o(1). On the other hand, conditioning on Q has no collision with respect to

J , the probability of Q = Q in QJ is exactly the same as that of Q = Q in Q′
J (which is

a product of probabilities, one for each sample Qi in Q: the probability of receiving each

sample Qi = (Di, γi) is 1/(6m) if |Di| = ℓ and 1/(3m) if |Di| = ℓ/2). This finishes the

proof of the lemma.

Given this lemma, it’s then enough to show that T and T ′ agree with each other most

of the time when (f,D) ∼ YES or (f,D) ∼ NO. We will prove them in Section 4.2.3.1

and Section 4.2.3.2 respectively.

4.2.3.1 T versus T ′ when (f,D) ∼ YES

In this section we consider the case when the input pair (f,D) is drawn from YES and

show that T ′ agrees with T with high probability in this case. More formally we will

prove the following lemma:

Lemma 4.2.3. For any deterministic algorithm T that, upon each input pair (f,D), makes q

queries to the strong sampling oracle of D and the black-box oracle of f each, let T ′ be the

algorithm defined based on T in Section 4.2.3. Then we have:

| Pr
(f,D)∼YES

[T accepts (f,D)]− Pr
(f,D)∼YES

[T ′ accepts (f,D)]| ≤ 0.1.

Proof of Lemma 4.2.3. We start with some notation.

Given a sequence of q-samplesQ that T and T ′ receive at the beginning, we use TQ to

denote the binary decision tree of T of depth q upon receivingQ. So each internal node of

TQ is labeled a query string z ∈ {0, 1}n, and each leaf is labeled either “accept” or “reject”.

Given Q, T walks down the tree by making queries about f(z) to the black-box oracle.

Given R and Q, T ′ walks down the same decision tree TQ but does not make any query

to the black-box oracle; instead it follows the bit p(z, R,Q) for each query string z in TQ.
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We show that the probability of T ′ accepting a pair (f,D) ∼ YES is very close to that

of T .

Let YESQ denote the distribution of (f,D) drawn from YES conditioning on receiv-

ing Q = Q at the beginning. We claim that for any Q,

∣∣∣∣ Pr
(f,D)∼YESQ

[
T accepts (f,D)

]
− Pr

(f,D)∼YESQ

[
T ′ accepts (f,D)

]∣∣∣∣ ≤ 0.1. (4.1)

The lemma then follows directly. In the rest of the proof we consider a fixed sequence of

samples Q.

We use S = S(Q) to denote the union of sets in Q (so |S| ≤ qℓ = O(n/ log3 n)), and

use t = |Γ(Q)| to denote the number of special indices αi revealed inQ. By the definition

of YES and with (f,D) ∼ YESQ, every special index αi ∈ S must appear in Q since D

has no weight on ai (so the only possibility of having a special index αi ∈ S is because Ci

is in Q, for which case αi is also given in Q). Thus, there are exactly m− t many special

indices αi in R \ S and we use ∆ to denote the set of these indices. Let RQ denote the

distribution of the set R conditioning on Q = Q. Given an R from the support of RQ, we

abuse the notation and use YESQ,R to denote the distribution of (f,D,∆), conditioning

on fixed Q and R.

We make a few simple but very useful observations. First the leaf of TQ that T ′ reaches

only depends on the set R ∼ RQ it receives at the beginning; we use w′(R) to denote the

leaf that T ′ reaches. Second, conditioning on Q = Q (and S = S), all indices i ∈ [n] \ S

are symmetric and are equally likely to be in R. Thus, R \ S is a subset of [n] \ S of size

hr+2m− |S| drawn uniformly at random. Finally, conditioning on Q = Q and R ∼ RQ,

all indices i ∈ R \ S are symmetric and equally likely to be in ∆ (i.e., chosen as a special

index αj). As a result, in YESQ,R, ∆ is a subset of R \ S of size m− k drawn uniformly

at random.

Now we work on (4.1). Our plan is to show that, when (f,D) ∼ YESQ, most likely T
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and T ′ reach the same leaf of TQ (and then either both accept or reject).

We need one more definition. For each leaf w of TQ, we defineHw ⊆ [n] \S to be the

set of indices i ∈ [n] \ S such that there exists a query string z on the path from the root

to w with zi = 0 and w lies in the 1-subtree of the node that making this query. By the

definition ofHw and the way T ′ walks down TQ using R ∼ RQ, a necessary condition for

T ′ to reach w is that Hw ⊂ R. However, all indices i ∈ [n] \ S are symmetric and equally

likely to be in R. So intuitively it is unlikely for T ′ to reach w if Hw is large.

Inspired by discussions above, we say a leaf w of TQ is bad if |Hw| ≥ 0.02 · n1/3;

otherwise w is a good leaf (notice that whether w is good or bad only depends on Q,

S = S(Q) and TQ). We show that, when R is drawn from RQ, the probability of w′(R)

being bad is o(1). To see this, for each bad leaf w of TQ we have (letting K = hr + 2m−

|S| = (n/2) + 2n2/3 − |S| be the size of R \ S and plugging in |S| ≤ qℓ = O(n/ log3 n))

Pr
R∼RQ

[
w′(R) = w

]
≤ Pr

R∼RQ

[
Hw ⊂ R

]
=

(
n−|S|−|Hw|
K−|Hw|

)(
n−|S|
K

)
=

K − |Hw|+ 1

n− |S| − |Hw|+ 1
× · · · × K

n− |S|
< 2−|Hw| ≤ 2−0.02·n1/3

.

By a union bound on the at most 2q many bad leaves in TQ and our choice of q =

O(n1/3/ log3 n) we have the probability of T ′ reaching a bad leaf is o(1), when R ∼ RQ.

This allows us to focus on good leaves.

Let w be a good leaf in TQ, and fix R to be a set from RQ such that w′(R) = w (and

thus, we must have Hw ⊂ R \ S). We bound probability of T not reaching w, when

(f,D,∆) ∼ YESQ,R. We claim that this happens only when some special index αi is in

Hw (or equivalently, Hw ∩∆ is not empty).

We now prove this claim. Let z denote the first query string along the path from

the root to w such that f(z) ̸= p(z, R,Q). By the definition of YES and p(z, R,Q),

p(z, R,Q) = 0 implies f(z) = 0. As a result, we must have f(z) = 0 and p(z, R,Q) = 1.

By p(z, R,Q) = 1, we have Zero(z) ⊆ R and Zero(z) has none of the special indices in
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Γ(Q). By f(z) = 0, Zero(z) must contain a special index αi outside of S, and thus this

αi is in ∆. Note that p(z,R,Q) = 1, we know z is one of the strings considered in the

definition of Hw, and this implies αi ∈ Hw ∩∆.

Using this claim, our earlier discussion on the distribution of∆ inYESQ,R and |Hw| <

0.02n1/3 as w is a good leaf of TQ, we have (again, letting K be the size of R \ S)

Pr
(f,D,∆)∼YESQ,R

[
T does not reach w

]
≤ Pr

(f,D,∆)∼YESQ,R

[
|Hw ∩∆| ̸= ∅

]
=1−

(
K−|Hw|
m−t

)(
K

m−t

) ≤ 1−
(
1− m

K − |Hw|+ 1

)|Hw|

≤1−
(
1− 3m

n

)|Hw|

≤ 1−
(
1− 3

n1/3

)0.02n1/3

≈1− e−0.06 < 0.07.

Combining this and the fact that T ′ reaches a bad leaf with o(1) probability, we have

Pr
(f,D)∼YESQ

[
T and T ′ reach different leaves of TQ

]
=
∑
w

∑
R:w′(R)=w

Pr
(f,D,∆)∼YESQ,R

[
T does not reach w

]
· Pr
R∼RQ

[R = R]

=o(1) +
∑

good w

∑
R:w′(R)=w

Pr
(f,D,∆)∼YESQ,R

[
T does not reach w

]
· Pr
R∼RQ

[R = R]

<0.1.

This finishes the proof of (4.1) and the lemma then follows.

4.2.3.2 T versus T ′ when (f,D) ∼ NO

In this section we consider the case when the input pair (f,D) is drawn from NO and

show that T ′ agrees with T with high probability in this case as well.
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We start by introducing a condition on a sequence of q samples Q, and show that the

sequenceQ that T ′ and T receive at the beginning satisfies this condition with probability

1− o(1).

Definition 4.2.4. Given a sequence Q = ((Di, γi) : i ∈ [q]) of q samples that T ′ and T

receive upon a fixed pair (f,D) drawn fromNO, we useHi to denote the unique set Ck for

some k ∈ [m] that containsDi. Then we say thatQ is separated with respect to (f,D) (since

byQ itself one cannot tell if it satisfies the following condition) if for each i ∈ [q] the number

of 2 log2 n blocks of Hi that do not appear in any other Hj , j ̸= i, is at least (15/8) log2 n.

A simple implication from this condition is that, when Q is separated with respect to

(f,D), Q contains at most one set from (Ai, Bi, Ci) for each i ∈ [m] (what we called as

“no collision” in the proof of Lemma 4.2.2).

Here is an observation that inspires (part of) the definition above. Assume that algo-

rithm T , given Q, suspects that Di in Q is Ak for some k and wants to find the special

indexαk. It may note that indices that appear inDi only,Di \∪j ̸=iDj , are symmetric and

are equally likely to beαk. Q being separated with respect to (f,D) implies that there are

many such indices in D, and intuitively makes it harder for T to find special indices. Of

course the definition ofQ being separated is stronger, and intuition behind it will become

clear later in the proof of Lemma 4.2.10.

We show that when (f,D) ∼ NO, the sequence of random samples Q that T and T ′

receive at the beginning is separated with respect to (f,D) with probability 1− o(1).

Lemma 4.2.5. When (f,D) ∼ NO, a sequence Q of q samples from the sampling oracle is

separated with respect to (f,D) with probability 1− o(1).

Proof. Recall that R′ is the subset of R with αi’s and βi’s removed. For each R′ ⊂ [n]

of size hr and a partition of R′ into r pairwise disjoint blocks of size h each, we write

J = J(R′) to denote the tuple consists of all blocks in R′. We write NOJ to denote the

distribution of (f,D) ∼ NO conditioning on J(R′) = J , and for each i ∈ [m] write C′
i to
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denote the set obtained from Ci after removing αi and βi. With (f,D) ∼ NOJ , each C′
i

is the union of 2 log2 n blocks drawn uniformly at random from the r blocks in J .

Fix an J . Below we show that if each C′
i is the union of 2 log2 n random blocks and a

sequence j1, . . . , jq is drawn from [m] uniformly and independently, then with probability

1− o(1) we have for each i ∈ [q]:

the number of blocks of C′
ji that appear in ∪k ̸=iC′

jk is at most log2 n/16.

It follows thatQ has the desired properties when (f,D) ∼ NOJ with probability 1−o(1),

and the lemma follows.

We now prove the claim. First of all by the birthday paradox and our choices of q and

m, the probability of two indices from j1, . . . , jq being the same is o(1). Suppose that no

two indices in j1, . . . , jq are the same. The distribution of C′
j1 , . . . ,C

′
jq is then the same

as L1, . . . , Lq, where each Li is the union of 2 log2 n blocks in J drawn uniformly and

independently at random. For the latter, we show the following claim:

Claim 4.2.6. With probability 1 − o(1), for each i ∈ [q], the number of blocks in Li that

appear in ∪k ̸=iLk is at most log2 n/16.

This is not really surprising: on expectation, the number of blocks of Li that also appear

in ∪k ̸=iLk is

(q − 1) · 2 log
2 n · 2 log2 n

r
= o(1).

A formal proof of Claim 4.2.6 can be found in Section 5.2.

We write E to denote the event that a sequence Q of q samples drawn from (f,D) ∼

NO is separated with respect to (f,D), and QE to denote the probability distribution of

Q conditioning on E. By definition not every Q is in the support of QE ; we record the

following property of Q in the support of QE .
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Property 4.2.7. Given any Q = ((Di, γi) : i ∈ [q]) in the support of QE , each Di has at

most logn2/8 many blocks that appear in ∪j ̸=iDj .

Given a Q in the support of QE , we write RQ,E to denote the distribution of R, con-

ditioning on Q = Q and event E happens. It is clear that RQ,E is the same as RQ with

E dropped since all indices in [n] \ S(Q) remain symmetric and equally likely to be in R

even given E.

Property 4.2.8. For R ∼ RQ,E , R\S(Q) is a set of size hr+2m− |S(Q)| drawn uniformly

from [n] \S(Q).

