
Almost Optimal Distribution-Free Junta Testing
Nader H. Bshouty
Department of Computer Science, Technion, Haifa, Israel
bshouty@cs.technion.ac.il

Abstract
We consider the problem of testing whether an unknown n-variable Boolean function is a k-junta
in the distribution-free property testing model, where the distance between functions is measured
with respect to an arbitrary and unknown probability distribution over {0, 1}n. Chen, Liu, Servedio,
Sheng and Xie [35] showed that the distribution-free k-junta testing can be performed, with one-sided
error, by an adaptive algorithm that makes Õ(k2)/ε queries. In this paper, we give a simple two-sided
error adaptive algorithm that makes Õ(k/ε) queries.

2012 ACM Subject Classification Mathematics of computing; Mathematics of computing→ Discrete
mathematics; Mathematics of computing → Probabilistic algorithms; Theory of computation →
Probabilistic computation

Keywords and phrases Distribution-free property testing, k-Junta

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.2

Related Version https://arxiv.org/abs/1901.00717

Acknowledgements We would like to thank Xi Chen for reading the early version of the paper and
for verifying the correctness of the algorithm.

1 Inroduction

Property testing of Boolean function was first considered in the seminal works of Blum, Luby
and Rubinfeld [11] and Rubinfeld and Sudan [42] and has recently become a very active
research area. See for example, [1, 2, 3, 4, 7, 8, 13, 14, 15, 16, 18, 19, 22, 24, 27, 29, 32, 33,
37, 36, 39, 43] and other works referenced in the surveys [26, 40, 41].

A function f : {0, 1}n → {0, 1} is said to be k-junta if it depends on at most k variables.
Juntas have been of particular interest to the computational learning theory community [9, 10,
12, 30, 34, 38]. A problem closely related to learning juntas is the problem of testing juntas:
Given black-box query access to a Boolean function f . Distinguish, with high probability,
the case that f is k-junta versus the case that f is ε-far from every k-junta.

In the uniform distribution framework, where the distance between two functions is
measured with respect to the uniform distribution, Ficher et al. [24] introduced the junta
testing problem and gave adaptive and non-adaptive algorithms that make poly(k)/ε queries.
Blais in [5] gave a non-adaptive algorithm that makes Õ(k3/2)/ε queries and in [6] an adaptive
algorithm that makes O(k log k + k/ε) queries. On the lower bounds side, Fisher et al. [24]
gave an Ω(

√
k) lower bound. Chockler and Gutfreund [21] gave an Ω(k) lower bound for

adaptive testing and, recently, Sağlam in [43] improved this lower bound to Ω(k log k). For
the non-adaptive testing Chen et al. [17] gave the lower bound Ω̃(k3/2)/ε.

In the distribution-free property testing, [28], the distance between Boolean functions is
measured with respect to an arbitrary and unknown distribution D over {0, 1}n. In this model,
the testing algorithm is allowed (in addition to making black-box queries) to draw random
x ∈ {0, 1}n according to the distribution D. This model is studied in [20, 23, 25, 31, 35].
For testing k-junta in this model, Chen et al. [35] gave a one-sided adaptive algorithm that
makes Õ(k2)/ε queries and proved a lower bound Ω(2k/3) for any non-adaptive algorithm.

© Nader H. Bshouty;
licensed under Creative Commons License CC-BY

34th Computational Complexity Conference (CCC 2019).
Editor: Amir Shpilka; Article No. 2; pp. 2:1–2:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bshouty@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2019.2
https://arxiv.org/abs/1901.00717
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Distribution-Free Junta Testing

The results of Halevy and Kushilevitz [31] gives a one-sided non-adaptive algorithm that
makes O(2k/ε) queries. The adaptive Ω(k log k) uniform-distribution lower bound from [43]
trivially extend to the distribution-free model.

In this paper, we close the gap between the adaptive lower and upper bound. We prove

I Theorem 1. For any ε > 0, there is a two-sided distribution-free adaptive algorithm for
ε-testing k-junta that makes Õ(k/ε) queries.

Our exact upper bound is O((k/ε) log(k/ε)) and therefore, by Sağlam [43] lower bound
of Ω(k log k), our bound is tight for any constant ε.

2 Preliminaries

In this section we give some notations follows by a formal definition of the model and some
preliminary known results

2.1 Notations
We start with some notations. Denote [n] = {1, 2, . . . , n}. For S ⊆ [n] and x = (x1, . . . , xn)
we write x(S) = {xi|i ∈ S}. For X ⊂ [n] we denote by {0, 1}X the set of all binary strings
of length |X| with coordinates indexed by i ∈ X. For x ∈ {0, 1}n and X ⊆ [n] we write
xX ∈ {0, 1}X to denote the projection of x over coordinates in X. We denote by 1X and
0X the all one and all zero strings in {0, 1}X , respectively. When we write xI = 0 we mean
xI = 0I . For X1, X2 ⊆ [n] where X1 ∩X2 = ∅ and x ∈ {0, 1}X1 , y ∈ {0, 1}X2 we write x ◦ y
to denote their concatenation, the string in {0, 1}X1∪X2 that agrees with x over coordinates
in X1 and agrees with y over X2. For X ⊆ [n] we denote X = [n]\X. We say that the
Boolean function f : {0, 1}n → {0, 1} is a literal if f ∈ {x1, . . . , xn, x̄1, . . . , x̄n}.

