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Abstract
We give improved and almost optimal testers for several classes of Boolean functions on n variables
that have concise representation in the uniform and distribution-free model. Classes, such as
k-Junta, k-Linear, s-Term DNF, s-Term Monotone DNF, r-DNF, Decision List, r-Decision List,
size-s Decision Tree, size-s Boolean Formula, size-s Branching Program, s-Sparse Polynomial over
the binary field and functions with Fourier Degree at most d.

The approach is new and combines ideas from Diakonikolas et al. [24], Bshouty [13], Goldreich
et al. [32], and learning theory. The method can be extended to several other classes of functions
over any domain that can be approximated by functions with a small number of relevant variables.
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1 Introduction

Property testing of Boolean function was first considered in the seminal works of Blum, Luby
and Rubinfeld [12] and Rubinfeld and Sudan [46] and has recently become a very active
research area. See for example, [2, 4, 5, 6, 8, 9, 13, 15, 16, 17, 18, 19, 20, 21, 24, 27, 31, 33,
36, 37, 41, 40, 43, 47] and other works referenced in the surveys and books [29, 30, 44, 45].

A Boolean function f : {0, 1}n → {0, 1} is said to be k-junta if it depends on at most k
coordinates. The class k-Junta is the class of all k-juntas. The class k-Junta has been of
particular interest to the computational learning theory community [10, 11, 14, 23, 34, 38,
42]. A problem closely related to learning k-Junta is the problem of learning and testing
subclasses C of k-Junta and classes C of Boolean functions that can be approximated by
k-juntas [9, 11, 25, 17, 24, 32, 33, 43]. In both testing and learning we are given black-box
query access to a Boolean function f . In learning, for f ∈ C, we need to learn, with high
probability, a hypothesis h that is ε-close to f . In testing, for any Boolean function f , we
need to distinguish, with high probability, the case that f is in C versus the case that f is
ε-far from every function in C.

In the uniform-distribution property testing (and learning) model, the distance between
Boolean functions is measured with respect to the uniform distribution. In the distribution-
free property testing, [32], (and learning [48]) the distance between Boolean functions is
measured with respect to an arbitrary and unknown distribution D over {0, 1}n. In the
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5:2 Optimal Testers

distribution-free model, the testing (and learning) algorithm is allowed (in addition to making
black-box queries) to draw random x ∈ {0, 1}n according to the distribution D. This model
is studied in [13, 22, 26, 28, 35, 39].

1.1 Results
In Table 1, we list all the previous results and our results in this paper. In the table, Õ(T )
stands for O(T ·Poly(log T )), U and D stand for uniform and distribution-free models, resp.,
and Exp and Poly stand for exponential and polynomial time, resp.

It follows from the lower bounds of Saglam [47], that our query complexity is almost
optimal (up-to log-factor) for the classes k-Junta, k-Linear, k-Term, s-Term DNF, s-Term
Monotone DNF, r-DNF (r constant), Decision List, r-Decision List (r constant), size-s
Decision Tree, size-s Branching Programs and size-s Boolean Formula.

1.2 Notations
In this subsection, we give some notations that we use throughout the paper.

Denote [n] = {1, 2, . . . , n}. For S ⊆ [n] and x = (x1, . . . , xn) we denote x(S) = {xi|i ∈ S}.
For X ⊂ [n] we denote by {0, 1}X the set of all binary strings of length |X| with coordinates
indexed by i ∈ X. For x ∈ {0, 1}n and X ⊆ [n] we write xX ∈ {0, 1}X to denote the
projection of x over coordinates in X. We denote by 1X and 0X the all-one and all-zero
strings in {0, 1}X , respectively. When y is a variable then z = (y)X is the all y string
with coordinates indexed by i ∈ X, i.e., zi = y for all i ∈ X. When we write xI = 0
we mean xI = 0I . For X1, X2 ⊆ [n] where X1 ∩ X2 = ∅ and x ∈ {0, 1}X1 , y ∈ {0, 1}X2

we write x ◦ y to denote their concatenation, i.e., the string in {0, 1}X1∪X2 that agrees
with x over coordinates in X1 and agrees with y over coordinates in X2. For X ⊆ [n] we
denote X = [n]\X = {x ∈ [n]|x 6∈ X}. For a function f : {0, 1}k → {0, 1}, x ∈ {0, 1}n
and X = {i1, . . . , ik} ⊆ [n] where i1 < i2 < · · · < ik, when we write f(xX) we mean
f(xi1 , . . . , xik ).

Given f, g : {0, 1}n → {0, 1} and a probability distribution D over {0, 1}n, we say that f
is ε-close to g with respect to D if Prx∈D[f(x) 6= g(x)] ≤ ε, where x ∈ D means x is chosen
from {0, 1}n according to the distribution D. We say that f is ε-far from g with respect to D
if Prx∈D[f(x) 6= g(x)] ≥ ε. For a class of Boolean functions C, we say that f is ε-far from
every function in C with respect to D if for every g ∈ C, f is ε-far from g with respect to D.
We will use U to denote the uniform distribution over {0, 1}n or over {0, 1}X when X in
clear from the context.

For a distribution D over {0, 1}n and X ⊂ [n], we denote by DX the distribution D
projected on the coordinates X. That is, the distribution of xX when x ∈ D.

For a Boolean function f and X ⊂ [n], we say that X is an influential set of f if there
are a, b ∈ {0, 1}n such that f(a) 6= f(bX ◦ aX). We call the pair (a, b) (or just a when b = 0)
a witness of f for the influential set X. When X = {i} then we say that xi is an influential
variable of f and a is a witness of f for xi. Obviously, if X is influential set of f then x(X)
contains at least one influential variable of f .

We say that the Boolean function f : {0, 1}n → {0, 1} is a literal (dictatorship and
anti-dictatorship, resp.) if f ∈ {x1, . . . , xn, x1, . . . , xn} where x is the negation of x (f ∈
{x1, . . . , xn} and f ∈ {x1, . . . , xn}, resp.).

Let C be a class of Boolean functions f : {0, 1}n → {0, 1}. We say that C is symmetric
if for every permutation π : [n] → [n] and every f ∈ C we have fπ ∈ C where fπ(x) :=
f(xπ(1), · · · , xπ(n)). We say that C is closed under zero projection (resp. closed under one
projection) if for every f ∈ C and every i ∈ [n], f(0{i} ◦ x{i}) ∈ C (resp. f(1{i} ◦ x{i}) ∈ C).
We say it is closed under zero-one projection if is closed under zero and one projection.
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Table 1 A table of the results. In the table, Õ(T ) stands for O(T ·poly(log T )), U and D stand for
uniform and distribution-free models, resp., and Exp and Poly stand for exponential and polynomial
time, resp.