For fixed Q and each i ∈ I(Q) (= {i ∈ [q] : |Di| = ℓ/2}), we use Fi to denote

the other set of size ℓ/2 paired with Di, (so Fi is Ak if Di is Bk and vice versa). Given

Q = ((Di, γi) : i ∈ [q]) in the support ofQE andR in the support ofRQ,E , we useF i
R,Q,E

to denote the distribution of Fi conditioning on R = R,Q = Q and event E happens.

Then we have the following property for Fi’s:

Property 4.2.9. Every Fi in the support of F i
R,Q,E has at least (7/8) log2 n blocks in R \

S(Q). Moreover, with Fi ∼ F i
R,Q,E those blocks are drawn uniformly at random from blocks

in R \ S(Q). (More exactly, the number k of blocks in Fi in R \ S(Q) is drawn from a

certain distribution, where k ≥ (7/8) log2 n with probability 1, and then k blocks are drawn

uniformly at random from blocks in R \ S(Q) to form Fi.)

Nowwe are ready to show that T ′ agrees with T most of the time when (f,D) ∼ NO,

formally stated as the following lemma:

Lemma 4.2.10. For any deterministic algorithm T that, upon each input pair (f,D), makes

q queries to the strong sampling oracle of D and the black-box oracle of f each, let T ′ be the

algorithm defined based on T in Section 4.2.3. Then we have:

| Pr
(f,D)∼NO

[T accepts (f,D)]− Pr
(f,D)∼NO

[T ′ accepts (f,D)]| ≤ 0.1.
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Proof of Lemma 4.2.10. We consider a fixedQ that is a sequence of q samples in the support

of QE , and prove that for any such Q:

∣∣∣∣ Pr
(f,D)∼NOQ,E

[
T accepts (f,D)

]
− Pr

(f,D)∼NOQ,E

[
T ′ accepts (f,D)

]∣∣∣∣ ≤ 0.09. (4.2)

The lemma then follows from (4.2) and Lemma 4.2.5.

For convenience, we let S = S(Q), Γ = Γ(Q) and I = I(Q) (so |S| = O(n/ log3 n)).

Given R in the support of RQ,E , we let w′(R) denote the leaf of TQ that T ′ reaches given

R. We define Hw for each leaf w of TQ and good /bad leaves of TQ similarly as in the

proof of Lemma 4.2.3. Using the same argument (as by Property 4.2.8, R \S is also drawn

uniformly at random from [n]\S) we have the probability ofw′(R) being bad is o(1)when

R ∼ RQ,E . This again allows us to focus on good leaves in TQ.

Now we fix a good leaf w of TQ and a setR fromRQ,E with w′(R) = w. We use Pw to

denote the path of query strings from the root to w. We drop R andQ in p(z,R,Q) since

they are fixed. In the rest of the proof we bound the probability of T not reachingw, when

(f,D) ∼ NOR,Q,E ((f,D) ∼ NO conditioning on fixed R,Q and event E happens).

We consider all the possibilities of T not reaching w. It happens when there exists

some query string z on the path Pw such that p(z) ̸= f(z). By the definition of NO, at

least one of the following four events holds. We bound the probability of each event by

o(1) when (f,D) ∼ NOR,Q,E , and then apply a union bound to complete the proof. For

the four events below, Events E0, E1 and E2 cover the case when p(z) = 1 but f(z) = 0

for some z in Pw. Event E3 covers the case when p(z) = 0 but f(z) = 1 for some z in

Pw. We present the four events with respect to a fixed pair (f,D) drawn from NOR,Q,E

as follows (recall that s = log2 n):

Event E0: There is a string z in Pw such that p(z) = 1 (so w is in the 1-subtree of the

node making query z) but zαk
= 0 for some αk /∈ S.

Event E1: There is a string z in Pw such that p(z) = 1 but
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1) zαk
= 0 for some αk ∈ S and αk /∈ Γ;

2) z is not k-special because there are more than log2 n/4 many blocks

in Ak, each of which has at most s indices j with zj = 0.

Event E2: There is a z in Pw such that p(z) = 1 but

1) zαk
= 0 for some αk ∈ S and αk /∈ Γ;

2) z is not k-special because there are more than log2 n/4many blocks in

Bk, each of which has (strictly) more than s indices j such that zj = 0.

Event E3: There is a z in Pw such that zαk
= 0 for some αk ∈ Γ but z is k-special,

i.e., there are at least 3 log2 n/4 blocks in Ak, each of which has (strictly)

more than s indices j in it with zj = 0; at the same time, there are at least

3 log2 n/4 blocks in Bk, each of which has at most s indices j in it with

zj = 0.

The probability that E0 happens when (f,D) ∼ NOR,Q,E is less than 0.07 by the same

argument in the proof of Lemma 4.2.3.

Next we bound the probability of E1. Let D′
i = Di \ (∪j ̸=iDj) for each i ∈ [q]. Note

that if there is a special index αk ∈ S but αk /∈ Γ, then αk ∈ D′
i for some i ∈ I . Fixing

a query string z in Pw and an i ∈ I , we bound the probability that E1 happens at z and

αk ∈ D′
i, and then apply a union bound on at most q2 pairs of z and i.

Consider the scenario thatDi is indeedAk for some k; otherwiseE1 can never happen.

When Di is Ak and (f,D) ∼ NOR,Q,E , D′
i consists of a random special index αk and

u ≥ 7 log2 n/8 random blocks. (Note that u can be determined from the size of |D′
i|.) A

key observation is that all indices in D′
i are symmetric in this case, and the choice of αk

as well as the partition of the rest of D′
i into u blocks are both done uniformly at random.

Let Z = Zero(z) ∩D′
i. By the observation above, part 1) of E1 happens with probability

|Z|/|D′
i| = O(|Z|/ℓ). So to make part 1) happen, one would like to set Z to be as large

as possible. However, we claim that if |Z| ≥ 10 log4 n, then with high probability, every
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block in D′
i has at least 2s indices in Zero(z), from which we know part 2) is violated

because by event E the number of blocks in Di \D′
i is at most log2 n/8.

The claim above is not surprising, since each block by our discussion earlier is a subset

of size h drawn from D′
i uniformly at random. So when |Z| ≥ 10 log4 n, the expected

number of indices of a block in Z is

|Z| · h

|D′
i|
≥ (10 log4 n) · n2/3

2 log2 n
· 1

n2/3 + 2
≥ 4 log2 n = 4s.

For a formal proof of the claim, we assume that blocks inD′
i are labelled: D′

i is partitioned

into αk and u blocks uniformly at random and then the blocks are labelled uniformly at

random from 1 to u. Let’s focus on the block labelled j: it is a set of size h drawn fromD′
i

uniformly at random and thus, can be also generated as a sequence of indices drawn from

D′
i uniformly at random and independently until h distinct indices are sampled. However,

even if we draw a sequence of h indices fromD′
i uniformly at random and independently

(an early-stop version of the previous procedure) the probability of having at least 2s

samples in Z is already 1− n−Ω(logn), e.g., by a folklore extension of Chernoff bound (see

Lemma 5.2.1). Thus, the probability of block j having at most 2s indices in Zero(z) is

bounded by n−Ω(logn). By a union bound on all blocks in D′
i, we have that every block in

D′
i has at least 2s indices in Zero(z) with probability 1− n−Ω(logn).

Combining the two cases when Z is small and large, we have that E1 happens at a

fixed z and Di with probability O(log4 n/ℓ). Applying a union bound, E1 happens with

probability O(q2 log4 n/ℓ) = o(1).

Next we consider E2. Let Q = ((Di, γi) : i ∈ [q]), and Fi be the set paired with Di

for each i ∈ I . For convenience we say a block is dense if it has more than s indices in

Hw. We claim that a necessary condition for part 2) of E2 to happen is that there exists

an i ∈ I such that more than log2 n/8 dense blocks of Fi are outside of S. To see this is

the case, let’s consider a z ∈ Pw and k such that E2 happens at z and αk. Then it must be
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the case that Ak is in Q and Bk is one of the Fi’s. By part 2) of E2, more than log2 n/4

blocks of Bk has more than s indices in Zero(z). Also, given E, we know that at least

log2 n/8 many such blocks are outside of S. By p(z) = 1 we know z is one of the strings

used to define Hw. Thus, all indices of Zero(z) outside of S belong to Hw, and these at

least log2 n/8 blocks are dense blocks. The claim then follows.

We fix an i ∈ I (and apply a union bound later). Also note that Hw is a fixed set in

R \ S of size at most 0.02n1/3 because w is a good leaf of TQ. Consider any partition of

R \S into disjoint blocks (and certain number of αi’s and βi’s). Then by the size ofHw, at

most O(n1/3/s) many of these blocks are dense ( have an intersection of size more than

s with Hw), and a block drawn uniformly at random from R \ S is a dense block with

probability only O(1/ log4 n). By Property 4.2.9 and the fact that |Fi| = ℓ/2, Fi ∼ F i
R,Q,E

draws at most log2 n blocks uniformly at random from those in R \ S. The probability

that more than log2 n/8 of them are dense blocks can be bounded by n−Ω(log4 n) (e.g., by

following a similar argument used in Section 5.2 and considering a sequence of 2 log2 n

blocks sampled uniformly and independently). By applying a union bound on all i ∈ I

we have that E2 happens with probability o(1) when (f,D) ∼ NOR,Q,E .

For event E3, we bound the probability that E3 happens for some string z in Pw and

some special index αk ∈ Γ, and then apply a union bound on at most q2 many pairs of z in

Pw and αk ∈ Γ. Consider an adversary that picks a string z and aims to make E3 happen

on z and αk with probability as high as possible, conditioning on fixed R,Q and event E

happens. Since αk ∈ Γ, Ck is a set inQ (paired with αk as a sampleQi). To ease the proof,

we reveal βk and all the blocks in Ck to the adversary for free and let J be the set of these

blocks. Next, consider the distribution of Ak and Bk conditioning on fixed αk, βk, J, R,Q

and event E happens. A key observation is that all blocks in J are equally likely to be

in Ak and Bk: Ak is the union of αk and log2 n blocks drawn uniformly at random from

J , and Bk is the union of βk and the rest of blocks from J . This is because, given E and

that Ck is in Q, neither Ak nor Bk is in Q. Thus, neither of αk, βk, J, R,Q,E reveals any

151



information about how blocks in Ck are partitioned into Ak and Bk except for the indices

αk and βk.

Let M denote the set of blocks in J that have strictly more than s indices in Zero(z).

For event E3 to happen, Ak draws log2 n blocks from J uniformly at random and have

to hit 3 log2 n/4 blocks in M , while Bk draw random blocks in the same way and only

have at most log2 n/4 blocks in M , which is highly unlikely. For a formal proof, note

that M must have at least 3 log2 n/4 blocks; otherwise the event never happens. Also, M

certainly has at most 2 log2 n blocks (total number of blocks in Ck). We sample Bk using

the following procedure: include in the first phase each block in Bk independently with

probability 1/2, and then in the second phase either add or remove random blocks to left

Bk with log2 n blocks. By Chernoff bound, we have that with probability 1 − n−Ω(logn)

after the first phase Bk has at least (11/32) log2 n blocks in M and at most (33/32) log2 n

blocks in total (since the expectation for the first number is at least 3 log2 n/8 and the

expectation for the second number is equal to log2 n). When this happens, Bk sampled in

the end must have at least (5/16) log2 n > log2 n/4 blocks inM , since we remove at most

(1/32) log2 n blocks from Bk in the second phase in this case .

Applying a union bound on all z in Pw and αk in Γ, we have that E3 happens with

probability o(1).

Combining these bounds on the probability of events Ei, i ∈ {0, 1, 2, 3}, we have the

probability of T not reaching w when (f,D) ∼ NOR,Q,E is less than 0.08. The lemma

then follows.

4.2.3.3 Putting all pieces together

We now combine all the lemmas to prove Lemma 4.2.1 (and then Theorem 1.4.3 follows).

Proof of Lemma 4.2.1. Let T be a deterministic oracle algorithm that makes at most q

queries to each oracle, and T ′ be the algorithm that simulates T with no access to the
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black-box oracle described in Section 4.2.3. By Lemmas 4.2.2, 4.2.3, 4.2.10:

∣∣∣∣ Pr
(f,Df)∼YES

[
T accepts (f,Df)

]
− Pr

(g,Dg)∼NO

[
T accepts (g,Dg)

] ∣∣∣∣ ≤ o(1) + 0.1 + 0.1 < 1/4.

This finishes the proof of Lemma 4.2.1.