Given f, g : {0, 1}n → {0, 1} and a probability distribution D over {0, 1}n, we say that f
is ε-close to g with respect to D if Prx∈D[f(x) 6= g(x)] ≤ ε, where x ∈ D means x is chosen
from {0, 1}n according to the distribution D. We say that f is ε-far from g with respect to D
if Prx∈D[f(x) 6= g(x)] ≥ ε. We say that f is ε-far from every k-junta with respect to D if for
every k-junta g, f is ε-far from g with respect to D. We will use U to denote the uniform
distribution over {0, 1}n.

2.2 The Model
In this subsection, we define the model.

We consider the problem of testing juntas in the distribution-free testing model. In this
model, the algorithm has access to a k-junta f via a black-box that returns f(x) when a string
x is queried, and access to unknown distribution D via an oracle that returns x ∈ {0, 1}n
chosen randomly according to the distribution D.

A distribution-free testing algorithm A is a algorithm that, given as input a distance
parameter ε and the above two oracles,
1. if f is k-junta then A output “accept” with probability at least 2/3.
2. if f is ε-far from every k-junta with respect to the distribution D then it output “reject”

with probability at least 2/3.

We say that A is one-sided if it always accepts when f is k-junta, otherwise, it is called
two sided algorithm. The query complexity of a distribution-free testing algorithm is the
number of queries made on f .

N.H. Bshouty 2:3

2.3 Preliminaries Results
In this section, we give some known results that will be used in the sequel.

For a Boolean function f and X ⊂ [n], we say that X is a relevant set of f if there are
a, b ∈ {0, 1}n such that f(a) 6= f(bX ◦ aX). When X = {i} then we say that xi is relevant
variable of f . Obviously, if X is relevant set of f then x(X) contains at least one relevant
variable of f . In particular, we have

I Lemma 2. If {Xi}i∈[r] is a partition of [n] then for any Boolean function f the number
of relevant sets Xi of f is at most the number of relevant variables of f .

We will use the following folklore result that is formally proved in [35].

I Lemma 3. Let {Xi}i∈[r] be a partition of [n]. Let f be a Boolean function and u ∈ {0, 1}n.
If f(u) 6= f(0) then a relevant set X` of f with a string v ∈ {0, 1}n that satisfies f(v) 6=
f(0X`

◦ vX`
) can be found with dlog2 re queries.

The following is from [6]

I Lemma 4. There exists a one-sided adaptive algorithm, UniformJunta(f, k, ε, δ), for
ε-testing k-junta that makes O(((k/ε)+k log k) log(1/δ)) queries and rejects f with probability
at least 1− δ when it is ε-far from every k-junta with respect to the uniform distribution.

The following is from [35].

I Lemma 5. Let D be any probability distribution over {0, 1}n. If f is ε-far from every
k-junta with respect to D then for any J ⊆ [n], |J | ≤ k we have

Prx∈D,y∈U [f(x) 6= f(xJ ◦ yJ̄)] ≥ ε.

Proof. Let J ⊆ [n] of size |J | ≤ k. For every fixed y ∈ {0, 1}n the function f(xJ ◦ yJ̄) is
k-junta and therefore Prx∈D[f(x) 6= f(xJ ◦ yJ̄)] ≥ ε. Therefore

Prx∈D,y∈U [f(x) 6= f(xJ ◦ yJ̄)] ≥ ε. J

3 The Algorithm

In this section, we prove the correctness of the algorithm and show that it makes Õ(k/ε)
queries. We first give an overview of the algorithm then prove its correctness and analyze its
query complexity.

3.1 Overview of the Algorithm
In this subsection we give an overview of the algorithm. We will use the notation in
Subsection 2.1 and the definitions and Lemmas in Subsection 2.3.

Consider the algorithm in Figure 1. In steps 1-2, the algorithm uniformly at random
partitions [n] into r = 2k2 disjoint sets X1, . . . , Xr. Lemma 6 shows that,

I Fact 1. If the function is k-junta then with high probability (w.h.p), each set of variables
x(Xi) = {xj |j ∈ Xi} contains at most one relevant variable.

In steps 3-12, the algorithm finds

I Fact 2. relevant sets {Xi}i∈I such that for X = ∪i∈IXi, w.h.p., the function f(xX ◦ 0X)
is ε/2-close to f with respect to D.

CCC 2019

2:4 Distribution-Free Junta Testing

To find such set, the algorithm, after finding relevant sets {Xi}i∈I′ , chooses random string
u ∈ D and tests if f(uX′ ◦ 0X′) 6= f(u) where X ′ = ∪i∈I′Xi. The variable t(X ′) counts for
how many random strings u ∈ D we get f(uX′ ◦ 0X′) = f(u). If t(X ′) reaches the value
O((log k)/ε) then, w.h.p, f(xX′ ◦ 0X′) is ε/2-close to f with respect to D and X = X ′.
Otherwise, f(uX′ ◦ 0X′) 6= f(u) and using Lemma 3 the algorithm finds a new relevant set
X`. This is proved in Lemma 10.

In addition, for each relevant set X`, ` ∈ I, it finds a string v(`) that satisfies f(v(`)) 6=
f(0X`

◦ v(`)
X`

). Obviously, if |I| > k then, since each relevant set contains at least one relevant
variable, the target is not k-junta and the algorithm rejects. See Lemma 2.

Now one of the key ideas is the following: If f is k-junta then f(xX ◦ 0X) is k-junta. If f
is ε-far from every k-junta with respect to D then since, by Fact 2, w.h.p., f(xX ◦ 0X) is
ε/2-close to f with respect to D we have that,

I Fact 3. If f is ε-far from every k-junta with respect to D then, w.h.p., f(xX ◦ 0X) is
ε/2-far from every k-junta with respect to D.

