
Almost Optimal Distribution-Free Sample-Based
Testing of k-Modality
Dana Ron
Tel Aviv University, Israel
danaron@tau.ac.il

Asaf Rosin
Tel Aviv University, Israel
asaf.rosin@gmail.com

Abstract
For an integer k ≥ 0, a sequence σ = σ1, . . . , σn over a fully ordered set is k-modal, if there exist
indices 1 = a0 < a1 < · · · < ak+1 = n such that for each i, the subsequence σai , . . . , σai+1 is either
monotonically non-decreasing or monotonically non-increasing. The property of k-modality is a
natural extension of monotonicity, which has been studied extensively in the area of property testing.
We study one-sided error property testing of k-modality in the distribution-free sample-based model.
We prove an upper bound of1 O

(√
kn log k
ε

)
on the sample complexity, and an almost matching

lower bound of Ω
(√

kn
ε

)
. When the underlying distribution is uniform, we obtain a completely

tight bound of Θ
(√

kn
ε

)
, which generalizes what is known for sample-based testing of monotonicity

under the uniform distribution.
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1 Introduction

Monotonicity of functions has been studied extensively in the area of property testing [30,
35, 29, 46, 33, 32, 6, 45, 1, 37, 38, 31, 12, 16, 19, 20, 15, 24, 23, 41, 7, 21, 36, 18, 4, 26, 27,
13, 40, 42, 22, 25, 14, 43]. The different works vary in the domains and ranges they consider,
as well as in the precise task studied (e.g., standard testing vs. tolerant testing and distance
approximation). However, what is common to almost all of these results, is that they allow
query access to the tested function, and the underlying distribution is uniform.

1 Since our results hold for any k ≥ 0, we should actually replace the term
√
kn by

√
(k + 1)n and log k

by log(k + 2), but for the sake of readability, we refrain from doing so.
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27:2 Sample-Based Testing of k-Modality

In this work, we consider a natural extension of monotonicity: k-modality. Since the
domain we study is [n] = {1, . . . , n}, it is convenient to think of the tested object as being
a sequence σ = σ1, . . . , σn, whose elements belong to a fully ordered set. A sequence σ is
said to be k-modal if there exist indices 1 = a0 < a1 < · · · < ak+1 = n, such that for each
i, the subsequence σai , . . . , σai+1 is either monotonically non-decreasing or monotonically
non-increasing. In other words, a sequence is k-modal if there are at most k “peaks” and
“valleys” (excluding the endpoints). For example, the sequence 3, 2, 2, 1, 2, 3, 4, 2 is 2-modal,
but not 1-modal (see Figure 1). We shall assume for simplicity that σ is over R, and use
Mk to denote the set of all k-modal sequences over R. Observe that a sequence is unate
(i.e., either monotonically non-decreasing or monotonically non-increasing) if and only if it is
0-modal.

We study distribution-free sample-based testing of k-modality with one-sided error.
Namely, the testing algorithm is given as input k ≥ 0 and ε > 0. For an arbitrary unknown
distribution p : [n]→ [0, 1], it is provided with a sample of pairs (i, σi), where i is selected
i.i.d according to p. If σ is k-modal, then the algorithm should accept with probability
1, while if σ is ε-far from k-modality with respect to p, then the algorithm should reject
with probability at least 2/3. A sequence σ is ε-far from k-modality with respect to p, if∑

i:τi 6=σi p(i) > ε for every k-modal sequence τ = τ1, . . . , τn.
Thus, the algorithm cannot select the symbols of σ that it observes (as in the case when

queries are allowed), and it must work for every underlying distribution p. Since we require
that the testing algorithm have one-sided error, it may reject σ only if the sample contains
evidence that σ is not k-modal. Therefore, the question we address is:

What is the minimum sample size s = s(n, k, ε) such that for every sequence σ (of
length n) and underlying distribution p, if σ is ε-far from being k-modal with respect
to p, then the sample contains evidence that σ is not k-modal?

It is known that for monotonicity and unateness (i.e., the special case of k = 0), when
the underlying distribution p is uniform, then a sample of size Θ(

√
n/ε) is both necessary

and sufficient.2 The question is how does the sample complexity increase as k increases, and
what is the effect of having a general underlying distribution p.3

1.1 Our results
Our first result is the following upper bound for distribution-free testing.4

I Theorem 1.1. The sample complexity of distribution-free one-sided error sample-based
testing of k-modality is O

(√
kn log k
ε

)
.

We show that the upper bound in Theorem 1.1 is almost tight (up to a factor of log k), by
establishing the next lower bound.

I Theorem 1.2. The sample complexity of distribution-free one-sided error sample-based
testing of k-modality is Ω

(√
kn
ε

)
. This lower bound holds for any ε < 1/4 and k ≤ n/4− 1.

2 The lower bound for monotonicity can be found for example in [36, Claim 7.5.1] (where it actually holds
for two-sided error), and this extends to unateness. The upper bound is folklore, where a more general
statement, regarding any poset, follows from [33, Theorems 6&14].

3 The problem of distribution-free sample-based testing of monotonicity is also considered in [36, Claim
7.5.2]. The upper bound they claim is correct in terms of the dependence on n (which is

√
n), but not

in terms of the dependence on 1/ε. In our analysis, we fix the flaw in their argument.
4 See footnote 1.
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When the underlying distribution is uniform, we obtain a completely tight result, which
generalizes the known result for testing monotonicity. Here, rather than having a linear
dependence on 1/ε, the complexity grows like 1/

√
ε.

I Theorem 1.3. The sample complexity of one-sided error sample-based testing of k-modality

under the uniform distribution is Θ
(√

kn
ε

)
. The lower bounds holds for any ε < 1/4 and

k ≤ εn.

Note that the requirement that k ≤ εn is not really a constraint as we are only interested in
the sublinear regime.

1.2 Techniques
The lower bounds. We start by shortly discussing our lower bounds (Theorem 1.2 for
the distribution-free case, and the lower bound in Theorem 1.3, for the uniform case).
They are both variants of the known lower bound for testing monotonicity with one-sided
error under the uniform distribution. In both lower bounds, the sequence σ is of the form
2, 1, 4, 3, . . . , 2m, 2m − 1, 3m, . . . , 3m (where the value 3m appears n − 2m times), for an
appropriate choice of m. When the underlying distribution is uniform, m is set to be 2εn
(assuming, for simplicity, that 2εn is an integer). In the distribution-free case, m is set to
be n/2− 1, and the underlying distribution p assigns weight 2ε

m = 4ε
n−2 to each of the first

2m = n− 2 symbols, and weight 1−4ε
2 to each of the remaining two symbols. In both cases it

is not hard to verify that σ is ε-far from being k-modal (with respect to the corresponding
distribution). What is also common to both cases is that in order to obtain evidence that σ
is not k-modal, it is necessary that the sample “hit” at least k/2 pairs of indices (2i− 1, 2i)
for i ∈ [m]. By a birthday-paradox-type argument, the sample must be of size Ω

(√
km/ε

)
.

The lower bounds now diverge due to the difference in the setting of m, where the flexibility
of the distribution-free case allows us to set m to be Θ(n) and obtain a higher lower bound.

