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Abstract
Adaptivity is known to play a crucial role in property testing. In particular, there exist properties
for which there is an exponential gap between the power of adaptive testing algorithms, wherein
each query may be determined by the answers received to prior queries, and their non-adaptive
counterparts, in which all queries are independent of answers obtained from previous queries.

In this work, we investigate the role of adaptivity in property testing at a finer level. We first
quantify the degree of adaptivity of a testing algorithm by considering the number of “rounds
of adaptivity” it uses. More accurately, we say that a tester is k-(round) adaptive if it makes
queries in k+ 1 rounds, where the queries in the i’th round may depend on the answers obtained
in the previous i− 1 rounds. Then, we ask the following question:

Does the power of testing algorithms smoothly grow with the number of rounds of adaptiv-
ity?

We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem
for property testing. Specifically, our main result shows that for every n ∈ N and 0 ≤ k ≤ n0.99

there exists a property Pn,k of functions for which (1) there exists a k-adaptive tester for Pn,k
with query complexity Õ(k), yet (2) any (k−1)-adaptive tester for Pn,k must make Ω(n) queries.
In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing
natural properties of graphs.
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1 Introduction

The study of property testing, initiated by Rubinfeld and Sudan [36] and Goldreich, Gold-
wasser and Ron [21], has attracted significant attention in the last two decades (see, e.g.,
recent books [18, 20, 5] and surveys [32, 33, 15]). Loosely speaking, property testers are highly
efficient randomized algorithms (typically running in sublinear time) that solve approximate
decision problems, while only inspecting a tiny fraction of their inputs. More accurately, an
ε-tester T for property P is a randomized algorithm that, given query access to an input
x, decides whether x ∈ P or x is ε-far (say, in Hamming distance) from P. The query
complexity of T is then the number of queries it makes to x.

In general, a testing algorithm may select its queries adaptively such that the i’th query
is determined by the answers to the previous i− 1 queries, in which case it is said to be an
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27:2 An Adaptivity Hierarchy Theorem for Property Testing

adaptive tester. However, in many natural cases, testers may actually determine their queries
solely based on their randomness (and input length), without any dependency on answers
to previous queries; a tester that satisfies this condition is called a non-adaptive tester. A
natural question, which commonly arises in query-based models, is whether the ability to
make adaptive queries can significantly affect the query complexity.

Adaptive queries can be easily emulated at the cost of a large blowup in query complexity
(exponential in the number of queries). More accurately, any q-query adaptive tester for a
property of objects represented by functions f : D → R can be emulated by an |R|q-query
non-adaptive tester (see e.g., [20, Section 1.5]). While for certain types of properties and
models – e.g., linear properties [4] and properties in the dense graph model [25] – one has
better emulations which come with little or no overhead, such efficient emulations cannot
exist for all properties. As was shown by Raskhodnikova and Smith [31], in the bounded-
degree graph model [23] there is a large chasm between the adaptive and non-adaptive
query complexities of testing many natural graph properties. In particular, any property
over bounded-degree graphs with n vertices, which is not determined by the vertex degree
distribution,1 requires Ω(

√
n) queries to test non-adaptively, whereas many such properties

(e.g., triangle-freeness and connectivity) have ε-testers with query complexity poly(1/ε).
In this work, we investigate the role of adaptivity in property testing at a finer level.

Rather than considering the extreme cases of fully adaptive testers versus completely non-
adaptive testers, we consider testers with various levels of restricted adaptivity and ask the
following question:

Can the power of testers gradually grow with the “amount” of adaptivity they are
allowed to use?

Besides the sheer theoretical interest of understanding the role of adaptivity in property
testing, a motivation for this question comes from the constraints that come with adaptive
algorithms, which may counterbalance the apparent gain in efficiency. Indeed, non-adaptive
algorithms (or at least those which only use a small number of adaptive “stages”) may
be preferred in practice to their adaptive counterparts, in spite of the larger number of
queries they make. The reason for this preference is the significant gains obtained by being
able to make many queries in parallel: when each query is an experiment which, while
relatively cheap by itself, may take several hours, assessing the trade-off between rounds of
adaptivity and total number of queries becomes crucial. An archetypal example where such
considerations prevail is the (different) setting of group testing (see e.g. [17, Section 1.2]).

To answer the foregoing question, we shall first need to give a precise definition for
the “amount” of adaptivity that a tester uses. To this end, it is natural to consider the
number of “rounds of adaptivity” used by a tester.2 More precisely, we say that a tester
is k-round-adaptive if it generates and makes queries in k + 1 rounds, where in the i’th
round the tester queries a set of locations Qi that may depend on the answers to queries
in Q0, . . . , Qi−1, obtained in previous rounds. We will quantify the “amount” of adaptivity
that a tester uses by the number of rounds of adaptivity that it uses. Equipped with the
notion of round adaptivity, we can proceed to present our results.

1 Loosely speaking, a property P of bounded-degree graphs is not determined by the vertex degree
distribution if there exist two graphs, G1 ∈ P and G2 that is “far” from P, such that the vertices of G1
and G2 have the same degrees.