4.3 A distribution-free testing algorithm of monotone

conjunctions

In this section we present an Õ(n1/3/ϵ5)-query adaptive distribution-free testerMainDM-

conj of monotone conjunctions and prove Theorem 1.4.2. We first give some high level

ideas about how ourmain algorithmMainDMconjworks in Section 4.3.1. Thenwe present

the algorithm MainDMconj in Section 4.3.2 and conduct the analysis of its correctness in

Section 4.3.3.

4.3.1 High level ideas

We describe the high-level ideas behind our algorithm MainDMconj in this section. For

clarity, here we assume that ϵ is a constant. We first review the Õ(n1/2)-query algorithm

of Dolev and Ron [DR11]. Recall from the preparation section, an ingredient from [DR11],

MC-Search (Figure 4.1), is a deterministic binary search procedure that, upon x ∈ f−1(0),

attempts to find an index i ∈ Zero(x) such that f({i}) = 0. If it fails on x, then f is

not a monotone conjunction for sure; otherwise, we use h(x) to denote the index found

and call it the representative index of x. Roughly speaking, the algorithm of Dolev and

Ron draws n1/2 samples fromD and usesMC-Search to compute the representative index

h(x) of each sample x from f−1(0). Then the algorithm rejects if yα = 0 for some sample

y ∈ f−1(1) and some representative index α found. The algorithm has one-sided errors,
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and Dolev and Ron showed that n1/2 samples are enough to reject with high probability

when f is far from monotone conjunctions with respect to D.

Our algorithmwas inspired by Dolev and Ron’s work, as well as obstacles encountered

when we were trying to improve the Ω̃(n1/3) lower bound from last section. To give some

intuition, consider a fixed pair (g,D) ∼ NO from our lower bound proof, withm ≈ n2/3

many Ci’s being of size ℓ ≈ n2/3, Ai

∪
Bi being a partition of Ci with equal sizes, and

αi being a random special index in Ai. Similar as before, for i ∈ [m] let ai, bi, ci be the

strings with Ai = Zero(ai), Bi = Zero(bi) and Ci = Zero(ci). Then D is the uniform

distribution over all ai, bi, ci’s, and g satisfies g(ai) = g(bi) = 1 and g(ci) = 0. Now

consider the following scenario where an adversary tries to modify entries of g outside of

{ai, bi, ci}i∈[m], aiming to fool algorithms with a small number of queries and pretend g

being a monotone conjunction (while it’s clearly far from Mconj with respect to D). Let

t ≈ n1/3, then we note the adversary has difficulty in handling the following two testers:

(While we can not just draw random samples directly from g−1(1) or g−1(0) with

respect to D, it will become clear later that the more interesting case is when g is not too

biased to all-0 or all-1 functions with respect toD, and as a result it’s not too hard to draw

samples from g−1(1) or g−1(0). Here for intuition let’s just say we can directly do so.)

Tester 1. Draw t samples y1, . . . , yt from g−1(1) with respect to D. Let

Ei = Zero(yi), E = ∪iEi. Given the definition of D and that g(ai) = g(bi) = 1 and

g(ci) = 0, each Ei is either Ak or Bk. Repeat t times: pick a subset Z of E of size t

uniformly at random and query z with Zero(z) = Z. (Note that if g is a monotone

conjunction, then E cannot contain any index of a variable that belongs to the

conjunction and hence for every Z ⊆ E and z with Zero(z) = Z , g must return 1

to query z.)

Tester 2. Draw t− 1 samples y1, . . . , yt−1 from g−1(1) with respect to D, and one

sample x from g−1(0) (so Zero(x) = Ck for some k). Define Ei and E similarly. Use

the binary search procedure to find the representative index h(x) of x; for the sake
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of discussion here assume that it finds the special index αk ∈ Ck (as in our lower

bound proof). Pick a subset Z of E of size t− 1 uniformly at random, and query z

with Zero(z) = Z ∪ {αk}. (Note that if g is a monotone conjunction, then h(x)

must be the index of a variable in the conjunction and hence, we have h(x) /∈ E

and for every Z ⊆ E and z with Zero(z) = Z∪ {h(x)}, g must return 0 to query z.)

Consider an algorithm that runs both testers with independent samples. Clearly g fails

and gets rejected (i.e., a proof that g ̸∈ Mconj is found) if it returns 0 to a query z from

Tester 1 or it returns 1 to a query z from Tester 2. It turns out that there is no way to

design a g that returns the correct bit to pass both testers most of the time. To see this is

the case, fix someE andEi’s defined from the samples we get. Assume for now that about

half of theEi’s in Tester 1 are indeed someAk’s, so each of them contains a unique special

index αk; in total there are Ω(t) many of them in E. Given that |E| ≤ n, t ≈ n1/3, and

we repeat t times in picking z, each with t 0’s, most likely one of the strings z queried has

a special index αk ∈ Zero(z) and it is also the only index in Zero(z) ∩ E∗
i , where we let

E∗
i denote the indices that are unique to Ei among all Ej’s. (For the latter, the intuition is

that there simply cannot be too many large E∗
i because they are disjoint and their union

is E.)

For such a string z drawn and queried in Tester 1, g has to return 1. However, the

distribution of such z is very similar to the distribution of z queried in Tester 2, where

an αk is first picked randomly (by drawing a random 0-string x correpsonding to some

Ck = Zero(x) and running the binary search procedure on it to reveal αk) and then

unioned with a set of t− 1 indices drawn uniformly from E ′ obtained from t− 1 samples

from g−1(1) (thinkE ′ = E\E∗
i as the union of t−1 samples after deletingEi from samples

discussed above for Tester 1).

This is essentially how our algorithm MainDMconj works. It consists of two stages,

each of which implements one of the two testers. The main challenge for us is the anal-

ysis to show that it works for any input pair (f,D) that not necessarily looks like those
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constructed in NO. At a high level, we show that if f is far from monotone conjunctions

with respect to D and passes Stage 1 with high probability, then it fails Stage 2 and gets

rejected with high probability since the two distributions of z queried in the two stages

are very close to each other.

An important part of our analysis is the notion of violation bipartite graph Gf for

each pair (f,D). Compared to the violation hypergraph Hf introduced by Dolev and Ron

[DR11], our bipartite graph Gf is easier to work with and its vertex covers also charac-

terize the distance between f and the class of monotone conjunctions. In particular, our

analysis of correctness heavily relies on a highly regular bipartite subgraph G∗
f of Gf , of

which every vertex cover still has total weight Ω(ϵ). The regularity of G∗
f plays a critical

role in our comparison of the two stages. More specifically, it helps bound the double

counting when we lower bound the probability of (f,D) failing Stage 2, assuming that it

passes Stage 1 with high probability.

4.3.2 Description of the main algorithm

Wepresent ourmain algorithmMainDMconj in this section. For clarity we alwayswrite x

to denote a string from f−1(0), y to denote a string from f−1(1), and z to denote a string

with f(z) unknown (or we do not care about f(z)). Just like before we again assume

without loss of generality that, upon input (f,D, ϵ), each query to the sampling oracle of

D gives a string x ∼ D as well as its label f(x) by f .

We use the following parameters in the algorithm and its future analysis:

d :=
log2(n/ϵ)

ϵ
, d∗ := d2/ϵ, r := n1/3, t := d · r and s := t logn. (4.3)

Given these parameters, we present the algorithm MainDMconj in Figure 4.2. It con-

sists of three stages (the first stage is for drawing samples and making simple tests for

some special corner cases, and the last two stages are the more crucial parts as described
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Procedure MainDMconj (f,D, ϵ)
Input: Black-box oracle access to f : {0, 1}n → {0, 1}, sampling access to a probability
distribution D over {0, 1}n, and a distance parameter ϵ ∈ (0, 1).
Output: Either “accept” or “reject”.

Stage 0. Query f(1n) and Reject if f(1n) = 0. Make 3t(d∗ + 1)/ϵ many queries
to the sampling oracle. Let (zi,j, f(zi,j)) denote the pairs received, for
i ∈ [d∗ + 1] and j ∈ [3t/ϵ]. Run MC-Search to compute the representative index
h(x) for each x ∈ f−1(0) sampled. Reject if one of them has h(x) = nil.
Stage 1. Accept if the number of j ∈ [3t/ϵ] with z1,j ∈ f−1(1) is less than t;
otherwise, we let y1, . . . , yt be the first t (not necessarily distinct) 1-strings in
(z1,j). Let Bi = Zero(yi), B = ∪iBi.

1.1. Repeat s times: Draw an index i from B uniformly at random. Reject if
f({i}) = 0.

1.2. Repeat s times: Draw a subset Z ⊆ B of size r uniformly at random.
Reject if f(Z) = 0.
Stage 2. Repeat the following steps for d∗ iterations. For the ith iteration:

– Accept if the number of j ∈ [3t/ϵ] with zi+1,j ∈ f−1(1) is less than t− 1 or
no string in (zi+1,j) is from f−1(0); otherwise, let y1, . . . , yt−1 be the first
t− 1 (not necessarily distinct) 1-strings from (zi+1,j), and x be the first
0-string from (zi+1,j). Let Bi = Zero(yi) for each i, and B = ∪iBi.
Use the binary search procedure to compute h(x), and Reject if h(x) = nil.
Otherwise:

2.1 Let α = h(x) ∈ Zero(x). Reject if α ∈ B.
2.2. Uniformly draw a P ⊆ B of size r − 1. Reject if f(P ∪ {α}) = 1.

End of Stage 2. Accept.

Figure 4.2: The distribution-free algorithm for testing monotone conjunctions.

from last section). We have the following simple observations:

Observation 4.3.1. MainDMconj (f,D, ϵ)makes at mostO((n1/3/ϵ5) · log7(n/ϵ)) queries

to either the black-box oracle of f or sampling oracle of D.

Observation 4.3.2. All queries to the sampling oracle of D are made in Stage 0.

Next we prove that MainDMconj only has one-sided errors:

Lemma 4.3.3. If f ∈ Mconj, thenMainDMconj always accepts (f,D) for any distribution

D over {0, 1}n.
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Proof. Since MainDMconj always accepts at the end of Stage 2, it suffices to show that it

never rejects when f is a monotone conjunction. First note that when f is a monotone

conjunction, f(1n) must be 1, and following Property 4.1.1 h(x) = nil can never happen

in Stage 0 with x ∈ f−1(0).

This leaves us to check steps 1.1, 1.2, 2.1 and 2.2. Assume that f ∈ Mconj:

1. If B1, ...,Bk ⊆ [n] satisfy f(B1) = · · · = f(Bk) = 1, then B1, ...,Bk contains no

index of variable in the conjunction of f , and every Z ⊆ B = ∪iBi satisfies

f(Z) = 1. This implies that MainDMconj never rejects in step 1.1 or 1.2.

2. For step 2.2, α = h(x) implies that f({α}) = 0 and α is an index of variable in the

conjunction of f . Therefore f(P ∪ {α}) always evaluates to 0 in this case and

MainDMconj never rejects in step 2.2.

3. Combining the two arguments above we know MainDMconj doesn’t reject in step

2.1 as well: α is an index of variable in the conjunction of f while f(B) always

evaluate to 1. This implies that α ̸∈ B.

This finishes the proof of the lemma.

Theorem 1.4.2 follows directly from the following lemma combined with Observation

4.3.1 and Lemma 4.3.3 (sinceMainDMconj only has one-sided errors its success probability

in Lemma 4.3.4 can be easily amplified to 2/3).

Lemma 4.3.4. If f is ϵ-far from Mconj with respect to D, MainDMconj (f,D, ϵ) rejects

with probability at least 0.1.

4.3.3 Analysis

We prove Lemma 4.3.4 and finish the analysis of our main algorithm in this section. We

will start with some simplification of the proof in Section 4.3.3.1. Then we will introduce

an important tool of our proof called violation bipartite graph in Section 4.3.3.2. Based on
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these preparation, wewill finish the proof of Lemma 4.3.4 and complete the whole analysis

in Section 4.3.3.3.

4.3.3.1 Reduction to well-supported probability distributions

To ease the proof of Lemma 4.3.4, we show that it suffices to focus on so-called well-

supported distributions. We say a probability distribution D on {0, 1}n is well-supported

with respect to f if every empty string (x ∈ f−1(0) with h(x) = nil) of f has probability

zero inD. Given f ̸∈ Mconj, intuitively an adversary that wants to break Lemma 4.3.4 by

pairing f with a hard probability distributionDmay not want to allocatemuch probability

on empty strings of f , sinceMainDMconj rejects when finding any empty string sampled

in Stage 0.

