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Abstract
We introduce a new model for testing graph properties which we call the rejection sampling model.
We show that testing bipartiteness of n-nodes graphs using rejection sampling queries requires
complexity Ω̃(n2). Via reductions from the rejection sampling model, we give three new lower
bounds for tolerant testing of Boolean functions of the form f : {0, 1}n → {0, 1}:

Tolerant k-junta testing with non-adaptive queries requires Ω̃(k2) queries.
Tolerant unateness testing requires Ω̃(n) queries.
Tolerant unateness testing with non-adaptive queries requires Ω̃(n3/2) queries.

Given the Õ(k3/2)-query non-adaptive junta tester of Blais [7], we conclude that non-adaptive
tolerant junta testing requires more queries than non-tolerant junta testing. In addition, given
the Õ(n3/4)-query unateness tester of Chen, Waingarten, and Xie [19] and the Õ(n)-query non-
adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri
[3], we conclude that tolerant unateness testing requires more queries than non-tolerant unate-
ness testing, in both adaptive and non-adaptive settings. These lower bounds provide the first
separation between tolerant and non-tolerant testing for a natural property of Boolean functions.
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1 Introduction

Over the past decades, property testing has emerged as an important line of research in
sublinear time algorithms. The goal is to understand randomized algorithms for approximate
decision making, where the algorithm needs to decide (with high probability) whether a
huge object has some property by making a few queries to the object. Many different
types of objects and properties have been studied from this property testing perspective
(see the surveys by Ron [35, 36] and the recent textbook by Goldreich [26] for overviews of
contemporary property testing research). This paper deals with property testing of Boolean
functions f : {0, 1}n → {0, 1} and property testing of graphs with vertex set [n].
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52:2 Lower Bounds for Tolerant Junta and Unateness Testing

In this paper we describe a new model of graph property testing, which we call the
rejection sampling model. For n ∈ N and a subset P of graphs on the vertex set [n], we say a
graph G on vertex set [n] has property P if G ∈ P and say G is ε-far from having property P
if all graphs H ∈ P differ on at least εn2 edges3. The problem of ε-testing P with rejection
sampling queries is the following task:

Given some ε > 0 and access to an unknown graph G = ([n], E), output “accept” with
probability at least 2

3 if G has property P, and output “reject” with probability at
least 2

3 if G is ε-far from having property P . The access to G is given by the following
oracle queries: given a query set L ⊆ [n], the oracle samples an edge (i, j) ∼ E

uniformly at random and returns {i, j} ∩ L.

We measure the complexity of algorithms with rejection sampling queries by considering
the sizes of the queries. The complexity of an algorithm making queries L1, . . . , Lt ⊆ [n] is∑t
i=1 |Li|.
The rejection sampling model allows us to study testers which rely on random sampling of

edges, while providing the flexibility of making lower-cost queries. This type of query access
strikes a delicate balance between simplicity and generality: queries are constrained enough
for us to show high lower bounds, and at the same time, the flexibility of making queries allows
us to reduce the rejection sampling model to Boolean function testing problems. Specifically,
we reduce to tolerant junta testing and tolerant unateness testing (see Subsection 1.1).

Our main result in the rejection sampling model is regarding non-adaptive algorithms.
These algorithms need to fix their queries in advance and are not allowed to depend on
answers to previous queries (in the latter case we say that the algorithm is adaptive). We
show a lower bound on the complexity of testing whether an unknown graph G is bipartite
using non-adaptive queries.

I Theorem 1. There exists a constant ε > 0 such that any non-adaptive ε-tester for
bipartiteness in the rejection sampling model has cost Ω̃(n2).4

More specifically, Theorem 1 follows from applying Yao’s principle to the following lemma.

I Lemma 2. Let G1 be the uniform distribution over the union of two disjoint cliques of size
n/2, and let G2 be the uniform distribution over complete bipartite graphs with each part of
size n/2. Any deterministic non-adaptive algorithm that can distinguish between G1 and G2
with constant probability using rejection sampling queries, must have complexity Ω̃(n2).

We discuss a number of applications of the rejection sampling model (specifically, of
Lemma 2) in the next subsection. In particular, we obtain new lower bounds in the tolerant
testing framework introduced by Parnas, Ron, and Rubinfeld in [34] for two well-studied
properties of Boolean functions (specifically, k-juntas and unateness; see the next subsection
for definitions of these properties). These lower bounds are obtained by a reduction from
the rejection sampling model; we show that too-good-to-be-true Boolean function testers for
these properties imply the existence of rejection sampling algorithms which distinguish G1
and G2 with õ(n2) complexity. Therefore, we may view the rejection sampling model as a
useful abstraction in studying the hard instances of tolerant testing k-juntas and unateness.

3 The distance definition can be modified accordingly when one considers bounded degree or sparse
graphs.

4 We use the notations Õ, Ω̃ to hide polylogarithmic dependencies on the argument, i.e. for expressions of
the form O(f logc f) and Ω(f/ logc f) respectively (for some absolute constant c).
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1.1 Applications to Tolerant Testing: Juntas and Unateness
Given n ∈ N and a subset P of n-variable Boolean functions, a Boolean function f : {0, 1}n →
{0, 1} has property P if f ∈ P . The distance between Boolean functions f, g : {0, 1}n → {0, 1}
is dist(f, g) = Prx∼{0,1}n [f(x) 6= g(x)]. The distance of f to the property P is dist(f,P) =
ming∈P dist(f, g). We say that f is ε-close to P if dist(f,P) ≤ ε and f is ε-far from P if
dist(f,P) > ε. The problem of tolerant property testing [34] of P asks for query-efficient
randomized algorithms for the following task:

Given parameters 0 ≤ ε0 < ε1 < 1 and black-box query access to a Boolean function
f : {0, 1}n → {0, 1}, accept with probability at least 2

3 if f is ε0-close to P and reject
with probability at least 2

3 if f is ε1-far from P.

An algorithm which performs the above task is an (ε0, ε1)-tolerant tester for P. A (0, ε1)-
tolerant tester is a standard property tester or a non-tolerant tester. As noted in [34], tolerant
testing is not only a natural generalization, but is also very often the desirable attribute
of testing algorithms. This motivates the high level question: how does the requirement of
being tolerant affect the complexity of testing the properties studied? We make progress
on this question by showing query-complexity separations for two well-studied properties of
Boolean functions: k-juntas, and unate functions.