Class of Functions Model #Queries Time Reference

s-Term Monotone DNF U Õ(s2/ε) Poly. [43]
s-Term Unate DNF U Õ(s/ε2) Exp. [17]

U Õ(s/ε) Poly. This Paper
s-Term Monotone r-DNF U Õ(s/ε2) Exp. [17]
s-Term Unate r-DNF U Õ(s/ε) Poly. This Paper

D Õ(s2r/ε) Poly. This Paper
s-Term DNF U Õ(s2/ε) Exp. [24]

U Õ(s/ε2) Exp. [17]
U Õ(s/ε) Exp. This Paper

r-DNF (Constant r) U Õ(1/ε) Poly. This Paper
Decision List U Õ(1/ε2) Poly. [24]

U Õ(1/ε) Poly. This Paper
Length-k Decision List D Õ(k2/ε) Poly. This Paper
r-DL (Constant r) U Õ(1/ε) Poly. This Paper

k-Linear U Õ(k/ε) Poly. [7, 12]
D Õ(k/ε) Poly. This Paper

k-Term U O(1/ε) Poly. [43]
U Õ(1/ε) Poly. This Paper
D Õ(k/ε) Poly. This Paper

size-s Decision Trees and U Õ(s/ε2) Exp. [17]
size-s Branching Programs U Õ(s/ε) Exp. This Paper

D Õ(s2/ε) Exp. This Paper
size-s Boolean Formulas U Õ(s/ε2) Exp. [17]

U Õ(s/ε) Exp. This Paper
size-s Boolean Circuit U Õ(s2/ε2) Exp. [17]

U Õ(s2/ε) Exp. This Paper
Functions with U Õ(22d/ε2) Exp. [17]

Fourier Degree ≤ d D Õ(2d/ε+ 22d) Poly. This Paper
s-Sparse Polynomial U poly(s/ε) + Õ(22d) Poly. [1, 25]
over F2 of Degree d U Õ(s2/ε+ 22d) Poly. This Paper+[1]

U Õ(s/ε+ s2d) Poly. This Paper
D Õ(s2/ε+ s2d) Poly. This Paper

s-Sparse Polynomial U Õ(s/ε2) Exp. [17]
over F2 U Poly(s/ε) Poly. [25]

U Õ(s2/ε) Poly. This Paper

2 Overview of the Distribution-Free Tester

2.1 Preface

Our approach refers to testing properties that are (symmetric) sub-classes C of k-juntas; that
is, f : {0, 1}n → {0, 1} has the property if there exists a function f ′ : {0, 1}k → {0, 1} that
belongs to a predetermined class C ′ of functions (over k-bit strings) such that f(x) = f ′(xΓ)

APPROX/RANDOM 2020



5:4 Optimal Testers

for some k-subset Γ. Our new approach builds upon the “testing by implicit sampling”
approach of Diakonikolas et al. [24], while extending it from the case of uniform distribution
to the case of arbitrary unknown distributions (i.e., the distribution-free model).

This allows us to present (almost optimal) distribution-free testers for classes of properties
that are sub-classes of k-juntas, which correspond to classes of k-bit long Boolean functions.

While we follow Diakonikolas et al. [24] in considering learning algorithms for the under-
lying classes, our approach is also applicable to testing algorithms (see [30, Sec. 6.2]).

Let us again spell out our task. For a class C of n-bit long Boolean functions and a
proximity parameter ε, given samples from an unknown distribution D and oracle access to a
function f : {0, 1}n → {0, 1}, we wish to distinguish the case that f ∈ C from the case that
f is ε-far from C. Recall that C is a (symmetric) class consisting of a symmetric subclass of
k-juntas C ′; that is, f ∈ C if and only if there exists a k-subset Γ ⊂ [n] and f ′ ∈ C ′ such
that f(x) = f ′(xΓ), where x{i1,...,ik} = (xi1 , . . . , xik ). Actually, we also assume that C ′ is
closed under zero projection.

2.2 A Bird’s Eye View
The basic strategy is to consider a random partition of [n] to r = O(k2) parts, denoted
(X1, . . . , Xr), while relying on the fact that, whp, each Xi contains at most one influential
variable. Assuming that f ∈ C, first we determine a set I of at most k indices such that
∪i∈[n]\IXi contains no “significantly influential” variables of f . Suppose that f ′ : {0, 1}k →
{0, 1}, f ′ ∈ C ′, is a function that corresponds to the tested function f : {0, 1}n → {0, 1}, and
that I ⊂ [n] is indeed the collection of all sets that contain influential variables. The crucial
ingredient is devising a method that allows to generate samples of the form (x′, f ′(x′)), when
given samples of the form (x, f(x)) (for x ∈ D). We stress that we cannot afford to find the
influential variables, and so this method works without determining these locations. Using
this method, we can test whether f ′ belongs to the underlying class C ′; hence, we test f by
implicitly sampling the projection of D on the (unknown) influential variables.

The method employed by Diakonikolas et al. [24] only handles the uniform distribution
(i.e., the case that D is uniform over {0, 1}n), and so it only yields testers for the standard
testing model (rather than for the distribution-free testing model). Furthermore, their
method as well as the identification of the set I rely heavily on the notion of influence of
sets, where the influence of a set S of locations on the value of a function is defined as
Prx′,x′′∈{0,1}n:x′

S
=x′′

S
[f(x′) 6=f(x′′)]. However, this notion refers to the uniform distribution

(over {0, 1}n) and does not seem adequate for the distribution-free context (e.g., for1 f(x) =
x1 + x2 we may get Prx′,x′′∈D:x′

1=x′′
1
[f(x′) 6=f(x′′)] = 0).

We use a different way of identifying the set I and for generating samples for the
underlying function f ′. Loosely speaking, we identifies I as the set of indices i for which
f(1Xi

◦ 0Xi
) 6= f(0n), where (recall that) 1S ◦ 0S is a string that is 1 on the locations in S

and is 0 on other locations. (Be warned that this description is an over-simplification!) This
means that for every i ∈ I and x ∈ {0, 1}n, the value of x at the influential variable in the set
Xi (a variable whose location is unknown to us!), equals f(x′) + f(0n) where x′ = xXi

◦ 0Xi
,

i.e., x′j = xj if j ∈ Xi and x′j = 0 otherwise.2 Note that the foregoing holds when f ∈ C; in

1 The addition operation in this paper is over the binary field F2.
2 Indeed, if τ(i) ∈ Xi is the index of the (unique) influential variable that resides in the set Xi, then

f(x′) = xτ(i) · f(1Xi
◦ 0

Xi
) + (xτ(i) + 1) · f(0n) = xτ(i) + f(0n)

since f(1Xi
◦ 0

Xi
) + f(0n) = 1.
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general, we can test whether x 7→ f(x′) + f(0n) is close to a dictatorship (under the uniform
distribution) and reject otherwise, whereas if the mapping is close to a dictatorship, we can
self-correct it.