Following the intuition that well-supported probability distributions are probably hard

cases of Lemma 4.3.4, we prove Lemma 4.3.5 below concerning such distributions in the

rest of the section. Before its proof we show that it indeed implies Lemma 4.3.4.

Lemma 4.3.5. Assume that f is a Boolean function and D∗ is a well-supported distribution

with respect to f . If f is (ϵ/2)-far from Mconj with respect to D∗, MainDMconj (f,D∗, ϵ)

rejects with probability at least 0.1.

Proof of Lemma 4.3.4 assuming Lemma 4.3.5. Assume that f is ϵ-far from Mconj with re-

spect to D. Let δ ≥ 0 denote the total probability of D over empty strings of f . If δ = 0,

Lemma 4.3.4 follows directly from Lemma 4.3.5 since D is well-supported. If δ ≥ ϵ/2,

MainDMconj rejects whenever it samples an empty string in Stage 0, and this happens

with probability 1− o(1). We consider below the remaining case when 0 < δ < ϵ/2.

LetD′ denote the following distribution derived fromD. The probability of any empty

string of f in D′ is 0. The probability of any other string is set to be its probability in D

multiplied by 1/(1− δ). Clearly D′ is now a well-supported probability distribution with

respect to f . We prove the following claim:
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Claim 4.3.6. The probability of MainDMconj rejecting (f,D, ϵ) is at least as large as that

of rejecting (f,D′, ϵ).

Proof. MainDMconj always rejects (f,D, ϵ) if one of the samples in Stage 0 is an empty

string. Let E denote the event that no sample in Stage 0 is empty. Then the probability of

MainDMconj accepting (f,D′, ϵ) is exactly that of it accepting (f,D, ϵ) conditioning on

E. This follows from the definition of D′ and our observation 4.3.2: Stages 1 and 2 access

the black-box oracle only, which does not involve D or D′. As a result, we have

Pr
[
MainDMconj (f,D, ϵ) accepts

]
= Pr

[
MainDMconj (f,D, ϵ) accepts

∣∣E ] · Pr[E]

≤ Pr
[
MainDMconj (f,D′, ϵ) accepts

]
.

This finishes the proof of the claim.

Finally we show that f is (ϵ/2)-far from Mconj with respect to D′. Given this we can

then apply Claim 4.3.6 to finish the proof of the lemma. To see this is the case, note that

the total variation distance dTV (D,D′) is δ by the definition of D′. This implies that for

any Boolean function g, we have

∣∣distD(f, g)− distD′(f, g)
∣∣ ≤ dTV (D,D′) ≤ δ.

As a result, distD′(f,Mconj) ≥ distD(f,Mconj)− δ ≥ ϵ/2.This finishes the proof of the

lemma.

Now it’s enough to prove Lemma 4.3.5 in the rest of the discussion. For convenience,

we still use D to denote the unknown distribution, but from now on we always assume

without loss of generality that 1) D is well-supported with respect to f , and 2) f is (ϵ/2)-

far from Mconj with respect to D.

It is worth mentioning that since D is well-supported, MainDMconj can skip Stage 0

(which is the reason why it is named Stage 0), and have both Stage 1 and each iteration of
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Stage 2 start by making 3t/ϵ new queries to the sampling oracle. We will follow this view

in the rest of analysis.

4.3.3.2 The violation bipartite graph

Now let’s introduce the notion of violation bipartite graph, which plays a crucial part of

our analysis. The main lemma of this section shows that if distD(f) ≥ ϵ/2, then the

violation bipartite graph Gf of f has a highly regular subgraph G∗
f with vertex covers of

weight (the probability of sampling certain strings from D) at least Ω(ϵ).

We first review the violation hypergraph of a Boolean function f introduced by Dolev

and Ron [DR11], which inspires us to define the violation bipartite graph:

Definition 4.3.7 (Violation Hypergraph). Given f , we call Hf = (V (Hf ), E(Hf )) the vi-

olation hypergraph of f , where V (Hf ) = {0, 1}n; E(Hf ) contains all subsets (hyperedges)

{x, y1, . . . , yt} ⊆ {0, 1}n such that

– f(x) = 0; f(yi) = 1 for all i ∈ [t]; and Zero(x) ⊆ ∪t
i=1Zero(y

i).

Note that {1n} ∈ E(Hf ) if f(1n) = 0 (this is the only special case when t = 0).

It turns out that distD(f,Mconj) is characterized by weights of vertex covers of Hf .

Lemma 4.3.8 (Lemmas 3.2 and 3.4 of [DR11]). A function f is in Mconj if and only if

E(Hf ) = ∅. For any Boolean function f , every vertex cover C of Hf has total probability

D(C) ≥ distD(f,Mconj).

Note that this lemma holds for any (not necessarily well-supported) probability distri-

bution D. Now we define the violation bipartite graph of f .

Definition 4.3.9 (Violation Bipartite Graph). Given a Boolean function f we call the follow-

ing graph Gf = (L ∪ R,E) the violation bipartite graph of f : vertices on the left side are

L = f−1(1); vertices on the right side are R = {j ∈ [n] : ∃x ∈ f−1(0) and h(x) = j}; add

an edge between y ∈ f−1(1) and j ∈ R if yj = 0.
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Let D be a probability distribution over {0, 1}n. It defines a nonnegative weight wtD(·)

for each vertex in Gf as follows. The weight of y ∈ f−1(1) = L is simply wtD(y) = D(y).

The weight of j ∈ R is

wtD(j) =
∑

x∈f−1(0):h(x)=j

D(x).

Given a set of vertices C ⊆ L ∪ R, we let wtD(C) denote the total weight of C : wtD(C) =∑
u∈C wtD(u). Most of the time whenD is clear from the context, we drop the subscript and

use simply wt(·) for the weight.

We get the following corollary:

Corollary 4.3.10. If D is well-supported, then every vertex cover C of Gf has wt(C) ≥

distD(f,Mconj).

Proof. Given a vertex cover C of Gf , we define a vertex cover C ′ of Hf as follows. C ′

consists of 1) all the empty strings of f ; 2) C ∩ L = C ∩ f−1(1); and 3) x ∈ f−1(0) such

that h(x) ̸= nil and h(x) ∈ C ∩R.

By the definition of C ′ and wt(·), we have wt(C) = wt(C ′) (D is well-supported so

has zero probability on empty strings). It suffices to show that C ′ is a vertex cover of Hf ,

and then apply Lemma 4.3.8.

Fix a hyperedge {x, y1, . . . , yt} in Hf . For the special case when t = 0, we have

x = 1n and f(1n) = 0. Thus 1n is empty, and 1n ∈ C ′. When t ≥ 1, either h(x) = nil,

for which case we have x ∈ C ′, or h(x) ̸= nil and h(x) ∈ Zero(x). The latter implies

h(x) ∈ Zero(yk), for some k ∈ [t], and thus, (yk, h(x)) is an edge in Gf . Since C covers

this edge, either yk ∈ C ′ or x ∈ C ′. This finishes the proof of the lemma.

Next, we extract fromGf a highly regular bipartite graphG∗
f , with the guarantee that

any vertex cover of G∗
f still has total weight Ω(ϵ) (recall that distD(f,Mconj) ≥ ϵ/2).

We start with some notation. Given a subgraph G = (L(G) ∪ R(G), E(G)) induced by
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L(G) ⊆ L and R(G) ⊆ R, the weight of graph G is

wt(G) =
∑

y∈L(G)

wt(y) · degG(y),

where degG(y) is the degree of y in G. Equivalently, one can assign each edge (y, j) in

Gf an edge weight of wt(y), and wt(G) is its total edge weight. For each j ∈ R(G), we

define its incoming weight as

in-wt(j) =
∑

y: (y,j)∈E(G)

wt(y),

which can be viewed as the total edge weight from edges incident to j.

Recall the parameter d in (4.3). We say a vertex y ∈ L(G) is heavy in G if degG(y) ≥

d · wt(G); a vertex j ∈ R(G) is heavy in G if in-wt(j) ≥ d · wt(G) · wt(j). In either

cases, removing a heavy vertex u (and its incident edges) would reduce wt(G) by at least

d ·wt(G) ·wt(u). We say a vertex is light if it is not heavy.

We run the following deterministic procedure on Gf to define a subgraph G∗
f of Gf .

(This procedure is not new and has seen many applications in the literature, e.g., see

[RM99].)

1. Let G = Gf and S = ∅. Remove all vertices in G with degree zero.

2. Remove all heavy vertices on the left side of G and their incident edges, if any;

move those heavy vertices to S. Also remove vertices on the right side that now

have degree zero.

3. If G has a vertex cover C of total (vertex) weight wt(C) ≤ ϵ/4, exit.

4. Remove all heavy vertices on the right side of G and their incident edges, if any;

move those heavy vertices to S. Also remove vertices on the left side that now

have degree zero.

5. If G has a vertex cover C of total (vertex) weight wt(C) ≤ ϵ/4 or there exists no

more heavy vertex in G, exit; otherwise go back to Step 2.
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Let G∗
f = (L∗ ∪ R∗, E∗) denote the subgraph of Gf induced by L∗ ⊆ L and R∗ ⊆ R we

obtain at the end.

We show that G∗
f has no heavy vertex, and any vertex cover C of G∗

f still has a large

total weight.

Lemma 4.3.11. Assume that D is well-supported with respect to f and they satisfy

distD(f,Mconj) ≥ ϵ/2. Then G∗
f has no heavy vertex, and any of its vertex cover C has a

total weight of wt(C) ≥ 3ϵ/8.

Proof. The first part, i.e. G∗
f has no heavy vertex, follows from the second part of the

lemma, which implies that the procedure exits becauseG contains no more heavy vertex.

The second part follows from the claim that wt(S) = o(ϵ), since for any vertex cover

C of G∗
f , C ∪ S is a vertex cover of Gf and by Corollary 4.3.10, wt(C ∪ S) ≥ ϵ/2. To

prove the claim, we let G0, . . . , Gs denote the sequence of graphs obtained by following

the procedure, with G0 = Gf and Gs = G∗
f , and let Si denote the set of vertices that are

removed from Gi to obtain Gi+1 and added to S (note that here Si does not include those

vertices removed because their degrees drop to zero). By the definition of heavy vertices,

we have

wt(Gi)−wt(Gi+1) ≥ d ·wt(Gi) ·wt(Si).

Given this connection, we upperbound wt(S) =
∑s−1

i=0 wt(Si) by analyzing the fol-

lowing sum:

s−1∑
i=0

wt(Gi)−wt(Gi+1)

wt(Gi)
≤ 1+

s−2∑
i=0

∫ wt(Gi)

wt(Gi+1)

(1/u)du = 1+

∫ wt(G0)

wt(Gs−1)

(1/u)du = O (log(n/ϵ)) ,

where the last inequality follows from wt(G0) ≤ n and wt(Gs−1) ≥ ϵ/4 (since any of its

vertex cover, e.g., by taking all vertices on the left side, has weight at least ϵ/4). Thus,

wt(S) =
s−1∑
i=0

wt(Si) ≤
1

d
·
s−1∑
i=0

wt(Gi)−wt(Gi+1)

wt(Gi)
= o(ϵ),
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by the choice of d in (4.3). This finishes the proof of the lemma.

Note that because any vertex cover of G∗
f has weight Ω(ϵ), we have wt(L∗) = Ω(ϵ).

Let W = wt(G∗
f ). Then we also have W = Ω(ϵ) simply because every vertex in G∗

f has

degree at least one. Since all vertices are light, we have in G∗
f that deg(y) ≤ d ·W for all

y ∈ L∗ and in-wt(j) ≤ d ·W ·wt(j) for all j ∈ R∗.

The bipartite graph G∗
f is extremely useful for the analysis of our algorithm later. To

gain some intuition, let’s first make a short detour and sketch an informal analysis of the

tester of Dolev and Ron [DR11] (note that we have a worse dependency on ϵ compared to

their analysis though).

First, letR′ ⊆ R∗ be the set of vertices j ∈ R∗ such that in-wt(j) ≥ wt(j) ·W/2. Then

W =
∑
j∈R∗

in-wt(j) ≤ (W/2) ·
∑
j /∈R′

wt(j) + d ·W ·
∑
j∈R′

wt(j) ≤ (W/2) + d ·W ·wt(R′),

which implies that wt(R′) = Ω(1/d). Moreover, every S ⊆ R′ satisfies the following nice

property (below we useN(S) to denote the set of neighbors of vertices in S, within graph

G∗
f ):

Lemma 4.3.12. In G∗
f , every S ⊆ R′ satisfies wt(N(S)) = Ω (wt(S)/d).