Now, since each X`, ` ∈ I is relevant set and f(v(`)) 6= f(0X`
◦v(`)

X`
), for ` ∈ I the function

f(xX`
◦ v(`)

X`
) is non-constant. In steps 13-17, the algorithm tests that,

I Fact 4. w.h.p., for each ` ∈ I there is τ(`) ∈ X` such that f(xX`
◦ v(`)

X`
) is close to some

literal in {xτ(`), xτ(`)}, with respect to the uniform distribution.

This is done using the procedure UniformJunta in Lemma 4.
If f is k-junta then, by Fact 1 and 2, w.h.p., it passes this test (does not output reject).

This is Lemma 7. If the algorithm does not pass this test, it rejects. If f is not k-junta and
it passes this test, then the statement in Fact 4 is true. This is proved in Lemma 11.

Consider now steps 18-28. First, let us consider a function f that is ε-far from every
k-junta with respect to D. Let J = {τ(`) | ` ∈ I} where τ(`) is as defined in Fact 4. Since by
Fact 3, w.h.p., f(xX ◦ 0X) is ε/2-far from every k-junta with respect to D and |J | = |I| ≤ k,
by Lemma 5, w.h.p.,

Pry∈U,x∈D[f(xX ◦ 0X) 6= f(xJ ◦ yX\J ◦ 0X)] ≥ ε/2.

So we need to test whether f(xX ◦ 0X) is ε/2-far from f(xJ ◦ yX\J ◦ 0X) (those are equal in
the case when f is k-Junta). This is the last test we would like to do but the problem is that
we do not know J , so we cannot use this test as is. So we change it, as is done in [35], to an
equivalent test as follows

Prz∈U,x∈D[f(xX ◦ 0X) 6= f((xX + zX) ◦ 0X) | zJ = 0J] ≥ ε/2.

To be able to draw uniformly random zX with zJ = 0J , we use Fact 4, that is, the fact
that each f(xX`

◦ v(`)
X`

) is close to one of the literals in {xτ(`), xτ(`)}. For every ` ∈ I, the

algorithm draws uniformly random w := zX`
and then using the fact that f(xX`

◦ v(`)
X`

) is
close to one of the literals in {xτ(`), xτ(`)} where τ(`) ∈ X` the algorithm tests in which set
Y`,0 := {j ∈ X`| wj = 0} or Y`,1 := {j ∈ X`| wj = 1} the index τ(`) falls. If τ(`) ∈ Y`,0
then the entry τ(`) in zX`

is zero and if τ(`) ∈ Y`,1 then the entry τ(`) in zX`
is one. In

the latter case, the algorithm replaces zX`
with zX`

(negation of each entry in zX`
) which is

also uniformly random. This gives a random uniform zX`
with zτ(`) = 0. We do that for

every ` ∈ I and get a random uniform z with zJ = 0. This is proved in Lemma 12. Then the
algorithm rejects if f(xX ◦ 0X) 6= f((xX + zX) ◦ 0X). If f(xX ◦ 0X) is ε/2-far from every

N.H. Bshouty 2:5

k-junta then, by Lemma 5, f(xX ◦ 0X) is ε/2-far from f(xJ ◦ yX\J ◦ 0X), and the algorithm,
with one test, rejects with probability at least ε/2. Therefore, by repeating this test O(1/ε)
times the algorithm rejects w.h.p. This is proved in Lemma 13.

Now we consider f that is k-junta. Obviously, if f is k-junta then f(xX ◦ 0X) =
f((xX + zX) ◦ 0X) when zJ = 0 and the algorithm accepts. This is because x(J) are the
relevant variables in f(xX ◦ 0X). This is proved in Lemma 8.

3.2 The algorithm for k-Junta
In this subsection, we show that if the target function f is k-junta then the algorithm accepts
with probability at least 2/3.

We first prove

I Lemma 6. Consider steps 1-2 in the algorithm. If f is a k-junta then, with probability at
least 2/3, for each i ∈ [r], the set x(Xi) = {xj |j ∈ Xi} contains at most one relevant variable
of f .

Proof. Let xi1 and xi2 be two relevant variables in f . The probability that xi1 and xi2 are
in the same set is equal to 1/r. By the union bound, it follows that the probability that
some relevant variables xi1 and xi2 in f are in the same set is at most

(
k
2
)
/r ≤ 1/3. J

We now show that w.h.p. the algorithm reaches the final test in the algorithm

I Lemma 7. If f is k-junta and each x(Xi) contains at most one relevant variable of f then
1. Each x(Xi), i ∈ I, contains exactly one relevant variable.
2. The algorithm reaches step 18

Proof. By Lemma 3 and steps 7-9, for ` ∈ I, f(v(`)) 6= f(0X`
◦ v(`)

X`
) and therefore x(X`)

contains exactly one relevant variable. Thus, for every ` ∈ I, f(xX`
◦ v(`)

X`
) is a literal.

If the algorithm does not reach step 18, then it either halts in step 10, 15 or 17. If it
halts in step 10 then |I| > k and therefore, by Lemma 2, f contains more than k relevant
variables and then it is not k-Junta. If it halts in step 15 then, by Lemma 4, for some X`,
` ∈ I, f(xX`

◦ v(`)
X`

) is not 1-Junta (literal or constant function) and therefore X` contains at

least two relevant variables. If it halts in step 17, then f(bX`
◦ v(`)

X`
) = f(bX`

◦ v(`)
X`

) and then

f(xX`
◦ v(`)

X`
) is not a literal. In all cases we get a contradiction. J

We now give two Lemmas that show that, with probability at least 2/3, the algorithm
accepts k-junta.

