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Abstract
We give a new lower bound on the query complexity of any non-adaptive algorithm for testing
whether an unknown Boolean function is a k-junta versus ε-far from every k-junta. Our lower
bound is that any non-adaptive algorithm must make

Ω
(

k log k
εc log(log(k)/εc)

)
queries for this testing problem, where c is any absolute constant < 1. For suitable values of ε this
is asymptotically larger than the O(k log k + k/ε) query complexity of the best known adaptive
algorithm [9] for testing juntas, and thus the new lower bound shows that adaptive algorithms
are more powerful than non-adaptive algorithms for the junta testing problem.
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1 Introduction

As popular and scientific interest in “big data” continues to build, the field of sublinear-time
algorithms has received increasing research attention in recent years. The study of property
testing is an important area within sublinear algorithms. At a high level, property testing
algorithms are “ultra-fast” randomized algorithms which aim to (approximately) determine
whether an unknown “massive object” has a particular property while inspecting only a tiny
(sublinear, or in some cases even constant sized) portion of the object. Testing algorithms have
by now been studied for many different types of mathematical objects; see e.g. [38, 39, 28]
for some fairly recent surveys and overviews of contemporary property testing research.

In this work we shall consider property testing algorithms for Boolean functions, and
in particular we study the question of testing whether an unknown Boolean function is a
k-junta. Recall that a function f is a k-junta if it has at most k relevant variables, i.e. there
exist k distinct indices i1, . . . , ik and a k-variable function g : {0, 1}k → {0, 1} such that
f(x) = g(xi1 , . . . , xik ) for all x ∈ {0, 1}n. A testing algorithm for k-juntas is given as input
k and ε > 0, and is provided with black-box oracle access to an unknown and arbitrary
f : {0, 1}n → {0, 1}. The algorithm must output “yes” with high probability (say at least
2/3) if f is a k-junta, and must output “no” with high probability if f disagrees with every
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k-junta on at least an ε fraction of all possible inputs. The main goal in property testing is to
obtain algorithms which make as few queries as possible to the unknown black-box function.

We motivate our work by observing that juntas are a very basic type of Boolean function
whose study intersects many different areas within theoretical computer science. In complexity
theory and cryptography, k = O(1)-juntas are precisely the Boolean functions computed
by NC0 circuits. Juntas arise naturally in settings where a small (unknown) set of features
determines the label of a high-dimensional data point, and hence many researchers in
learning theory have studied juntas across a wide range of different learning models, see
e.g. [15, 22, 16, 30, 3, 37, 4, 2, 25, 42, 21]. Finally, the problem of testing whether an unknown
Boolean function is a k-junta is one of the most thoroughly studied questions in Boolean
function property testing. We briefly survey relevant previous work on testing juntas in the
following subsection.

1.1 Prior work on testing juntas

Fischer et al. [26] were the first to explicitly consider the junta testing problem. Their
influential paper gave several algorithms for testing k-juntas, the most efficient of which is a
non-adaptive tester that makes O(k2(log k)2/ε) queries. This was improved by Blais [8] who
gave a non-adaptive testing algorithm that uses only O(k3/2(log k)3/ε) queries; this result is
still the most efficient known non-adaptive junta tester. Soon thereafter Blais [9] gave an
adaptive junta testing algorithm that uses only O(k log k + k/ε) queries, which remains the
most efficient known junta testing algorithm to date.

We note that ideas and and techniques from these junta testing algorithms have played
an important role in a broad range of algorithmic results for other Boolean function property
testing problems. These include efficient algorithms for testing various classes of functions,
such as s-term DNF formulas, small Boolean circuits, and sparse GF (2) polynomials, that
are close to juntas but not actually juntas themselves (see e.g. [23, 29, 24, 19]), as well as
algorithms for testing linear threshold functions [34] (which in general are not close to juntas).
Junta testing is also closely related to the problem of Boolean function isomorphism testing,
see e.g. [13, 14, 18, 1].

Lower bounds for testing k-juntas have also been intensively studied. The original
[26] paper gave an Ω(

√
k/ log k) lower bound for nonadaptive algorithms that test whether

an unknown function is a k-junta versus constant-far from every k-junta. Chockler and
Gutfreund [20] simplified, strengthened and extended this lower bound by proving that
even adaptive testers require Ω(k) queries to distinguish k-juntas from random functions on
k + 1 variables, which are easily seen to be constant-far from k-juntas. (We describe the
construction and sketch the [20] argument in Section 1.3 below). Blais [8] was the first to
give a lower bound that involves the distance parameter ε; he showed that for ε ≥ k/2k, any
non-adaptive algorithm for ε-testing k-juntas must make Ω

(
k

ε log(k/ε)

)
queries.

In recent years numerous other works have given junta testing lower bounds. In [11]
Blais, Brody and Matulef established a connection between lower bounds in communication
complexity and property testing lower bounds, and used this connection (together with
known lower bounds on the communication complexity of the size-k set disjointness problem)
to give a different proof of an Ω(k) lower bound for adaptively testing whether a function
is a k-junta versus constant-far from every k-junta. More recently, Blais, Brody and Ghazi
[10] gave new bounds on the communication complexity of the Hamming distance function,
and used these bounds to give an alternate proof of the Ω(k) lower bound for adaptive
junta testing algorithms via the [11] connection. Blais and Kane [12] studied the problem of

CCC 2015



266 Adaptivity Helps for Testing Juntas

testing whether an n-variable Boolean function is a size-k parity function (as noted in [12],
lower bounds for this problem give lower bounds for testing juntas), and via a geometric and
Fourier-based analysis gave a k − o(k) lower bound for adaptive algorithms and a 2k −O(1)
lower bound for non-adaptive algorithms, again for ε constant. Buhrman et al. [17] combined
the communication complexity based approach of [11] with an Ω(k log k) lower bound for the
one-way communication complexity of k-disjointness to obtain an Ω(k log k) lower bound (for
constant ε) for testing whether a function f is a size-k parity, and hence for testing whether
f is a k-junta.

