4,790 research outputs found

    Genetic algorithms

    Get PDF
    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    Design of a CMOS-Memristive Mixed-Signal Neuromorphic System with Energy and Area Efficiency in System Level Applications

    Get PDF
    The von Neumann architecture has been the backbone of modern computers for several years. This computational framework is popular because it defines an easy, simple and cheap design for the processing unit and memory. Unfortunately, this architecture faces a huge bottleneck going forward since complexity in computations now demands increased parallelism and this architecture is not efficient at parallel processing. Moreover, the post-Moore\u27s law era brings a constant demand for energy-efficient computing with fewer resources and less area. Hence, researchers are interested in establishing alternatives to the von Neumann architecture and neuromorphic computing is one of the few aspiring computing architectures that contributes to this research effectively. Initially, neuromorphic computing attracted attention because of the parallelism found in the bio-inspired networks and they were interested in leveraging this advantage on a single chip. Moreover, the need for speed in real time performance also escalated the popularity of neuromorphic computing and different research groups started working on hardware implementations of neural networks. Also, neuroscience is consistently building a better understanding of biological networks that provides opportunities for bridging the gap between biological neuronal activities and artificial neural networks. As a consequence, the idea behind neuromorphic computing has continued to gain in popularity. In this research, a memristive neuromorphic system for improved power and area efficiency has been presented. This particular implementation introduces a mixed-signal platform to implement neural networks in a synchronous way. In addition to mixed-signal design, a nano-scale memristive device has been introduced that provides power and area efficiency for the overall system. The system design also includes synchronous digital long term plasticity (DLTP), an online learning methodology that helps train the neural networks during the operation phase, improving the efficiency in learning when considering power consumption and area overhead. This research also proposes a stochastic neuron design with a sigmoidal firing rate. The design introduces variability in the membrane capacitance to reach different membrane potential leading to a variable stochastic firing rate

    Immunity-Based Accommodation of Aircraft Subsystem Failures

    Get PDF
    This thesis presents the design, development, and flight-simulation testing of an artificial immune system (AIS) based approach for accommodation of different aircraft subsystem failures.;Failure accommodation is considered as part of a complex integrated AIS scheme that contains four major components: failure detection, identification, evaluation, and accommodation. The accommodation part consists of providing compensatory commands to the aircraft under specific abnormal conditions based on previous experience. In this research effort, the possibility of building an AIS allowing the extraction of pilot commands is investigated.;The proposed approach is based on structuring the self (nominal conditions) and the non-self (abnormal conditions) within the AIS paradigm, as sets of artificial memory cells (mimicking behavior of T-cells, B-cells, and antibodies) consisting of measurement strings, over pre-defined time windows. Each string is a set of features values at each sample time of the flight including pilot inputs, system states, and other variables. The accommodation algorithm relies on identifying the memory cell that is the most similar to the in-coming measurements. Once the best match is found, control commands corresponding to this match will be extracted from the memory and used for control purposes.;The proposed methodology is illustrated through simulation of simple maneuvers at nominal flight conditions, different actuators, and sensor failure conditions. Data for development and demonstration have been collected from West Virginia University 6-degrees-of-freedom motion-based flight simulator. The aircraft model used for this research represents a supersonic fighter which includes model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation.;The simulation results demonstrate the possibility of extracting pilot compensatory commands from the self/non-self structure and the capability of the AIS paradigm to address the problem of accommodating actuator and sensor malfunctions as a part of a comprehensive and integrated framework along with abnormal condition detection, identification, and evaluation

    Accelerated Controller Tuning for Wind Turbines Under Multiple Hazards

    Get PDF
    During their lifecycle, wind turbines can be subjected to multiple hazard loads, such as high-intensity wind, earthquake, wave, and mechanical unbalance. Excessive vibrations, due to these loads, can have detrimental effects on energy production, structural lifecycle, and the initial cost of wind turbines. Vibration control by various means, such as passive, active, and semi-active control systems provide crucial solutions to these issues. We developed a novel control theory that enables semi-active controller tuning under the complex structural behavior and inherent system nonlinearity. The proposed theory enables the evaluation of semi-active controllers’ performance of multi-degrees-of-freedom systems, without the need for time-consuming simulations. A wide range of controllers can be tested in a fraction of a second, and their parameters can be tuned to achieve system-level performance for different optimization objectives
    • …
    corecore