The upper bound for the distribution-free case. We first observe that in order to test
k-modality, it suffices to test two closely related properties. For the sake of simplicity, here
we describe and discuss one of them, which we denote by F⇑t where t = k + 3. A sequence
σ = σ1, . . . , σn belongs to F⇑t if and only if there is no subsequence of indices x1, . . . , xt such
that 1 ≤ x1 < · · · < xt ≤ n and such that σxi < σxi+1 for every odd i and σxi > σxi+1 for
every even i. We show that for any distribution p, if σ is ε-far with respect to p from F⇑t ,
then a sample of size O(

√
tn log t/ε) will contain such a subsequence of indices.

A central ingredient in the proof of this sample-complexity upper bound is a structural
claim. It states that if a sequence σ is ε-far from F⇑t , then there exist t indices 1 = a1 <

a2 < · · · < at = n for which the following holds. For each subsequence σai , . . . , σai+1 , if i is
odd, then the subsequence is at least (ε/t)-far (with respect to p) from being monotonically
non-decreasing, and if i is even, then it is at least (ε/t)-far from being monotonically non-
increasing. Observe that the ith subsequence and the (i+ 1)th subsequence share a common
symbol. This is of importance when the common symbol has relatively large weight according
to p.

The next ingredient is a claim regarding the probability of obtaining evidence, for each
such subsequence, concerning its non-monotonicity (in the appropriate direction). In a certain
sense we are reducing the problem of testing k-modality to testing monotonicity, where there
are several subtleties to address. First, when considering the task of testing monotonicity
for each of these subsequences, the fact that the underlying distribution is arbitrary, means

APPROX/RANDOM 2020



27:4 Sample-Based Testing of k-Modality

that we need to deal both with very large probabilities and with very small probabilities,
which makes the analysis more complex than in the uniform case. Second, recall that each
subsequence is (ε/t)-far from being monotone. The “stand-alone” problem of distribution-free
testing of monotonicity has sample complexity that grows linearly with the inverse of the
distance to monotonicity. This seems to suggest that we get a linear dependence on t (recall
that t = k + 3), while we claim that the dependence is Õ(

√
k). Therefore, the reduction to

the t− 1 instances of testing monotonicity, should be done with care. Finally, assume that
we obtain evidence of non-monotonicity (in the appropriate direction) for each subsequence
(where there may be overlap between neighboring subsequences due to the common symbol).
We observe that we can combine these “small pieces of evidence” to infer that σ does not
belong to F⇑t .

The upper bound for the uniform case. The improvement in the sample complexity for
the uniform case (as compared to the distribution-free case) has two sources. The first is
that the basic task of testing monotonicity requires a smaller sample when the underlying
distribution is uniform. The second is that we do not apply the structural claim described
above to “break” σ into predetermined subsequences and then consider the task of testing
monotonicity for each of them. Instead, the subsequences are essentially determined as part
of the probabilistic analysis, together with the evidence against their monotonicity. Thus,
rather than taking a union bound over events of violating monotonicity in predetermined
subsequences, we lower bound the probability of sampling a sufficient number of violations
by analysing an appropriate sum of geometric random variables.

Specifically, we apply the Poissonization technique (see, e.g., [48, Chapter 10]), which
allows us to analyze the sample as if each pair (i, σi) is selected independently. We then
define a process that can be viewed as traversing the sequence σ while selecting the sample
“on the fly”, and gathering evidence against monotonicity of subsequences. We lower bound
the probability (over the selection of the sample) that the process gathers sufficient pieces of
evidence before σ is fully traversed.

1.3 Related results
As noted at the start of this section, there is a plethora of works on testing monotonicity
and unateness. Here we focus only on those results in which the domain is the same as ours,
namely [n]. Unless stated explicitly otherwise, the results are for testing with queries and
under the uniform distribution.

Monotonicity testing over [n] was first studied by Ergun et al. [30]. They gave an algorithm
whose query complexity is O(logn/ε). They also showed that Ω(logn) queries are necessary
for any non-adaptive comparison-based algorithm and constant ε. Fischer [32] proved that
this lower bound actually holds for adaptive algorithms as well.

For the special case of binary sequences, k-modality is essentially the same as k-
monotonicity, which was studied in [17]. To be precise, k-monotonicity of binary sequences is
equivalent to F⇑k+2 (where F⇑k+2 is as defined in Section 1.2). They show that it is possible to
test k-monotonicity by performing O(k/ε) (non-adaptive) queries. Furthermore, they prove
that any one-sided error (possibly adaptive) tester for k-monotonicity over [n] must have
query complexity Ω(k/ε). If two-sided error is allowed, then no dependence on k is necessary,
and the query complexity is poly(1/ε) [17, 14].

The related property of k-interval functions over [0, 1] was studied in [39, 3]. Each such
function is defined by a partition of [0, 1] into (at most) k intervals, where on each interval
the value of the function is constant (either 0 or 1). Observe that if we consider a discretized
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version of this property where the domain is [n], then it is the same as (k − 2)-modality.
Balcan et al. [3] (strengthening the result of [39]) give an upper bound of

√
k · poly(1/ε) on

the sample complexity of testing this property under the uniform distribution with two-sided
error. We note that if queries are allowed, then the dependence on k can be removed [39, 3].
In addition, the result can be generalized to the distribution-free case in the active testing
model [3].5

Other related works on testing (with queries) that generalize testing monotonicity in-
clude [8] for testing local properties of d-dimensional arrays and [44, 9, 10] for testing
forbidden order patterns.

Distribution-free testing of monotonicity (with queries) was studied in [37], approximating
the distance of a sequence to monotonicity was studied in [45, 2], and the problem of testing
monotonicity of distributions (over totally ordered domains) was addressed in [5].

1.4 Organization
We start with some general preliminaries in Section 2. In Section 3 we present several
definitions and observations relating to k-modality, which are later applied in our analysis.
The upper bound for distribution-free testing is provided in Section 4, and the one for the
uniform distribution in Section 5. Both lower bounds are given in Appendix C.

2 Preliminaries: sequences, distances and property testing

For an integer n, let [n] = {1, . . . , n}, and for two integers i ≤ j, let [i, j] = {i, . . . , j}. For a
sequence σ = σ1 . . . σn and a subset of indices Q ⊆ [n], we use σ|Q to denote the subsequence
of σ corresponding to the indices in Q. A property of sequences P is simply a set of sequences.
We say that σ has property P, or that σ satisfies P, if σ ∈ P.

In what follows, we present several notions and notations that are defined based on a
probability distribution p : [n]→ [0, 1]. For a set S ⊆ [n], let p(S) =

∑
i∈S p(S). Whenever p

is clear from the context, we refer to p(S) as the probability weight of S, or simply the weight
of S.

The distance between σ and τ with respect to p, denoted dist(σ, τ, p), is
∑
i:σi 6=τi p(i)

(or ∞ if they are not of the same length). For a property P, the distance of σ from P
with respect to p, denoted dist(σ,P, p), is minτ∈P{dist(σ, τ, p)}. We say that σ is ε-far from
P with respect to p, or (more concisely) that (σ, p) is ε-far from P, if dist(σ,P, p) > ε.
Otherwise it is ε-close.