(k-junta) A function f : {0, 1}n → {0, 1} is a k-junta if it depends on at most k of its
variables, i.e., there exists k distinct indices i1, . . . ik ∈ [n] and a k-variable function
g : {0, 1}k → {0, 1} where f(x) = g(xi1 , . . . , xik ) for all x ∈ {0, 1}n.
(unateness) A function f : {0, 1}n → {0, 1} is unate if f is either non-increasing or non-
decreasing in every variable. Namely, there exists a string r ∈ {0, 1}n such that the
function f(x⊕ r) is monotone with respect to the bit-wise partial order on {0, 1}n.

While separations between tolerant and non-tolerant testing of Boolean function properties
were known for an (artificial) property (see Subsection 1.2), these results are the first to give
such lower bounds for a natural class of well-studied properties of Boolean functions. The
first such theorem we state concerns non-adaptive tolerant testers for k-juntas.

I Theorem 3. For any α < 1, there exists constants 0 < ε0 < ε1 < 1 such that for any
k = k(n) ≤ αn, any non-adaptive (ε0, ε1)-tolerant k-junta tester must make Ω̃(k2) queries.

We give a noteworthy consequences of the Theorem 3. In [7], Blais gave a non-adaptive
Õ(k3/2)-query tester for (non-tolerant) testing of k-juntas, which was shown to be optimal
for non-adaptive algorithms by Chen, Servedio, Tan, Waingarten and Xie in [17]. Combined
with Theorem 3, this shows a polynomial separation in the query complexity of non-adaptive
tolerant junta testing and non-adaptive junta testing.

The next two theorems concern tolerant testers for unateness.

I Theorem 4. There exists constants 0 < ε0 < ε1 < 1 such that any (possibly adaptive)
(ε0, ε1)-tolerant unateness tester must make Ω̃(n) queries.

I Theorem 5. There exists constant 0 < ε0 < ε1 < 1 such that any non-adaptive (ε0, ε1)-
tolerant unateness tester must make Ω̃(n3/2) queries.

A similar separation in tolerant and non-tolerant testing occurs for the property of
unateness as a consequence of Theorem 4 and Theorem 5. Recently, in [3], Baleshzar,
Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri gave a non-adaptive Õ(n)-query
tester for (non-tolerant) unateness testing, and Chen, Waingarten and Xie [18] gave an

ITCS 2019



52:4 Lower Bounds for Tolerant Junta and Unateness Testing

(adaptive) Õ(n3/4)-query tester for (non-tolerant) unateness testing. We thus, conclude
that by Theorem 4 and Theorem 5, tolerant unateness testing is polynomially harder than
(non-tolerant) unateness testing, in both adaptive and non-adaptive settings.

1.2 Related Work
The properties of k-juntas and unateness have received much attention in property testing
research ([24, 20, 7, 8, 10, 37, 17, 9] study k-juntas, and [27, 31, 14, 3, 18, 19] study unateness).
We briefly review the current state of affairs in (non-tolerant) k-junta testing and unateness
testing, and then discuss tolerant testing of Boolean functions and the rejection sampling
model.

Testing k-juntas. The problem of testing k-juntas, introduced by Fischer, Kindler, Ron,
Safra, and Samorodnitsky [24], is now well understood up to poly-logarithmic factors.
Chockler and Gutfreund [20] show that any tester for k-juntas requires Ω(k) queries (for a
constant ε1). Blais [8] gave a junta tester that uses O(k log k + k/ε1) queries, matching the
bound of [20] up to a factor of O(log k) for constant ε1. When restricted to non-adaptive
algorithms, [24] gave a non-adaptive tester making Õ(k2/ε1) queries, which was subsequently
improved in [7] to Õ(k3/2)/ε1. In terms of lower bounds, Buhrman, Garcia-Soriano, Matsliah,
and de Wolf [10] gave a Ω(k log k) lower bound for ε = Ω(1), and Servedio, Tan, and Wright
[37] gave a lower bound which showed a separation between adaptive and non-adaptive
algorithms for ε1 = 1

log k . These results were recently improved in [17] to Ω̃(k3/2/ε1), settling
the non-adaptive query complexity of the problem up to poly-logarithmic factors.

Testing unateness. The problem of testing unateness was introduced alongside the problem
of testing monotonicity in Goldreich, Goldwasser, Lehman, Ron, and Samorodnitsky [27],
where they gave the first O(n3/2/ε1)-query non-adaptive tester. Khot and Shinkar [31]
gave the first improvement by giving a Õ(n/ε1)-query adaptive algorithm. A non-adaptive
algorithm with Õ(n/ε1) queries was given in [13, 3]. Recently, [18, 2] show that Ω̃(n)
queries are necessary for non-adaptive one-sided testers. Subsequently, [19] gave an adaptive
algorithm testing unateness with query complexity Õ(n3/4/ε2

1). The current best lower bound
for general adaptive testers appears in [18], where it was shown that any adaptive two-sided
tester must use Ω̃(n2/3) queries.

Tolerant testing. Once we consider tolerant testing, i.e., the case ε0 > 0, the picture is not
as clear. In the paper introducing tolerant testing, [34] observed that standard algorithms
whose queries are uniform (but not necessarily independent) are inherently tolerant to some
extent. Nevertheless, achieving (ε0, ε1)-tolerant testers for constants 0 < ε0 < ε1, can require
applying different methods and techniques (see e.g, [30, 34, 25, 1, 32, 33, 22, 11, 6, 5, 38]).

By applying the observation from [34] to the unateness tester in [3], the tester accepts
functions which are O(ε1/n)-close to unate with constant probability. We similarly obtain
weak guarantees for tolerant testing of k-juntas. Diakonikolas, Lee, Matulef, Onak, Rubinfeld,
Servedio, and Wan [21] observed that one of the (non-adaptive) junta testers from [24] accepts
functions that are poly(ε1, 1/k)-close to k-juntas. Chakraborty, Fischer, Garcia-Soríano, and
Matsliah [15] noted that the analysis of the junta tester of Blais [8] implicitly implies an
exp(k/ε1)-query complexity tolerant tester which accepts functions that are ε1/c-close to
some k-junta (for some constant c > 1) and rejects functions that are ε1-far from every
k-junta. Recently, Blais, Canonne, Eden, Levi and Ron [9] showed that when required to
distinguish between the cases that f is ε1/10-close to a k-junta, or is ε1-far from a 2k-junta,
poly(k, 1/ε1) queries suffice.
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For general properties of Boolean functions, tolerant testing could be much harder than
standard testing. Fischer and Fortnow [23] used PCPs in order to construct a property of
Boolean functions P which is (0, ε1)-testable with a constant number of queries (depending
on ε1), but any (1/4, ε1)-tolerant test for P requires nc queries for some c > 0. While
[23] presents a strong separation between tolerant and non-tolerant testing, the complexity
of tolerant testing of many natural properties remains open. We currently neither have
a poly(k, 1

ε1
)-query tester which (ε0, ε1)-tests k-juntas, nor a poly(n, 1

ε1
)-query tester that

(ε0, ε1)-tests unateness or monotonicity when ε0 = Θ(ε1).