Proof. The total edge weight between S and N(S) in Gf∗ is

∑
j∈S

in-wt(j) ≤
∑

y∈N(S)

deg(y) ·wt(y).

Because S ⊆ R′, the LHS is at least

∑
j∈S

in-wt(j) ≥ (W/2) ·
∑
j∈S

wt(j) = (W/2) ·wt(S).
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Since there is no heavy vertex in G∗
f , the RHS is at most

∑
y∈N(S)

deg(y) ·wt(y) ≤ d ·W ·
∑

y∈N(S)

wt(y) = d ·W ·wt(N(S)).

The lemma follows by combining all these inequalities.

Remark 4. We use G∗
f and R′ to sketch an alternative and informal analysis of the tester of

Dolev and Ron [DR11] for well-supported distributions D, which can be similarly extended

for general distributions as well. Let’s assume that ϵ is a constant for convenience. (We also

want to point out that our short analysis here has a worse dependency on ϵ than that of

[DR11].) The tester starts by sampling a set T of Θ̃(
√
n) strings from the sampling oracle.

It then claims victory if there are two strings x and y from T such that f(x) = 0, f(y) = 1,

and (y, h(x)) is an edge in Gf .

Let T1 denote the set of 1-strings, and T0 denote the set of 0-strings from T . Let’s as-

sume both sets contain Θ̃(
√
n) many strings, since otherwise the target function f is close

to constant functions with respect to D and can be easily handled as special corner cases.

Also let R′′ ⊆ R′ denote the set of j ∈ R′ such that h(x) = j for some x ∈ T0. Since

D(R′) = wt(R′) = Ω̃(1), we have wt(R′′) = Ω̃(1/
√
n) with high probability (here Θ̃(

√
n)

samples suffice because there are only n indices). When this happens, by Lemma 4.3.12 we

have wt(N(R′′)) = Ω̃(1/
√
n) as well. The tester then rejects if one of the (roughly Θ̃(

√
n)

many) samples in T1 lies in N(R′′). This should happen with high probability if we set the

hidden poly-logarithmic factor in the number of queries large enough.

Nowwe return to the analysis of our algorithm. This time we will focus on the left side

of G∗
f rather than R′ from the right side. Recall that W = wt(G∗

f ). Let L′ ⊆ L∗ denote

the set of y ∈ L∗ such that deg(y) ≥ W/2 in G∗
f . Then similarly

W =
∑
y∈L∗

deg(y) ·wt(y) ≤ (W/2) ·
∑
y/∈L′

wt(y) + d ·W ·
∑
y∈L′

wt(y) ≤ (W/2) + d ·W ·wt(L′),
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which implies that wt(L′) ≥ 1/(2d). Our analysis of MainDMconj will heavily rely on

G∗
f and L′ ⊆ L∗.

We summarize below all the properties we need about G∗
f and L′.

Property 4.3.13. Assume thatD is well-supported with respect to f and distD(f,Mconj) ≥

ϵ/2. Then G∗
f = (L∗ ∪ R∗, E∗) and L′ ⊆ L∗ defined above have the following properties

(lettingW = wt(G∗
f )):

1. W = Ω(ϵ) and wt(L′) ≥ 1/(2d).

2. in-wt(j) ≤ d ·W · wt(j) for all j ∈ R∗.

3. Every y ∈ L′ has deg(y) ≥ max (1,W/2).

4.3.3.3 Proof of Lemma 4.3.5

We now prove Lemma 4.3.5. As assumed before, let D be a well-supported probability

distribution with respect to f : {0, 1}n → {0, 1}, such that f is (ϵ/2)-far from Mconj

with respect toD. LetG∗
f = (L∗∪R∗, E∗) denote the bipartite graph defined using f and

D in the previous section, with G∗
f and L′ ⊆ L∗ satisfying Property 4.3.13.

Here is a sketch of the proof. We first analyze Stages 1 and 2 of MainDMconj and

show that if a sequence of t samples (y1, . . . , yt) passes Stage 1 with high probability then

it can be used to produce many sequences of sample strings that get rejected in Stage 2

with high probability. After that, we useG∗
f to show that, assuming (f,D, ϵ) passes Stage

1 with high probability, then it must get rejected in Stage 2 with high probability, where

Property 4.3.13 plays a crucial role. This completes the proof.

Analysis of Stages 1 and 2 First we assume without loss of generality that f(1n) = 1;

otherwise it is rejected at the beginning of Stage 0. As f is (ϵ/2)-far from Mconj with

respect to D, we have that both D(f−1(0)) and D(f−1(1)) are at least ϵ/2. The former

follows trivially from the fact that the all-1 function is in Mconj. For the latter, we only
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need to observe that the distance (with respect to D) between f and the conjunction of

all n variables is at most D(f−1(1)), given f(1n) = 1.

Recall that since D is well-supported with respect to f , we can skip Stage 0 and have

Stage 1 and each iteration of Stage 2 start by drawing 3t/ϵ fresh samples from the sam-

pling oracle. It follows directly from Chernoff bound that Stage 1 reaches Step 1.1 with

probability 1−o(1). LetD1 denote the distribution of y ∼ D conditioning on y ∈ f−1(1).

Equivalently, we have that Stage 1 accepts with probability o(1), and with probability

1−o(1) it draws a sequence of t samples y1, . . . , yt independently fromD1 and then goes

through Steps 1.1 and 1.2.

The same can be said about Stage 2: Stage 2 accepts with probability o(1) by Chernoff

bound and a union bound; with probability 1 − o(1), each iteration of Stage 2 draws a

sequence of t−1 samples y1, . . . , yt−1 fromD1 as well as one sample x ∼ D conditioning

on x ∈ f−1(0). Since Steps 2.1 and 2.2 use only α = h(x) but not the string x itself, this

inspires us to introduceD0 as the distribution overR proportional to wt(j), j ∈ R. Hence

equivalently, each iteration of Stage 2 draws an index α from D0 and goes through Steps

2.1 and 2.2 using yi, i ∈ [t− 1] and α.

We introduce some more notation. Let B = (B1, . . . , Bt) be a sequence of t (not

necessarily distinct) 1-sets of f (i.e., f(Bi) = 1). We refer to B as a 1-sequence of length

t, and clearly we can view B as samples for Stage 1 of MainDMconj (by transforming

each 1-set Bi into an 1-string yi with Zero(yi) = Bi). Let B = ∪iBi. We say B passes

Stage 1 with probability c if B passes Steps 1.1 and 1.2 with probability c, without being

rejected. Similarly, we let B′ = (B1, . . . , Bt−1) denote a 1-sequence of length t− 1, with

B′ = ∪iBi, and let α ∈ R. We also view (B′, α) as the samples for Stage 2, and we say

(B′, α) fails an iteration of Stage 2 with probability c if (B′, α) gets rejected in Steps 2.1 or

2.2 with probability c.

We now analyze 1-sequencesB = (B1, . . . , Bt) that pass Stage 1 with high probability.
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Let

B∗
i = Bi − ∪j ̸=iBj, for each i ∈ [t].

So B∗
i contains indices that are unique to Bi among all sets in B. Let IB denote the set

of i ∈ [t] such that yi ∈ L′, where yi is the 1-string with Zero(yi) = Bi. Intuitively, |IB|

should be large with high probability since D(L′) = wt(L′) is large by Property 4.3.13.

We say B is strong if |IB| ≥ t/(3d) = r/3. Moreover, let I∗B denote the set of i ∈ IB such

that |B∗
i | ≤ 6|B|/r.

By an averaging argument we show that if B is strong then |I∗B| is at least r/6.

Lemma 4.3.14. If B is strong, then we have |I∗B| ≥ r/6.

Proof. As
∑

i |B∗
i | ≤ |B|, the number ofBi with |B∗

i | > 6|B|/r is at most r/6. The lemma

then follows.

Let B = (B1, . . . , Bt) denote a strong 1-sequence of length t and yi denote the string

with Zero(yi) = Bi for each i ∈ [t]. We use them to generate input pairs (B′, α) for Stage

2, where B′ is a 1-sequence of length t−1 and α ∈ R, as follows. For each pair (i, α) such

that i ∈ I∗B and α ∈ Bi

∩
R∗, we say B generates (B′, α) via (i, α) if

B′ = (B1, . . . , Bi−1, Bi+1, . . . , Bt),

and we call such (i, α) a valid pair. Note that as Bi’s are not necessarily distinct, B may

generate the same pair (B′, α) via different (i, α) and (j, α), i ̸= j. In the main technical

lemma of this section below, Lemma 4.3.17, we show that if B is strong and passes Stage

1 with high probability, then there are many valid pairs (i, α) leading to pairs (B′, α)

that fail Stage 2 with high probability. Before that we make a few observations. Recall

W = wt(G∗
f ).
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Observation 4.3.15. Since yi ∈ L′, we have |Bi∩R∗| equals to deg(yi) inG∗
f and |Bi∩R∗| ≥

max (1,W/2). So the total number of valid pairs (i, α) is bounded from below by both r/6

and rW/12.

Observation 4.3.16. If a valid pair (i, α) satisfies α ∈ Bi \ B∗
i (i.e., α is shared by another

Bj in B), then it generates a pair (B′, α) that fails Stage 2 (in Step 2.1) with probability 1.

Now we prove Lemma 4.3.17.

Lemma 4.3.17. Assume that B = (B1, . . . , Bt) is a strong 1-sequence that passes Stage 1

with probability at least 1/2. Then there are at least Ω(rW ) many valid (i, α) such that the

pair (B′, α) generated by B via (i, α) fails an iteration of Stage 2 with probability at least

Ω(1) (a constant that does not depend on n or ϵ).

Proof. For convenience, we use I to denote I∗B, with |I| = Ω(r) because B is strong

(Lemma 4.3.14). We let B∗ = ∪i∈IB
∗
i , and let Γ = B∗ ∩ R∗ (which can be empty). We

first consider two special cases on |Γ|:

Case 1: |Γ| > |B|/t. Note that every j ∈ Γ satisfies f({j}) = 0. This implies that B

would get rejected with probability 1−o(1) in Step 1.1, contradicting the assumption that

B passes it with probability 1/2.

Case 2: |Γ| < rW/24. By Observation 4.3.15, the number of valid pairs (i, α) is at

least rW/12. In this case, however, the number of valid pairs (i, α) such that α ∈ B∗
i is

at most rW/24. Thus, the number of valid pairs (i, α) such that α ∈ Bi \ B∗
i is at least

rW/24. The lemma follows from Observation 4.3.16.

In the rest of the proof we assume that |B| ≥ t|Γ| and |Γ| = Ω(rW ). They together

imply that

|B| ≥ t|Γ| = Ω(rtW ). (4.4)

For α ∈ Γ let sα ∈ [t] be the unique index with α ∈ B∗
sα . Now we will do some

counting.
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Let Z denote the set of all subsets Z ⊂ B of size r such that f(Z) = 1. Since we

assumed that B passes Stage 1 with probability at least 1/2, it must be the case that

|Z| ≥
(
1−O

(
1

s

))
·
(
|B|
r

)
.

Fixing an α ∈ Γ with α ∈ B∗
sα , we are interested in

Sα =
{
P ∪ {α} : P is a subset of B \B∗

sα of size r − 1
}

and Nα = |Sα ∩ Z|.

We would like to prove a strong lower bound for
∑

α∈Γ Nα.

To give some intuition on the connection between Nα and the goal, notice that B \

B∗
sα = ∪i ̸=sαBi. Let (B′, α) be the pair generated from B via (sα, α). If a set P of size r−1

is drawn from ∪i̸=sαBi uniformly at random, then the probability of P leading Step 2.2 to

reject (B′, α), denoted by qα, is

qα =
Nα(|B\B∗

sα
|

r−1

) ≥ Nα( |B|
r−1

) =
Nα(|B|

r

)
· r
|B|−r+1

≥ Nα(|B|
r

) · |B|
2r

, (4.5)

where the last inequality used (4.4) that |B| >> r. So a strong bound for
∑

α∈Γ Nα may

lead us to the desired claim that qα is large for most α ∈ Γ. To bound
∑

α∈ΓNα and avoid

double counting, let

S ′
α =

{
P ∪ {α} : P is a subset of B \ (B∗

sα ∪ Γ) of size r − 1
}

and N ′
α = |S ′

α ∩ Z|.