I Definition 2.1. A distribution-free sample-based testing algorithm for a property P of
sequences is given parameters n and ε as well as access to samples from an unknown sequence
σ of length n, generated according to an unknown distribution p : [n] → [0, 1]. Namely, it
receives pairs (i, σi) where i is distributed i.i.d. according to p. The algorithm should satisfy
the following:

5 The notion of active testing is an adaptation of the notion of active learning to the context of property
testing. The algorithm is given an unlabeled sample distributed according to the underlying distribution
p and it may query the labels of part of the sample points. The two complexity measures of interest are
hence the (unlabeled) sample complexity, and the query complexity (number of queries performed on the
sample points). When the latter equals the former, this coincides with sample-based (distribution-free)
testing (referred to as passive testing in [3]). However, one may aim at performing fewer queries at the
cost of a larger number of unlabeled samples.

APPROX/RANDOM 2020



27:6 Sample-Based Testing of k-Modality

If σ ∈ P, then the algorithm should accept with probability at least 2/3.
If dist(σ,P, p) > ε, then the algorithm should reject with probability at least 2/3.

If p is known to be the uniform distribution over [n], then we simply say that the algorithm
is a sample-based testing algorithm.

If the algorithm always accepts sequences that have property P, then we say that it has
one-sided error. otherwise it has two-sided error. The sample-complexity of the algorithm is the
number of samples it views (as a function of ε and n) when performing the aforementioned
task.

In the context of testing k-modality (which is a special case of testing properties that are
determined by some parameter), the algorithm is also provided with the parameter k, and
its sample complexity may depend on k.

I Definition 2.2. For positive integers n and s, and a distribution p : [n] → [0, 1], we let
In(s, p) denote the random variable corresponding to a set 6 consisting of s indices from [n]
that are selected i.i.d. according to p.

Note that in order to obtain an upper bound s on the sample complexity of distribution-free
sample-based one-sided error testing for a hereditary property P of sequences,7 it suffices
to show that Pr[σ|In(s,p) /∈ P] ≥ 2/3, for every distribution p : [n] → [0, 1] and for every
sequence σ of length n that is ε-far from P with respect to p.

It will also be useful to define an additional distance measure, which we refer to as the
deletion distance. Let σ be a sequence of length n and p : [n]→ [0, 1] a weight function (so
that

∑n
i=1 p(i) is not necessarily 1). For a property of sequences P and a subset R ⊆ [n],

let del(σ,P, p, R) denote the minimum, taken over subsets D ⊆ R such that σ|R\D ∈ P, of
p(D) (if there is no such D, then del(σ,P, p, R) =∞). If R = [n], then we use the shorthand
del(σ,P, p) for del(σ,P, p, [n]).

3 Definitions and observations for k-modality

In this subsection we introduce several notions that will be used in our analysis.

For a pair of indices x, y ∈ [n] such that x < y, we say that (x, y) is an ascent (descent)
with respect to a sequence σ = σ1, . . . , σn, if σx < σy (σx > σy). A pair (x, y) is an up-pair,
denoted ⇑-pair (down-pair, denoted ⇓-pair) if it is an ascent (descent). We say that (x, y)
and (x′, y′) are disjoint if {x, y} ∩ {x′, y′} = ∅. For m ∈ {⇑,⇓}, we denote inv(⇑) = ⇓ and
inv(⇓) = ⇑.

The next notion will aid us in characterizing k-model sequences by being “free” of certain
patterns.

I Definition 3.1. Let σ be a sequence of length n, let t be an integer, and let 1 ≤ x1 < · · · <
xt ≤ n. We say that (x1, . . . , xt) is a t-upward (t-downward) subsequence with respect to σ
if for every odd i ∈ [t− 1], (xi, xi+1) is an ascent (descent), and for every even i ∈ [t− 1],
(xi, xi+1) is a descent (ascent).
We shall use the symbolic shorthand t-⇑ for t-upward sequences and t-⇓ for t-downward
sequences.

6 Note that while the sampled indices i (as defined in Definition 2.1) are i.i.d. and hence may appear
with repetitions, In(s) is a set and hence does not include repetitions

7 A property of sequences is hereditary if it is preserved under restrictions to subsequences.
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Figure 1 An illustration of the sequence σ = 3, 2, 2, 1, 2, 3, 4, 2. Notice that the marked sub-
sequence (1, 4, 7, 8) is a 4-downward (4-⇓) subsequence with respect to σ, and that σ ∈ F⇓

5 .

I Definition 3.2. For m ∈ {⇑,⇓}, we denote by Fmt the set of all sequences σ such that there
is no t-m subsequence with respect to σ (so that F stands for “free”).
For the special case of t = 2, we say that a sequence is m-monotone if it belongs to F inv(m)

2 .

For example, if σ = 3, 2, 2, 1, 2, 3, 4, 2, then (1, 4, 7, 8) is a 4-downward (4-⇓) subsequence
with respect to σ, and σ ∈ F⇓5 . For an Illustration, see Figure 1.

Observe that a sequence σ is k-modal if and only if there is no (k + 3)-⇑ subsequence nor
any (k + 3)-⇓ subsequence with respect to σ:

I Observation 3.3. For any non-negative integer k we have thatMk = F⇑k+3
⋂
F⇓k+3.

The next notion and observation will be useful when analyzing the evidence found in a
sample, that a sequence is not k-modal.

I Definition 3.4. Let σ be a sequence of length n, let t be a positive integer, and let
1 ≤ x1 < y1 ≤ x2 < y2 ≤ · · · ≤ xt < yt. We say that ((x1, y1), . . . , (xt, yt)) is a t-upward-pair
(t-downward-pair) sequence with respect to σ, if for every odd i ∈ [t], (xi, yi) is an ascent
(descent), and for every even i ∈ [t], (xi, yi) is a descent (ascent). Here too we use the
symbolic shorthands t-⇑-pair (for t-upward-pair sequences) and t-⇓-pair (for t-downward-pair
sequences).

I Observation 3.5. For any sequence σ, integer t ≥ 2, and m ∈ {⇑,⇓}, if there is a
(t− 1)-m-pair sequence with respect to σ, then there is a t-m subsequence with respect to σ.

To verify the validity of the last observation, consider for simplicity the case that m = ⇑.
Given a (t − 1)-⇑-pair sequence ((x1, y1), . . . , (xt−1, yt−1)) we define a t-⇑ subsequence
(x′1, . . . , x′t) as follows: x′1 = x1, x′t = yt−1, x′i = max(yi−1, xi) for each even i ∈ [2, t − 1],
and x′i = min(yi−1, xi) for each odd i ∈ [2, t− 1].

We shall also make use of the following observation, which will allow us to work with the
deletion distance. Its simple proof is given in Appendix B.

I Observation 3.6. Let σ be a sequence of length n, p : [n]→ [0, 1] a probability distribution,
and k a non-negative integer. Then dist(σ,Mk, p) = del(σ,Mk, p).

The last observation in this section will allow us to reduce the problem of testingMk to
testing F⇑k+3 and F⇓k+3.