1.2 Our main result: Adaptivity helps for testing juntas
While the junta testing problem has been intensively studied, the results described above still
leave a gap between the query complexity of the best adaptive algorithm [9] and the strongest
known lower bounds for non-adaptive junta testing. The lower bounds of Ω

(
k

ε log(k/ε)

)
from

[8] and Ω(k log k) (for ε constant) from [17] are incomparable, but neither of them is strong
enough, for any setting of ε, to exceed the O(k log k + k/ε) upper bound from [9]. In [8]
Blais asked as an open question “Is there a gap between the query complexity of adaptive and
non-adaptive algorithms for testing juntas?” This question was reiterated in a 2010 survey
article on testing juntas, in which Blais explicitly asked “Does adaptivity help when testing
k-juntas?”, referring to this as a “basic problem” [7].

Our main contribution in the present work is to give a better lower bound on non-adaptive
junta testing algorithms which implies that the answer to the above questions is “yes.” We
prove the following:

I Theorem 1.1. Let A be any non-adaptive algorithm which tests whether an unknown
black-box f : {0, 1}n → {0, 1} is a k-junta versus ε-far from every k-junta. Then for all ε
satisfying k−ok(1) ≤ ε ≤ ok(1), algorithm A must make at least

q = Ck log k
εc log(log(k)/εc) (1)

queries, where c is any absolute constant < 1 and C > 0 is an absolute constant.

For suitable choices of ε, such as ε = 1/(log k), the lower bound of Theorem 1.1 is
asymptotically larger than the O(k log k + k/ε) upper bound of the [9] adaptive algorithm.
Thus, together with the [9] upper bound, our lower bound gives an affirmative answer to the
question posed in [8, 7]: adaptivity helps for testing k-juntas.1

It is interesting that while all of the recent junta testing lower bounds [11, 10, 17] employ
the connection with communication complexity lower bounds that was established in [11],
our proof of Theorem 1.1 does not follow this approach. Instead, we give a proof using Yao’s
classic minimax principle; however, our argument is somewhat involved, employing a new
Boolean isoperimetric inequality and a very delicate application of a variant of McDiarmid’s
“method of bounded differences” that allows for a (low-probability) bad event. In the rest of
this section we motivate and explain our approach at a high level before giving the full proof
in the subsequent sections.

1 We note in this context that several other natural Boolean function classes are known to exhibit a gap
between the query complexity of adaptive versus non-adaptive testing algorithms. These include the
class of signed majority functions [35, 40] and the class of read-once width-two OBDD [41]. In all three
cases the adaptive tester which beats the best possible non-adaptive tester may be viewed as performing
some sort of binary search.
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1.3 The idea underlying our proof
Our approach is inspired by the lower bound of Chockler and Gutfreund [20] for adaptive
algorithms, so we begin by briefly recalling their construction and analysis. Chockler and
Gutfreund define two distributions Dyes and Dno over (k + 1)-variable functions. A random
fyes ∼ Dyes is drawn by first choosing a random coordinate i ∈ [k + 1] to be the irrelevant
variable, and then choosing a random k-junta over the other k variables from x1, . . . , xk+1.
A random fno ∼ Dno is drawn by choosing a random (k + 1)-junta. Clearly every f in the
support of Dyes is a k-junta, and it is easy to show (for k larger than an absolute constant)
that almost every function in the support of Dno is constant-far from every k-junta.

Chockler and Gutfreund argue that any k/6-query adaptive algorithm A must have∣∣∣∣ Pr
fyes∼Dyes

[
A accepts fyes

]
− Pr

fno∼Dno

[
A accepts fno

]∣∣∣∣ ≤ 1
6 ,

which gives their Ω(k) lower bound for adaptive algorithms. Their analysis shows that the
only way an algorithm can get statistical evidence that the black-box f is a yes-function rather
than a no-function is by querying a pair of inputs x, y ∈ {0, 1}k+1 that differ in precisely the
coordinate i ∈ [k + 1] that was chosen to be irrelevant in the selection of fyes ∼ Dyes (they
refer to such a pair of Hamming neighbors x, x⊕i in {0, 1}k+1 as an i-twin). While we do
not repeat their analysis here, for intution we observe that if x, y form a j-twin for j 6= i

then for both a random yes-function and a random no-function f(x) = f(y) with probability
exactly 1/2, while if x, y form an i-twin then f(x) = f(y) for a random yes-function with
probability 1 while f(x) = f(y) with probability 1/2 for a random no-function. Since a set
of t queries can contain i-twins for at most t− 1 distinct coordinates, the Ω(k) lower bound
follows by a “needle in a haystack” argument.

The starting point of our work is the simple observation that the analysis of the Chockler-
Gutfreund construction is tight for adaptive algorithms: there is an adaptive algorithm that
can distinguish a random fyes ∼ Dyes from a random fno ∼ Dno with O(k) queries. This
algorithm works as follows: for each successive coordinate j = 1, . . . , k + 1, it draws random
j-twins until either (a) a j-twin x, x⊕j is drawn for which f(x) 6= f(x⊕j), or (b) 10 log(k+ 1)
j-twins have been drawn and all had f(x) = f(x⊕j). If (b) holds for any j ∈ [k+ 1] then halt
and output “k-junta,” and if (a) holds for every j ∈ [k + 1] halt and output “not a k-junta.”
Since the expected number of j-twins drawn for a coordinate j 6= i is 2, a straightforward
analysis establishes that this algorithm wvhp makes O(k) queries and outputs the correct
answer.