Since S ′
α ⊆ Sα and S ′

α are now pairwise disjoint, we have
∑

α Nα ≥
∑

α N
′
α and

∑
α∈Γ

N ′
α =

∣∣∣(∪α∈ΓS ′
α) ∩ Z

∣∣∣ ≥ ∣∣ ∪α∈Γ S ′
α|+ |Z| −

(
|B|
r

)
≥
∑
α∈Γ

|S ′
α| −O

(
1

s

)
·
(
|B|
r

)
.

On the other hand, by the definition of I∗B we have |B∗
sα | ≤ 6|B|/r. We also have
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Γ ≤ |B|/t. Thus

|S ′
α| =

(
|B \ (B∗

sα ∪ Γ)|
r − 1

)
≥
(
|B| − (7|B|/r)

r − 1

)
= Ω

(
r

|B|
·
(
|B|
r

))
, (4.6)

where details of the last inequality can be found in Section 5.3.

Using |Γ| = Ω(rW ) and W = Ω(ϵ), r = n1/3 and |B| ≤ n, we have

∑
α∈Γ

|S ′
α| = Ω

(
r|Γ|
|B|

·
(
|B|
r

))
= ω

((
1

s

)
·
(
|B|
r

))
.

As a result, we obtain the following lower bound for
∑

α∈Γ Nα:

∑
α∈Γ

Nα = Ω

(
r|Γ|
|B|

·
(
|B|
r

))
.

Combining the connection between Nα and qα from (4.5), we have
∑

α∈Γ qα = Ω(|Γ|).

Since qα ≤ 1 (it is a probability) for all α, it follows easily that qα = Ω(1) for Ω(|Γ|)many

α’s in Γ. For each such α, (sα, α) is a valid pair such that the pair (B′, α) generated from

B via (sα, α) gets rejected by Stage 2 with probability Ω(1).

The lemma then follows from |Γ| = Ω(rW ).

Finishing the proof of Lemma 4.3.5 Now based on Lemma 4.3.17 and properties of G∗
f

and L′, we are ready to finish the proof of Lemma 4.3.5.

Assume without loss of generality that Stage 1 of Algorithm 2 either accepts (f,D) or

passes it down to Stage 2 with probability at least 0.9; otherwise we are already done.

Recall that D1 is the distribution of y ∼ D conditioning on y ∈ f−1(1). We abuse

the notation a little bit and also use D1 to denote the corresponding distribution on 1-

sets B (= Zero(y)). Given a 1-seqnence B = (B1, . . . , Bt) of length t, we write p(B) =

PrB∼D1 [B = B1] × · · · × PrB∼D1 [B = Bt]. From our discussion earlier, Stage 1 accepts

(f,D) with probability o(1), and with probability 1 − o(1), it runs Steps 1.1 and 1.2 on a
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1-sequence B with each entry Bi drawn from D1 independently. This implies that

∑
1-seq B

p(B) · Pr[B passes Stage 1] ≥ 0.8.

We focus on strong 1-sequences. We write S to denote the set of strong 1-sequences

and let S ′ denote the set of strong 1-sequences that pass Stage 1 with probability at least

1/2. Because D(L′) = wt(L′) ≥ 1/(2d) we have that Stage 1 draws a strong B with

probability 1− o(1) by Chernoff bound. As a result, we have

∑
B∈S

p(B) · Pr[B passes Stage 1] ≥ 0.8− o(1) > 0.7.

But the LHS is at most

∑
B∈S

p(B) · Pr[B passes Stage 1] ≤ (1/2) ·
∑

B∈S\S′

p(B) +
∑
B∈S′

p(B) ≤ (1/2) +
∑
B∈S′

p(B)

and thus,
∑

B∈S′ p(B) = Ω(1). The remaining proof is to use this (combined with Lemma

4.3.17, G∗
f and L′) to show that a random pair (B′, α) gets rejected in Stage 2 with high

probability.

To this end, recall that D0 is the distribution over R proportional to wt(j), j ∈ R. For

each pair (B′, α), where B′ = (B′
1, . . . , B

′
t−1) is a 1-sequence of length t − 1 and α ∈ R,

let q(B′, α) = PrB∼D1 [B = B′
1]× · · · × PrB∼D1 [B = B′

t−1] · Prα∼D0 [α = α].

Since Stage 2 consists of d∗ = d2/ϵ iterations, it suffices to show that

∑
(B′,α)

q(B′, α) · Pr[(B′, α) fails an iteration of Stage 2] = Ω(ϵ/d2), (4.7)

as Stage 2 either accepts with probability o(1), or with probability 1− o(1) each iteration

of Stage 2 draws (B′, α) according to q(B′, α) and runs through Steps 2.1 and 2.2.

To take advantage of Lemma 4.3.17 we use T to denote the set of (B′, α) that is gener-
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ated by a B = (B1, . . . , Bt) from S ′ via a pair (i, α) and fails an iteration of Stage 2 with

probability Ω(1) (the same constant hidden in Lemma 4.3.17). For (4.7) it then suffices to

show that ∑
(B′,α)∈T

q(B′, α) = Ω(ϵ/d2). (4.8)

Lemma 4.3.17 implies that for each B in S ′, there exist Ω(rW ) many valid (i, α) such that

the pair generated by B via (i, α) belongs to T (though these (B′, α)’s are not necessarily

distinct). We use JB to denote these pairs of B. We also write (Bi, α) to denote the pair

generated by B via (i, α) for convenience.

Then there is the following connection between probabilities p(B) and q(Bi, α):

q(Bi, α) =
p(B)

PrB∼D1 [B = Bi]
·Prα∼D0 [α = α] = p(B)·D(f−1(1))

D(Bi)
·wt(α)
wt(R)

≥ ϵ

2
·p(B)·wt(α)

D(Bi)
,

where the inequality follows from wt(R) ≤ 1 and D(f−1(1)) ≥ ϵ/2 as discussed at the

beginning of this section. The only obstacle for (4.8) is to handle the double counting. This

is where G∗
f and L′ help.

Consider the following sum (and its connection to (4.8)):

∑
B∈S′

p(B) · |JB|. (4.9)

On the one hand, as |JB| = Ω(rW ) and
∑

B∈S′ p(B) = Ω(1), the sum is Ω(rW ). On the

other hand, following the connection between probabilities p(B) and q(Bi, α) above we

have:

(4.9) =
∑
B∈S′

∑
(i,α)∈JB

p(B) ≤ 2

ϵ
·
∑
B∈S′

∑
(i,α)∈JB

q(Bi, α) · D(Bi)

wt(α)
. (4.10)

Focusing on any fixed pair (B′, α) in T , the coefficient of q(B′, α) in (4.10) is given by

2

ϵ ·wt(α)
·

∑
B∈S′,(i,α)∈JB

Bi=B′

D(Bi). (4.11)
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However, fixing an i ∈ [t], for B to generate (B′, α) via (i, α), a necessary condition is

α ∈ Bi. This implies that the string y satisfying Zero(y) = Bi must be a neighbor of α in

G∗
f (since y ∈ L′ by assuming B is strong and α ∈ R∗ for each (i, α) ∈ JB following the

definition of valid pairs). Considering the in-weight for α in G∗
f , it follows from Property

4.3.13 that the sum of (4.11) with i fixed is at most 2dW/ϵ (with wt(α) cancelled) and thus,

the coefficient of q(B′, α) for each (B′, α) ∈ T in (4.10) isO(tdW/ϵ) (with t choices for i).

Combining all these inequalities, we have

Ω(rW ) =
∑
B∈S′

p(B) · |JB| ≤ O

(
tdW

ϵ

)
·
∑

(B′,α)∈T

q(B′, α),

and (4.7) follows. This finishes the proof of Lemma 4.3.5, and completes the analysis of

MainDMconj .

4.4 Extending the proofs

In this section we extend our proofs to other classes of Boolean functions. More precisely,

we will prove Theorem 1.4.4 and Theorem 1.4.5 about distribution-free testing of general

conjunctions, decision lists, and linear threshold functions.

Extending the upper bound to general conjunctions First, we prove Theorem 1.4.4 us-

ing a simple reduction based on the following connection between Mconj and Conj (the

class of general conjunctions). Given a probability distribution D over {0, 1}n, we use

D(C) to denote the distribution with D(x) = D(x(C)) for all x. Then we can show the

following lemma:

Lemma 4.4.1. Let D be a probability distribution over {0, 1}n, f : {0, 1}n → {0, 1} be a

Boolean function, and x∗ ∈ {0, 1}n be a string such that f(x∗) = 1. Let C = Zero(x∗),
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and let g : {0, 1}n → {0, 1} denote the Boolean function with g(x) = f(x(C)) for all

x ∈ {0, 1}n. Then we have

1. If f ∈ Conj, then g ∈ Mconj.

2. If distD(f,Conj) ≥ ϵ, then distD(C)(g,Mconj) ≥ ϵ.

Proof. Assume that f ∈ Conj. Then

f(x) =

(∧
i∈S

xi

)∧(∧
i∈S′

xi

)

for some disjoint sets S, S ′ ⊆ [n]. Since f(x∗) = 1 and C = Zero(x∗), we also have that

C ∩ S = ∅ and S ′ ⊆ C . As a result,

g(x) = f(x(C)) =
∧

i∈S∪S′

xi ∈ Mconj,

and the first part of the lemma follows.

We prove the contrapositive of the second part. Assume that distD(C)(g, h) < ϵ, for

some h ∈ Mconj. Let h′ denote the Boolean function with h′(x) = h(x(C)). Then we

have h′ ∈ Conj and

distD(f,Conj) ≤ distD(f, h
′) = Pr

x∈D

[
f(x) ̸= h′(x)

]
= Pr

x∈D

[
g(x(C)) ̸= h(x(C))

]
= Pr

x∈D(C)

[
g(x) ̸= h(x)

]
= distD(C)(g, h)

< ϵ.

This finishes the proof of the second part of the lemma.

Now we prove Theorem 1.4.4.
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Proof of Theorem 1.4.4. Given Lemma 4.4.1, a distribution-free testing algorithm for Conj

on (f,D) starts by drawing O(1/ϵ) samples from D to find a string x∗ with f(x∗) = 1.

If no such string is found, the algorithm accepts; otherwise the algorithm takes the first

sample x∗ with f(x∗) = 1 and letC = Zero(x∗). Then it runs our algorithm for Mconj to

test whether g(x) = f(x(C)) is in Mconj , or g is ϵ-far from Mconj with respect to D(C)

(note that we can simulate queries on g using the black-box oracle of f query by query;

we can also simulate samples drawn from D(C) using the sampling oracle of D sample by

sample), and returns the same answer.

This algorithm clearly only has one-sided errors given Lemma 4.4.1 and the fact that

our algorithm for testing Mconj only has one-sided errors. When f is ϵ-far from Conj,

we have that D(f−1(1)) ≥ ϵ because the all-0 function is in Conj (when both xi and xi

appear in the conjunction for some i ∈ [n]). As a result, the algorithm finds an x∗ with

f(x∗) = 1 within the first O(1/ϵ) samples with high probability. It then follows from

Lemma 4.4.1 that distD(C)(g,Mconj) ≥ ϵ, and with high probability (g,D(C)) gets re-

jected by our algorithm for testing Mconj with high probability, which leads (f,D) to get

rejected as well.

Extending the lower bound to general conjunctions and decision lists Recall we let

Conj,Dlist and Ltf denote the classes of all general conjunctions, decision lists, and

linear threshold functions, respectively. Then it is easy to see that Mconj ⊂ Conj ⊂

Dlist ⊂ Ltf. Here we prove Theorem 1.4.5 for general conjunctions and decision lists.

For this purpose we follow the same strategy used in [GS09] and prove the following

property on the distributions NO defined in Section 4.2.2:

Lemma 4.4.2. With probability 1 − o(1), (f,Df ) drawn from NO satisfies

distDf
(f,Dlist) ≥ 1/12.

The same lower bound for Conj and Dlist then follows directly from Lemma 4.2.1,

given that Mconj ⊂ Conj ⊂ Dlist and the fact that any pair (g,Dg) drawn from YES
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satisfies g ∈ Mconj.

Proof of Lemma 4.4.2. Let (f,Df ) be a pair drawn from NO. Given any i, j ∈ [m] such

thatCi∩Cj = ∅, we follow the same argument from Glasner and Servedio [GS09] to show

that no decision list agrees with f on all of the following six strings ai, bi, ci, aj, bj, cj .

Assume for contradiction that a decision list h of length k (following the definition of

Dlist in Section 4.1):

(ℓ1, β1), . . . , (ℓk, βk), βk+1

agrees with f on all six strings. Let first(a) denote the index of the first literal ℓi in h

that is satisfied by a string a, or k + 1 if no literal is satisfied by a. Then we have

min
{
first(ai), first(bi)

}
≤ first(ci) and min

{
first(aj), first(bj)

}
≤ first(cj).