Testing graphs with rejection sampling queries. Even though the problem of testing
graphs with rejection sampling queries has not been previously studied, the model shares
characteristics with previous studied frameworks. These include sample-based testing studied
by Goldreich, Goldwasser, and Ron in [28, 29], where the oracle receives random samples
from the input. One crucial difference between rejection sampling algorithms (which always
query [n]) and sample-based testers is the fact that rejection sampling algorithms only receive
positive examples (in the form of edges), as opposed to random positions in the adjacency
matrix (which may be a negative example indicated the non-existence of an edge).

The rejection sampling model for graph testing also bears some resemblance to the
conditional sampling framework for distribution testing introduced in Canonne, Ron, and
Servedio, as well as Chakraborty, Fischer, Goldhirsh, and Matsliah [12, 16], where the
algorithm specifies a query set and receives a sample conditioned on it lying in the query set.

1.3 Techniques and High Level Overview
We first give an overview of how the lower bound in the rejection sampling model (Lemma 2)
implies lower bounds for tolerant testing of k-juntas and unateness, and then we give an
overview of how Lemma 2 is proved.

Reducing Boolean Function Testing from Rejection Sampling. This work should be
considered alongside some recent works showing lower bounds for testing the properties of
monotonicity, unateness, and juntas in the standard property testing model [4, 18, 17]. At a
high level, the lower bounds for Boolean function testing proceed in three steps:
1. First, design a randomized indexing function Γ : {0, 1}n → [N ] that partitions the Boolean

cube {0, 1}n into roughly equal parts in a way compatible with the property (either junta,
or unateness). We want to ensure that algorithms that make few queries cannot learn too
much about Γ, and that queries falling in the same part are close in Hamming distance.

2. Second, define two distributions over functions hi : {0, 1}n → {0, 1} for each i ∈ [N ]. The
hard functions are defined by f(x) = hΓ(x)(x), so that one distribution corresponds to
functions with the property, and the other distribution corresponds to functions far from
the property.

3. Third, show that any testing algorithm for the property is actually solving some algorithmic
task (determined by the distributions of hi) which is hard when queries are close in
Hamming distance.

The first step in the above-mentioned plan is standard (given familiarity with [18] and
[17]). We will use a construction from [17] for the junta lower bound and a Talagrand-based
construction (similar to [18], but somewhat simpler) for the unateness lower bounds. The
novelty in this work lies in steps 2 and 3. We will define the distributions over sub-functions
hi such that the resulting Boolean functions f(x) = hΓ(x)(x) either is ε0-close to desired

ITCS 2019



52:6 Lower Bounds for Tolerant Junta and Unateness Testing

property (k-juntas and unateness), or is ε1-far from having the desired property (k-juntas
and unateness). Then, we will show that any algorithm for tolerant testing of k-juntas or
unateness must be able to solve a hard instance of bipartiteness testing in the rejection
sampling model.

At a very high level, our reductions will follow by associating to each distribution of
Boolean functions f : {0, 1}n → {0, 1} a distribution over graphs G defined on a subset of [n]
(these will be G1 and G2). The edges of a graph G sampled from G1 or G2 will encode how the
variables of f interact with one another, and the distance of f to k-junta (or unateness) will
depend on a global parameter of the G.5 In addition, Boolean function queries on f will be
interpreted as rejection sampling queries to G, so that tests distinguishing the distributions
of Boolean functions will give rise to rejection sampling algorithms which distinguish between
G1 and G2. Since we will show a lower bound in the rejection sampling model, we will obtain
a lower bound for tolerant testing of k-juntas and unateness.

For a more detailed discussion of the distributions and the reductions see Sections 3
and 4.

Distinguishing G1 and G2 with Rejection Sampling Queries. In order to prove Lemma 2,
one needs to rule out any deterministic non-adaptive algorithm which distinguishes between
G1 and G2 with rejection sampling queries of complexity õ(n2). In order to keep the discussion
at a high level, we identify three possible “strategies” for determining whether an underlying
graph is a complete bipartite graph, or a union of two disjoint cliques:
1. One approach is for the algorithm to sample edges and consider the subgraph obtained

from edges returned by the oracle. For instance, the algorithm may make all rejection
sampling queries to be [n]. These queries are expensive in the rejection sampling model,
but they guarantee that an edge from the graph will be observed. If the algorithm is lucky,
and there exists a triangle in the subgraph observed, the graph must not be bipartite, so
it must come from G2.

2. Another sensible approach is for the algorithm to forget about the structure of the
graph, and simply view the distribution on the edges generated by the randomness in the
rejection sampling oracle as a distribution testing problem. Suppose for simplicity that
the algorithm makes rejection sampling queries [n]. Then, the corresponding distributions
supported on edges from G1 and G2 will be Ω(1)-far from each other, so a distribution
testing algorithm can be used.

3. A third, more subtle, approach is for the algorithm to use the fact that G1 and G2
correspond to the union of two cliques and a complete bipartite graph, and extract
knowledge about the non-existence of edges when making queries which return either ∅
or a single vertex. More specifically, suppose that by having observed some edges, the
algorithm observes two connected components L1 and L2. If when querying L1 ∪ L2
multiple times, we do not observe an edge, it is more likely the underlying graph comes
from G1 than G2. Specifically, if G ∼ G1 and L1 lies in one clique and L2 lies in the other
clique, there would be no edges with edges from L1 and L2; on the other hand, if G ∼ G2,
then L1 and L2 would always have some edges between them.

5 The relevant graph parameter in k-juntas and unateness will be different. Luckily, both graph parameters
will have gaps in their value depending on the distribution the graphs were drawn from (either G1 or G2).
This allows us to reuse the work of proving Lemma 2 to obtain Theorem 3, Theorem 4, and Theorem 5.
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The three strategies mentioned above all fail to give õ(n2) rejection sampling algorithms.
The first approach fails because with a budget of õ(n2), rejection sampling algorithms will
observe subgraphs which consist of various trees of size at most logn, thus we will not observe
cycles. The second approach fails since the distributions are supported on Ω(n2) edges, so
distribution testing algorithms will require Ω(n) edges (which costs Ω(n2)) to distinguish
between G1 and G2. Finally, the third approach fails since algorithms will only observe
o(n) responses from the oracle corresponding to lone vertices which will be split roughly
evenly among the unknown parts of the graph, so these observations will not be enough to
distinguish between G1 and G2.