To sample the distribution DΓ, where Γ is the influential variables in XI = ∪i∈IXi, we
sample D and determine the value of the influential variable in each set Xi, for i ∈ I. Queries
to the function f ′ are answered by querying f such that the query y = y1 · · · yk is mapped
to the query ext(y) such that3 ext(y)j = yi if j belongs to the ith set in the collection I
(and ext(y)j = 0 if j ∈ [n] \XI). Effectively, we query the function F : {0, 1}n → {0, 1}
defined as F (x) = f(ext(xΓ)), and this makes sense provided that F is close to f (under the
distribution D). To test the latter hypothesis condition, we sample D and for each sample
point x we compare f(x) to F (x), where here we again use the ability to determine the value
of the influential variable in each set. Specifically, ext(xΓ) is computed by determining the
value of xΓ (without knowing Γ), and using our knowledge of (Xi)i∈I .

We warn that the foregoing description presumes that we have correctly identified the
collection I of all sets containing an influential variable. This leaves us with two questions:
The first question is, how do we identify the set I. (Note that the influence of a variable may
be as low as 2−k, whereas we seek algorithms of poly(k)-complexity.) The solution (to be
presented in Section 2.3.1) will be randomized, and will have one-sided error; specifically, we
may fail to identify some sets that contain influential variables, but will never include in our
collection sets that have no influential variables. Consequently, f(1Xi

◦ 0Xi
) 6= f(0n) may not

hold for some i ∈ I, and (over-simplifying again) we shall seek instead some v(i) ∈ {0, 1}n
such that f(v(i)) 6= f(w(i)), where w(i) = v

(i)
Xi
◦ 0Xi

(i.e., w(i)
j = v

(i)
j if j ∈ [n] \ Xi and

w
(i)
j = 0 otherwise). Second, as before, for every i ∈ I and x ∈ {0, 1}n, we wish to determine

the value in x of the influential variable in the set Xi (a variable whose location is unknown
to us!). This is done by observing that if f ∈ C then this value equals f(x′) + f(v(i)) + 1
where x′ = xXj ◦ v

(i)
Xj

(i.e., x′j = xj if j ∈ Xi and x′j = v
(i)
j otherwise).4 Again, we need to

test whether x 7→ f(x′) + f(v(i)) + 1 is a dictatorship, and use self-correction.

2.3 The Actual Tester
As warned, the above description is an over-simplification, and the actual way in which the
set I is identified and used is more complex.

We fix a random partition of [n] to r = O(k2) parts, denoted (X1, . . . , Xr). If f ∈ C,
then, with high probability, each Xi contains at most one influential variable, denoted τ(i).
We assume that this is the case when providing intuition throughout this section.

2.3.1 Stage 1: Finding I and corresponding v(i)

Our goal is to find a collection I of at most k sets such that the function hI is ε/3-close to f
(w.r.t distribution D), where hI is defined as hI(x) = f(xXI

◦ 0XI
) and XI = ∪i∈IXi. In

addition, for each i ∈ I, we seek a witness v(i) for the fact that f depends on some variable
in Xi; that is, f(v(i)) 6= f(w(i)) for some v(i) that differ from w(i) only on Xi.

3 Notice that ext(y) = 0
XI
◦
(
◦
i∈I

(yi)Xi

)
- Here (y)X = 1X if y = 1 and 0X if y = 0.

4 Indeed, if τ(i) ∈ Xi is the index of the (unique) influential variable that resides in the set Xi, then

f(x′) = xτ(i) · f(v(i)) + (xτ(i) + 1) · f(w(i)) = xτ(i) + f(v(i)) + 1

since f(v(i)) + f(w(i)) = 1.

APPROX/RANDOM 2020



5:6 Optimal Testers

The procedure
We proceed in iterations, starting with I = ∅.

1. We sample D for O(1/ε) times, trying to find u ∈ D such that f(u) 6= hI(u).
(Note that if I = ∅, then hI(u) = f(0n). In general, we seek u such that f(u) 6=
f(uXI

◦ 0XI
).

If no such u is found, then we set h = hI and proceed to Stage 2. In this case, we may
assume that hI is ε/3-close to f (w.r.t D).

2. Otherwise (i.e., f(u) 6= hI(u)), we find an i ∈ [m] \ I and v(i) such that hI(v(i)) 6=
hI∪{i}(v(i)), which means that Xi contains an influential variable and v(i) is the witness
for the sensitivity that we seek. We set I ← I ∪ {i} and proceed to the next iteration.
(We find this i by binary search that seeks i and S such that hI∪S∪{i}(u) 6= hI∪S(u),
which means that v(i) equals u in locations outside S and is zero on S.)5

Once the iterations are suspended (due to not finding u), we reject if |I| > k, and continue
to the Stage 2 otherwise. Recall that in the latter case h = hI is ε/3-close to f (w.r.t D).

Note that if f ∈ C, then I contains only sets that contain variables of the k-junta, and
so we never reject in this stage. In general, if i ∈ I, then hI\{i}(v(i)) 6= hI(v(i)), which
implies that f(x′) 6= f(x′′), where x′ and x′′ differ only on Xi (e.g., x′′XI

= v
(i)
XI

and x′′j = 0 if
j 6∈ XI).

2.3.2 Stage 2: Extracting the value of an influential variable
Given a collection I as found in Stage 1 (and a sensitivity witness v(i) for each i ∈ I), let
h = hI and recall that h is close to f w.r.t D. For each i ∈ I, given x ∈ {0, 1}n, we wish to
determine the value of x at the influential variable that resides in Xi.

For each i ∈ I, we define νi : {0, 1}|Xi| → {0, 1} such that νi(z) = hI(y), where yXi
= z

and yXi
= v

(i)
Xi

. Suppose that f ∈ C, and recall that τ(i) ∈ Xi denotes the location of the
influential variable in Xi. Let σ(i) denote the index of τ(i) in Xi (i.e., the σ(i)th element
of Xi is τ(i)). Then, in this case, νi is either a dictatorship or an anti-dictatorship. In
particular, if νi is a dictatorship, then νi(z) = zσ(i) (and otherwise νi(z) = zσ(i) + 1).

For each i ∈ I, we test whether νi is a dictatorship or anti-dictatorship, where testing
is w.r.t the uniform distribution over {0, 1}|Xi|. Note that we also check whether νi is a
dictatorship or anti-dictatorship. If the tester (run with proximity parameter 0.1) fails, we
reject. Otherwise (i.e., if we did not reject), we can compute νi via self-correction on hI ;
that is, to compute νi at z, we select u ∈ {0, 1}|Xi| at random, and return νi(z + u) + νi(u),
which (w.h.p.) equals (z + u)σ(i) + uσ(i) = zσ(i).

Hence, we always continue to Stage 3 if f ∈ C, and whenever we continue to Stage 3 we
can compute all νi (for i ∈ I) via self-correction.