Intuitively, the above-described algorithm is only able to achieve O(k) query complexity
(an amortized O(1) queries for each of the k + 1 coordinates) because it is adaptive and
hence can stop querying a given coordinate j once it receives a j-twin with f(x) 6= f(x⊕j).
Since there are k + 1 coordinates to consider, it is very likely that for some coordinate j 6= i,
a collection of 1

2 log k randomly selected j-twins will all have f(x) = f(x⊕j) (in fact we
expect this to happen for ≈

√
k different coordinates). Since non-adaptive algorithms cannot

“amortize” the coordinates along which they spend their queries, this suggests that (i) any
nonadaptive algorithm will need to query Ω(log k) j-twins for at least Ω(k) many choices
of j ∈ [k + 1], and further raises the possibility that (ii) any non-adaptive algorithm for
distinguishing Dyes from Dno may need Ω(k log k) queries.

In fact, (i) above is correct but (ii) is not. While indeed a non-adaptive algorithm must
“rule out” at least Ω(k) coordinates as not being irrelevant, and indeed Ω(log k) j-twins must
be queried to rule out a given coordinate j with confidence 1− 1/poly(k), it does not follow
that Ω(k log k) queries are required to rule out all coordinates. This is because a set of q
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268 Adaptivity Helps for Testing Juntas

query points can induce ω(q) different twins – or, to put it in the more combinatorial terms
that we use henceforth in the paper, a subset Q of vertices of the Boolean hypercube can
induce ω(|Q|) hypercube edges.2 Indeed, as observed by Frankl [27], there is a set Q of
only Θ(k log k

log log k ) points in {0, 1}k+1 that induces at least log(k + 1) edges along each of
the k + 1 coordinates. This set S is as follows: letting ` = log(2 log(k + 1)) (and assuming
that ` and k+1

` are integers), we partition [k + 1] into sets A1, . . . , A(k+1)/` of equal size
` each, and let Q be the union of the k+1

` subcubes C1, . . . , C(k+1)/` where Ci consists of
all 2` strings whose 1-coordinates are all contained in positions in Ai. It is easy to verify
that the corresponding non-adaptive algorithm makes Θ(k log k

log log k ) queries and successfully
distinguishes fyes ∼ Dyes from fno ∼ Dno.

It turns out that this is indeed an optimal query lower bound for non-adaptive algorithms
that distinguish Dyes from Dno, up to constant factors; this follows as a special case of our
main result, taking ε to be constant. Our main result is proved by analyzing an ε-biased
generalization of the Chockler-Gutfreund yes- and no-distributions; the distributions we
consider are the same ones that Blais uses in [8] to establish his lower bound for non-
adaptive algorithms. The analysis of [8] uses the edge-isoperimetric inequality of Harper [31],
Bernstein [6], Lindsey [33], and Hart [32] and leads to a lower bound of Ω

(
k

ε log(k/ε)

)
queries

for non-adaptive algorithms. In contrast, we use a different edge-isoperimetric inequality,
which may be viewed as an extension of Frankl’s Theorem 4 in [27] (see Section 2.2). Our
edge-isoperimetric inequality, which we state and prove in Section 2.2, implies that any set
of vertices in {0, 1}k+1 that induces Ω(log k) edges in each of Ω(k) distinct coordinates must
be of size Θ(k log k

log log k ).
Another significant difference between our approach and that of [8] is that while [8]

essentially applies the Harper–Bernstein–Lindsey–Hart isoperimetric inequality via a union
bound in a fairly straightforward way to obtain the Ω

(
k

ε log(k/ε)

)
lower bound, our argument

yielding a Ω
(

k log k
εc log(log(k)/εc)

)
lower bound is significantly more involved. (The union bound

approach of [8] would cost us at least a log k factor, which is more than we can afford
to separate adaptive versus non-adaptive query complexity.) Instead, we use our edge-
isoperimetric inequality in the context of a careful probabilistic analysis (to bound the
variation distance between “yes-function” and “no-function” vectors of responses a la Yao’s
minimax method) which crucially relies on a variant of McDiarmid’s “method of bounded
differences” in which a low-probability “bad event” may take place [36].

1.4 Preliminaries

All logarithms are base 2 unless otherwise stated. We use boldface (e.g. x,y, and f) to
denote random variables. Given S ⊆ {0, 1}n, we write GS to denote the subgraph of the
Hamming graph induced by S. That is, GS = (S,ES), where (x, y) ∈ ES iff x, y ∈ S and
x = y⊕i (this is the string obtained by flipping y in the i-th coordinate) for some i ∈ [n]; we
call such an edge (x, y) an i-edge induced by S.

2 The edge-isoperimetric inequality of Harper [31], Bernstein [6], Lindsey [33], and Hart [32] gives a tight
upper bound of 1

2 |Q| log |Q| edges. We return to this in Section 2.2 when we state and prove a different
edge-isoperimetric inequality that we need for our proof.
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2 Proof of Theorem 1.1

2.1 The “yes” and “no” distributions
As discussed in the introduction, we consider the same distributions Dyes and Dno that Blais
used in [8] to establish his non-adaptive lower bound, which are biased generalizations of the
yes- and no-distributions considered by Chockler and Gutfreund in [20]. A draw from Dno
is an “ε-biased random (k + 1)-junta” fno : {0, 1}k+1 → {0, 1}, one which independently
takes value 1 with probability ε on every string in {0, 1}k+1. A random fyes from Dyes is
drawn by first choosing a random coordinate i ∈ [k+ 1] to be irrelevant, and then choosing a
random ε-biased random k-junta over the variables from {x1, . . . , xk+1}\{xi}. Equivalently,
Dyes is the uniform mixture of D(1)

yes, . . . ,D(k+1)
yes , where a draw f (i)

yes from D
(i)
yes is the random

function f (i)
yes(x) = fno(xi←1) for all x ∈ {0, 1}n, where fno ∼ Dno and xi←1 denotes the

string x ∈ {0, 1}k+1 with its i-th bit set to 1. We see that Dyes is supported entirely on
k-juntas (in particular, D(i)

yes is supported entirely on functions that do not depend on the
i-th coordinate), and a straightforward calculation shows Dno is supported almost entirely
on functions that are Ω(ε)-far from being a k-junta:

I Lemma 2.1 (Lemma 4.2 of [8]). When 6k/2k < ε ≤ 1/2 and k ≥ 3, a function fno :
{0, 1}k+1 → {0, 1} drawn from Dno is (ε/6)-far from being a k-junta with probability at least
11/12.