I Lemma 8. If f is k-Junta and each x(Xi) contains at most one relevant variable of f
then the algorithm outputs “accept”.

Proof. By Lemma 7, the algorithm reaches step 18. We now show that it reaches step 29.
Now we need to show that the algorithm does not halt in step 25 or 28.

Since Y`,0, Y`,1 is a partition of X`, ` ∈ I and X` contains exactly one relevant variable in
x(X`) of f , this variable is either in x(Y`,0) or in x(Y`,1) but not in both. Suppose w.l.o.g. it
is in x(Y`,0) and not in x(Y`,1). Then f(xY`,0 ◦ bY`,1 ◦ v

(`)
X`

) is a literal and f(xY`,1 ◦ bY`,0 ◦ v
(`)
X`

)

is a constant function. This implies that for any b, f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) 6= f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

)

and f(bY`,1 ◦ bY`,0 ◦ v
(`)
X`

) = f(bY`,1 ◦ bY`,0 ◦ v
(`)
X`

). Therefore, G`,0 = h and G`,1 = 0. Thus the
algorithm does not halt in step 25.

CCC 2019

2:6 Distribution-Free Junta Testing

Algorithm SimpleDk−Junta(f,D, ε)
Input: Oracle that accesses a Boolean function f and

oracle that draws a random x ∈ {0, 1}n according to the distribution D.
Output: Either “accept” or “reject”

Partition [n] into r sets
1. Set r = 2k2.
2. Choose uniformly at random a partition X1, X2, . . . , Xr of [n]

Find a close function and relevant sets
3. Set X = ∅; I = ∅; t(X) = 0
4. Repeat M = 2k ln(15k)/ε times
5. Choose u ∈ D.
6. t(X)← t(X) + 1
7. If f(uX ◦ 0X) 6= f(u) then
8. Binary search: find a new relevant set X`; X ← X ∪X`; I ← I ∪ {`}
9. and a string v(`) ∈ {0, 1}n such that f(v(`)) 6= f(0X`

◦ v(`)
X`

).
10. If |I| > k then output “reject” and halt.
11. t(X) = 0.
12. If t(X) = 2 ln(15k)/ε then Goto 13.

Tests if each relevant set is close to a literal
13.For every ` ∈ I do
14. If UniformJunta(f(xX`

◦ v(`)
X`

), 1, 1/30, 1/15)=“reject”
15. then output “reject” and halt
16. Choose b ∈ U
17. If f(bX`

◦ v(`)
X`

) = f(bX`
◦ v(`)

X`
) then output “reject” and halt

The final test of Lemma 5
18.Repeat M ′ = (2 ln 15)/ε times
19. Choose w ∈ U ; z = 0X
20. For every ` ∈ I do
21. Set Y`,ξ = {j ∈ X`|wj = ξ} for ξ ∈ {0, 1}.
22. Set G`,0 = G`,1 = 0;
23. Repeat h = ln(15M ′k)/ ln(4/3) times
24. Choose b ∈ U ;

If f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) 6= f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) then G`,0 ← G`,0 + 1
If f(bY`,1 ◦ bY`,0 ◦ v

(`)
X`

) 6= f(bY`,1 ◦ bY`,0 ◦ v
(`)
X`

) then G`,1 ← G`,1 + 1
25. If ({G`,0, G`,1} 6= {0, h}) then output “reject” and halt
26. If G`,0 = h then z ← z ◦ wX`

else z ← z ◦ wX`

27. Choose u ∈ D
28. If f(uX ◦ 0X) 6= f((uX + zX) ◦ 0X) then output “reject” and halt.
29.Output “accept”

Figure 1 A two-sided distribution-free adaptive algorithm for ε-testing k-junta.

N.H. Bshouty 2:7

Now for every X`, ` ∈ I, let τ(`) ∈ X` be such that f(xX`
◦ v(`)

X`
) ∈ {xτ(`), xτ(`)}. If

τ(`) ∈ Y`,0 then G`,0 = h and then by step 26, zτ(`) = wτ(`) = 0. If τ(`) ∈ Y`,1 then G`,1 = h

and then zτ(`) = wτ(`) = 0. Therefore for every relevant variable xτ(`) in f̂ = f(xX ◦ 0X)
we have zτ(`) = 0 which implies that f(uX ◦ 0X) = f((uX + zX) ◦ 0X) and therefore the
algorithm does not halt in step 28. J

I Lemma 9. If f is k-Junta then the algorithm outputs “accept” with probability at least 2/3
.

Proof. The result follows from Lemma 6 and Lemma 8. J

3.3 The Algorithm for ε-Far Functions
In this subsection, we prove that if f is ε-far from every k-junta then the algorithm rejects
with probability at least 2/3.

The first lemma shows that, w.h.p., f(uX ◦ 0X) is ε/2-close to f .

I Lemma 10. If the algorithm reaches step 13 then t(X) = 2 ln(15k)/ε and |I| ≤ k. If

Pru∈D[f(uX ◦ 0X) 6= f(u)] ≥ ε/2

then the algorithm reaches step 13 with probability at most 1/15.

Proof. The algorithm does not reaches step 13 if and only if it halts in step 10 and then
|I| > k. The size of I is increased by one each time the condition, f(uX ◦ 0X) 6= f(u), in
step 7, is true. Therefore, if the algorithm reaches step 13 then the condition in step 7 was
true at most k times and |I| ≤ k. Then steps 8-11 are executed at most k times. Thus, t() is
updated to 0 at most k times. The loop 5-12 is repeated M times and t() is updated to 0 at
most k times and therefore there is X for which t(X) = M/k = 2 ln(15k)/ε. This implies
that when the algorithm reaches step 13, we have t(X) = 2 ln(15k)/ε.