2.3.3 Stage 3: Emulating a tester of C ′

Recall that when reaching this stage, we may assume that h = hI is ε/3-close to f (w.r.t D).
Also recall that hI(x) depends only on xXI

, where XI = ∪i∈IXi, and that by Stage 2 we
may assume that νi(z) = zσ(i) (for every i ∈ I and almost all z). In light of the forgoing,
we define F : {0, 1}n → {0, 1} such that F (x) = h(x′) where x′Xi

= (xσ(i), . . . , xσ(i)) (i.e.,

5 By Step 1, we have hS′∪I(u) 6= hS′′∪I(u), for S′ = [n] \ I and S′′ = ∅, and in each iteration we cut
S′ \ S′′ by half while maintaining hS′∪I(u) 6= hS′′∪I(u).
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x′j = (xXi)σ(i) = xτ(i) if j ∈ Xi)6 and x′j = 0 otherwise. (Indeed, if f ∈ C, then F (x) = h(x),
since h(y) depends only on (yτ(i))i∈I . Using hypothesis that C ′ (and so C) is closed under
zero projection, it follows that F ∈ C.)

We observe that if F is ε/3-close (w.r.t D) to both h and C, then f must be ε-close to
C (since f is ε/3-close to h). Hence, we test both these conditions. Specifically, using our
ability to sample D, query f , and determine the value of the influential variables in XI , we
proceed as follows:
1. Test whether F = h, where testing is w.r.t the distribution D and proximity parameter

ε/3.
This is done by taking O(1/ε) samples of D, and comparing the values of F and h on
these sample points. Recall that h(u) = hI(u) = f(uXI

◦ 0XI
).

The value of F on u is determined as follows.
a. For every i ∈ I, if νi is a dictatorship, then set vi to equal the self-corrected value

of νi(uXi), where νi is as defined in Stage 2. Otherwise (i.e., when νi is an anti-
dictatorship), we set vi to equal the self-corrected value of νi(uXi

) + 1.
b. Return the value h(u′), where u′j = vi if j ∈ Xi and u′j = 0 otherwise.
Indeed, F = h always passes this test, whereas F that is ε/3-far from h (w.r.t D) is
rejected w.h.p.

2. Test whether F is in C, where testing is w.r.t the distribution D and proximity parameter
ε/3. This is done by testing whether F ′ is in C, where F ′(z) = F (x) such that xj = zi if
j is in the ith set in the collection I, and xj = 0 otherwise. Here we use a distribution-free
tester, and analyze it w.r.t the distribution DI . Toward this end, we need to samples DI
as well as answer queries to F ′, where both tasks can be performed as in the prior step.
Recall that if f ∈ C, then F ∈ C, and this test will accept (w.h.p.), whereas if F is
ε/3-far from C the test will reject (w.h.p.).

We conclude that if we reached Stage 3 and f ∈ C (resp., f is ε-far from C), then we accept
(resp., reject) w.h.p.

2.4 Digest: Our approach vs the original one [24]

Our new approach differs from the original approach of Diakonikolas et al. [24] in two main
aspects:
1. In [24], sets that contain influential variables are identified according to their influence,

which is defined with respect to the uniform distribution. This definition seems inadequate
when dealing with arbitrary distributions. Instead, we identify such a set by searching
for two assignments that differ only on this set and yield different function values. The
actual process is iterative and places additional constraints on these assignments (as
detailed in Section 2.3.1).

2. In [24], given an assignment to the function, the value of the unique influential variable
that resides in a given set S is determined by approximating the influence of two subsets
of S (i.e., the subsets of locations assigned the value 0 and 1, respectively). In contrast,
we determines this value by defining an auxiliary function, which depends on the unknown
influential variable, and evaluating this function (via self-correction w.r.t the uniform
distribution (!); see Section 2.3.2).

6 In general, τ(i) denotes the location in [n] of the σ(i)th element of Xi.
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2.5 The Model
In this subsection, we define the testing and learning models.

In the testing model, we consider the problem of testing a Boolean function class C
in the uniform and distribution-free testing models. In the distribution-free testing model
(resp. uniform model), the algorithm has access to a Boolean function f via a black-box that
returns f(x) when a string x is queried. We call this query membership query (MQf or just
MQ). The algorithm also has access to unknown distribution D (resp. uniform distribution)
via an oracle that returns x ∈ {0, 1}n chosen randomly according to the distribution D (resp.
according to the uniform distribution). We call this query example query (ExQD (resp. ExQ
or ExQU )).

A distribution-free testing algorithm, [32], (resp. testing algorithm) A for C is an algorithm
that, given as input a distance parameter ε and the above two oracles to a Boolean function f ,
1. if f ∈ C then A outputs “accept” with probability at least 2/3.
2. if f is ε-far from every g ∈ C with respect to the distribution D (resp. uniform distribution)

then A outputs “reject” with probability at least 2/3.

We will also call A a tester (or ε-tester) for the class C and an algorithm for ε-testing C.
We say that A is one-sided if it always accepts when f ∈ C; otherwise, it is called

two-sided algorithm. The query complexity of A is the maximum number of queries A makes
on any Boolean function f .

In the learning models, C is a class of representations of Boolean functions rather than
a class of Boolean functions. Therefore, we may have two different representations in C

that are logically equivalent. In this paper, we assume that this representation is verifiable;
that is, given a representation g, one can decide in polynomial time on the length of this
representation if g ∈ C.

A distribution-free proper learning algorithm (resp. proper learning algorithm under the
uniform distribution) A for C is an algorithm that, given as input an accuracy parameter ε, a
confidence parameter δ and an access to both MQf for the target function f ∈ C and ExQD,
with unknown D, (resp. ExQ or ExQU ), with probability at least 1− δ, A returns h ∈ C
that is ε-close to f with respect to D (resp. with respect to the uniform distribution). This
model is also called proper PAC-learning with membership queries under any distribution
(resp. under the uniform distribution) [3, 48].

3 The Distribution-Free Tester

In this section, we sketch the proof of the tester from Section 2.
For a class C of n-bit long Boolean functions and a set Y = {y1, . . . , yq} we define C∗(Y )

the class of all q-bit long Boolean functions f(y1, . . . , yq) = g(y1, . . . , yq, 0, . . . , 0) where g ∈ C.
We define C(Y ) ⊆ C∗(Y ) the class of f ∈ C(Y ) that depends on all the variables in Y . That
is, all the variables in Y are influential.

Our main result is

I Theorem 1. Let C be a class of n-bit long Boolean functions that is symmetric subclass of
k-Junta and is closed under zero projection. Suppose for every Y = {y1, . . . , yq} with q ≤ k,
there is a tester TY for q-bit Boolean function F such that
1. TY is a polynomial time two-sided distribution-free (resp. uniform-distribution) adaptive

ε-tester
2. If F ∈ C(Y ) then, with probability at least 1− δ, TY accepts.
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3. If F is ε-far from every function in C∗(Y ) w.r.t D then, with probability at least 1− δ,
TY rejects.