We note that these functions fyes,fno : {0, 1}k+1 → {0, 1} can be embedded in the full
n-dimensional domain {0, 1}n simply by defining Fyes : {0, 1}n → {0, 1} where Fyes(x) =
fyes(x[k+1]) for all x ∈ {0, 1}n, where x[k+1] denotes the prefix substring (x1, . . . , xk+1) ∈
{0, 1}k+1 of x. Likewise, we may extend fno : {0, 1}k+1 → {0, 1} to Fno : {0, 1}n → {0, 1}.
In the rest of the paper we confine our discussion to the fyes and fno functions over {0, 1}k+1.

Fix any constant c < 1. Fix any query set Q∗ = {v(1), . . . , v(q)} ⊆ {0, 1}k+1 of cardinality
q as specified in Equation (1) (we will specify the absolute constant C in Section 2.2 below).
For now, we will let the ordering of the query strings v(1), . . . , v(q) be arbitrary, though
we will later impose a carefully chosen particular ordering (see Proposition 2.13). By a
standard application of Yao’s minimax principle, to prove Theorem 1.1 it suffices to argue
that dTV(fyes(Q∗),fno(Q∗)) ≤ 1/3, where fyes(Q∗) denotes the random “response vector”
(fyes(v(1)), . . . ,fyes(v(q))) ∈ {0, 1}q, likewise fno(Q∗) = (fno(v(1)), . . . ,fno(v(q))) ∈ {0, 1}q,
and dTV(·, ·) denotes the total variation distance (also known as statistical distance) between
its two arguments.

2.2 A useful Boolean isoperimetric inequality
As discussed in the introduction, a key combinatorial lemma in Blais’ Ω̃(k/ε) sharpening of
the Chockler–Gutfreund Ω(k) lower bound is the classical edge-isoperimetric inequality of
Harper, Bernstein, Lindsey, and Hart, which may be viewed as giving a lower bound on the
cardinality of query sets in terms of the number of edges they induce.

I Theorem 2.2 (Harper–Bernstein–Lindsey–Hart). For all S ⊆ {0, 1}n, we have |ES | ≤
1
2 |S| log |S|.

We will need a variant of this inequality which takes into account the directions of the
induced edges; in particular, it will be important for us that most directions have “not too
few” induced edges in that direction.

CCC 2015



270 Adaptivity Helps for Testing Juntas

I Definition 2.3. Let S ⊆ {0, 1}n. We say that S m-saturates direction i ∈ [n] if S induces
at least m many i-edges.

Motivated by our earlier discussion in Section 1.3, a “good” query set Q ⊆ {0, 1}k+1 for
distinguishing between fyes ∼ Dyes and fno ∼ Dno is one which m-saturates most of the
k + 1 coordinates for a suitable choice of m (and of course we want Q to achieve this while
being as small as possible). What kind of query sets Q are best suited to meet these two
objectives? As an easy first observation, let Q1 be an arbitrary query set such that GQ1 has
q1,i edges in each direction i. It is not difficult to show that there exists a query set Q2, with
|Q2| = |Q1|, such that (i) GQ2 is a connected graph and (ii) GQ2 has q2,i ≥ q1,i edges in each
direction i. (Repeatedly translate connected components of Q1 until they “come together”
and only a single connected component is present; such translations cannot decrease the
number of edges in any direction.)

In fact, a stronger statement than the above is true (and is not difficult to show): the
“best” query set Q of a given size is of the form g−1(1) (or g−1(0)) for some monotone Boolean
function g. This is made precise through the following definition and fact:

I Definition 2.4. For each i ∈ [n] the i-th down-shift operator κi acts on Boolean functions
g : {0, 1}n → {0, 1} as follows: (κig)(x) = g(x) if g(x) = g(x⊕i), and (κig)(x) = 1 − xi
otherwise.

I Fact 2.5 (see e.g. [5]). Let S ⊆ {0, 1}n and g : {0, 1}n → {0, 1} be its indicator function.
Consider Sshift := g−1

shift(1) ⊆ {0, 1}n, where gshift := κ1 · · ·κng. Then |Sshift| = |S| and Sshift
is downward closed, meaning that for all v′ � v, if v ∈ Sshift then v′ ∈ Sshift. Furthermore,
if GS has qi edges in direction i, then GSshift has qshift,i ≥ qi edges in direction i (hence if S
m-saturates a direction i then so does Sshift).

The following isoperimetric bound plays a key role in our arguments; it says that we need
“many” vertices to m-saturate a large number of distinct directions.

I Proposition 2.6. Let S ⊆ {0, 1}n be a set of points that m-saturates at least ` directions.
Then |S| ≥ m`

blogm+1c = Ω
(

m`
logm

)
.

Proof. Let height(S) denote the quantity maxv∈S ‖v‖, where ‖v‖ =
∑n
i=1 vi is the Hamming

weight of v ∈ {0, 1}n. By Fact 2.5, we may restrict our attention to sets S that are downward
closed. Let S∗ be a downward-closed set of minimal size that m-saturates at least ` directions,
and which has height(S∗) as small as possible among all such minimal sets; for brevity we
write h to denote height(S∗). Note that we have the relationship

m` ≤ |ES∗ | =
∑
v∈S∗

‖v‖ ≤ h · |S∗|, (2)

and hence to prove a lower bound on the size of S∗, it suffices to show an upper bound on h,
the height of S∗. Let v∗ be a vertex in S with ‖v∗‖ = h, let Dv∗ = {i ∈ [n] : v∗i = 1}, and
consider S′ = S∗ \ {v∗}. Since S∗ is downward closed we have that GS∗ has at least 2h−1

edges in each direction i ∈ Dv∗ . Deleting v∗ from S∗ removes exactly h induced edges, one
from each direction i ∈ Dv∗ , and so by the minimality of S∗ it follows that 2h−1 − 1 < m, or
equivalently, h ≤ blogm+ 1c.This, with (2), completes the proof. J