The probability that the algorithm reaches step 13 with Pru∈D[f(uX ◦ 0X) 6= f(u)] > ε/2
is the probability that for one (of the at most k) X ′, Pru∈D[f(uX′ ◦ 0X′) 6= f(u)] > ε/2 and
t(X ′) = 2 ln(15k)/ε. By the union bound, this probability is less than

k
(

1− ε

2

)2 ln(15k)/ε
= 1

15 . J

In the following lemma we show that, w.h.p, each f(xX`
◦ v(`)

X`
) is close to a literal.

I Lemma 11. Consider steps 13-15. If for some ` ∈ I, f(xX`
◦ v(`)

X`
) is (1/30)-far from

every literal with respect to the uniform distribution then, with probability at least 1− (2/15),
the algorithm rejects.

Proof. If f(xX`
◦v(`)

X`
) is (1/30)-far from every literal with respect to the uniform distribution

then it is either (case 1) (1/30)-far from every 1-Junta (literal or constant) or (case 2)
(1/30)-far from every literal and (1/30)-close to 0-Junta. In case 1, by Lemma 4, with
probability at least 1− (1/15), UniformJunta (f(xX`

◦ v(`)
X`

), 1, 1/30, 1/15) = “reject” and

then the algorithm rejects. In case 2, if f(xX`
◦ v(`)

X`
) is 1/30-close to some 0-Junta then

it is either (1/30)-close to 0 or (1/30)-close to 1. Suppose it is (1/30)-close to 0. Let b
be a random uniform string generated in steps 16. Then b is random uniform and for
g(x) = f(xX`

◦ v(`)
X`

) we have

CCC 2019

2:8 Distribution-Free Junta Testing

Pr[The algorithm does not reject] = Pr
[
g(b) 6= g(b)

]
= Pr[g(b) = 1 ∧ g(b) = 0] + Pr[g(b) = 0 ∧ g(b) = 1]
≤ Pr[g(b) = 1] + Pr[g(b) = 1]

≤ 1
15 .

By the union bound the result follows. J

In the next lemma we prove that, w.h.p, the string z generated in steps 19-26 satisfies
zJ = 0 where x(J) are relevant variables of f(uX ◦ 0X).

I Lemma 12. Consider steps 19-26. If for every ` ∈ I the function f(xX`
◦ v(`)

X`
) is (1/30)-

close to a literal in {xτ(`), x̄τ(`)} with respect to the uniform distribution, where τ(`) ∈ X`,
and {G`,0, G`,1} = {0, h} then, with probability at least 1−k(3/4)h, we have: For every ` ∈ I,
zτ(`) = 0.

Proof. Fix some `. Suppose f(xX`
◦ v(`)

X`
) is (1/30)-close to xτ(`) with respect to the uniform

distribution. The case when it is (1/30)-close to xτ(`) is similar. Since X` = Y`,0 ∪ Y`,1
and Y`,0 ∩ Y`,1 = ∅ we have that τ(`) ∈ Y`,0 or τ(`) ∈ Y`,1, but not both. Suppose
τ(`) ∈ Y`,0. The case where τ(`) ∈ Y`,1 is similar. Define the random variable Z(xX`

) = 1 if
f(xX`

◦ v(`)
X`

) 6= xτ(`) and Z(xX`
) = 0 otherwise. Then

ExX`
∈U [Z(xX`

)] ≤ 1
30 .

Therefore

ExY`,1 ∈UExY`,0 ∈U [Z(xY`,0 ◦ xY`,1)] ≤ 1
30

and by Markov’s bound

PrxY`,1 ∈U

[
ExY`,0 ∈U [Z(xY`,0 ◦ xY`,1)] ≥ 2

15

]
≤ 1

4 .

That is, for a random uniform string b ∈ {0, 1}n, with probability at least 3/4, f(xY`,0 ◦
bY`,1 ◦ v

(`)
X`

) is (2/15)-close to xτ(`) with respect to the uniform distribution. Now, given

that f(xY`,0 ◦ bY`,1 ◦ v
(`)
X`

) is (2/15)-close to xτ(`) with respect to the uniform distribution the

probability that G`,0 = 0 is the probability that f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) = f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

)
for h random uniform strings b ∈ {0, 1}n. Let b(1), . . . , b(h) be h random uniform strings in
{0, 1}n, V (b) be the event f(bY`,0 ◦ bY`,1 ◦ v

(`)
X`

) = f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) and A the event that

f(xY`,0 ◦ bY`,1 ◦ v
(`)
X`

) is (2/15)-close to xτ(`) with respect to the uniform distribution. Let

g(xY`,0) = f(xY`,0 ◦ bY`,1 ◦ v
(`)
X`

). Then

Pr[V (b)|A] = Pr[g(bY`,0) = g(bY`,0)|A]
= Pr[(g(bY`,0) = bτ(`) ∧ g(bY`,0) = bτ(`)) ∨

(g(bY`,0) = bτ(`) ∧ g(bY`,0) = bτ(`))|A]
≤ Pr[g(bY`,0) 6= bτ(`) ∨ g(bY`,0) 6= bτ(`))|A]

≤ Pr[g(bY`,0) 6= bτ(`)|A] + Pr[g(bY`,0) 6= bτ(`))|A] ≤ 4
15 .