(4.12)

This is because by the definition of ai, bi and ci, any literal satisfied by ci is satisfied by

either ai or bi. Next assume without loss of generality that

first(ai) = min
{
first(ai), first(bi), first(aj), first(bj)

}
. (4.13)

By (4.12) we have that first(ci) ≥ first(ai). As h(ci) = f(ci) = 0 and h(ai) = f(ai) = 1,

we have that first(ci) ̸= first(ai) and thus, first(ci) > first(ai). This implies that the

literal ℓfirst(ai) must be xk for some k ∈ Bi. As Ci ∩ Cj = ∅, we have Bi ∩ Cj = ∅ and

thus, cjk = 1. This implies that first(cj) ≤ first(ai), and first(cj) < first(ai) because

they cannot be the same given that h(cj) = f(cj) = 0 and h(ai) = f(ai) = 1. However,

first(cj) < first(ai) contradicts with (4.12) and (4.13).

As a result, when Ci and Cj are disjoint, one has to flip at least one bit of f at the six

strings to make it consistent with a decision list. The lemma then follows from the fact

that, with probabiilty 1 − o(1), at least half of the pairs C2i−1 and C2i, i ∈ [m/2], are

disjoint.
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Extending the lower bound to linear threshold functions Now we extend our lower

bound to the distribution-free testing of linear threshold functions (LTF for short) and

complete the proof for Theorem 1.4.5. We follow ideas from Glasner and Servedio [GS09]

to construct a pair of probability distributions YES∗ and NO∗ with the following prop-

erties:

1. For each draw (f,Df ) from YES∗, f is a LTF;

2. For each draw (g,Dg) from NO∗, g is (1/4)-far from LTFs with respect to Dg.

Let q = n1/3/ log3 n. We follow arguments from the proof of Lemma 4.2.1 to prove the

following lemma:

Lemma 4.4.3. Let T be a deterministic algorithm that, upon each input pair (f,D), makes

at most q queries to the black-box oracle of f and at most q queries to the sampling oracle of

D. Then we must have:

∣∣∣∣ Pr
(f,Df)∼YES∗

[
T (f,Df) accepts

]
− Pr

(g,Dg)∼NO∗

[
T (g,Dg) accepts

] ∣∣∣∣ ≤ 1

4
.

Our lower bound for LTFs then follows from Yao’s mini-max principle.

We now define the two distributionsYES∗ andNO∗. Recall the following parameters

from the definition of YES and NO in Section 4.2.2:

ℓ = n2/3 + 2, m = n2/3, and s = log2 n.

A draw (f,Df) from the distribution YES∗ is obtained using the following procedure:

1. Following the first five steps of the definition of YES in Section 4.2.2 to obtain

R,Ci,Ai,Bi,αi,βi. For each i ∈ [m], let ai, bi, ci be the strings with

Ai = Zero(ai), Bi = Zero(bi), Ci = Zero(ci).
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2. Define u : {0, 1}n → Z as following:

u(x) = 10n2
∑

k∈[n]\R

xk + 5n
∑
i∈[m]

xαi
−
∑
k∈[n]

xk.

Let θ = 10n2(n/2− 2m) + 5nm− (n− ℓ/4).

3. Let f : {0, 1}n → {0, 1} be the function with f(x) = 1 if u(x) ≥ θ, and f(x) = 0

otherwise. The distribution Df is defined as follows: we put 1/4 weight on 1n, and

for each i ∈ [m], we put 1/(2m) weight on bi and 1/(4m) weight on ci.

Clearly every pair (f,Df) drawn from YES∗ satisfies that f is an LTF. It is also easy to

check that

f(ai) = f(ci) = f(1n) = 0 and f(bi) = 1, for each i ∈ [m].

A draw (g,Dg) from the distribution NO∗ is obtained in the following procedure:

1. Following the definition of YES in Section 4.2.2 to obtain

R,Ci,Ai,Bi,αi,βi, ci, ai, bi.

2. We follow the same definition of a string being i-special for some i ∈ [m] as in

Section 4.2.2. Let

J(x) =
{
i ∈ [m] : x is i-special

}
, for each x ∈ {0, 1}n.

3. Define v : {0, 1}n → Z as following:

v(x) = 10n2
∑

k∈[n]\R

xk + 5n

|J(x)|+
∑

i∈[m]\J(x)

xαi

−
∑
k∈[n]

xk.

Let θ be the same threshold: θ = 10n2(n/2− 2m) + 5nm− (n− ℓ/4).
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4. Let g : {0, 1}n → {0, 1} be the function with g(x) = 1 if v(x) ≥ θ, and g(x) = 0

otherwise. Dg is defined as follows: we put 1/4 weight on 1n and 1/(4m) weight

on each of ai, bi, ci, i ∈ [m].

For each pair (g,Dg) ∼ NO∗ and each i ∈ [m], we still have g(ci) = g(1n) = 0, g(bi) = 1

but g(ai) is flipped to 1 (since ai is i-special). As Ci = Ai∪Bi, we have that at least one of

g(ai), g(bi), g(ci), g(1n) needs to be flipped tomake g an LTF. It follows from the definition

of Dg that g is (1/4)-far from LTFs with respect to Dg, as desired.

Then it’s enough to prove Lemma 4.4.3.

Let T be any deterministic algorithm that makes q queries to each of the two oracles.

We follow Section 4.2.3 and assume that T has access to the following strong sampling

oracle:

1. When the sampling oracle returns ci for some i ∈ [m], it returns the special index

αi as well;

2. For convenience we also assume without loss of generality that the oracle always

returns a sample drawn from the marginal distribution of D within {ai, bi, ci}

since samples of 1n are not useful in distinguishing YES∗ and NO∗.

We show that Lemma 4.4.3 holds even if T receives q samples from the strong sampling

oracle and makes q queries to the black-box oracle. We follow the same notation intro-

duced in Section 4.2.3. Given a sequence Q = ((Di, γi) : i ∈ [q]) of samples that T re-

ceives from the strong sampling oracle, let Γ(Q) denote the set of integer γi’s in Q, let

S(Q) = ∪i∈[q]Di, and let I(Q) denote the set of i ∈ [q] with |Di| = ℓ/2.

Similarly as in Section 4.2.3, we derive from T a new deterministic oracle algorithm

T ′ that has no access to the black-box oracle but receives R in addition to the sequence

of samples Q at the beginning. We show that T ′ cannot distinguish the two distributions

YES∗ and NO∗ (Lemma 4.4.4), but T ′ agrees with T most of the time (Lemma 4.4.5 and

Lemma 4.4.6), from which Lemma 4.4.3 follows.
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The new algorithm T ′ works as follows:

Given R and Q, T ′ simulates T on Q as follows (note that T is not given R but

receives only Q in the sampling phase): whenever T queries about x ∈ {0, 1}n, T ′

does not query the oracle but computes

ϕ(x) = 10n2
∑

k∈[n]\R

xk + 5n (m− |I ′(x)|)−
∑
k∈[n]

xk,

where I ′(x) = Zero(x) ∩ Γ(Q), i.e., the set of all αi’s in Γ(Q) revealed in the

sampling phase such that xαi
= 0. T ′ then computes the response for x as 1 if

ϕ(x) ≥ θ, and as 0 otherwise. It then proceeds as T dose upon this response. At

the end of the simulation, T ′ returns the same answer as T .

Now we are ready to prove the three lemmas mentioned above.

The first lemma is to show that a deterministic oracle algorithm with no access to the

black-box oracle cannot distinguish YES∗ and NO∗ distributions with high probability.

Lemma 4.4.4. Let T ∗ be any deterministic oracle algorithm that, upon each input pair

(f,D) drawn from either YES∗ orNO∗, receives R and a sequence Q of q samples from D

but has no access to the black-box oracle of f . Then

∣∣∣∣ Pr
(f,Df)∼YES

[
T ∗ accepts (f,Df)

]
− Pr

(g,Dg)∼NO

[
T ∗ accepts (g,Dg)

] ∣∣∣∣ = o(1).

Proof. Theproof of the lemma is essentially the same as the proof of Lemma 4.2.2. The only

difference here is that the distribution D is also supported on 1n. But because Df (1
n) =

Dg(1
n) = 1/4 in both YES∗ and NO∗, the same proof works here.

Next we show that T ′ agrees with T most of the time when (f,D) ∼ YES∗:

Lemma 4.4.5. Let T be a deterministic oracle algorithm that, upon each input pair (f,D),

makes at most q queries to the strong sampling oracle of D and the black-box oracle of f
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each, and let T ′ be the algorithm defined using T as above. Then

∣∣∣∣ Pr
(f,D)∼YES∗

[
T accepts (f,D)

]
− Pr

(f,D)∼YES∗

[
T ′ accepts (f,D)

]∣∣∣∣ ≤ 0.1.

Proof. Fix a sequence Q of q samples that T and T ′ receive at the beginning. We prove

the same statement conditioning on receiving Q. Let RQ denote the distribution of the

random set R, conditioning onQ. We let TQ denote the binary decision tree of T of depth

q upon receiving Q, and let w′(R) denote the leaf that T ′ reaches given fixed R for each

R in the support of RQ.

Following the same definition and argument used in the proof of Lemma 4.2.3 (as

ϕ(x) < θ if one of the variables outside of R is set to 0), it suffices to show for every

R in the support of RQ such that w = w′(R) is a good leaf (see the definition in the proof

of Lemma 4.2.3), we have that T reaches w with high probability (conditioning on both

fixed Q and R). Note that u(x) in the YES∗ distribution can also be written as:

u(x) = 10n2
∑

k∈[n]\R

xk + 5n (m− |I(x)|)−
∑
k∈[n]

xk,

where I(x) here is the set of all special indices αi’s, i ∈ [m], such that xαi
= 0. Since

ϕ(x) ≥ u(x), T does not reach w if and only if one of the strings x along the path from

the root of TQ to w satisfies

|I′(x)| < |I(x)| and ϕ(x) ≥ θ > u(x).

Given that Γ(Q) contains all special indices αi’s in S(Q) (as ai’s are not in the support of

D) it must be the case that xαi
= 0 for some special index αi /∈ S(Q) and thus, αi ∈ Hw

for some i ∈ [m] (see the definition of Hw in the proof of Lemma 4.2.3). This is exactly

the same event analyzed in the proof of Lemma 4.2.3, with its probability bounded from

above by 0.1. This finishes the proof of the lemma.
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Finally we show that T ′ agrees with T most of the time when (f,D) ∼ NO∗:

Lemma 4.4.6. Let T be a deterministic oracle algorithm that, upon each input pair (f,D),

makes q queries to the strong sampling oracle of D and the black-box oracle of f each, and

let T ′ be the algorithm defined using T as above. Then

∣∣∣∣ Pr
(f,D)∼NO∗

[
T accepts (f,D)

]
− Pr

(f,D)∼NO∗

[
T ′ accepts (f,D)

]∣∣∣∣ ≤ 0.1.

Proof. Following Definition 4.2.4 and Lemma 4.2.5, the eventE ofQ being separated (with

respect to (f,D)) happens with probability 1 − o(1). Let QE denote the probability dis-

tribution of Q conditioning on event E happens. Fix a sequence Q in the support of QE .

Below we prove the statement of the lemma conditioning on both fixed Q and event E

happens, and we let RQ,E be the distribution of R under this condition.

Similar to the proof of Lemma 4.2.10, it suffices to show that for every R in the sup-

port of RQ,E such that w = w′(R) is a good leaf, T reaches w with high probability,

conditioning on fixed R,Q and event E happens.

Note that v(x) from the NO∗ distribution can be also written as:

v(x) = 10n2
∑

k∈[n]\R

xk + 5n (m− |I(x)|)−
∑
k∈[n]

xk,

where I(x) is the set of all αi’s, i ∈ [m], such that xαi
= 0 and x is not i-special. Then

T does not reach w only if for some x along the path from the root of TQ to w, either

ϕ(x) ≥ θ > v(x) or v(x) ≥ θ > ϕ(x).

When ϕ(x) ≥ θ > v(x), we have |I(x)| > |I′(x)| and thus, one of the following two

events must hold:

Event E∗
0 : ϕ(x) ≥ θ (so w is in the 1-subtree of the node making query x) and

xαk
= 0 for some αk /∈ S(Q);
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Event E∗
1,2: ϕ(x) ≥ θ, xαk

= 0 for some αk ∈ S(Q) but αk /∈ Γ(Q), and x is not

k-special.