I Remark. Proposition 2.6 recovers as a special case a classical result of Frankl (Theorem 4
of [27]), proved using the Kruskal–Katona theorem, giving a lower bound of |S| = Ω

(
mn

logm
)

on the cardinality of any set S ⊆ {0, 1}n which m-saturates all n directions. We note also
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that the parameters of Proposition 2.6 are optimal up to a factor of 2. To see this, suppose
t := logm + 1 ∈ N and t divides `. Let A1, . . . , A`/t be a partition of [`] into disjoint
blocks of cardinality t, and for each i ∈ [`/t], let Ci = {v : vj = 0 for all j /∈ Ai} be the
t-dimensional subcube over the coordinates in Ai ⊆ [`]. Then S :=

⋃
Ci is a set of cardinality

|S| = (2m`/(logm+ 1))− 1 which m-saturates the first ` directions.

By Proposition 2.6, we can and shall assume that the query set Q∗ ⊆ {0, 1}k+1 (which
is of size at most q ≤ Ck log k

εc log((log k)/εc) , recall (1)) (log k)/εc-saturates at most 0.1k directions.
As noted earlier, by Yao’s minimax principle, to prove Theorem 1.1 it remains to argue that
dTV(fyes(Q∗),fno(Q∗)) ≤ 1/3.

2.3 Conditioning on unsaturated irrelevant coordinates, and bounding
total variation by establishing concentration

In analyzing the random variable fyes(Q∗), it will be helpful for us to condition on the event
that Q∗ only induces “a few” edges in the direction of the irrelevant coordinate i ∈ [k + 1].
Formally, let U ⊆ [k+ 1] denote the directions that are not ((log k)/εc)-saturated by Q∗, and
recall that |U | ≥ 0.9k by our assumption on the cardinality of Q∗ along with Proposition 2.6.
Let D′yes denote the uniform mixture of D(i)

yes for all i ∈ U (i.e. D′yes is Dyes conditioned on
the irrelevant coordinate i being in U), and D′′yes denote the uniform mixture of D(i)

yes for all
i /∈ U . In other words, Dyes is the mixture of D′yes and D′′yes with mixing weights 1− δ and
δ respectively, where δ ≤ 0.1. We write f ′yes and f ′′yes to denote draws from D′yes and D′′yes
respectively.

I Lemma 2.7. dTV(fyes(Q∗),fno(Q∗)) ≤ dTV(f ′yes(Q∗),fno(Q∗)) + δ.

Proof. This holds by noting that dTV(fyes(Q∗),fno(Q∗)) can be expressed as

1
2

∑
y∈{0,1}q

∣∣(1− δ) Pr[f ′yes(Q∗) = y] + δPr[f ′′yes(Q∗) = y]−Pr[fno(Q∗) = y]
∣∣

≤ 1
2

∑
y∈{0,1}q

∣∣Pr[f ′yes(Q∗) = y]−Pr[fno(Q∗) = y]
∣∣

+ δ
(

Pr[f ′yes(Q∗) = y] + Pr[f ′′yes(Q∗) = y]
)

= dTV(f ′yes(Q∗),fno(Q∗)) + δ. J

And so indeed, Lemma 2.7 reduces the task of proving dTV(fyes(Q∗),fno(Q∗)) ≤ 1/3 to
that of showing

dTV(f ′yes(Q∗),fno(Q∗)) ≤ (1/3)− 0.1, (3)

which is what we will do. We begin by observing that the distribution of fno(Q∗) is fairly easy
to understand: for all y ∈ {0, 1}q, we have Pr

[
fno(Q∗) = y

]
= ε|y|(1 − ε)q−|y| := wtε(y).

This motivates us to define the function A : {0, 1}Q∗ → [0, 1],

A(y) = Pr
[
f ′yes(Q∗) = y

]
, and write dTV(f ′yes(Q∗),fno(Q∗)) =

∑
y∈{0,1}Q∗

|A(y)− wtε(y)|
2 .

For the remainder of this proof, we will write y = (y1, . . . ,yq) to denote a draw from {0, 1}q(ε),
the ε-biased product distribution over {0, 1}q where each coordinate is independently 1 with
probability ε. It will be convenient to think of y as the values fno ∼ Dno takes on the query
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points in Q∗ ⊆ {0, 1}k+1; in other words, y is distributed identically to fno(Q∗). Writing
Ã(y) := A(y)/wtε(y), we have

dTV(f ′yes(Q∗),fno(Q∗)) = 1
2

∑
y∈{0,1}Q∗

wtε(y)|Ã(y)− 1| = 1
2 E

[
|Ã(y)− 1|

]
.

Since 1 =
∑
y A(y) =

∑
y wtε(y) · Ã(y) = E[Ã(y)], it suffices for us to argue that the random

variable Ã(y) is concentrated around its expectation E[Ã(y)] = 1:

I Proposition 2.8. Pr
[
Ã(y) ∈ [0.9, 1.1]

]
≥ 0.9.

Our claimed bound on total variation distance (3) follows from Proposition 2.8 via the
following calculation, where the penultimate inequality uses Proposition 2.8:

dTV(f ′yes(Q∗),fno(Q∗)) = 1
2

∑
y∈{0,1}q

|A(y)− wtε(y)|

= 1
2

(
2− 2

∑
y∈{0,1}q

min{A(y),wtε(y)}
)

≤ 1−
∑

y∈{0,1}q

Ã(y)∈[0.9,1.1]

min{A(y),wtε(y)}

≤ 1−
∑

y∈{0,1}q

Ã(y)∈[0.9,1.1]

0.9 · wtε(y) ≤ 1− (0.9)2 < (1/3)− 0.1.