N.H. Bshouty 2:9

Since τ(`) ∈ Y`,0, we have wτ(`) = 0. Therefore, by step 26 and since τ(`) ∈ X`,

Pr[zτ(`) = 1] = Pr[G`,0 = 0 ∧G`,1 = h]
≤ Pr[G`,0 = 0] = Pr[(∀j ∈ [h])V (b(j))]

= (Pr[V (b)])h ≤
(
Pr[V (b)|A] + Pr[A]

)h ≤ (4/15 + 1/4)h ≤ (3/4)h

Therefore, the probability that zτ(`) = 1 for some ` ∈ I is at most k(3/4)h. J

We now show that w.h.p the algorithm reject if f is ε-far from every k-junta

I Lemma 13. If f is ε-far from every k-junta with respect to D then, with probability at
least 2/3, the algorithm outputs “reject”.

Proof. If the algorithm stops in step 10 then we are done. Therefore we may assume that

|I| ≤ k. (1)

By Lemma 10, if Pru∈D[f(uX ◦ 0X) 6= f(u)] ≥ ε/2 then, with probability at most 1/15, the
algorithm reaches step 13. So we may assume that (failure probability 1/15)

Pru∈D[f(uX ◦ 0X) 6= f(u)] ≤ ε/2. (2)

Since f is ε-far from every k-junta with respect to D and f(xX ◦ 0X) is ε/2-close to f with
respect to D we have f(xX ◦0X) is (ε/2)-far from every k-junta with respect to D. Therefore,
by Lemma 5,

Pr
u∈D,y∈U

[f(uX ◦ 0X) = f(uI ◦ yX\I ◦ 0X)] ≥ 1− ε

2 . (3)

By Lemma 11, if some f(xX`
◦ v(`)

X`
) is (1/30)-far from any literal with respect to the

uniform distribution then, with probability at least 1− (2/15), the algorithm rejects. So we
may assume (failure probability 2/15) that every f(xX`

◦ v(`)
X`

) is (1/30)-close to some xτ(`)

or xτ(`) with respect to the uniform distribution, where τ(`) ∈ X`.
Let z(1), . . . , z(M ′) be the strings generated in step 26. By Lemma 12, with probability

at least 1 −M ′k(3/4)h ≥ 1 − (1/15), every z(i) generated in step 26 satisfies z(i)
τ(`) = 0 for

all ` ∈ I. Also, since the distribution of wX`
and wX`

is uniform, the distribution of z(i)
X\I

and uX\I + z
(i)
X\I is uniform. We now assume (failure probability 1/15) that z(i)

I = 0 for all i.
Therefore, by (3),

Pr
u∈D,z(i)

X\I
∈U

[(∀i)f(uX ◦ 0X) = f((uX + z
(i)
X) ◦ 0X)]

=

 Pr
u∈D,z(1)

X\I
∈U

[f(uX ◦ 0X) = f((uX + z
(1)
X) ◦ 0X)]

M ′

=
(

Pr
u∈D,y∈U

[f(uX ◦ 0X) = f(uI ◦ yX\I ◦ 0X)]
)M ′

≤ (1− ε/2)M
′
≤ 1

15 .

Therefore, the failure probability of an output “reject” is at most 1/15+2/15+1/15+1/15 =
1/3. J

CCC 2019

2:10 Distribution-Free Junta Testing

3.4 The Query Complexity of the Algorithm
In this section we show that

I Lemma 14. The query complexity of the algorithm is

Õ

(
k

ε

)
.

Proof. The condition in step 7 requires two queries and is executed at mostM = 2k ln(15k)/ε
times. This is 2M = O((k log k)/ε) queries. Steps 8 is executed at most k + 1 times.
This is because each time it is executed, the value of |I| is increased by one, and when
|I| = k+1 the algorithm rejects. By Lemma 3, to find a new relevant set the algorithm makes
O(log r) = O(log k) queries. This is O(k log k) queries. Steps 14 and 17 are executed |I| ≤ k
times, and by Lemma 4, the total number of queries made is O(1/(1/30) log(15))k+2k = O(k).

The final test in the algorithm is repeated M ′ = (2 ln 15)/ε times (step 18) and each
time, and for each ` ∈ I, (step 20) it repeats h times (step 23) two conditions that takes 2
queries each (step 24). This takes 4M ′kh = O((k/ε) ln(k/ε)) queries. The number of queries
in step 28 is 2M ′ = O(1/ε). Therefore the total number of queries is

O

(
k

ε
ln k
ε

)
. J

4 Open Problems

In this paper we proved that for any ε > 0, there is a two-sided distribution-free adaptive
algorithm for ε-testing k-junta that makes Õ(k/ε) queries. It is also interesting to find a
one-sided distribution-free adaptive algorithm with such query complexity.

Chen et al. [35] proved the lower bound Ω(2k/3) for any non-adaptive (one round)
algorithm. What is the minimal number rounds one needs to get poly(k/ε) query complexity?
Can O(1)-round algorithms solve the problem with poly(k/ε) queries?

In the uniform distribution framework, where the distance between two functions is
measured with respect to the uniform distribution Blais in [5] gave a non-adaptive algorithm
that makes Õ(k3/2)/ε queries and in [6] an adaptive algorithm that makes O(k log k + k/ε)
queries. On the lower bounds side, Sağlam in [43] gave an Ω(k log k) lower bound for
adaptive testing and Chen et al. [17] gave an Ω̃(k3/2)/ε lower bound for the non-adaptive
testing. Thus in both the adaptive and non-adaptive uniform distribution settings, the query
complexity of k-junta testing has now been pinned down to within logarithmic factors. It is
interesting to study O(1)-round algorithms. For example, what is the query complexity for
2-round algorithm.

References
1 Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing Reed-

Muller codes. IEEE Trans. Information Theory, 51(11):4032–4039, 2005. doi:10.1109/TIT.
2005.856958.