APPROX/RANDOM 2020



27:8 Sample-Based Testing of k-Modality

I Observation 3.7. Let σ be a sequence of length n, p : [n]→ [0, 1] a probability distribution,
and k a non-negative integer. Then dist(σ,Mk, p) ≤ del(σ,F⇑k+3, p) + del(σ,F⇓k+3, p).

To verify Observation 3.7, let t = k + 3 and for each m ∈ {⇑,⇓} let Dm ⊆ [n] be a subset
satisfying σ|[n]\Dm ∈ F

m
t and p(Dm) = del(σ,Fmt , p). Since F⇑t and F⇓t are hereditary

properties, for D = D⇑ ∪ D⇓, we have that σ|[n]\D ∈ F⇑t ∩ F
⇓
t . By Observation 3.3, this

means that σ|[n]\D ∈Mk, so that del(σ,Mk, p) ≤ p(Dm) ≤ p(D⇑) + p(D⇓) = del(σ,F⇑t , p) +
del(σ,F⇓t , p). By Observation 3.6, dist(σ,Mk, p) = del(σ,Mk, p) and Observation 3.7 is
verified.

4 The upper bound for distribution-free testing

In this section we prove Theorem 1.1, which is restated next.

I Theorem 1.1. The sample complexity of distribution-free one-sided error sample-based
testing of k-modality is O

(√
kn log k
ε

)
.

4.1 Structural claims
We start with two structural claims, where the second builds on the first (and where the first
will also serve us for the upper bound under the uniform distribution).

B Claim 4.1. Let σ = σ1, . . . , σn be a sequence of length n and p : [n] → [0, 1] a weight
function. Then for any m ∈ [n], t > 2 and m ∈ {⇑,⇓},

del(σ,Fmt , p) ≤ del(σ,Fm2 , p, [m]) + del(σ,F inv(m)
t−1 , p, [m+ 1, n]) .

In order to prove this claim, we essentially show that if it is possible to partition a
sequence into two parts, such that the first is free of upward pairs, and the second is free of
(t− 1)-downward sequences, then the entire sequence is free of t-upward sequences.

Proof. By the definition of the deletion distance, there exists a set I1 ⊆ [m] of weight
del(σ,Fm2 , p, [m]), such that σ|[m]\I1 ∈ F

m
2 . Similarly, there exists a set I2 ⊆ [m + 1, n] of

weight del(σ,F inv(m)
t−1 , p, [m+ 1, n]), such that σ|[m+1,n]\I2 ∈ F

inv(m)
t−1 .

Let σ̃ denote the sequence that is obtained from σ by deleting all the indices in I1 ∪ I2.
Namely, σ̃ = σ[n]\I1∪I2 . We next show that σ̃ ∈ Fmt . We represent σ̃ as a concatenation of
two sequences, τ1 and τ2, where τ1 = σ|[m]\I1 and τ2 = σ|[m+1,n]\I2 . Assume, contrary to the
claim, that there exists a t-m subsequence (x1, x2 . . . , xt) with respect to σ̃. Since (x1, x2)
is a m-pair (by the definition of a t-m subsequence) while τ1 ∈ Fm2 , necessarily x2 > |τ1|.
But then (x2, . . . , xt) is a (t − 1)-inv(m) subsequence with respect to τ2 (more precisely,
(x2 − |τ1|, . . . , xt − |τ1|) is such a subsequence), in contradiction to τ2 ∈ Fmt−1.

We conclude that

del(σ,Fmt , p) ≤ p(I1 ∪ I2) = del(σ,Fm2 , p, [m]) + del(σ,F inv(m)
t−1 , p, [m+ 1, n]) ,

as claimed. C

We next recursively apply Claim 4.1 to show that if σ is far from Fmt , then we can define
t− 1 (almost disjoint) consecutive subsequences, such that each is relatively far from either
Fm2 or F inv(m)

2 .
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B Claim 4.2. Let σ be a sequence of length n, p : [n]→ [0, 1] a weight function, t ≥ 2, and
m ∈ {⇑,⇓}. Denote ∆ = del(σ,Fmt , p) and suppose that ∆ > 0. Then there exist indices
1 = a1 < · · · < at = n such that del(σ,Fm2 , p, [ai, ai+1]) ≥ ∆/(t− 1) for every odd i ∈ [t− 1],
and del(σ,F inv(m)

2 , p, [ai, ai+1]) ≥ ∆/(t− 1) for every even i ∈ [t− 1].

Note that partitioning the domain into disjoint intervals that obey the condition stated in
Claim 4.2 may not be possible, due to the existence of indices with a large weight according
to p. To address this issue we allow each pair of consecutive intervals ([ai, ai+1] and [ai, ai+1])
to share a common index. This suffices for our purposes as we shall see in Section 4.3

Proof. We prove the claim by induction on t. For the base case, t = 2, the claim is trivial.
Turning to the induction step, we assume that the claim holds for t− 1 (where t > 2), and
prove it for t.

Define a2 to be the smallest index in [n] satisfying the required condition del(σ,Fm2 ,p,[a2])≥
∆/(t − 1) (recall that ∆ denotes del(σ,Fmt , p)). Note that: (1) such an index exists, as
del(σ,Fm2 , p, [n]) ≥ del(σ,Fmt , p, [n]) = ∆ ≥ ∆/(t − 1), and (2) a2 > 1, as σ1 ∈ Fm2 so that
del(σ,Fm2 , p, {1}) = 0.

Thus, we can apply Claim 4.1 with m = a2 − 1 to obtain that del(σ,Fmt , p) ≤
del(σ,Fm2 , p, [a2 − 1]) + del(σ,F inv(m)

t−1 , p, [a2, n]). By the definition of a2, we have that
del(σ,Fm2 , p, [a2 − 1]) < ∆/(t− 1). We infer that del(σ,F inv(m)

t−1 , p, [a2, n]) > ∆−∆/(t− 1) =
(t− 2)∆/(t− 1).

The claim is established because the existence of a3, . . . , at (recall that t > 2) satisfying
the required conditions is implied by the induction hypothesis, using t̃ = t− 1, m̃ = inv(m),
σ̃ = σa2 . . . σn and ∆̃ = (t − 2)∆/(t − 1). Notice that the conditions are satisfied, as
∆̃/(t− 2) = ∆/(t− 1). C

4.2 Probabilistic claims – obtaining evidence of non-monotonicity
In the following claim we give conditions under which a sample contains evidence that a
subsequence is not in Fm2 (with probability at least 2/3). We later apply this claim to the
subsequences defined in Claim 4.2.

B Claim 4.3. Let σ be a sequence of length n, p : [n] → [0, 1] a probability distribution,
and R a subset of [n]. Suppose that for m ∈ {⇑,⇓} and for positive β and δ, we have that
del(σ,Fm2 , p, R) ≥ β, and that p(i) ≥ δ for each i ∈ R. Then for s = Θ(1/

√
δ · β), the

probability over the choice of Q = In(s, p) that σ|R∩Q /∈ Fm2 , is at least 2/3.