2.4 Proof of Proposition 2.8
We will bound the probability that Ã(y) deviates from its mean using the “method of
averaged bounded differences” in which a rare “bad” event is allowed to take place:

I Theorem 2.9 (special case of Theorem 3.7 of [36]). Let Ã be a function of {0, 1}-valued
random variables y1, . . . ,yq such that E[Ã(y)] is bounded. Let B ⊆ {0, 1}q, and suppose that
for all b ∈ {0, 1}q \ B,∑

j∈[q]

(
E
[
Ã(b1, . . . , bj−1, bj ,yj+1, . . . ,yq)− Ã(b1, . . . , bj−1, bj ,yj+1, . . . ,yq)

])2 ≤ ∆. (4)

Then for all t ≥ 0, we have Pr
[
|Ã(y)−E[Ã(y)]| > t

]
≤ 2 exp

(
− 2t2/∆

)
+ 2 Pr[y ∈ B].

We introduce some useful notation. Given a labelling b = (b1, . . . , bq) ∈ {0, 1}q of
the query strings v(1), . . . , v(q) in Q∗, we write (bj ,yj+1) to denote the hybrid string
(b1, . . . , bj−1, bj ,yj+1, . . . ,yq) and likewise (bj ,yj+1) to denote (b1, . . . , bj−1, bj ,yj+1, . . . ,yq).
We also write diff(b, j) to denote the difference |E[Ã(bj ,yj+1)−Ã(bj ,yj+1)]|. This notational
convention allows us to express the inequality (4) more succinctly as∑

j∈[q]

diff(b, j)2 =
∑
j∈[q]

(
E[Ã(bj ,yj+1)− Ã(bj ,yj+1)]

)2 ≤ ∆. (5)

Furthermore, we write #i11(b) to denote the number of i-edges in GQ∗ whose endpoints are
both labeled 1 by b, and likewise #i00(b) to denote the number of i-edges in GQ∗ whose
endpoints are both labeled 0 by b. We write #i1(b) to denote the number of vertices in GQ∗
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that are labeled 1 by b and are not incident to an i-edge in GQ∗ , and likewise #i0(b). Finally,
let i-biasε(b) denote the quantity ε−#i11(b) · (1− ε)−#i00(b).

The following terminology will be useful: We say a labeling y ∈ {0, 1}q of the query
strings v(1), . . . , v(q) ∈ Q∗ is i-monochromatic (abbreviated as “i-mono”) if every i-edge in
GQ∗ either has both endpoints labeled 1 by y, or has both endpoints labeled 0 by y. With
this notation and terminology in place we may conveniently characterize Ã(y) as follows:

I Lemma 2.10. Ã(y) = 1
|U |

∑
i∈U

1[y is i-mono] · i-biasε(y).

Proof of Lemma 2.10. Fix a choice for the irrelevant coordinate i ∈ U . Conditioned on
this, the probability that f ′yes(Q∗) = y is ε#i11(y)+#i1(y) · (1− ε)#i00(y)+#i0(y) if y is i-mono
and is 0 otherwise. As wtε(y) = ε2#i11(y)+#i1(y) · (1 − ε)2#i00(y)+#i0(y) if y is i-mono, we
have that Ã(y) equals

1
|U |

∑
i∈U

1[y is i-mono] · 1
wtε(y) ·Pr

[
f ′yes(Q∗) = y | i = i

]
= 1
|U |

∑
i∈U

1[y is i-mono] · ε
#i11(y)+#i1(y) · (1− ε)#i00(y)+#i0(y)

ε2#i11(y)+#i1(y) · (1− ε)2#i00(y)+#i0(y)

= 1
|U |

∑
i∈U

1[y is i-mono] · i-biasε(y). J

By Lemma 2.10, we have that diff(b, j) is at most 1
|U | times∣∣∣∣∣∑

i∈U
E
y

[
1[(bj ,yj+1) is i-mono] i-biasε(bj ,yj+1)− 1[(bj ,yj+1) is i-mono] i-biasε(bj ,yj+1)

]
︸ ︷︷ ︸

(∗)

∣∣∣∣∣.
(6)

Fix b ∈ {0, 1}Q∗ and j ∈ [q]. We make a couple of observations about the quantity (∗) for a
fixed coordinate i ∈ U which will be useful later.
I Observation 2.11. If v(j) is not incident to an i-edge within GQ∗ , then (∗) = 0 pointwise
for every possible outcome of y.
This is because the labeling of v(j) has no effect on either the monochromaticity of the
i-th direction or the number of monochromatic i-edges, and hence 1[(bj , yj+1) is i-mono] =
1[(bj , yj+1) is i-mono] and i-biasε(bj , yj+1) = i-biasε(bj , yj+1) for every possible outcome y
of y.
I Observation 2.12. If v(j) has an i-edge to v(j′) within GQ∗ where j′ > j, then again
(∗) = 0.

(In the following equations we use the notation (a1, a2,yj+2) to denote the string (bj ,yj+1)
except with the j-th bit set to a1 and the j′-th bit set to a2.) Observation 2.12 is true
because

±(∗) = E
y

[
1[(1,yj+1) is i-mono] i-biasε(1,yj+1)− 1[(0,yj+1) is i-mono] i-biasε(0,yj+1)

]
= E

y

[
ε1[(1, 1,yj+2) is i-mono] i-biasε(1, 1,yj+2)

− (1− ε)1[(0, 0,yj+2) is i-mono] i-biasε(0, 0,yj+2)
]
,

and moreover, 1[(1, 1, yj+2) is i-mono] = 1[(0, 0, yj+2) is i-mono] and ε · i-biasε(1, 1, yj+2) =
(1− ε) · i-biasε(0, 0, yj+2) for every possible outcome y of y.
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2.4.1 Choosing an ordering
Given the preceding observations, we may rewrite (6) so that the sum is only over those
directions i ∈ U such that v(j) has an i-edge within GQ∗ to some v(j′) where j′ < j. A priori,
there is no reason to believe that this rewriting will simplify the sum or significantly reduce the
number of summands. However, the next proposition shows that by enforcing an appropriate
ordering on the query set Q∗ = {v(1), . . . , v(q)}, we can ensure that all but blog(q)c terms
will drop out of (6).