2 Roksana Baleshzar, Meiram Murzabulatov, Ramesh Krishnan S. Pallavoor, and Sofya Rask-
hodnikova. Testing Unateness of Real-Valued Functions. CoRR, abs/1608.07652, 2016.
arXiv:1608.07652.

3 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 1021–1032, 2016. doi:10.1145/2897518.
2897567.

https://doi.org/10.1109/TIT.2005.856958
https://doi.org/10.1109/TIT.2005.856958
http://arxiv.org/abs/1608.07652
https://doi.org/10.1145/2897518.2897567
https://doi.org/10.1145/2897518.2897567

N.H. Bshouty 2:11

4 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David
Zuckerman. Optimal Testing of Reed-Muller Codes. In Property Testing - Current Research
and Surveys, pages 269–275. Springer, 2010. doi:10.1007/978-3-642-16367-8_19.

5 Eric Blais. Improved Bounds for Testing Juntas. In Approximation, Randomization and Com-
binatorial Optimization. Algorithms and Techniques, 11th International Workshop, APPROX
2008, and 12th International Workshop, RANDOM 2008, Boston, MA, USA, August 25-27,
2008. Proceedings, pages 317–330, 2008. doi:10.1007/978-3-540-85363-3_26.

6 Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
151–158, 2009. doi:10.1145/1536414.1536437.

7 Eric Blais, Joshua Brody, and Kevin Matulef. Property Testing Lower Bounds via Commu-
nication Complexity. In Proceedings of the 26th Annual IEEE Conference on Computational
Complexity, CCC 2011, San Jose, California, USA, June 8-10, 2011, pages 210–220, 2011.
doi:10.1109/CCC.2011.31.

8 Eric Blais and Daniel M. Kane. Tight Bounds for Testing k-Linearity. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques -
15th International Workshop, APPROX 2012, and 16th International Workshop, RAN-
DOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings, pages 435–446, 2012.
doi:10.1007/978-3-642-32512-0_37.

9 Avrim Blum. Learning a Function of r Relevant Variables. In Computational Learning
Theory and Kernel Machines, 16th Annual Conference on Computational Learning Theory
and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003,
Proceedings, pages 731–733, 2003. doi:10.1007/978-3-540-45167-9_54.

10 Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine
Learning. Artif. Intell., 97(1-2):245–271, 1997. doi:10.1016/S0004-3702(97)00063-5.

11 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-Testing/Correcting with Ap-
plications to Numerical Problems. J. Comput. Syst. Sci., 47(3):549–595, 1993. doi:
10.1016/0022-0000(93)90044-W.

12 Nader H. Bshouty and Areej Costa. Exact learning of juntas from membership queries. Theor.
Comput. Sci., 742:82–97, 2018. doi:10.1016/j.tcs.2017.12.032.

13 Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions
over the hypercube. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 411–418, 2013. doi:10.1145/2488608.2488660.

14 Deeparnab Chakrabarty and C. Seshadhri. A Õ(n) Non-Adaptive Tester for Unateness. CoRR,
abs/1608.06980, 2016. arXiv:1608.06980.

15 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean Function Monotonicity
Testing Requires (Almost) n1/2 Non-adaptive Queries. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 519–528, 2015. doi:10.1145/2746539.2746570.

16 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for
monotonicity testing. CoRR, abs/1412.5655, 2014. arXiv:1412.5655.

17 Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the Query
Complexity of Non-Adaptive Junta Testing. In 32nd Computational Complexity Conference,
CCC 2017, July 6-9, 2017, Riga, Latvia, pages 26:1–26:19, 2017. doi:10.4230/LIPIcs.CCC.
2017.26.

18 Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds
for testing monotonicity and unateness. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 523–536, 2017. doi:10.1145/3055399.3055461.

19 Xi Chen, Erik Waingarten, and Jinyu Xie. Boolean Unateness Testing with Õ(n3/4) Adaptive
Queries. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 868–879, 2017. doi:10.1109/FOCS.2017.85.

CCC 2019

https://doi.org/10.1007/978-3-642-16367-8_19
https://doi.org/10.1007/978-3-540-85363-3_26
https://doi.org/10.1145/1536414.1536437
https://doi.org/10.1109/CCC.2011.31
https://doi.org/10.1007/978-3-642-32512-0_37
https://doi.org/10.1007/978-3-540-45167-9_54
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1016/j.tcs.2017.12.032
https://doi.org/10.1145/2488608.2488660
http://arxiv.org/abs/1608.06980
https://doi.org/10.1145/2746539.2746570
http://arxiv.org/abs/1412.5655
https://doi.org/10.4230/LIPIcs.CCC.2017.26
https://doi.org/10.4230/LIPIcs.CCC.2017.26
https://doi.org/10.1145/3055399.3055461
https://doi.org/10.1109/FOCS.2017.85

2:12 Distribution-Free Junta Testing

20 Xi Chen and Jinyu Xie. Tight Bounds for the Distribution-Free Testing of Monotone Con-
junctions. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 54–71, 2016.
doi:10.1137/1.9781611974331.ch5.

21 Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Inf. Process. Lett.,
90(6):301–305, 2004. doi:10.1016/j.ipl.2004.01.023.

22 Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A.
Servedio, and Andrew Wan. Testing for Concise Representations. In 48th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence,
RI, USA, Proceedings, pages 549–558, 2007. doi:10.1109/FOCS.2007.32.

23 Elya Dolev and Dana Ron. Distribution-Free Testing for Monomials with a Sublinear Number
of Queries. Theory of Computing, 7(1):155–176, 2011. doi:10.4086/toc.2011.v007a011.