Our lower bound rules out the three strategies sketched above when the complexity is
õ(n2), and shows that if the above three strategies do not work (in any possible combination
with each other as well), then no non-adaptive algorithm of complexity õ(n2) will work. The
main technical challenge is to show that the above strategies are the only possible strategies
to distinguish G1 and G2. In Section 5, we give a more detailed, yet still high-level discussion
of the proof of Lemma 2.

Finally, the analysis of Lemma 2 is tight; there is a non-adaptive rejection sampling
algorithm which distinguishes G1 and G2 with complexity Õ(n2). The algorithm (based on
the first approach mentioned above) is simple: make Õ(n) queries L = [n], and if we observe
an odd-length cycle, we output “G1”, otherwise, output “G2”.

1.4 Preliminaries
We use boldfaced letters such as A,M to denote random variables. Given a string x ∈ {0, 1}n
and j ∈ [n], we write x(j) to denote the string obtained from x by flipping the j-th coordinate.
An edge along the j-th direction in {0, 1}n is a pair (x, y) of strings with y = x(j). In addition,
for α ∈ {0, 1} we use the notation x(j→α) to denote the string x where the jth coordinate is
set to α. Given x ∈ {0, 1}n and S ⊆ [n], we use x|S ∈ {0, 1}S to denote the projection of x
on S. For a distribution D we write d ∼ D to denote an element d drawn according to the
distribution. We sometimes write a ≈ b± c to denote b− c ≤ a ≤ b+ c.

2 The Rejection Sampling Model

In this section, we define the rejection sampling model and the distributions over graphs
we will use throughout this work. We define the rejection sampling model tailored to our
specific application of proving Lemma 2.

I Definition 6. Consider two distributions, G1 and G2 supported on graphs with vertex
set [n]. The problem of distinguishing G1 and G2 with a rejection sampling oracle aims to
distinguish between the following two cases with a specific kind of query:

Cases: We have an unknown graph G ∼ G1 or G ∼ G2.
Rejection Sampling Oracle: Each query is a subset L ⊆ [n]; an oracle samples an edge
(j1, j2) from G uniformly at random, and the oracle returns v = {j1, j2} ∩ L. The
complexity of a query L is given by |L|.

We say a non-adaptive algorithm Alg for this problem is a sequence of query sets
L1, . . . , Lq ⊆ [n], as well as a function Alg : ([n] ∪ ([n]× [n]) ∪ {∅})q → {“G1”, “G2”}. The
algorithm sends each query to the oracle, and for each query Li, the oracle responds
vi ∈ [n] ∪ ([n]× [n]) ∪ {∅}, which is either a single element of [n], an edge in G, or ∅. The
algorithm succeeds if:

Pr
G∼G1,

v1,...,vq

[Alg(v1, . . . ,vq) outputs “G1”]− Pr
G∼G2,

v1,...,vq

[Alg(v1, . . . ,vq) outputs “G1”] ≥
1
3 .
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52:8 Lower Bounds for Tolerant Junta and Unateness Testing

The complexity of Alg is measured by the sum of the complexity of the queries, so we let
cost(Alg) =

∑q
i=1 |Li|.

While our interest in this work is primarily on lower bounds for the rejection sampling
model, an interesting direction is to explore upper bounds of various natural graph properties
with rejection sampling queries. Our specific applications only require ruling out non-adaptive
algorithms, but one may define adaptive algorithms in the rejection sampling model and
study the power of adaptivity in this setting as well.

2.1 The Distributions G1 and G2

Let G1 and G2 be two distributions supported on graphs with vertex set [n] defined as follows.
Let A ⊆ [n] be a uniform random subset of size n

2 .

G1 =
{
KA ∪KA : A ⊆ [n] random subset size n2

}
G2 =

{
KA,A : A ⊆ [n] random subset size n2

}
,

where for a subset A, KA is the complete graph on vertices in A and KA,A is the complete
bipartite graph whose sides are A and A.

3 Tolerant Junta Testing

In this section, we will prove that distinguishing the two distributions G1 and G2 using
a rejection sampling oracle reduces to distinguishing two distributions Dyes and Dno over
Boolean functions, where Dyes is supported on functions that are close to k-juntas and Dno
is supported on functions that are far from any k-junta with high probability.

3.1 High Level Overview
We start by providing some intuition of how our constructions and reduction implement
the plan set forth in Subsection 1.3 for the property of being a k-junta. We define two
distributions supported on Boolean functions, Dyes and Dno, so that functions in Dyes are
ε0-close to being k-juntas and functions in Dno are ε1-far from being k-juntas (where ε0 and
ε1 are appropriately defined constants and k = 3n

4 ).
As mentioned in the introduction, our distributions are based on the indexing function

used in [17]. We draw a uniform random subset M ⊆ [n] of size n/2 and our function
Γ = ΓM : {0, 1}n → [2n/2] projects the points onto the variables in M. Thus, it remains to
define the sequence of functions H = (hi : {0, 1}n → {0, 1} : i ∈ [2n/2]).

We will sample a graph G ∼ G1 (in the case of Dyes), and a graph G ∼ G2 (in the
case of Dno) supported on vertices in M. Each function hi : {0, 1}n → {0, 1} is given by
first sampling an edge (j1, j2) ∼ G and letting hi be a parity (or a negated parity) of the
variables xj1 and xj2 . Thus, a function f from Dyes or Dno will have all variables being
relevant, however, we will see that functions in Dyes have a group of n4 variables which can
be eliminated efficiently6.

We think of the sub-functions hi defined with respect to edges from G as implementing
a sort of gadget: the gadget defined with respect to an edge (j1, j2) will have the property
that if f eliminates the variable j1, it will be “encouraged” to eliminate variable j2 as well.

6 We say that a variable is eliminated if we change the function to remove the dependence of the variable.
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In fact, each time an edge (j1, j2) ∼ G is used to define a sub-function hi, any k-junta
g : {0, 1}n → {0, 1} where variable j1 or j2 is irrelevant will have to change half of the
corresponding part indexed by Γ. Intuitively, a function f ∼ Dyes or Dno (which originally
depends on all n variables) wants to eliminate its dependence of n− k variables in order to
become a k-junta. When f picks a variable j ∈M to eliminate (since variables in M are
too expensive), it must change points in parts where the edge sampled is incident on j. The
key observation is that when f needs to eliminate multiple variables, if f picks the variables
j1 and j2 to eliminate, whenever a part samples the edge (j1, j2), the function changes the
points in one part and eliminates two variables. Thus, f eliminates two variables by changing
the same number of points when there are edges between j1 and j2.

