39 research outputs found

    Second-Order Finite Automata

    Get PDF
    Traditionally, finite automata theory has been used as a framework for the representation of possibly infinite sets of strings. In this work, we introduce the notion of second-order finite automata, a formalism that combines finite automata with ordered decision diagrams, with the aim of representing possibly infinite sets of sets of strings. Our main result states that second-order finite automata can be canonized with respect to the second-order languages they represent. Using this canonization result, we show that sets of sets of strings represented by second-order finite automata are closed under the usual Boolean operations, such as union, intersection, difference and even under a suitable notion of complementation. Additionally, emptiness of intersection and inclusion are decidable. We provide two algorithmic applications for second-order automata. First, we show that several width/size minimization problems for deterministic and nondeterministic ODDs are solvable in fixed-parameter tractable time when parameterized by the width of the input ODD. In particular, our results imply FPT algorithms for corresponding width/size minimization problems for ordered binary decision diagrams (OBDDs) with a fixed variable ordering. Previously, only algorithms that take exponential time in the size of the input OBDD were known for width minimization, even for OBDDs of constant width. Second, we show that for each k and w one can count the number of distinct functions computable by ODDs of width at most w and length k in time h(|Σ|,w) ⋅ kO(1), for a suitable h:N×N→Nh:\mathbb {N}\times \mathbb {N}\rightarrow \mathbb {N}. This improves exponentially on the time necessary to explicitly enumerate all such functions, which is exponential in both the width parameter w and in the length k of the ODDs.publishedVersio

    Quantum Branching Programs and Space-Bounded Nonuniform Quantum Complexity

    Get PDF
    In this paper, the space complexity of nonuniform quantum computations is investigated. The model chosen for this are quantum branching programs, which provide a graphic description of sequential quantum algorithms. In the first part of the paper, simulations between quantum branching programs and nonuniform quantum Turing machines are presented which allow to transfer lower and upper bound results between the two models. In the second part of the paper, different variants of quantum OBDDs are compared with their deterministic and randomized counterparts. In the third part, quantum branching programs are considered where the performed unitary operation may depend on the result of a previous measurement. For this model a simulation of randomized OBDDs and exponential lower bounds are presented.Comment: 45 pages, 3 Postscript figures. Proofs rearranged, typos correcte

    An adaptivity hierarchy theorem for property testing

    Get PDF
    Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of adaptive testing algorithms, wherein each query may be determined by the answers received to prior queries, and their non-adaptive counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is k-(round) adaptive if it makes queries in k+1 rounds, where the queries in the i'th round may depend on the answers obtained in the previous i-1 rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every n in N and 0 <= k <= n^{0.99} there exists a property Pi_{n,k} of functions for which (1) there exists a k-adaptive tester for Pi_{n,k} with query complexity tilde O(k), yet (2) any (k-1)-adaptive tester for Pi_{n,k} must make Omega(n) queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs

    Dagstuhl News January - December 2001

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    An Adaptivity Hierarchy Theorem for Property Testing

    Get PDF
    Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of adaptive testing algorithms, wherein each query may be determined by the answers received to prior queries, and their non-adaptive counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is k-(round) adaptive if it makes queries in k+1 rounds, where the queries in the i\u27th round may depend on the answers obtained in the previous i-1 rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every n in N and 0 <= k <= n^{0.99} there exists a property Pi_{n,k} of functions for which (1) there exists a k-adaptive tester for Pi_{n,k} with query complexity tilde O(k), yet (2) any (k-1)-adaptive tester for Pi_{n,k} must make Omega(n) queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs

    An adaptivity hierarchy theorem for property testing

    Get PDF
    Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of adaptive testing algorithms, wherein each query may be determined by the answers received to prior queries, and their non-adaptive counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is k-(round) adaptive if it makes queries in k+1 rounds, where the queries in the i'th round may depend on the answers obtained in the previous i-1 rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every n in N and 0 <= k <= n^{0.99} there exists a property Pi_{n,k} of functions for which (1) there exists a k-adaptive tester for Pi_{n,k} with query complexity tilde O(k), yet (2) any (k-1)-adaptive tester for Pi_{n,k} must make Omega(n) queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs

    Master index

    Get PDF
    Pla general, del mural cerĂ mic que decora una de les parets del vestĂ­bul de la Facultat de QuĂ­mica de la UB. El mural representa diversos sĂ­mbols relacionats amb la quĂ­mica

    Adaptivity Helps for Testing Juntas

    Get PDF
    We give a new lower bound on the query complexity of any non-adaptive algorithm for testing whether an unknown Boolean function is a k-junta versus epsilon-far from every k-junta. Our lower bound is that any non-adaptive algorithm must make Omega(( k * log*(k)) / ( epsilon^c * log(log(k)/epsilon^c))) queries for this testing problem, where c is any absolute constant <1. For suitable values of epsilon this is asymptotically larger than the O(k * log(k) + k/epsilon) query complexity of the best known adaptive algorithm [Blais,STOC\u2709] for testing juntas, and thus the new lower bound shows that adaptive algorithms are more powerful than non-adaptive algorithms for the junta testing problem
    corecore