I Proposition 2.13. For every S = {v(1), . . . , v(q)} ⊆ {0, 1}n, there exists an ordering
v(1) ≺ v(2) ≺ · · · ≺ v(q) such that every v(i) has at most blog qc many Hamming neighbors
v(j) that precede it in the ordering.

Proof. We proceed by induction on q, noting that the lemma trivially holds when q = 1. For
the inductive step, we partition S into SL and SR, where

SL = {v ∈ S : degS(v) ≤ blog qc},
SR = {v ∈ S : degS(v) > blog qc},

and degS(v) denotes the degree of v in GS . By the edge-isoperimetric inequality (Theo-
rem 2.2), we have that∑

v∈S
degS(v) = 2 · |ES | ≤ q log q,

and hence |SL| ≥ 1, or equivalently, |SR| ≤ q− 1. By our induction hypothesis applied to SR,
there exists an ordering of its vertices so that every vertex has at most blogSRc ≤ blog qc
Hamming neighbors that precede it in the ordering. Our ordering of S will be the vertices
in SR listed in this order given by the induction hypothesis, followed by the vertices in SL
listed in an arbitrary order. The proof is complete by recalling that degS(v) ≤ blog qc for
every v ∈ SL, and hence every v ∈ SL trivially has at most blog qc Hamming neighbors that
precede it in the ordering. J

We will now assume that Q∗ = {v(1), . . . , v(q)} is sorted in the order given by Proposition 2.13.
Since |Q∗| = q = o(k1.1) � k2 (recall (1) and the bounds on ε given in the conditions of
Theorem 1.1) we have that there are fewer than 2 log k such directions i ∈ U . Let i∗ ∈ U be
the direction that maximizes (∗) in (6), and so diff(b, j) is at most (6), which in turn is at
most 2 log k

0.9k times∣∣∣∣Ey [1[(bj ,yj+1) i∗-mono] i∗-biasε(bj ,yj+1)︸ ︷︷ ︸
(∗∗)

−1[(bj ,yj+1) i∗-mono] i∗-biasε(bj ,yj+1)︸ ︷︷ ︸
(∗∗∗)

]∣∣∣∣.
Since v(j) has an i∗-edge within GQ∗ to some v(j′) where j′ < j, it follows that either
E[(∗∗)] = 0 or E[(∗ ∗ ∗)] = 0 (the former if bj′ 6= bj , and the latter if bj′ 6= bj). We may
assume w.l.o.g. that E[(∗ ∗ ∗)] = 0, and so

diff(b, j) ≤ 2 log k
0.9k E

y

[
1[(bj ,yj+1) is i∗-mono] · i∗-biasε(bj ,yj+1)

]
.

Next, we observe that the expectation above may be rewritten as

E
y

[
1[(bj ,yj+1) is i∗-mono] · i∗-biasε(bj ,yj+1)

]
=

∏
i∗-edges e

E
y

[
1[e is mono w.r.t. (bj ,yj+1)] · i∗-biasε((bj ,yj+1)|e)

]
, (7)
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where

i∗-biasε((bj ,yj+1)|e) =
{

ε−1 if both endpoints of e are labeled 1 by (bj ,yj+1)
(1− ε)−1 if both endpoints of e are labeled 0 by (bj ,yj+1).

We claim that the expectation on the RHS of (7) is 1 unless e = (v(`), v(r)), where ` < r ≤ j.
To see this, note that if j < ` < r then

E
y

[
1[e is mono w.r.t. (bj ,yj+1)] · i∗-biasε((bj ,yj+1)|e)

]
= ε2 · 1

ε
+ (1− ε)2 · 1

1− ε = 1,

and if ` ≤ j ≤ r then

E
y

[
1[e is mono w.r.t. (bj ,yj+1)]·i∗-biasε((bj ,yj+1)|e)

]
=
{

ε · ε−1 if b` = 1
(1− ε) · (1− ε)−1 if b` = 0.

Since neither 1[e is mono w.r.t. (bj ,yj+1)] nor i∗-biasε((bj ,yj+1)|e) depend on y when e =
(v(`), v(r)) where ` < r ≤ j, it follows that (7) may be simplified to be

(7) =
∏

i∗-edges e
e=(v(`),v(r)), `<r≤j

1[e is mono w.r.t. b] · i∗-biasε(b|e).

Recalling that this expression (7) depends on both b ∈ {0, 1}q and j ∈ [q] (since i∗ depends
on j), we write val(b, j) to denote (7), i.e.

val(b, j) :=
∏

i∗-edges e
e=(v(`),v(r)), `<r≤j

1[e is mono w.r.t. b] · i∗-biasε(b|e) (8)

and hence we may write

diff(b, j) ≤ 2 log k
0.9k · val(b, j).

2.4.2 Bounding val(b, j) by bucketing
Our goal is to define a bad set B ⊆ {0, 1}q of small measure (Pr[y ∈ B] ≤ 0.01 is sufficient,
though our B will satisfy Pr[y ∈ B] = k−Ω(1)) such that for all b /∈ B,∑

j∈[q]

val(b, j)2 = O
(
k( 25+c

13 )). (9)

This is sufficient since it implies that we may take ∆ := 0.01 and have that the LHS of (4) is
at most∑

j∈[q]

diff(b, j)2 ≤
(

2 log k
0.9k

)2 ∑
j∈[q]

val(b, j)2 = 1
k2−o(1) ·O

(
k( 25+c

13 )) ≤ ∆ = 0.01

for sufficiently large k. (This uses (5) along with the fact that c < 1.) Applying Theorem 2.9
with t = 0.1 would then complete the proof of Proposition 2.8, and hence Theorem 1.1.