At a high level, the gadgets encourage the function f to remove the dependence of
variables within a group of edges, i.e., the closest k-junta will correspond to a function g
which eliminates groups of variables with edges within each other and few outgoing edges.
More specifically, if we want to eliminate n

4 variables from f , we must find a bisection of the
graph G whose cut value is small; in the case of G1, one of the cliques will have cut value 0,
whereas any bisection of a graph from G2 will have a high cut value, which makes functions
in Dyes closer to 3n

4 -juntas than functions in Dno.
The reduction from rejection sampling is straight-foward. We consider all queries which

are indexed to the same part, and if two queries indexed to the same part differ on a variable
j, then the algorithm “explores” direction j. Each part i ∈ [2n/2] where some query falls in
has a corresponding rejection sampling query Li, which queries the variables explored by the
Boolean function testing algorithm.

3.2 The Distributions Dyes and Dno

The goal of this subsection is to define the two distributions Dyes and Dno, supported over
Boolean functions with n variables. Functions f ∈ Dyes will be close to being a k-junta with
high probability, and functions f ∼ Dno will be far from any k-junta with high probability.
We note that it suffices to consider k = 3n

4 to obtain Theorem 3. We refer the reader to the
full version of the paper for the reduction from arbitrary k to k = 3n

4 .

Distribution Dyes. A function f from Dyes is generated from a tuple of three random
variables, (M,A,H), and we set f = fM,A,H. The tuple is drawn according to the following
randomized procedure:
1. Sample a uniformly random subset M ⊆ [n] of size m def= n

2 . Let N = 2m and ΓM :
{0, 1}n → [N ] be the function that maps x ∈ {0, 1}n to a number encoded by x|M ∈ [N ].

2. Sample A ⊆ M of size n
4 uniformly at random, and consider the graph G defined on

vertices [M] with G = KA ∪KA, i.e., G is a uniformly random graph drawn according
to G1.

3. Define a sequence of N functions H = {hi : {0, 1}n → {0, 1} : i ∈ [N ]} drawn from a
distribution E(G). For each i ∈ {1, . . . , N/2}, we let hi(x) =

⊕
`∈M x`.

For each i ∈ {N/2 + 1, . . . , N}, we will generate hi independently by sampling an edge
(j1, j2) ∼ G uniformly at random, as well as a uniform random bit r ∼ {0, 1}. We let

hi(x) = xj1 ⊕ xj2 ⊕ r.

4. Using M,A and H, define fM,A,H = hΓM(x)(x) for each x ∈ {0, 1}n.
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Dyes Dno

A A A A

α

β

Figure 1 Example of graphs G from Dyes and Dno. On the left, the graph G is the union of two
cliques of size n

4 , corresponding to Dyes. We note that χ(G) = 1
2 , since if we let S = A (pictured as

the blue set), we see that S contains half of the edges. On the right, the graph G is the complete
bipartite graph with side sizes n

4 , corresponding to Dno. We note that χ(G) = 3
4 : consider any set

S ⊆ M of size at least n
4 pictured in the blue region, and let α = |S ∩ A| and β = |S ∩ A|, where

α+ β ≥ n
4 , so E(S, S) + E(S, S) ≥ ( n

4 )2 − αβ ≥ ( n
4 )2(1− 1

4 ).

Distribution Dno. A function f drawn from Dno is also generated by first drawing the tuple
(M,A,H) and setting f = fM,A,H. Both M and A are drawn using the same procedure;
the only difference is that the graph G = KA,A, i.e., G is a uniformly random graph drawn
according to G2. Then H ∼ E(G) is sampled from the modified graph G.

We let k def= 3n
4 , ε0

def= 1
8 , and ε1

def= 3
16 . Consider a fixed subset M ⊆ [n] which

satisfies |M | = n
2 , and a fixed subset A ⊆ M which satisfies |A| = n

4 . Let G be a
graph defined over vertices in M , and for any subsets S1, S2 ⊆ M , let EG(S1, S2) =
|{(j1, j2) ∈ G : j1 ∈ S1, j2 ∈ S2}|, be the number of edges between sets S1 and S2. Addition-
ally, we let

χ(G) = min
{
EG(S, S) + EG(S, S)

EG(M,M)
: S ⊆M, |S| ≥ n

4

}
(1)

be the minimum fraction of edges adjacent to a set S of size at least n
4 . The following lemma

relates the distance of a function f = fM,A,H where H ∼ E(G) to being a k-junta to χ(G).
We then apply this lemma to the graph in Dyes and Dno to show that functions in Dyes are
ε0-close to being k-juntas, and functions in Dno are ε1-far from being k-juntas.

I Lemma 7. Let G be any graph defined over vertices in A. If f = fM,A,H, where H ∼ E(G),
then with probability at least 1− o(1),

1
4 · χ(G)− o(1) ≤ dist(f , k-Junta) ≤ 1

4 · χ(G) + o(1).

I Corollary 8. We have that f ∼ Dyes has dist(f , k-Junta) ≤ ε0 + o(1) with probability
1− o(1), and that f ∼ Dno has dist(f , k-Junta) ≥ ε1 − o(1) with probability 1− o(1).

The proof shows that distinguishing the two distributions G1 and G2 using rejection
sampling oracle reduces to distinguishing the two distributions Dyes and Dno.
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I Lemma 9. Suppose there exists a deterministic non-adaptive algorithm Alg making q
queries to Boolean functions f : {0, 1}2n → {0, 1}. Then, there exists a deterministic non-
adaptive algorithm Alg′ making rejection sampling queries to an n-vertex graph such that:

Pr
f∼Dyes

[Alg(f) “accepts”] = Pr
G∼G1

[Alg′(G) outputs “G1”], and

Pr
f∼Dno

[Alg(f) “accepts”] = Pr
G∼G2

[Alg′(G) outputs “G1”].

and has cost(Alg′) = O(q logn) with probability 1− o(1) over the randomness in Alg′.

4 Tolerant Unateness Testing

In this section, we show how to reduce distinguishing distributions G1 and G2 to distinguishing
between Boolean functions which are close to unate and Boolean functions which are far
from unate. We start with a high level overview of the constructions and reduction, and then
proceed to give formal definitions and the reductions for adaptive and non-adaptive tolerant
testing.