4. TY makes M(ε, δ) MQs and Q(ε, δ) ExQD (resp. ExQU ).
Then
1. There is a polynomial time two-sided distribution-free adaptive algorithm for ε-testing C

that makes

Õ

(
M(ε/12, 1/24) + kQ(ε/12, 1/24) + k

ε

)
queries.

2. (resp. There is a polynomial time two-sided uniform-distribution adaptive algorithm for
ε-testing C that makes

Õ

(
M(ε/12, 1/24) +Q(ε/12, 1/24) + k

ε

)
queries.)

Using Goldreich et. al [32], reduction of testing to proper learning we get

I Theorem 2. Let C be a class of n-bit long Boolean functions that is symmetric subclass of
k-Junta and is closed under zero projection. Suppose for every Y = {y1, . . . , yq} with q ≤ k,
there is a polynomial time proper learning algorithm that learns C∗(Y ) using M(ε, δ) MQs
and Q(ε, δ) ExQDs (resp. ExQU s). Then
1. There is a polynomial time two-sided distribution-free adaptive algorithm for ε-testing C

that makes

Õ

(
M(ε/12, 1/24) + kQ(ε/12, 1/24) + k

ε

)
queries.

2. (resp. There is a polynomial time two-sided uniform-distribution adaptive algorithm for
ε-testing C that makes

Õ

(
M(ε/12, 1/24) +Q(ε/12, 1/24) + k

ε

)
queries.)

Before we give the proof sketch, we give some applications.

3.1 Some Applications
k-Junta: For the class C = k-Junta, C∗(Y ) = q-Junta and since f is q-bit Boolean function

f ∈ C∗(Y ) and the tester TY can just returns accept. Then M = Q = 0 and we get a
distribution-free tester for k-Junta that makes Õ(k/ε).

k-Linear: For the class C = k-Linear, the sum (over F2) of at most k variables, we have
C(Y ) = {y1 +y2 + · · ·+yq}. If f is ε-far from C∗(Y ) then it is ε-far from y1 +y2 + · · · , yq.
We can distinguish between g = y1 + y2 + · · · + yq and a function that is ε-far from g

with O(1/ε) ExQD. Then M = 0 and Q = O(1/ε). So we get a distribution-free tester
for k-Linear that makes O(k/ε) queries.
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5:10 Optimal Testers

k-Term: For the class C = k-Term, the conjunction of at most k literals, we have C(Y ) =
{z1 ∧ z2 ∧ · · · ∧ zq | zi ∈ {yi, yi}}. The tester TY asks O(1/ε) ExQD. If for all the strings
f is zero then the tester accept. Otherwise, there is a string a such that f(a) = 1.
Then zi = yi if ai = 1 and zi = yi if ai = 0. Then as above, it tests if f is ε-far from
z1 ∧ z2 ∧ · · · ∧ zq and we get a distribution-free tester for k-Term that makes O(k/ε)
queries.

s-term monotone r-DNF: For the class s-term monotone r-DNF (a DNF that contains at
most s r-Terms), in the full paper, we give an algorithm that properly learns this class in
polynomial time and makes O(s/ε) ExDD and O(rs log(ns)) MQs. Since the number of
influential variables in any s-term monotone r-DNF is at most sr we have q ≤ k = sr.
Therefore the class C∗(Y ) (n = q ≤ sr) can be properly learned using O(s/ε) ExDD and
O(rs log(rs)) MQs. By Theorem 2 we get
I Theorem 3. For any ε > 0, there is a polynomial time two-sided distribution-free
adaptive algorithm for ε-testing s-Term Monotone r-DNF that makes Õ(rs2/ε) queries.
In the full paper, we also show that
I Theorem 4. For any ε > 0, there is a polynomial time two-sided distribution-free
adaptive algorithm for ε-testing s-Term Unate7 r-DNF that makes Õ(rs2/ε) queries.

3.2 Proof Sketch

Algorithm 1 A distribution-free tester for subclasses C of k-Junta.

TesterC(f,D, ε)
Input: Oracle that accesses a Boolean function f and D.
Output: If any one of the procedures rejects

then “reject”, otherwise, “accept”

1. (X,V, I)←ApproxTarget(f,D, ε, 1/3).
2. Define h(x) = f(xX ◦ 0X).
3. TestSets(h,X, V, I).
4. Define F
5. ClosefF (f,D, ε, 1/15)
6. Run TY on F
7. Accept

We now sketch the proof of Theorem 1. See the full proof in [13]. The tester is TesterC
in Algorithm 1. First, TesterC calls the procedure ApproxTarget, in Algorithm 2. This
procedure executes the first stage of the tester. See Subsection 2.3.1. The reason that here the
procedure is more complex is because, for learning classes of unate functions the procedure in
Algorithm 1 returns witnesses for h(x) = f(xXI

◦ 0XI
) and not for f (as in Subsection 2.3.1).

So those witnesses also give us the unateness of each variable in the function. This is, for
example, how we get the result in Theorem 4.

Throughout the paper we denote X = XI and h(x) = f(xX ◦ 0X). In [13] we prove the
following. The proof sketch is in Subsection 2.3.1.

7 The function f is unate if there is a such that f(x+ a) is monotone.
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Algorithm 2 A procedure that finds influential sets {Xi}i∈I of f and a witness v(i) for each
influential set Xi for h := f(xXI ◦ 0

XI
) where XI = ∪i∈IXi. Also, whp, h is (ε/3)-close to the

target.

ApproxTarget(f,D, ε, c)
Input: Oracle that accesses a Boolean function f and

an oracle that draws x ∈ {0, 1}n according to the distribution D.
Output: Either “reject” or (XI , V, I)

Partition [n] into r sets
1. Set r = 2k2.
2. Choose uniformly at random a partition X1, X2, . . . , Xr of [n]

Find a close function and influential sets
3. Set XI = ∅; I = ∅; V = ∅; t(XI) = 0.
4. Repeat M = 3k ln(15k)/ε times
5. Choose u ∈ D.
6. t(XI)← t(XI) + 1
7. If f(uXI

◦ 0XI
) 6= f(u) then

8. W ← ∅.
9. (`, w(`))← Binary Search to find a new influential set X`

using u and uXI
◦ 0XI

and a string
10. w(`) ∈ {0, 1}n such that f(w(`)) 6= f(w(`)

X`
◦ 0X`

);
11. XI ← XI ∪X`; I ← I ∪ {`}.
12. If |I| > k then Output(“reject”).
13. W = W ∪ {w(`)}.
14. Choose w(r) ∈W .
15. If f(w(r)

XI
◦ 0XI

) 6= f(w(r)
XI\Xr

◦ 0XI∪Xr
) then

W ←W\{w(r)}; v(r) ← w
(r)
XI
◦ 0XI

;V ← V ∪ {v(r)};
If W 6= ∅ then Goto 14

16. Else If f(w(r)
XI
◦ 0XI

) 6= f(w(r)) then u← w(r); Goto 9
17. Else u← w

(r)
Xr
◦ 0Xr

; Goto 9
18. t(XI) = 0.
19. If t(XI) = c ln(15k)/ε then Output(XI , V, I).