In order to prove Claim 4.3, we lower bound the probability weight of a sample that falls
into a prespecified subset of the domain [n].

B Claim 4.4. Let p : [n]→ [0, 1] be a probability distribution, and C a subset of [n]. Suppose
that for positive β and δ ≤ β/c, where c is a sufficiently large constant, p(C) ≥ β and
p(x) ≥ δ for each x ∈ C. Then for s = 1/

√
δ · β, letting Q = Is(n, p),

PrQ
[
p(C ∩Q) ≥ δβs

4

]
≥ 9

10 .

Note that if Q and C ∩Q were defined as multisets rather than sets, i.e., if we were to
take repetitions into account, then Claim 4.4 would have followed from a standard tail bound
(Fact A.3). However, since in our case C∩Q is a set, we need to analyse the effect of collisions
in the sample. As the distribution p may contain large probabilities, the collisions can have a
significant impact. In order to overcome this difficulty, we use a “flattening technique” that
is similar to the one introduced in [28] (see also [34]).

APPROX/RANDOM 2020



27:10 Sample-Based Testing of k-Modality

Proof. We prove the claim in two stages. In the first stage we define a “flattened” probability
distribution p̂ over [n̂] for n̂ ≥ n together with a subset Ĉ ⊆ [n̂], for which we show the
following: for any positive integer s, letting Q̂ = Is(n̂, p̂), we have that

for any τ ≥ 0, PrQ[p(C ∩Q) ≥ τ ] ≥ Pr
Q̂

[p̂(Ĉ ∩ Q̂) ≥ τ ] . (1)

In the second stage we show, using certain properties of p̂ and Ĉ, that for s as in the premise
of the claim,

Pr
Q̂

[
p̂(Ĉ ∩ Q̂) ≥ δβs

4

]
≥ 9

10 . (2)

Stage I. If p(x) ∈ [δ, 2δ] for each x ∈ C, then we simply let n̂ = n, p̂ = p, and Ĉ = C,
so that Equation (1) holds trivially. Otherwise, the high level idea is that we “split” each
x ∈ C into a subset of indices, each with probability weight in [δ, 2δ] (according to p̂), as
explained precisely next. Assume, without loss of generality, that C = {m+ 1, . . . , n} for
some m < n − 1. For each x ∈ C let α(x) = dp(x)

2δ e. Set n̂ = m +
∑n
x=m+1 α(x) and

Ĉ = {m + 1, . . . , n̂}. It remains to define p̂. With each x ∈ C we associate a (disjoint)
subset, denoted J(x), of α(x) indices in {m + 1, . . . , n̂}. In particular, we can let J(x) =
{m+ 1 +

∑x−1
x′=m+1 α(x′), . . . ,m+

∑x
x′=m+1 α(x′)} for each x ∈ {m+ 1, . . . , n}. It will be

useful to define a mapping φ : [n̂] → [n], where for each y ∈ Ĉ, φ(y) = x where x satisfies
y ∈ J(x). For y /∈ Ĉ, we let φ(y) = y. For each y /∈ C we set p̂(y) = p(y), and for each
y ∈ Ĉ = {m+ 1, . . . , n̂} we set p̂(y) = p(φ(y))/α(φ(y)). Note that by the definition of α(·),
this ensures that p̂(y) ∈ [δ, 2δ] and that p(x) = p̂(J(x)) for each x ∈ C.

In order to establish Equation (1), we apply a coupling argument. Specifically, we define
a random variable Q̃ ⊆ [n] based on Q̂ ⊆ [n̂] as follows: Q̃ = {φ(y) : y ∈ Q̂}. Since for each
x ∈ [n] we have that p(x) =

∑
y:φ(y)=x p̂(y), by its definition, Q̃ is identically distributed to

Q. Next observe that for each x ∈ C, if x /∈ Q̃, then necessarily J(x)∩ Q̂ = ∅, while if x ∈ Q̃,
then p(x) ≥ p̂(J(x) ∩ Q̂). Therefore, p(C ∩ Q̃) ≥ p̂(Ĉ ∩ Q̂), and Equation (1) follows.

Stage II. Since p̂(Ĉ) = p(C), and p(C) ≥ β, we have that p̂(Ĉ) ≥ β. For s = 1/
√
δβ, let

Y1, . . . , Ys be independent random variables such that for each y ∈ [n̂], Pr[Yr = y] = p̂(y).
Let ŝ = |{r : Yr ∈ Ĉ \ {Y1, . . . , Yr−1}}|, and observe that p̂(Ĉ ∩ Q̂) ≥ ŝ · δ (since p̂(y) ≥ δ

for each y ∈ Ĉ). Hence, in order to establish Equation (2), it suffices to upper bound the
probability that ŝ < βs/4.

To this end we also define s′ = |{r : Yr ∈ Ĉ}|, so E[s′] = p̂(Ĉ) · s. We may think of ŝ as
being determined by first determining s′, and then taking s′ samples from Ĉ, where each
y ∈ Ĉ is selected independently with probability p̂(y)/p̂(Ĉ). Since s′ ∼ Bin(s, p̂(Ĉ)), we have
(by Fact A.3) that Pr[s′ < E[s′]/2] ≤ e−p̂(Ĉ)s/8. By our setting of s and since δ ≤ β/c, this
probability is at most 1/20 for a sufficiently large constant c. We henceforth condition on
the event that s′ ≥ E[s′]/2 ≥ βs/2. If all Yr that belong to C were distinct, then we would
have that ŝ = s′, and we would be done. Since this is not necessarily the case, it remains to
show that ŝ is not much smaller than s′. To be precise, since our goal is to lower bound the
probability that ŝ < βs/4, we condition on the event that s′ = βs/2 (as the probability that
ŝ < βs/4 can only decrease as s′ increases).

Let q = |{r : Yr ∈ Ĉ ∩ {Y1, . . . , Yr−1}}|, so that ŝ = s′ − q. Observe that E[q] ≤(
s′

2
)
· 2δ
p̂(Ĉ)

≤ s′ · δs
′

p̂(Ĉ)
, which by our condition on s′ and since p̂(Ĉ) ≥ β is at most βs2 ·

δs
2 . Once

again by our setting of s and since δ ≤ β/c, this is at most βs
80 for a sufficiently large constant

c. By Markov’s inequality, Pr
[
q > βs

4

]
≤ 1/20. We can conclude that with probability at

least 1− 2/20 = 9/10, ŝ ≥ βs/4, and the claim follows. C
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We are now ready to prove Claim 4.3, which applies Claim 4.4 to a vertex cover C in the
“violation graph”, as defined next.

Proof of Claim 4.3. For indices x, y ∈ R, we say that (x, y) is a “violating pair” if x < y

and σxσy /∈ Fm2 . Consider the “violation graph” GR = ([n], ER), where ER is the set of all
violating pairs, and recall that a vertex cover of a graph is a subset C of vertices such that
each edge of the graph contains at least one vertex in C. For a subset of vertices S, let ΓR(S)
denote the set of neighbors of vertices belonging to S in the graph GR.