24 Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Alex Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings on
34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,
Canada, pages 474–483, 2002. doi:10.1145/509907.509977.

25 Dana Glasner and Rocco A. Servedio. Distribution-Free Testing Lower Bound for Basic Boolean
Functions. Theory of Computing, 5(1):191–216, 2009. doi:10.4086/toc.2009.v005a010.

26 Oded Goldreich, editor. Property Testing - Current Research and Surveys, volume 6390 of
Lecture Notes in Computer Science. Springer, 2010. doi:10.1007/978-3-642-16367-8.

27 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
Monotonicity. Combinatorica, 20(3):301–337, 2000. doi:10.1007/s004930070011.

28 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property Testing and its Connection to
Learning and Approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

29 Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka, and Karl Wimmer.
Testing Fourier Dimensionality and Sparsity. SIAM J. Comput., 40(4):1075–1100, 2011.
doi:10.1137/100785429.

30 David Guijarro, Jun Tarui, and Tatsuie Tsukiji. Finding Relevant Variables in PAC Model
with Membership Queries. In Algorithmic Learning Theory, 10th International Conference,
ALT ’99, Tokyo, Japan, December 6-8, 1999, Proceedings, page 313, 1999. doi:10.1007/
3-540-46769-6_26.

31 Shirley Halevy and Eyal Kushilevitz. Distribution-Free Property-Testing. SIAM J. Comput.,
37(4):1107–1138, 2007. doi:10.1137/050645804.

32 Subhash Khot, Dor Minzer, and Muli Safra. On Monotonicity Testing and Boolean Iso-
perimetric Type Theorems. In IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 52–58, 2015.
doi:10.1109/FOCS.2015.13.

33 Subhash Khot and Igor Shinkar. An Õ(n) Queries Adaptive Tester for Unateness. CoRR,
abs/1608.02451, 2016. arXiv:1608.02451.

34 Richard J. Lipton, Evangelos Markakis, Aranyak Mehta, and Nisheeth K. Vishnoi. On the
Fourier Spectrum of Symmetric Boolean Functions with Applications to Learning Symmetric
Juntas. In 20th Annual IEEE Conference on Computational Complexity (CCC 2005), 11-15
June 2005, San Jose, CA, USA, pages 112–119, 2005. doi:10.1109/CCC.2005.19.

35 Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. Distribution-free
junta testing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 749–759, 2018.
doi:10.1145/3188745.3188842.

36 Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing ±1-weight
halfspace. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, 12th International Workshop, APPROX 2009, and 13th International Workshop,
RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, pages 646–657, 2009.
doi:10.1007/978-3-642-03685-9_48.

https://doi.org/10.1137/1.9781611974331.ch5
https://doi.org/10.1016/j.ipl.2004.01.023
https://doi.org/10.1109/FOCS.2007.32
https://doi.org/10.4086/toc.2011.v007a011
https://doi.org/10.1145/509907.509977
https://doi.org/10.4086/toc.2009.v005a010
https://doi.org/10.1007/978-3-642-16367-8
https://doi.org/10.1007/s004930070011
https://doi.org/10.1145/285055.285060
https://doi.org/10.1137/100785429
https://doi.org/10.1007/3-540-46769-6_26
https://doi.org/10.1007/3-540-46769-6_26
https://doi.org/10.1137/050645804
https://doi.org/10.1109/FOCS.2015.13
http://arxiv.org/abs/1608.02451
https://doi.org/10.1109/CCC.2005.19
https://doi.org/10.1145/3188745.3188842
https://doi.org/10.1007/978-3-642-03685-9_48

N.H. Bshouty 2:13

37 Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing Halfspaces.
SIAM J. Comput., 39(5):2004–2047, 2010. doi:10.1137/070707890.

38 Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning functions of k relevant
variables. J. Comput. Syst. Sci., 69(3):421–434, 2004. doi:10.1016/j.jcss.2004.04.002.

39 Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing Basic Boolean Formulae. SIAM
J. Discrete Math., 16(1):20–46, 2002. URL: http://epubs.siam.org/sam-bin/dbq/article/
40744.

40 Dana Ron. Property Testing: A Learning Theory Perspective. Foundations and Trends in
Machine Learning, 1(3):307–402, 2008. doi:10.1561/2200000004.

41 Dana Ron. Algorithmic and Analysis Techniques in Property Testing. Foundations and Trends
in Theoretical Computer Science, 5(2):73–205, 2009. doi:10.1561/0400000029.

42 Ronitt Rubinfeld and Madhu Sudan. Robust Characterizations of Polynomials with Ap-
plications to Program Testing. SIAM J. Comput., 25(2):252–271, 1996. doi:10.1137/
S0097539793255151.

43 Mert Saglam. Near Log-Convexity of Measured Heat in (Discrete) Time and Consequences.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 967–978, 2018. doi:10.1109/FOCS.2018.00095.

CCC 2019

https://doi.org/10.1137/070707890
https://doi.org/10.1016/j.jcss.2004.04.002
http://epubs.siam.org/sam-bin/dbq/article/40744
http://epubs.siam.org/sam-bin/dbq/article/40744
https://doi.org/10.1561/2200000004
https://doi.org/10.1561/0400000029
https://doi.org/10.1137/S0097539793255151
https://doi.org/10.1137/S0097539793255151
https://doi.org/10.1109/FOCS.2018.00095

	Inroduction
	Preliminaries
	Notations
	The Model
	Preliminaries Results

	The Algorithm
	Overview of the Algorithm
	The algorithm for k-Junta
	The Algorithm for epsilon-Far Functions
	The Query Complexity of the Algorithm

	Open Problems