For the case when v(x) ≥ θ > ϕ(x), we have |I′(x)| > |I(x)| and thus, the following

event must hold:

Event E∗
3 : xαk

= 0 for some αk ∈ Γ(x) and x is k-special.

Note that E∗
0 is the same event as E0, E∗

1,2 is the same event as the union of E1 and E2,

and E∗
3 is the same event as E3 in the proof of Lemma 4.2.10. The lemma follows from

bounds on their probabilities given in the proof of Lemma 4.2.10.

Lemma 4.4.3 then follows from Lemmas 4.4.4, 4.4.5, and 4.4.6.
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Chapter 5

Deferred Proofs

5.1 A claim about products

Recall Bernoulli’s inequality: for every real number a ≥ 1 and real number x ≥ −1, we

have

(1 + x)a ≥ 1 + ax,

and for every real number 0 ≤ a ≤ 1 and real number x ≥ −1, we have

(1 + x)a ≤ 1 + ax.

We prove the following claim used in Section 2.3.2.4.

Claim 5.1.1. Let t ≤ n2/3 and c1, . . . , ct ∈ R be numbers with |ci| ≤ log2 n/
√
n. We have

∏
i∈[t]

(
1− ci

)
≥
(
1− o(1)

)
·

1−
∑
i∈[t]

ci

 ,

where the asymptotic notation is with respect to n.

Proof. Let β = log2 n/
√
n. Assume without loss of generality that

c1, . . . , ck ≥ 0 and ck+1, . . . , ct < 0

for some k ≤ t. Let δi = ci/β for i ≤ k and τj = −cj/β for j > k. Thus, δi, τj ∈ [0, 1]
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and ∑
i∈[t]

ci = β

(∑
i≤k

δi −
∑
j>k

τj

)
.

Let ∆ =
∑

i≤k δi −
∑

j>k τi. By Bernoulli’s inequality, we also have

1− ci ≥ (1− β)δi and 1− cj ≥ (1 + β)τj .

As a result, it remains to show that

(1− β)
∑

i≤k δi · (1 + β)
∑

j>k τj ≥ (1− o(1)) (1− β∆) .

We consider two cases: ∆ > 0 or ∆ ≤ 0. If ∆ > 0, we have

(1− β)
∑

i δi · (1 + β)
∑

j τi = (1− β)∆ ·
(
1− β2

)∑
j τj ≥ (1− o(1)) · (1− β)∆

using β2 = log4 /n and
∑

j τj ≤ n2/3. When ∆ ≥ 1 it follows by Bernoulli’s inequality

that (1− β)∆ ≥ 1− β∆ and we are done. When 0 < ∆ < 1, we have from β = o(1) and

β∆ = o(1) that

(1− β)∆ > 1− β ≥ (1− o(1)) · (1− β∆).

The case when ∆ ≤ 0 is similar:

(1− β)
∑

i δi · (1 + β)
∑

j τi = (1 + β)−∆ ·
(
1− β2

)∑
i δi ≥ (1− o(1)) · (1 + β)−∆.

When ∆ ≤ −1, it follows from Bernoulli’s inequality that (1 + β)−∆ ≥ 1 − β∆ and

we are done. If −1 < ∆ ≤ 0, we have from −β∆ = o(1) that (1 + β)−∆ > 1 >

(1− o(1)) · (1− β∆).

5.2 Proof of Claim 4.2.6

We use the following folklore extension of the standard Chernoff bound:
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Lemma 5.2.1. Let p ∈ [0, 1] and X1, . . . ,Xn be a sequence of (not necessarily independent)

{0, 1}-valued random variables. LetX =
∑

i∈[n] Xi. If for any i ∈ [n] and any b1, . . . , bi−1 ∈

{0, 1}:

Pr
[
Xi = 1 | X1 = b1, · · · ,Xi−1 = bi−1

]
≤ p,

then we have Pr[X ≥ (1 + δ) · pn] ≤ e−δ2pn/3.

Now we prove Claim 4.2.6. Let’s fix an i ∈ [q] and the 2 log2 n blocks in Li. Then

we sample all other q − 1 many Lj’s and bound the probability that the number of blocks

in Li that appear in ∪k ̸=iLk is more than log2 n/16. We use the following procedure to

sample Lj ’s: for each j ̸= i sample a sequence of 4 log2 n blocks uniformly at randomwith

replacement and set Lj to be the union of the first 2 log2 n distinct blocks sampled. This

procedure, denoted by A, fails if for some j, there are less than 2 log2 n distinct blocks

from the 4 log2 n samples for Lj . When it succeeds, A yields the desired uniform and

independent distribution. We claim that A succeeds with probability 1− e−Ω(r).

To see this, for each j, its kth sample is the same as one of the previous k− 1 samples

with probability at most (k− 1)/r ≤ 4 log2 n/r, no matter what the outcomes of the first

k − 1 samples are. By Lemma 5.2.1, A failed at Lj with probability e−Ω(r) because this

happens only if more than 2 log2 n samples have appeared before. By a union bound on

j, A succeeds with probability 1− e−Ω(r).

Let U denote the union of all (q − 1) · (4 log2 n) blocks sampled by A. Then the prob-

ability that the number of blocks in Li that appear in ∪k ̸=iLk is more than log2 n/16 is at

most:

Pr
[
U has > log2 n/16 blocks of Li | A succeeds

]
≤

Pr
[
U has > log2 n/16 blocks of Li

]
Pr
[
A succeeds

] .

Using Chernoff bound, the probability of U having more than log2 n/16 blocks of Li is at
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most n−Ω(logn). Claim 4.2.6 then follows from Pr[A succeeds ] ≥ 1 − e−Ω(r) and a union

bound on i ∈ [q].

5.3 Proof of Inequality (4.6)

We prove the last step of (4.6) in this section. Let k = |B| = Ω(rtW ) >> r and let

δ = 7/r. Then we have:

(
k
r

)(
k−δk
r−1

) =
1

r
· (k − δk + 1)(k − δk + 2) · · · k
(k − δk − r + 2)(k − δk − r + 3) · · · (k − r)

=
k

r
· k − δk + 1

k − δk − r + 2
· k − δk + 2

k − δk − r + 3
· · · k − 1

k − r

≤ k

r
·
(

k − δk + 1

k − δk − r + 2

)δk−1

≤ k

r
·
(
1 +

2r

k

)δk

= O

(
k

r

)
.
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Conclusion

In this thesis we study property testing of Boolean functions under both standard setting

(measuring the distance between functions with respect to the uniform distribution) and

distribution-free setting (measuring the distance with respect to a fixed but unknown dis-

tribution). Here we summarize our results and also discuss open problems and directions

for related future work.

In Chapter 2 we present new lower bounds for testing of monotonicity and unateness

under the standard model:

• We prove a lower bound of Ω̃(n1/3)¹ for the query complexity of adaptive testing

of monotonicity, improving the previous best lower bound of Ω̃(n1/4) by Belov and

Blais [BB16]. We also show that the analysis based on our current techniques and

construction is tight: there is an Õ(n1/3)-query algorithm that distinguishes the two

distributions we construct for the proof.

• We also prove a lower bound of Ω̃(n2/3) for adaptive testing of unateness. This

result shows for the first time that the standard property testing of unateness is

strictly harder (with a polynomial gap) than testing of monotonicity.

• For non-adaptive testing of unateness with one-sided errors, we also prove a

lower bound of Ω̃(n), which matches the upper bound of Õ(n) (for constant ϵ) by

Chakrabarty and Seshadhri [CS16], up to poly-logarithmic factors of n. Combined

with the Õ(n3/4)-query algorithm from [CWX17b], it also shows that adaptivity

¹All our lower bounds, just likemost previous lower bounds, hold for some constant distance parameters
ϵ ∈ (0, 1).
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helps for testing unateness.

In Chapter 3 we discuss about distribution-free testing of k-juntas:

• We present an adaptive distribution-free tester for k-juntas with query complexity

Õ(k2/ϵ), improving the previous upper bound ofO(2k/ϵ) that follows by combining

the work of Halevy and Kushilevitz [HK07] and the work of Alon and Weinstein

[AA12].

• We also show an exponential lower bound of Ω(2k/3) for the query complexity of

non-adaptive distribution-free testers for k-juntas. This result illustrates the hard-

ness of distribution-free testing, and combining our polynomial-query adaptive al-

gorithm it shows that adaptivity provides an exponential improvement for testing

k-juntas under the distribution-free setting.

In Chapter 4 we discuss about distribution-free testing of other basic Boolean func-

tions:

• We show a lower bound of Ω̃(n1/3) for distribution-free testing of monotone con-

junctions, general conjunctions, decision lists and linear threshold functions.

• For distribution-free testing ofmonotone conjunctions and general conjunctions, we

also show an Õ(n1/3/ϵ5)-query adaptive algorithm, which pins down the optimal

query complexity of these tasks at Θ̃(n1/3) for some constant ϵ, if we ignore the

poly-logarithmic factors.

Open problems Here are some related open problems, as well as our thoughts on them

at the moment (for simplicity let’s fix ϵ as some constant):

• For the adaptive testing of monotonicity, the current best upper bound for this

problem still remains from the Õ(
√
n)-query non-adaptive algorithm by Khot et al.

[KMS15], and there is a gap between this bound and our lower bound of Ω̃(n1/3). We
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conjecture that this non-adaptive algorithm is optimal even in the case of adaptive

testing, and it is the lower bound side that can be improved, with a new construc-

tion for the distributions. Here are some very high-level (maybe incorrect) intuition

whywe think this is the case: (1) we improve the lower bound of Ω̃(n1/4) to Ω̃(n1/3)

mainly by restricting the speed of searching special variables (that lead to violation

to monotonicity) both among 0’s and among 1’s in our argument, but not at the

same time. We can only restrict the speed of searching over 1’s in the first layer

and over 0’s in the second layer of our functions (though we can also derive some

“soft” restrictions on 1’s in the second layer), and a restriction for both at the same

time will give us a lower bound of Ω̃(n1/2); (2) we have a lower bound of Ω̃(
√
n)

that matches the current upper bound for the case of non-adaptive testing of mono-

tonicity, and we are not aware of many adaptive procedures that can be useful for

testing monotonicity. One of the major candidates is the binary search procedure,

which is however hard to analyze.

• We are facing the similar situation for the case of adaptive unateness testing. The

current best upper bound comes from the Õ(n3/4)-query algorithm given in our

work [CWX17b]. Assuming the Õ(
√
n)-query algorithm from [KMS15] is optimal

for adaptive testing of monotonicity, it is reasonable to conjecture that this Õ(n3/4)-

query algorithm also has the best query complexity for testing unateness adaptively:

roughly speaking, [KMS15] shows that one can use Õ(
√
n) queries to find a violation

to monotonicity of a far-from-monotone function, by identifying an anti-monotone

edge along one of Õ(
√
n) many candidate directions randomly selected at the be-

ginning. Assuming this is also the best one can do for unateness testing (but each

time an anti-monotone edge or a monotone edge is identified with probability 1/2,

following the definition of unateness), and assuming these candidate directions are

fixed, then we need to repeat above process about Õ(n1/4) times to find edges along

a certain direction twice and get a violation to unateness (one time with a monotone
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edge, and the other with an anti-monotone edge), following birthday paradox. Then

in total we need Õ(n3/4) many queries. Of course, there are a lot of details to be

filled in this argument, and it is also possible that one closes this gap for adaptive

testing of unateness before the gap for testing of monotonicity.

• For the distribution-free testing of k-juntas, an interesting open problem comes from

the adaptive setting. The best lower bound is still Ω̃(k) from the standard uniform

distribution setting [CG04], and it is not clear whether we can improve our upper

bound of Õ(k2) to Õ(k) to match this lower bound. When we design testing algo-

rithms for k-juntas, in order to remove the dependency on n in the query complexity

we usually randomly partition [n] into poly(k) many small blocks, conduct binary

search over blocks, and eventually find relevant blocks rather than relevant vari-

ables, while the definition of k-juntas is based on the latter. Blais managed to bridge

these two notions in [Bla09] with a technical analysis based on the influence of in-

dices and the Efron-Stein orthogonal decomposition of functions under the standard

uniform distribution setting, while for the distribution-free setting our Õ(k2)-query

algorithm, in some sense, circumvents such issue with an artificial way of sampling

strings, which also leads to our final query complexity being quadratic in k. We are

interested in whether Blais’s argument can be generalized to the distribution-free

setting and gives us an Õ(k)-query algorithm .
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