Let C be a minimum-weight vertex cover of GR with respect to p. Note that σ|R\C ∈ F
m
2 ,

so that p(C) = del(σ,Fm2 , p, R) ≥ β. Let s = 16/
√
δ · β. First, consider a sample, denoted

Q1, of s/16 vertices (indices in [n]) drawn independently according to p. By Claim 4.4, the
probability that p(C∩Q1) ≥ βδs/64 is at least 9/10. Conditioned on this event occurring, we
consider a second sample, denoted Q2, of 15s/16 vertices drawn independently according to p.
As observed in [36], p(ΓR(C ∩Q1)) ≥ p(C ∩Q1) (since otherwise, C ′ = (C \Q1)∪ΓR(C ∩Q1)
is a vertex cover with smaller weight than C). Hence, each of these 15s/16 sampled vertices
belongs to ΓR(C ∩Q1) with probability at least p(C ∩Q1). Therefore, the probability that
Q1 ×Q2 contains no violating pair is upper bounded by

(1− p(C ∩Q1))15s/16 ≤
(

1− βδs

64

)15s/16
≤ e−15βδs2/1024 ≤ e−3.75 ≤ 1/10 .

We conclude that the sample Q contains a violating pair, and hence σ|R∩Q /∈ Fm2 , with
probability at least 1− 1/10− 1/10 > 2/3, as claimed. C

4.3 Wrapping things up
By combining Claims 4.2 and Claim 4.3, we can establish the next lemma, which gives an
upper bound on the sample complexity of one-sided error distribution-free testing of Fmt .

I Lemma 4.5. Let σ be a sequence of length n, p : [n]→ [0, 1] a probability distribution, t ≥ 2,
ε > 0 and m ∈ {⇑,⇓}. If del(σ,Fmt , p) > ε, then for s = Θ(

√
tn log t/ε) and Q = In(s, p) we

have that Pr
[
σ|R∩Q /∈ Fmt

]
≥ 2

3 .

Proof. Let δ = ε
2n and let B = {x ∈ [n] : p(x) ≥ δ}. Since p([n] \B) < n · δ = ε/2, we have

that del(σ,Fmt , p, B) > ε/2. We would like to apply Claim 4.2 to σ|B , and hence we need to
first define a corresponding weight function (over [|B|]), which we denote by p|B . Specifically,
denoting the elements in B by {b1, . . . , b|B|} where b1 < · · · < b|B|, we let p|B(j) = p(bj).
Observe that del(σ|B ,F

m
t , p|B) = del(σ,Fmt , p, B).

We can now apply Claim 4.2 to σ|B and p|B (as well as t and m), and obtain 1 ≤ a1 <

· · · < at ≤ |B| as stated in the claim. For each i ∈ [t− 1], let Ri = B ∩ [bai , bai+1 ]. Therefore,
del(σ,Fm2 , p, Ri) > ε/(2(t−1)) for each odd i ∈ [t−1], and del(σ,F inv(m)

2 , p, Ri) > ε/(2(t−1))
for each even i ∈ [t− 1].

Consider any fixed choice of i ∈ [t − 1]. In particular, assume first that i is odd.
Suppose we apply Claim 4.3 with R = Ri, β = ε/(2(t − 1)), δ = ε/(2n) (and m). Observe
that 1/

√
δβ = Θ(

√
tn/ε). Since in the current lemma s = Θ(

√
tn log t/ε), we get that for

Q = In(s, p) (i.e., a sample of size c log t times larger than the sample in the statement of
Claim 4.3), PrQ[σ|Ri∩Q ∈ F

m
2 ] ≤ (1/3)c log t < 1/(3t) (for an appropriate constant c). That

is, σ|Ri∩Q does not contain an inv(m)-pair with probability at most 1/(3t). An analogous
statement holds for each even i ∈ [t− 1] (with respect to F inv(m)

2 ).
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By applying a union bound over all i ∈ [t − 1], we get that with probability at least
2/3, there are (t − 1) pairs (x1, y1), . . . , (xt−1, yt−1) such that xi, yi ∈ Ri ∩ Q, for which
the following holds: For every odd i ∈ [t − 1], the pair (xi, yi) is a m-pair, and for every
even i ∈ [t− 1], the pair (xi, yi) is an inv(m)-pair. Notice that for each i ∈ [t− 1], yi ∈ Ri
and xi+1 ∈ Ri+1, so we have that yi ≤ xi+1. Therefore (recalling Definition 3.5), with
probability at least 2/3, the sample Q contains a (t− 1)-m-pair sequence with respect to σ.
By Observation 3.5, this implies that the sample contains a t-m subsequence with respect to
σ, that is, σ|Q /∈ Fmt . J

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. If dist(σ,Mk, p) > ε, then, by Observation 3.7, for some m ∈ {⇑,⇓},
del(σ,Fmk+3, p) > ε/2 (otherwise, del(σ,F⇑k+3, p) + del(σ,F⇓k+3, p) ≤ ε, so that by Observa-
tion 3.7, dist(σ,Mk, p) ≤ ε, and we obtain a contradiction). The theorem follows by applying
Lemma 4.5 and Observation 3.3. J

5 The upper bound for testing under the uniform distribution

In this section we prove the upper bound of Theorem 1.3, which is restated next.

I Theorem 1.3 The sample complexity of one-sided error sample-based testing of k-modality

under the uniform distribution is Θ
(√

kn
ε

)
. The lower bounds holds for any ε < 1/4 and

k ≤ εn.

Referring to the notations introduced in Section 2, when p is the uniform distribution
over [n], we shall use the shorthand dist(σ,P) for dist(σ,P, p), In(s) for In(s, p), and
del(σ,P) for del(σ,P, p). Actually, rather than working with the weighted/normalized
deletion distance del(σ,P), it will be convenient to work with the absolute deletion distance
Del(σ,P) = del(σ,P) · n. Namely, Del(σ,P) is the minimum size of a subset D ⊆ [n] such
that σ|[n]\D ∈ P (where for hereditary properties, such a subset always exists).

For the sake of the analysis, it will be useful to analyze the sample complexity of testing
k-modality (with one-sided error and under the uniform distribution) when the sample
is selected according to the Poisson distribution. Recall that the Poisson distribution
Poi(λ) takes value x ∈ N with probability e−λλx/x!. The next definition is analogous to
Definition 2.2.

I Definition 5.1. For positive integers n and s, we use IPoi
n (s) to denote the random variable

consisting of a subset of [n] such that for each i ∈ [n] we have Pr[i ∈ IPoi
n (s)] = Pr[Poi(s/n) 6=

0] = 1− e−s/n.

The following lemma is directly implied by [11, Lemma 2.2] (which in turn refers to [47]).

I Lemma 5.2. For any property P, positive integers n and s, and sequence σ of length n,

Pr[σ|In(s) /∈ P] ≥ Pr[σ|IPoi
n (s/2) /∈ P]− 4

s
.

We next introduce a definition and a simple claim.

I Definition 5.3. An ascent/descent (x, y) is said to start at x and end at y.
We define the first ascent (descent) in a sequence σ to be the ascent (descent) that ends first.
In case that there are multiple such ascents (descents), choose the one that starts first.
For an integer r > 1, we recursively define the rth ascent (descent) in σ to be the first ascent
(descent) in the subsequence obtained from σ by deleting the first r − 1 ascents (descents).
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Recall that we use the notations ⇑-pair for an ascent and ⇓-pair for a descent.