4.1 High Level Overview

We now describe how our constructions and reduction implement the plan set forth in
Subsection 1.3 for the property of unateness. Similarly to Section 3, we define two distributions
Dyes and Dno supported on Boolean functions, so that functions in Dyes are ε0-close to being
unate, and functions in Dno are ε1-far from being unate (where ε0 and ε1 are appropriately
defined constants).

We will use a randomized indexing function Γ : {0, 1}n → [N ] ∪ {0∗, 1∗} based on the
Talagrand-style constructions from [4, 18] to partition {0, 1}n in a unate fashion, specifically,
Γ will satisfy that for all i 6= j ∈ [N ], if x, y ∈ {0, 1}n have Γ(x) = i and Γ(y) = j, then x and
y are incomparable, x 6≺ y and y 6≺ x. Again, we will then use a graph G ∼ G1 or G2 to define
the sequence of sub-function H = (hi : {0, 1}n → {0, 1} : i ∈ [N ]). The sub-functions hi will
be given by a parity (or negated parity) of three variables: two variables will correspond
to the end points of an edge sampled (j1, j2) ∼ G, the third variable will be one of two
pre-specified variables, which we call m1 and m2. Consider for simplicity the case when
hi(x) = xj1 ⊕ xj2 ⊕ xm1 , and assume that we require that variable m1 is non-decreasing.

Similarly to Section 3, the functions hi are thought of as gadgets. We will have that if hi
is defined with respect to an edge (j1, j2) and m1, then the function f will be “encouraged”
to make variables j1 and j2 have opposite directions, i.e., either j1 is non-increasing and j2
is non-decreasing, or j1 is non-decreasing and j2 is non-increasing. In order to see why the
three variable parity implements this gadget, we turn our attention to Figure 2 and Figure 3.

Intuitively, the function f needs to change some of its inputs to be unate, and it must
choose whether the variables j1 and j2 will be monotone (non-decreasing) or anti-monotone
(non-increasing). Suppose f decides that the variable j1 should be monotone and j2 be
anti-monotone, and m1 will always be monotone (since it will be too expensive to make it
anti-monotone). Then, when hi(x) = xj1 ⊕ xj2 ⊕ xm1 , hi will have some violating edges, i.e.,
edges in direction j1 which are decreasing, or edges in direction j2 which are increasing, or
edges in direction m1 which are decreasing (see Figure 2, where these violating edges are
marked in red). In this case, there exists a way that f may change 1

4 -th fraction of the points
and remove all violating edges (again, this procedure is shown in Figure 2).
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j1
+

j2
−

m1
+

−→

j1
+

j2
−

m1
+

Figure 2 Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1 ⊕ xj2 ⊕ xm1 with variable
j1 (which ought to be monotone), j2 (which ought to be anti-monotone), and m1 (which is always
monotone). The image on the left-hand side represents hi, and the red edges correspond to violating
edges for variables j1, j2 and m1. In other words, the red edges correspond to anti-monotone edges
in variables j1, monotone edges in variables j2, and anti-monotone edges in direction m1. On the
right-hand side, we show how such a function can being “fixed” into a function h′

i : {0, 1}n → {0, 1}
by changing 1

4 -fraction of the points.

In contrast, suppose that f decides that the variables j1 and j2 both should be monotone.
Then, when hi(x) = xj1 ⊕ xj2 ⊕ xm1 , the violating edges (shown in Figure 3) form vertex-
disjoint cycles of length 6 in {0, 1}n, thus, the function f will have to change 3

8 -th fraction of
the points in order to remove all violating edges. In other words, when there is an edge (j1, j2)
sampled in hi, the function f is “encouraged” to make j1 and j2 have opposite directions,
and “discouraged” to make j1 and j2 have the same direction. The other cases are presented
in Figures 4, 5, and 6.

In order for f to become unate, it must first choose whether each variable will be monotone
or anti-monotone. f will choose all variables in M to be monotone, the variable m1 to be
monotone, and m2 to be anti-monotone, but will have to make a choice for each variable in
M, corresponding to each vertex of the graph G. As discussed above, for each edge (j1, j2)
in the graph, f is encouraged to make these orientations opposite from each other, so f will
want to look for the maximum cut on the graph, whose value will be different in G1 and G2.

Similarly to the case in Section 3, the reduction will follow by defining the rejection
sampling queries Li corresponding to variables explored in sub-function hi. The unate
indexing functions Γ are not as strong as the indexing functions from the Section 3, so
for each query in the Boolean function testing algorithm, our reduction will lose some cost
in the rejection sampling algorithm. In particular, the adaptive reduction loses n cost for
each Boolean function query, since adaptive algorithms can efficiently explore variables
with a binary search; this gives the Ω̃(n) lower bound for tolerant unateness testing. The
non-adaptive reduction loses O(

√
n logn) cost for each Boolean function query since queries

falling in the same part may be Ω(
√
n) away from each other (the same scenario occurs in

the non-adaptive monotonicity lower bound of [18]). The non-adaptive reduction is more
complicated than the adaptive reduction since it is not exactly a black-box reduction (we
require a lemma from Section 5). This gives the Ω̃(n3/2) lower bound for non-adaptive
tolerant unateness testing.
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j1
+

j2
+

m1
+

−→

j1
+

j2
+

m1
+

Figure 3 Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1 ⊕xj2 ⊕xm1 with variables
j1 and j2 (which ought to be monotone), and m1 (which ought to be monotone). On the left side,
we indicate the violating edges with red arrows, and note that the functions in the left and right
differ by 3

8 -fraction of the points. We also note that any function h′
i : {0, 1}n → {0, 1} which has j1,

j2 and m1 monotone must differ from hi on at least 3
8 -fraction of the points because the violating

edges of hi form a cycle of length 6.

4.2 The Distributions Dyes and Dno

We now turn to describing a pair of distributions Dyes and Dno supported on Boolean
functions f : {0, 1}n → {0, 1}. These distributions will have the property that for some
constants ε0 and ε1 with 0 < ε0 < ε1,

Pr
f∼Dyes

[dist(f ,Unate) ≤ ε0] = 1− o(1) and Pr
f∼Dno

[dist(f ,Unate) ≥ ε1] = 1− o(1).

We first define a function f ∼ Dno, where we fix the parameter N = 2
√
n.

1. Sample some set M ⊆ [n] of size |M| = n
2 uniformly at random and let m1,m2 ∼M be

two distinct indices.

2. We let T ∼ E(M \ {m1,m2}) (which we describe next). T is a sequence of terms
(Ti : i ∈ [N ]) which is used to defined a multiplexer map ΓT : {0, 1}n → [N ] ∪ {0∗, 1∗}.