I Lemma 5. Consider steps 1-2 in the ApproxTarget. If f is a k-junta then, with probability
at least 2/3, for each i ∈ [r], the set x(Xi) = {xj |j ∈ Xi} contains at most one influential
variable of f .

I Lemma 6. If ApproxTarget does not reject then it outputs (X,V, I) that satisfies
1. q = |I| ≤ k.
2. For every ` ∈ I, v(`)

X
= 0 and f(v(`)) 6= f(0X`

◦ v(`)
X`

). That is, v(`) ∈ V is a witness of
h(x) = f(xX ◦ 0X) for X` .

3. Each x(X`), ` ∈ I, contains at least one influential variable of h(x) = f(xX ◦ 0X).
4. With probability at least 14/15

Pru∈D[h(x) 6= f(x)] ≤ ε/3.
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I Lemma 7. If f is k-junta and each x(Xi) contains at most one influential variable of f
then
1. ApproxTarget outputs (X,V, I).
2. Each x(X`), ` ∈ I, contains exactly one influential variable in h(x) = f(xX ◦ 0X).
3. For every ` ∈ I, h(xX`

◦ v(`)
X`

) = f(xX`
◦ v(`)

X`
) is a literal.

I Lemma 8. The procedure ApproxTarget makes O((k log k)/ε) = Õ(k/ε) queries.

The tester then defines h(x) = f(xX ◦ 0X). Now, since Pru∈D[h(x) 6= f(x)] ≤ ε/3 it is
enough to distinguish between h is in C and h that is (2ε/3)-far from every function in C
with respect to D.

The tester then moves to the second stage. See Subsection 2.3.2. First, it calls the
procedureTestSets. See Algorithm 3 in Appendix A. The procedure tests if every h(xX`

◦v(`)
X`

)
is close to a literal. In the procedure, UniformJunta(g, k, ε, δ) is Blais’s uniform-distribution
one-sided tester [7] for k-Junta. For k = 1 it tests whether g is a literal or constant function
or ε-far from any literal and constant function with respect to the uniform distribution.

The following is very easy to prove

I Lemma 9. We have
1. If h is k-junta and each x(Xi) contains at most one influential variable of f then TestSets

returns “OK”.
2. If for some ` ∈ I, h(xX`

◦ v(`)
X`

) is (1/30)-far from every literal with respect to the uniform
distribution then, with probability at least 1− (1/15), TestSets rejects.

3. The procedure TestSets makes O(k) queries.

This test does not give τ(i) (the index of the influential variable in Xi) but the fact that
h(xXi ◦v

(i)
Xi

) is close to xτ(i) or xτ(i) can be used to find the value of uτ(i) in every assignment
u ∈ {0, 1}n without knowing τ(i). The latter is done, whp, by the procedure RelVarValues
that uses self-correction. See Algorithm 4 in Appendix A. We have

I Lemma 10. We have
1. If h is k-Junta and each x(Xi) contains at most one influential variable of h then

RelVarValues outputs z such that z` = wτ(`) where h(xX`
◦ 0X`

) ∈ {xτ(`), xτ(`)}.
2. If for every ` ∈ I the function h(xX`

◦ v(`)
X`

) is (1/30)-close to a literal in {xτ(`), x̄τ(`)}
with respect to the uniform distribution, where τ(`) ∈ X`, and RelVarValues does not
reject then, with probability at least 1− δ, we have: For every ` ∈ I, z` = wτ(`).

3. The procedure RelVarValues makes O(k log(k/δ)) queries.

Proof. Since νi(x) = h(xX`
◦ v(`)

X`
) is (1/30)-close to a literal in {xτ(`), x̄τ(`)} we have that

for a uniform random string z, with probability at least 1/15 we have ν(x+ z) + ν(z) = xτ(`).
If we repeat this test O(log(k/δ)) times for every ` ∈ I, we get a success probability 1− δ.
Since |I| ≤ k, RelVarValues makes O(k log(k/δ)) queries. J

We collect all the above events that happens with high probability in the following

I Assumption 11. For the rest of this section we assume
1. If f ∈ C then

h(x) = f(xX ◦ 0X) ∈ C.
Each x(X`), ` ∈ I contains exactly one influential variable.
For every ` ∈ I, f(xX`

◦ v(`)
X`

) is a literal in {xτ(`), xτ(`)}.
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2. If f is ε-far from every function in C then
h(x) = f(xX ◦0X) is (ε/3)-close to f with respect to D and therefore h(x) is (2ε/3)-far
from every function in C with respect to D.
For every ` ∈ I, f(xX`

◦ v(`)
X`

) is (1/30)-close to a literal in {xτ(`), x̄τ(`)} with respect
to the uniform distribution.

3. For any u, we can get (uτ(`))`∈I using Õ(k) queries.

We are getting now to the third stage. See Subsection 2.3.3. For a function f ∈ C we define
Rel(f), the set of all influential variables of f . Let q = |I| and Γ := {τ(`1), . . . , τ(`q)}. Notice
that, with the above assumption, if h ∈ C then Rel(h) = Γ. We define the class C(Γ) (resp.
C∗(Γ)), the set of functions in C with Rel(f) = {xγ | γ ∈ Γ} (resp. Rel(f) ⊆ {xγ | γ ∈ Γ}).
Since C is symmetric and closed under zero projection C(Γ) (resp. C∗(Γ)) is the set of
all functions f(xτ(`1), . . . , xτ(`q), 0, 0, . . . , 0) where f ∈ C and Rel(f) = {x1, . . . , xq} (resp
Rel(f) ⊆ {x1, . . . , xq}). We recall that, for Y = {y1, . . . , yq}, C(Y ) (resp. C∗(Y )) are the
set of all functions f(y1, . . . , yq, 0, 0, . . . , 0) where f ∈ C and Rel(f) = {x1, . . . , xq} (resp.
Rel(f) ⊆ {x1, . . . , xq}).

Let F (y1, . . . , yq) = h(z)(= f(z)) where z = (y1)X`1
◦ · · · ◦ (yq)X`q

◦ 0X . That is, for every
`i ∈ I, j ∈ X`i we have zj = yi and for every j ∈ X we have zj = 0. Then, by Assumption 11,
it is easy to prove that (see Subsection 2.3.3)

I Lemma 12. We have
1. If h ∈ C then F (xτ(`1), . . . , xτ(`q)) = h.
2. If h ∈ C then F (y1, . . . , yq) ∈ C(Y ).
3. If h is 2ε/3-far from every function in C with respect to D then either

a. h is ε/3-far from F (xτ(`1), . . . , xτ(`q)) with respect to D,
or,

b. F (xτ(`1), . . . , xτ(`q)) is ε/3-far from every function in C with respect to D.
Therefore, we need to do two tests. The first is to distinguish between h = F and h that is
ε/3-far from F w.r.t D. The second is to distinguish between F ∈ C and F that is ε/3-far
from every function in C w.r.t D.