B Claim 5.4. Let σ be a sequence of length n, t ≥ 2 an integer, and m ∈ {⇑,⇓}. Then σ
contains at least 1

2 Del(σ,Fmt ) disjoint m-pairs.

Proof. We prove that at least 1
2 Del(σ,Fmt ) disjoint m-pairs exist. Delete the first m-pair (as

defined in Definition 5.3), if it exists. Continue to delete the second m-pair, third m-pair, etc.
as long as possible. Assume that after deleting the yth m-pair, no m-pair remains. Therefore,
by deleting 2y symbols from σ we turned it into a sequence in F⇑2 , and hence also in F⇑t (for
any t ≥ 2). Thus y ≥ 1

2 Del(σ,F⇑t ), so at least 1
2 Del(σ,F⇑t ) disjoint m-pairs exist. C

The next structural claim is a corollary of Claim 4.1.

B Claim 5.5. Let σ be a sequence of length n, t ≥ 2 an integer, m ∈ {⇑,⇓}, and y an integer
smaller than 1

2 Del(σ,Fmt ). Let m ∈ [n] be the index such that the yth m-pair in σ ends at m.
Then Del(σ,Fmt ) ≤ 2y + Del(σm+1, . . . , σn,F inv(m)

t−1 ).

We are now ready to state and prove the lemma that is the heart of our upper bound argument.
As opposed to the upper-bound argument for the distribution-free case (Lemma 4.5), In the
proof of Lemma 5.6 we do not apply the structural claim described above to “break” σ into
predetermined subsequences and then consider the task of testing monotonicity for each of
them. Instead, the subsequences are determined by a process that traverses the sequence
while selecting the sample “on the fly”, and gathering evidence against monotonicity of
subsequences.

I Lemma 5.6. Let ε > 0, t ≥ 2 an integer, and m ∈ {⇑,⇓}. If Del(σ,Fmt ) > εn, then for
s = Θ(

√
tn
ε ) and Q = IPoi

n (s) we have that

Pr
[
σ|Q /∈ Fmt

]
≥ 5

6 .

Proof. Denote ∆ = Del(σ,Fmt ), so that ∆ > εn. Let s = 20
√

tn
ε and consider the random

variable Q = IPoi
n (s). We shall prove that Pr[σ|Q /∈ Fmt ] ≥ 5/6.

Let r = t− 1. For 2 ≤ u ≤ t, we define F̂u as follows.

F̂u =
{
Fmu t− u is even
F inv(m)
u t− u is odd

We define a process that given a sample Q, tries to find evidence that σ|Q does not belong to
Fmt . Following this, we analyze the probability that Q is such that the process succeeds.

To be precise, our process aims to find indices a0 < b0 < a1 < b1 < · · · < ar < br and
numbers y0, . . . , yr, such that the following holds for every 0 ≤ i ≤ r:

Property 1: If i is odd, then (ai, bi) is a m-pair, and if i is even and i > 0, then (ai, bi)
is an inv(m)-pair.
Property 2: Del(σbi+1 . . . σn, F̂t−i) ≥ ∆− 2

∑i
j=0 yj .

Notice that if the process succeeds, then in particular ((a1, b1), . . . , (ar, br)) is an r-m-pair
sequence, which implies by Observation 3.5 that σ|Q /∈ Fmt .

The process initializes a0 = −1, b0 = 0 and y0 = 0, so that for i = 0 Property 1 holds
trivially and Property 2 holds by ∆’s definition.

For each ` ∈ [r], we henceforth condition on the process having succeeded in finding
indices a0 < b0 < · · · < a`−1 < b`−1 and y0, . . . , y`−1 such that Property 1 and Property 2
both hold for every i ≤ `− 1. We now try to find a`, b` and y` such that b`−1 < a` < b`, and
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both properties hold for i = ` as well. We refer to this attempt as the `th step of the process.
For convenience, we assume that ` is odd (the other case is analogous). According to our
assumption, since Property 2 holds for i = `− 1, we have that

Del(σb`−1+1 . . . σn,Fmt−`+1) ≥ ∆− 2
`−1∑
j=0

yj . (3)

By Claim 5.4, there exist at least 1
2 Del(σb`−1+1 . . . σn,Fmt−`+1) disjoint m-pairs in

σb`−1+1 . . . σn, which by Equation (3) is at least 1
2 ∆ −

∑`−1
j=0 yj . Consider the first m-pair,

second m-pair, etc. in σb`−1+1, . . . , σn, as defined in Definition 5.3. Assume that the first
m-pair among them that belongs to Q is the qth m-pair. Then we set y` = q, a` to be the first
index of this pair, and b` to be the last index of this pair (if no such pair belongs to Q, set
yj = aj = bj =∞ for every ` ≤ j ≤ r). If y` < 1

2 ∆−
∑`−1
j=0 yj , then by using Claim 5.5 with

y = y` and m = b`, we infer that Del(σb`+1 . . . σn,F inv(m)
r−` ) ≥ ∆− 2

∑`
j=0 yj (notice that the

last sum now includes y`).
We conclude that if

y` <
1
2∆−

`−1∑
j=0

yj for every ` ∈ [r] , (4)

then the process succeeds and thus σ|Q /∈ Fmt . As y` ≥ 0 for every ` ∈ [r] and as y0 = 0, the
condition in Equation (4) is equivalent to

r∑
j=1

yj <
1
2∆ . (5)

We now turn to analyze the probability that the condition in Equation (5) holds. Notice
that by the definition of Q = IPoi

n (s), each one of the pairs that were considered during the
`th step of the process was sampled with probability ρ2 for ρ = 1− e− s

n , independent of the
others. Observe that from its construction, y` (for every ` ∈ [r]) is distributed very similarly
to a geometric random variable with parameter ρ2. To be precise, for every ` ∈ [r] let z` be
an i.i.d. geometric random variable with parameter ρ2, and define h` = z` if z` is no bigger
than the number of pairs that were considered during the `th step, and h` =∞ otherwise.
Then h` and y` have the same probability distribution. Therefore,

PrQ[σ|Q /∈ Fmt ] ≥ PrQ

 r∑
j=1

yj <
1
2∆

 = PrQ,{z`}`∈[r]

 r∑
j=1

hj <
1
2∆


≥ Pr{z`}`∈[r]

 r∑
j=1

zj <
1
2∆

 ≥ 1− Pr{z`}`∈[r]

 r∑
j=1

zj >
1
2εn

 .