3. We sample A ⊆M of size |A| = n
2 and define a graph as G = KA ∪KA.

4. We now define the distribution over sub-functions H = (hi : i ∈ [N ]) ∼ H(m1,m2,G).
For each function hi : {0, 1}n → {0, 1}, we generate hi independently:

When i ≤ 3N/4, we sample j ∼ {m1,m2} and we let:

hi(x) =
{

xj j = m1
¬xj j = m2

.

Otherwise, if i > 3N/4, we sample an edge (j1, j2) ∼ G and an index j3 ∼ {m1,m2}
we let:

hi(x) =
{

xj1 ⊕ xj2 ⊕ xj3 j3 = m1
¬xj1 ⊕ xj2 ⊕ xj3 j3 = m2

.
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The function f : {0, 1}n → {0, 1} is given by f(x) = fT,A,H(x) where:

fT,A,H(x) =


1 |x|M| > n

4 +
√
n

0 |x|M| < n
4 −
√
n

1 ΓT(x) = 1∗
0 ΓT(x) = 0∗
hΓT(x)(x) otherwise

. (2)

We now turn to define the distribution E(M) supported on terms T, as well as the multiplexer
map ΓT : {0, 1}n → [N ]. As mentioned above, T ∼ E(M) will be a sequence of N terms
(Ti : i ∈ [N ]), where each Ti is given by a DNF term: Ti(x) =

∧
j∈Ti

xj , where the set
Ti ⊆M is a uniformly random

√
n-element subset. Given the sequence of terms T, we let:

ΓT(x) =


0∗ ∀i ∈ [N ],Ti(x) = 0
1∗ ∃i1 6= i2 ∈ [N ],Ti1(x) = Ti2(x) = 1
i Ti(x) = 1 for a unique i ∈ [N ]

.

It remains to define the distribution Dyes supported on Boolean functions. The function
f ∼ Dyes will be defined almost exactly the same. We still have f = fT,A,H as defined above,
however, the graph G will be different. In particular, we will let G = KA,A.

Fix any set M ⊆ [n] of size n
2 and let m1,m2 ∈ M be two distinct indices and M ′ =

M \ {m1,m2}. For any T ∼ E(M ′), let X ⊆ {0, 1}n be the subset of points indexed to some
subfunction hi:

X def=
{
x ∈ {0, 1}n : |x|M | ∈ [n/4−

√
n, n/4 +

√
n] and ΓT (x) ∈ [N ]

}
,

and define γ ∈ (0, 1) be the parameter: γ def= ET∼E(M ′)

[
|X|
2n

]
.

In addition, let Xi ⊆ X be the subset of points x ∈ X with ΓT (x) = i, and note that the
subsets X1, . . . , XN partition X, where each |Xi| ≤ 2n−

√
n. With probability 1− o(1) over

the draw of T ∼ E(M), we have:
3N/4∑
i=1
|Xi| = 2n · 3γ

4

(
1± 1

n

)
and

N∑
i=3N/4+1

|Xi| = 2n · γ4

(
1± 1

n

)
. (3)

Thus, we only consider functions f ∼ Dyes (or ∼ Dno) where the sets M , and T satisfy (3).
We consider any set A ⊆M of size n

4 . Now, consider any graph G defined over vertices
in M , and we let:

χ(G) = min
{
EG(S, S) + EG(S, S)

EG(M,M)
: S ⊆M

}
.

In other words, we note that χ(G) is one minus the fractional value of the maximum cut, and
the value of χ(G) is minimized for the set S achieving the maximum cut of G. The following
lemma relates the distance to unateness of a function f = fT,A,H with H ∼ H(m1,m2, G),
where G is an underlying graph defined on vertices in M .

I Lemma 10. Let G be any graph defined over vertices in M . If f = fT,A,H where
H ∼ H(m1,m2, G), then with probability at least 1− o(1),

γ

16

(
1 + 1

2 · χ(G)
)
− o(1) ≤ dist(f ,Unate) ≤ γ

16

(
1 + 1

2 · χ(G)
)

+ o(1).

We consider the constants ε0 = γ
16 and ε1 = 5γ

64 .

I Corollary 11. We have that f ∼ Dyes has dist(f ,Unate) ≤ ε0 + o(1) with high probability,
and f ∼ Dno has dist(f ,Unate) ≥ ε1 − o(1) with high probability.
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j1
−

j2
+

m1
+

−→

j1
−

j2
+

m1
+

Figure 4 Similarly to Figure 2, this is an example of a function hi : {0, 1}n → {0, 1} with
hi(x) = xj1 ⊕ xj2 ⊕ xm1 variables j1 (which ought to be anti-monotone), j2 (which ought to be
monotone), and m1 (which is always monotone) being “fixed” into a function h′

i : {0, 1}n → {0, 1}
defined on the right-hand side.

4.3 Reducing from Rejection Sampling
In order to reduce from rejection sampling, we need the following two lemmas.

I Lemma 12. Suppose there exists a deterministic algorithm Alg making q queries to Boolean
functions f : {0, 1}2n → {0, 1}. Then, there exists a deterministic non-adaptive algorithm
Alg′ making rejection sampling queries to an n-vertex graph with cost(Alg′) = qn such that:

Pr
f∼Dyes

[Alg(f) “accepts”] = Pr
G∼G2

[Alg′(G) outputs “G2”], and

Pr
f∼Dno

[Alg(f) “accepts”] = Pr
G∼G1

[Alg′(G) outputs “G2”].

I Lemma 13. Suppose there exists a deterministic non-adaptive algorithm Alg making q
queries to Boolean functions f : {0, 1}2n → {0, 1} where q ≤ n3/2

log8 n
. Then, there exists a

deterministic non-adaptive algorithm Alg′ making rejection sampling queries to an n-vertex
graph such that:

Pr
f∼Dyes

[Alg(f) “accepts”] ≈ Pr
G∼G2

[Alg′(G) outputs “G2”]± o(1), and

Pr
f∼Dno

[Alg(f) “accepts”] ≈ Pr
G∼G1

[Alg′(G) outputs “G2”]± o(1).

and has cost(Alg′) ≤ q
√
n logn with probability 1− o(1) over the randomness in Alg′.

Combining Lemma 12 with Theorem 1, we conclude Theorem 4, and combining Lemma 13
with Theorem 1, we conclude Theorem 5.

5 A lower bound for distinguishing G1 and G2 with rejection samples

In this section, we derive a lower bound for distinguishing G1 and G2 with rejection samples.