The following result shows that we can query F (y1, . . . , yq) and for every x ∈ {0, 1}n
we can extract xΓ. So, in particular, we can get a sample according to DΓ and query
F (xτ(`1), . . . , xτ(`q)). The proof is immediate (See Appendix A)

I Lemma 13. For the function F we have
1. Given (y1, . . . , yq), computing F (y1, . . . , yq) can be done with one query to f .
2. Given x ∈ {0, 1}n and δ, there is an algorithm that makes O(k log(k/δ)) queries and,

with probability at least 1− δ, either discovers that f 6∈ C and then reject or computes
xΓ = (xτ(`1), . . . , xτ(`q)) and F (xΓ).

3. There is a polynomial time algorithm that makes O(k log(k/δ)) queries and with probability
at least 1− δ returns a string u in {0, 1}q according to the distribution DΓ and F (u).

4. There is a polynomial time algorithm that makes one query and returns a string u in
{0, 1}q according to the uniform distribution and F (u).

We now give the procedure ClosefF that tests whether h(x) = f(xX ◦ 0X) is (ε/3)-far
from F with respect to D. See Algorithm 5 and the proof in Appendix A.

I Lemma 14. For any ε, a constant δ, and (X,V, I) that satisfies Assumption 11, procedure
ClosefF makes O((k/ε) log(k/ε)) = Õ(k/ε) queries and
1. If f ∈ C then ClosefF returns OK.
2. If h(x) is (ε/3)-far from F with respect to D then, with probability at least 1−δ, ClosefF

rejects.
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The second test is to distinguish between F ∈ C and F that is ε/3-far from C w.r.t the
distribution D.

Consider the tester TY in Theorem 1. If h(x) = F (xτ(`1), . . . , xτ(`q)) ∈ C then, by Assump-
tion 11, since each x(X`), `∈I, contains exactly one influential variable, F (xτ(`1), . . . , xτ(`q)) ∈
C(Γ). Therefore F = F (y1, . . . , yq) ∈ C(Y ). If F (xτ(`1), . . . , xτ(`q)) is ε/3-far from every
function in C w.r.t D, then it is ε/3-far from every function in C∗(Γ) w.r.t DΓ. Therefore,
F = F (y1, . . . , yq) is ε/3-far from every function in C∗(Y ) w.r.t DΓ. Therefore, TY can be
used for the second test of F (xΓ) ∈ C vs. ε/3 far from every function in C.

Now by, Lemma 13, every MQ to F can be simulated with one MQ to f and every ExQDΓ

can be simulated with O(k log(k/δ′)) ExQD queries and have success probability 1−δ′. Since
TY asks Q(ε, δ) queries, we need O(k log(kQ(ε, δ)/δ)) ExQD to have success 1− δ for all the
queries. When D is uniform then, by Lemma 13, every ExQUΓ can be simulated with one
query to MQ.

Notice that the success probability in all the procedures above is 1− δ for any constant δ.
By choosing δ = 1/20 for each procedure, we get a tester with confidence of at least 2/3.
By Lemmas 8, 9 and the above analysis the query complexity of the tester is as stated in
Theorem 1.

4 The Second Tester: Uniform-Distribution Tester for Classes that
are Close to k-Junta w.r.t the Uniform Distribution

The second tester in this paper tests classes that are close to k-Junta w.r.t the uniform
distribution, that is, for every f ∈ C and every ε, there is k such that every function in C is
ε-close to some function in k-Junta.

To understand the intuition behind the second tester, we demonstrate it for testing s-term
DNF, the class of DNF with at most s terms. This class is close to (s log(s/ε))-Junta. This
is because, for every s-term DNF and every ε, the function g that results by removing the
terms of size greater than or equal to log(s/ε) in f is ε-close to f and g ∈ (s log(s/ε))-Junta.

Let f be an s-term DNF. Since, for ε-testing, the variables that are influential in f

are variables in terms of size d = O(log(s/ε)), there are at most k = sd = O(s log(s/ε))
influential variables in f . Suppose we uniformly at random distribute the variables of f into
r = 10k bins X1, . . . , Xr. The influential variables falls into at most k bins. We call those
bins influential bins. Terms in f of size greater than d, with high probability, d/2 of their
variables falls into the uninfluential bins.

We try as before to find the influential bins, but this time, we use uniform random strings
in our search. This is because, when we use uniform random strings, with high probability,
all the large terms in f are equal zero for those strings, and therefore, no uninfluential bin is
found by the search procedure.

We find enough influential bins such that if we substitute a random assignment in the
variables of the uninfluential bins, w.h.p., we get a function H that is ε/4-close to f . The next
key idea is: as we said before, if we have a large term in f , then with high probability, many
of its variables fall into the uninfluential bins. So when we substitute a random assignment
for the variables in the uninfluential bins, with high probability, the large terms in f vanish
in H. Therefore, with high probability, H is ε/4 close to f and contains small terms (terms
of size at most d = O(log(s/ε)). Since H is s-term d-DNF, it is a function in sd-Junta, and
we can use the first tester to test H.

See more details in Appendix B.
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A The Procedures of the First Tester

Proof of Lemma 13.

Proof. 1 is immediate since F (y1, . . . , yq) = f(z) where z = (y1)X`1
◦ · · · ◦ (yq)X`q

◦ 0X .
To prove 2. We run RelVarValues(x,X, V, I, δ). If it rejects then, by Lemma 10, f 6∈ C.
Otherwise, by Lemma 10, with probability at least 1 − δ, the procedure outputs z where
for every `, z` = xτ(`). Then using 1 we compute F (z). Since by Lemma 10, RelVarValue
makes O(k log(k/δ)) queries, the result follows. Now 3 and 4 follows immediately from 1
and 2. J
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Algorithm 3 A procedure that tests if for all ` ∈ I, h(xX` ◦ v
(`)
X`

) is (1/30)-close to some literal
with respect to the uniform distribution.

TestSets(h,X, V, I)
Input: Oracle that accesses a Boolean function f and (X,V, I).
Output: Either “reject” or “OK”

1. For every ` ∈ I do
2. If UniformJunta(h(xX`

◦ v(`)
X`

), 1, 1/30, 1/15)=“reject”
3. then Output(“reject”)
4. Choose b ∈ {0, 1}n uniformly at random
5. If h(bX`

◦ v(`)
X`

) = h(bX`
◦ v(`)

X`
) then Output(“reject”)

6. Return “OK”

Algorithm 4 A procedure that takes as input (X,V, I) and a string w ∈ {0, 1}n and, with
probability at least 1− δ, returns the values of wτ(i), i ∈ I, where h(xXi ◦ v

(i)
Xi

) is (1/30)-close to
one of the literals in {xτ(i), xτ(i)} with respect to the uniform distribution.