Since z` ∼ G(ρ2) for every ` ∈ [r] and they are mutually independent, we know by
Fact A.4 that their sum distributes as a negative binomial random variable, and that
Pr{z`}`∈[r] [

∑r
j=1 zj >

1
2εn] = Pr[Bin( 1

2εn, ρ
2) < r]. Let µ = E[Bin( 1

2εn, ρ
2)] = 1

2εnρ
2, and

recall that ρ = 1− e− s
n . Applying Fact A.1 we get ρ ≥ s

2n , so µ ≥
εs2

8n . For s = 20
√

tn
ε , the

expected value of µ is at least 50t, which is at least 10r. Using a tail bound for the binomial
distribution (Fact A.3) we conclude that

Pr
[

1
2Bin(εn, ρ) < r

]
≤ Pr

[
1
2Bin(εn, ρ) < 1

10µ
]
≤ e−

( 9
10 )2µ

2 ≤ e− 2
5µ ≤ e− 2

5 ·50t ≤ e−20 <
1
6 ,

which means that PrQ
[
σ|Q /∈ Fmt

]
≥ 5/6, as claimed. J
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The upper bound in Theorem 1.3 follows by combining Observation 3.7 with Lemma 5.6 and
Observation 3.3 (in an analogous fashion to what was shown in the proof of Theorem 1.1).
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A Basic facts and claims

I Fact A.1 (Exponential inequality). For 0 ≤ p ≤ 1,

1
2p ≤ p−

1
2p

2 ≤ 1− e−p ≤ p .

I Fact A.2 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then

Pr[X ≥ a] ≤ E[x]
a

.

I Fact A.3 (Tail bound for the binomial distribution). Let µ denote the expected value of
Bin(n, p), i.e., µ = np. Then for δ ∈ [0, 1],

Pr[Bin(n, p) ≤ (1− δ)µ] ≤ e−
δ2µ

2 ,

I Fact A.4 (Sums of independent geometrically distributed random variables). Let W (n, p)
denote the sum of n independent geometric random variables with parameter p. The variable
W (n, p) is said to have negative binomial distribution, and it satisfies

Pr[W (n, p) ≤ m] = Pr[Bin(m, p) ≥ k] .
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B Proof of Observation 3.6

Since Mk is a hereditary property, del(σ,Mk, p) ≤ dist(σ,Mk, p). We next show that
dist(σ,Mk, p) ≤ del(σ,Mk, p). By the definition of del(σ,Mk, p), there exists a subset
D ⊆ [n] such that σ[n]\D ∈ Mk and p(D) = del(σ,Mk, p). If there is more than one such
subset, we select one with minimal size, so that D 6= [n]. We next define a sequence τ such
that τ ∈ Mk, and such that τi = σi for every i ∈ [n] \D, implying that dist(σ,Mk, p) ≤
dist(σ, τ, p) = p(D) ≤ del(σ,Mk, p), as desired. We define τ as follows: For each i ∈ [n], if
i /∈ D, then τi = σi, and if i ∈ D, then τi = σj for j /∈ D such that |j − i| is minimized
(breaking ties arbitrarily). To verify that τ ∈ Mk, assume, contrary to the claim, that
τ /∈ Mk. By Observation 3.3, this means that for m ∈ {⇑,⇓} and t = k + 3, there is a t-m
subsequence (x1, . . . , xt) with respect to τ . But by the definition of τ , this implies that
there exists a t-m subsequence (x′1, . . . , x′t) with respect to σ[n]\D, and we have reached a
contradiction.

C The lower bounds

In this section we prove Theorem 1.3 and the lower bound of Theorem 1.2. Given n, k and ε,
we construct a sequence and a corresponding probability distribution that are determined by
a parameter m. The two lower bounds differ in the setting of this parameter.

Let ε, k satisfy ε < 1/4 and k < n/4−1, and let m be an integer satisfying 2k ≤ m < n/2.
Consider the sequence σ = 2, 1, 4, 3, . . . , 2m, 2m − 1, 3m, 3m, . . . , 3m (where the value 3m
appears n − 2m times and was chosen as an arbitrary value greater than 2m). Define
p : [n] → [0, 1] by p(i) = ρ = 2ε

m for i ≤ 2m and p(i) = 1−2mρ
n−2m = 1−4ε

n−2m for i > 2m, so that∑
i∈[n] p(i) = 1. We shall show that σ is ε-far from being k-modal with respect to p, but the

probability that a sample of size s = 1
5

√
km
ε , selected according to p, contains a subsequence

that is not k-modal, is a small constant.
First, note that σ has exactly m descents: (1, 2), . . . , (2m− 1, 2m), that is: (2i− 1, 2i)

for every i ∈ [m]. Next, observe that any subsequence of σ with k descents is not k-modal
(in fact, k2 + 2 descents are sufficient). Thus, by deleting at most m− k indices, it is possible
to eliminate at most m− k descents, so that the resulting sequence is not k-modal. Since
p(i) = ρ for every i ∈ [2m], we get that del(σ,Fk, p) > (m− k)ρ ≥ (m/2)ρ = ε, where the
last inequality follows from the condition m ≥ 2k. By Observation 3.6, dist(σ,Fk, p) > ε, as
claimed.

We now turn to show that the probability of sampling a subsequence of σ that is not
k-modal is very low using s = 1

5

√
km
ε samples. We do so by bounding the number of descents

in the sampled subsequence, and the proof is a variant of a birthday-paradox argument. Let
q1, . . . , qs denote our s samples. For every two different indices α, β ∈ [s], we define the event
Eα,β = {(qα, qβ) is a descent}. Since there are exactly m descents and they are all disjoint,
there are m options (each of weight ρ) for a first index in a descent, and given such an index
there is exactly one option for the second index. As any two samples are independent, this
means that Pr[Eα,β ] = mρ ·ρ = mρ2 for every α, β ∈ [s] such that α 6= β. For every α, β ∈ [s]
such that α 6= β, let χα,β = 1Eα,β denote the indicator function of the event Eα,β . Then
X =

∑
α6=β χα,β is the number of descents in our sample. Using linearity of expectation, we

can calculate its expected value:

E[X] =
∑
α6=β

E[χα,β ] =
∑
α6=β

Pr[Eα,β ] = s(s− 1) ·mρ2 <
km

25ε2 ·m ·
(

2ε
m

)2
<

1
6k .
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By Markov’s inequality (Fact A.2),

Pr
[
X ≥ 1

2k
]
≤ Pr [X ≥ 3E[x]] ≤ 1

3 .

Therefore with probability at least 2/3 the sampled subsequence contains less than k/2
descents and thus must be k-modal. Hence the tester rejects with a small constant probability.

We next choose appropriate values of m and infer Theorem 1.3 and the lower bound of
Theorem 1.2.

Proof of Theorem 1.2. Set m = b(n − 1)/2c, and note that m fulfills its requirements as
k ≤ n/4− 1 by the premise of the theorem. We conclude that Ω(

√
km
ε ) = Ω(

√
kn
ε ) samples

are necessary for distribution-free one-sided error sample-based testing of k-modality. J

Proof of Theorem 1.3, lower bound. We shall assume that 2εn is an integer (otherwise,
the analysis is similar but more cumbersome). Set m = 2εn, and note that m fulfills its
requirements by the premise of the theorem that k ≤ εn and ε < 1/4. We get that both
ρ = 2ε/m = 1/n and 1−4ε

n−2m = 1/n, hence p is the uniform distribution over n. We conclude

that Ω(
√
km
ε ) = Ω(

√
kn
ε ) samples are necessary for one-sided error sample-based testing of

k-modality under the uniform distribution. J
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