I Lemma 14. Any deterministic non-adaptive algorithm Alg with cost(Alg) ≤ n2

log6 n
, has:

Pr
G∼G1

[Alg outputs “G1”] ≤ (1 + o(1)) Pr
G∼G2

[Alg outputs “G1”] + o(1).
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j1
−

j2
+

m1
−

−→

j1
−

j2
+

m1
−

Figure 5 Similarly to Figure 2, this is an example of a function hi : {0, 1}n → {0, 1} with
hi(x) = ¬xj1 ⊕ xj2 ⊕ xm2 variables j1 (which ought to be anti-monotone), j2 (which ought to be
monotone), andm2 (which is always anti-monotone) being “fixed” into a function h′

i : {0, 1}n → {0, 1}
defined on the right-hand side.

We assume Alg is a deterministic non-adaptive algorithm with cost(Alg) ≤ n2

log6 n
. Alg

makes queries L1, . . . , Lt ⊆ [n] and the oracle returns v1, . . . ,vt, some of which are edges,
some are lone vertices, and some are ∅. Let Go ⊆ G be the graph observed by the algorithm
by considering all edges in v1, . . . ,vt. We let |Go| be the number of edges.

Before going on to prove the lower bound, we use the following simplification. First, we
assume that any algorithm Alg has all its queries L1, . . . , Lt satisfying that either |Li| ≤ n

logn ,
or Li = [n]. Thus, it suffices to show for this restricted class of algorithms, the cost must be
at least n2

log5 n
.

5.1 High Level Overview
We will argue outcome-by-outcome; i.e., we consider the possible ways the algorithm can act,
which depends on the responses to the queries the algorithm gets. Consider some responses
v1, . . . , vt ∈ [n] ∪ ([n]× [n]) ∪ {∅}, where each vi may be either a lone vertex, an edge, or ∅.
Suppose that upon observing this outcome, the algorithm outputs “G1”. There will be two
cases:

The first case is when the probability of observing this outcome from G2 is not too much
lower than the probability of observing this outcome from G1. In these outcomes, we will
not get too much advantage in distinguishing G1 and G2.
The other case is when the probability of observing this outcome from G2 is substantially
lower than the probability of observing this outcome from G1. These cases do help us
distinguish between G1 and G2; thus, we will want to show that collectively, the probability
that we observe these outcomes from G1 is o(1).

We will be able to characterize the outcomes which fall into the first case and the second
case by considering a sequence of events. In particular we define five events which depend on
v1, . . . , vt, as well as the random choice of A. Consider the outcome v1, . . . , vt which together
form components C1, . . . , Cα. The events are the following7:

7 We note that the first two event are not random and depends on the values v1, . . . , vt, and the rest are
random variables depending on the partition A and the oracle responses v1, . . . , vt.
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j1
+

j2
+

m2
−

j1
+

j2
+

m2
−

Figure 6 Examples of functions hi : {0, 1}n → {0, 1} with orientations on the variables and
violating edges. On the left-hand side, hi(x) = ¬xj1 ⊕ xj2 ⊕ xm2 with variables j1 and j2 (which
ought to be monotone), and m2 (which is always anti-monotone). On the right-hand side, hi(x) =
¬xj1 ⊕ xj2 ⊕ xm2 with variables j1 and j2 (which ought to be anti-monotone), and m2 (which is
always anti-monotone). We note that the violating edges form a cycle of length 6, so any unate
function whose orientations on j1 and j2 are as indicated (both monotone on the left-hand side, and
both anti-monotone on the right-hand side) must disagree on a 3

8 -fraction of the points.

1. ET (Observe small trees): this is the event where the values of v1, . . . , vt form components
C1, . . . , Cα which are all trees of size at most logn.

2. EF (Observe few non-empty responses): this is the event where the values of v1, . . . , vt
have at most n

log4 n
non-∅ responses. This event implies that the total number of vertices

in the responses v1, . . . , vt is at most n
log4 n

.
3. EC,yes and EC,no (Consistency condition of the components observed): these are the

events where A ⊆ [n] partitions the components C1, . . . , Cα in a manner consistent with
G1 in EC,yes or G2 in EC,no, i.e., either every Ci is contained within A or A (in the case
of G1, or edges in every Ci cross the partition on vertices induced by A (in the case of
G2). These events are random variables that depend only on A. It will become clear that
in order to observe the outcome v1, . . . , vt in G1, event EC,yes must be triggered, and in
G2, event EC,no must be triggered. See Figure 7 for an illustration.

4. EO (Observe specific responses): this event is over the randomness in A, as well as the
randomness in the responses of the oracle v1, . . . ,vt. The event is triggered when the
responses of the oracle are exactly those dictated by v1, . . . , vt; i.e., for all i ∈ [t], vi = vi.

5. EB (Balanced lone vertices condition): this event is over the randomness in A, as well as
the responses v1, . . . ,vt. The event occurs when the queries Li corresponding to lone
vertices vi have |Li ∩A| and |Li ∩A| roughly equal, and roughly half of vi fall in A.

Having defined these events, the lower bound follows by the following three lemmas. The
first lemma says that for any outcomes satisfying ET and EF , the probability over A of
being consistent in G1 cannot be much higher than in G2. The second lemma says that the
outcomes satisfying the events described above do not help in distinguishing G1 and G2. The
third lemma says that good outcomes occur with high probability over G1.

I Lemma 15 (Consistency Lemma). Consider a fixed v1, . . . , vt ∈ [n] ∪ ([n]× [n]) ∪ {∅}
forming components C1, . . . , Cα where events ET and EF are satisfied. Then, we have:

Pr
G∼G1

v1,...,vt

[EC,yes] ≤ (1 + o(1)) Pr
G∼G2

v1,...,vt

[EC,no].
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Figure 7 A consistently partition of the components C1, C2, C3 and C4 according to G1 (on the
left) and G2 (on the right).

I Lemma 16 (Good Outcomes Lemma). Consider a fixed v1, . . . , vt ∈ [n] ∪ ([n]× [n]) ∪ {∅}
forming components C1, . . . , Cα where events ET and EF are satisfied. Then, we have:

Pr
G∼G1

v1,...,vt

[EO ∧ EB | EC,yes] ≤ (1 + o(1)) Pr
G∼G2

v1,...,vt

[EO | EC,no].

I Lemma 17 (Bad Outcomes Lemma). We have that:

Pr
G∼G1

v1,...,vt

[¬ET ∨ ¬EF ∨ ¬EB ] = o(1).

Assuming the above three lemmas, we may prove Lemma 14.
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