To reason about b ∈ {0, 1}q for which (9) does not hold, we group the q many summands
on the LHS of (9) into O(log k) groups according to magnitude. Set M :=

( 23+c
24
)

log k,
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and partition [0,∞) into M + 2 intervals I0 = [0, 1), Im = [2m−1, 2m) for all m ∈ [M ] and
IM+1 = [2M ,∞). For each b ∈ {0, 1}q and m ∈ {0, 1, . . . ,M + 1} we define

bucket(b,m) := {j ∈ [q] : val(b, j) ∈ Im},

C(b,m) :=
∑

j∈bucket(b,m)

val(b, j)2.

With this notation in hand, we may write∑
j∈[q]

val(b, j)2 =
M+1∑
m=0

C(b,m). (10)

Next, for each m ∈ {0, 1, . . . ,M + 1} we define Bm ⊆ {0, 1}q to be

Bm :=
{
b ∈ {0, 1}q : C(b,m) > k( 23+c

12 )},
and finally B :=

⋃
Bm. Certainly if b /∈ B then by (10) we have that∑

j∈[q]

val(b, j)2 =
M+1∑
m=0

C(b,m) ≤ (M + 2) · k( 23+c
12 ) = o(k( 25+c

13 )),

and so it suffices to prove the following proposition.

I Proposition 2.14. For all m ∈ {0, 1, . . . ,M + 1}, we have that Prb∼{0,1}q

(ε)
[b ∈ Bm] =

k−Ω(1). (Consequently, Pr[b ∈ B] = k−Ω(1) by a union bound.)

Proof. First note that for all m ∈ {0, 1, . . . ,M}, we have that

C(b,m) =
∑

j∈bucket(b,m)

val(b, j)2 < |bucket(b,m)| · 22m. (11)

Since |bucket(b,m)| ≤ q = o(k1.1) for all m, we have that (11) < k1.7 for m ≤ 0.3 log k,
and hence recalling the definition of Bm, we have Pr[b ∈ Bm] = 0 for m ≤ 0.3 log k, so the
proposition clearly holds for all such m. Hence we may assume that m > 0.3 log k; it will be
convenient for us to write m = α log k for some α ∈ (0.3, 1). Next, observe that in order for
C(b,m) to be greater than k( 23+c

12 ) it has to be the case that |bucket(b,m)| ≥ k( 23+c
12 ) ·2−2m =

k( 23+c
12 )−2α; this is trivially true for m = M + 1 (since k( 23+c

12 ) · 2−2m = 1
4 ), and follows from

(11) for m ∈ {0, 1, . . . ,M}. We will therefore focus on bounding the RHS of

Pr
[
|bucket(b,m)| ≥ k( 23+c

12 )−2α] ≤ Pr
[
|{j ∈ [q] : val(b, j) ≥ 2m−1 = 1

2k
α}| ≥ k( 23+c

12 )−2α]
by k−Ω(1). Consider the random variable val(b, j) for a fixed j ∈ [q]. Let E = E(j) denote
the number of i∗-edges (where i∗ depends on j), and note that E ≤ log(k)/εc since i∗ ∈ U is
an unsaturated direction. Recalling (8), we may introduce independent random variables
X(j)

1 , . . . ,X(j)
E where

X(j)
` =


0 with probability 2ε(1− ε)

(1− ε)−1 with probability (1− ε)2

ε−1 with probability ε2

and note that val(b, j) (where b ∼ {0, 1}q(ε)) is distributed identically to
∏E
`=1 X(j)

` . Simplify-
ing further, we introduce additional (mutually independent) random variables Y(j)

1 , . . . ,Y(j)
E ,

where each Y(j)
` is coupled to X(j)

` in the following way

Y(j)
` =

{
X(j)
` when X(j)

` = ε−1

1 otherwise.
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Under such a coupling, we have that

E∏
`=1

X(j)
` ≤

(
1

1− ε

)E E∏
`=1

Y(j)
`

with probability 1, where the factor (1− ε)−E is ≤ kν(k) for some function ν(k) = ok(1), for
all ε = ok(1) since E ≤ log(k)/εc (recall the bounds on ε given in the conditions of Theorem
1.1).

I Claim 2.15. Pr
[∏E

`=1 Y(j)
` ≥

1
2k

α−ν(k)] = O(k−( 4−c
3 )α).

Proof of Claim 2.15. Set t := (m − ν(k) log(k) − 2)/ log(1/ε) = ((α − ν(k)) log(k) −
2)/ log(1/ε), and so ε−t = 1

2k
α−ν(k).

Pr
[

E∏
`=1

Y(j)
` ≥

kα−ν(k)

2

]
< ε2t

(
E

t

)

≤ 4
k2α−ν(k)

(
eE

t

)t
≤ 4
k2α−ν(k)

(
e log(1/ε)

0.3 · εc

)t
≤ 4
k2α−ν(k) ·O

(
ε−( 1+c

2 )t
)

<
4

k2α−ν(k) ·O
(
k( 1+c

2 )(α−ν(k))
)

= O

(
1

k( 4−c
3 )α

)
,

where the third inequality uses the fact that t > 0.3 log(k)/ log(1/ε) (recall our assumption
that α > 0.3), the fourth inequality uses the fact that ε = ok(1), and the last inequality uses
the fact that ν(k) = ok(1). J

By linearity of expectation, it follows that

E
[
|{j ∈ [q] : val(b, j) ≥ 1

2k
α}|
]

= O
(
q·k−( 4−c

3 )α) = O
(
k( 7−c

6 )·k−( 4−c
3 )α) = O(k( 7−c

6 )−( 4−c
3 )α),

where we have used the fact that q = O(k1+η) (recall (1) and the bounds on ε given in the
conditions of Theorem 1.1) for any fixed η > 0, and so by Markov’s inequality, we conclude
that

Pr
[
|{j ∈ [q] : val(b, j) ≥ 1

2k
α}| ≥ k( 23+c

12 )−2α] = O
(
k( 7−c

6 )−( 4−c
3 )α−(( 23+c

12 )−2α)) = O(k( c−1
12 ))

for sufficiently large k. Because c < 1, this is k−Ω(1), and therefore the proof of Proposi-
tion 2.14 is complete. J
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