RelVarValues(w,X, V, I, δ)
Input: Oracle that accesses a Boolean function h, (X,V, I) and w ∈ {0, 1}n.
Output: Either “reject” or returns for every ` ∈ I, the value, z` = wτ(`) where xτ(`)

is one of the influential variables of h(xX ◦ 0X) in x(X`)

1. For every ` ∈ I do
2. For ξ ∈ {0, 1} set Y`,ξ = {j ∈ X`|wj = ξ}.
3. Set G`,0 = G`,1 = 0;
4. Repeat t = ln(k/δ)/ ln(4/3) times
5. Choose b ∈ {0, 1}n uniformly at random;
6. If h(bY`,0 ◦ bY`,1 ◦ v

(`)
X`

) 6= h(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) then G`,0 ← G`,0 + 1
7. If h(bY`,1 ◦ bY`,0 ◦ v

(`)
X`

) 6= h(bY`,1 ◦ bY`,0 ◦ v
(`)
X`

) then G`,1 ← G`,1 + 1
8. If ({G`,0, G`,1} 6= {0, h}) then Output(“reject”)
9. If G`,0 = t then z` ← 0 else z` ← 1
10. Output(“{z`}`∈I”)

Algorithm 5 A procedure that tests whether h(x) is (ε/3)-far from F with respect to D.

ClosefF (f,D, ε, δ)
Input: Oracle that accesses a Boolean function f and D.
Output: Either “reject” or “OK”

1. Repeat t = (3/ε) ln(2/δ) times
2. Choose u ∈ D.
3. z ←RelVarValue(u,X, V, I, δ/(2t)) .
4. If h(u) 6= F (z) then Output(“reject”)
5. Return “OK”.
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Proof of Lemma 14.

Proof. If f ∈ C then, by Lemma 12, F (u(i)
Γ ) = h(u) for every i. By Lemma 10 and

Assumption 11, z(i) = u
(i)
Γ for all i, and therefore ClosefF returns OK.

Suppose now h(x) is (ε/3)-far from F with respect to D. By 2 in Lemma 13,RelVarValue
makes O(kt log((kt)/δ)) queries and computes F (u(i)

Γ ), i = 1, . . . , t, with failure probability
at most δ/2. Then the probability that it fails to reject is at most (1− ε/3)t ≤ δ/2. This
gives the result.

Therefore, ClosefF makes O((k/ε) log(k/ε)) queries and satisfies 1 and 2. J

B Classes that are Close to k-Junta

We now give more details. The tester first runs the procedure ApproxC in Algorithm 6.
This procedure is similar to the procedure ApproxTarget. It randomly uniformly partitions
the variables to r = 4c2(c + 1)s log(s/ε) disjoint sets X1, . . . , Xr and finds influential sets
{Xi}i∈I . Here c is a large constant. To find a new influential set, it chooses two random
uniform strings u, v ∈ {0, 1}n and verifies if f(uX ◦ vX) 6= f(u) where X is the union of the
influential sets that it has found thus far. If f(uX ◦ vX) 6= f(u) then the binary search finds
a new influential set.

In the binary search for a new influential set, the procedure defines a set X ′ that is
equal to the union of half of the sets in {Xi}i6∈I . Then either f(uX∪X′ ◦ vX′) 6= f(u) or
f(uX∪X′ ◦ vX′) 6= f(uX ◦ vX). Then it recursively does the above until it finds a new
influential set X`.

It is easy to see that if f is s-term DNF then, whp, for all the terms T in f of size at
least c2 log(s/ε), for all the random uniform strings u, v chosen in the algorithm and for all
the strings z generated in the binary search, T (uX ◦ vX) = T (u) = T (z) = 0. Therefore,
when f is s-term DNF, the procedure, whp, runs as if there are no terms of size greater than
c2 log(s/ε) in f . This shows that, whp, each influential set that the procedure finds contains
at least one variable that belongs to a term of size at most c2 log(s/ε) in f . Therefore, if f is
s-term DNF, the procedure, whp, does not generate more than c2s log(s/ε) influential sets.
If the procedure finds more than c2s log(s/ε) influential sets then, whp, f is not s-term DNF
and therefore it rejects.

Let R be the set of all the variables that belong to the terms in f of size at most c2 log(s/ε).
The procedure returns h(x) = f(xX ◦wX) for random uniform w where X is the union of the
influential sets X = ∪i∈IXi that is found by the procedure. If f is s-term DNF then since
r = 4c2(c+ 1)s log(s/ε) and the number of influential sets is at most c2s log(s/ε), whp, at
least (1/2)c log(s/ε) variables in each term of f that contains at least c log(s/ε) variables not
in R falls outside X in the partition of [n]. Therefore, for random uniform w, whp, terms T in
f that contains at least c log(s/ε) variables not in R satisfies T (xX ◦ wX) = 0 and therefore,
whp, are vanished in H = f(xX ◦ wX). Thus, whp, H contains all the terms that contains
variables in R and at most cs log(s/ε) variables not in R. Therefore, whp, H contains at
most c(c+ 1)s log(s/ε) influential variables. From this, and using similar arguments as for
the procedure ApproxTarget in the previous subsection, we prove that, ApproxC makes
at most Õ(s/ε) queries and
1. If f is s-term DNF then, whp, the procedure outputs X and w such that

H = f(xX ◦ wX) is s-term DNF8.
The number of influential variables in H = f(xX ◦ wX) is at most O(s log(s/ε)).

8 So in this case we need the class to be closed under zero-one projection.
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2. If f is ε-far from every s-term DNF then the procedure either rejects or outputs X and
w such that, whp, H = f(xX ◦ wX) is (3ε/4)-far from every s-term DNF.

We can now run TesterC (with 3ε/4) on H from the previous subsection for testing C∗
where C∗ is the set of s-term DNF with k = O(s log(s/ε)) influential variables.

Algorithm 6 A procedure that removes variables from f that only appear in large size terms.

Algorithm ApproxC(f, ε)
Input: Oracle that accesses a Boolean function f and ε
Output: Either “X ⊆ [n], w ∈ {0, 1}n” or “reject”

Partition [n] into r sets
1. Set r = 8sc log(s/ε).
2. Choose uniformly at random a partition X1, X2, . . . , Xr of [n]

Find a close function and influential sets
3. Set X = ∅; I = ∅; t(X) = 0; k = 3ms
4. Repeat M = 400k ln(100k)/ε times
5. Choose w and u uniformly at random from {0, 1}n;.
6. t(X)← t(X) + 1
7. If f(uX ◦ vX) 6= f(u) then
8. Binary Search to find a new influential set X`; X ← X ∪X`; I ← I ∪ {`}.
9. If |I| > k then output “reject” and halt.
10. t(X) = 0.
11. If t(X) = 400 ln(100k)/ε then
12. Sample w uniformly at random from {0, 1}n;
13. Output(X,w,H = f(xX ◦ wX)).
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