2 We also consider an alternative notion of tail adaptivity, which roughly speaking refers to testers that
first make a large number of non-adaptive queries and subsequently make a bounded number of adaptive
queries. See Section 3 for details regarding how these two notions relate.
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1.1 Our Results
Our main result provides a positive answer to the foregoing question by showing an adaptivity
hierarchy theorem for property testing; that is, we show a family of properties {Pk}k such that
for every k, the property Pk is “easy” for k-adaptive testers and “hard” for (k − 1)-adaptive
testers.

I Theorem 1 (Informally stated (see Theorem 5)). For every n ∈ N and 0 ≤ k ≤ n0.33 there
is a property Pn,k of strings over Fn (of length that is nearly linear in n) such that:
1. there exists a k-round-adaptive tester for Pn,k with query complexity Õ(k), yet
2. any (k − 1)-round-adaptive tester for Pn,k must make Ω̃(n/k2) queries.

The above theorem relies on an arguably contrived family of properties, which was
specifically tailored towards maximizing the separations; hence, one may wonder whether
such strong separations also hold for more natural properties. As we show below, this is
indeed the case: namely, we establish another adaptivity hierarchy theorem that, albeit
weaker than Theorem 1, applies to the well-studied natural problem of testing k-cycle freeness
in the bounded-degree graph model (see Section 5.1 for definitions).

I Theorem 2. Let k ∈ N be a constant. Then,
1. there exists a k-round-adaptive tester with query complexity O(1/ε) for (2k + 1)-cycle

freeness in the bounded-degree graph model; yet
2. any (k − 1)-round-adaptive tester for (2k + 1)-cycle freeness in the bounded-degree graph

model must make Ω(
√
n) queries, where n is the number of vertices in the graph.

Lifting Query Complexity Bounds to Property Testing. Notably, the proof of Theorem 1
relies on a technique that allows us to “lift” query complexity bounds to property testing,
via the use of error-correcting codes that admit a strong form of local testability as well
as a relaxed form of local decodability. We believe that this framework, which we detail
in Section 4.4, is of interest in its own right, and will find further applications in property
testing.

We conclude this section by posing two open problems that naturally arise from our work.

I Open Problem 1 (One property to rule them all). Does there exist an adaptivity hierarchy
with respect to a single property? That is, for any m and all sufficiently large n, is there
a property P of elements of size n, and q1 > . . . > qm (m “levels” of hierarchy) such that
for every k ∈ [m] there exists a k-adaptive tester for P with query complexity qk, yet every
(k − 1)-adaptive tester must make ω(qk) queries to test P?

I Open Problem 2 (Au naturel is just as good). Does there exist a family of natural properties
which exhibits an adaptivity hierarchy with separations as strong as in Theorem 1?

1.2 Previous Work
As previously mentioned, the role of adaptivity in property testing has been the focus of
several works before. It is well known that for any property of Boolean functions, there
exists at most an exponential gap between adaptive and non-adaptive testers: any (adaptive)
q-query testing algorithm for a property P of n-variate Boolean functions can be simulated
by a non-adaptive tester with query complexity 2q − 1. Further, such gaps are known to
exist for some natural properties, such as read-once width-2 OBDDs [35, 12] and signed
majorities [28, 34] (importantly, there also exist cases where adaptivity is known not to
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help [11, 4]). Another prominent example of a class of Boolean functions where adaptivity is
known to help is that of k-juntas [8, 7, 38, 16], which can be tested adaptively with Õ(k)
queries, yet for which the non-adaptive query complexity is Θ̃

(
k3/2).

Of course, the Boolean function setting is not the only one: in the dense graph model, it
is known that while adaptivity can help [24], it will be at most by a quadratic factor [2, 25]:
that is, every graph property testable (adaptively) with q queries has an O

(
q2)-query non-

adaptive tester. This is no longer the case in the bounded-degree model, however; where
Raskhodnikova and Smith showed that there exist many properties which can be tested
adaptively with a constant number of queries, but for which any non-adaptive tester must
have query complexity Ω(

√
n) [31].3

However, all these results, even when they establish cases where adaptivity does help,
leave open the question of how much adaptivity is needed for this to happen. In particular, for
the case of properties of Boolean functions, many known adaptive testers which outperforms
their non-adaptive counterpart do so, at some level, by conducting a binary search of some
sort (see, e.g., [8, 35, 34]) and thus comes inherently with a logarithmic numbers of “adaptive
rounds.”

Our proof of Theorem 1 relies on a connection between the property testing and linear
decision tree models. Although many of the ingredients we use are new, the connection itself
is not and was first observed in [39] (see also [6] for a slightly different connection between
property testing and parity decision trees).

Adaptivity in other settings. We remark that the notion of round complexity in commu-
nication complexity and interactive proof systems is somewhat analogous to that of round
adaptivity, since in those models each round of communication or interaction allows the
parties to adapt their strategies. Moreover, a round complexity hierarchy is known for
communication complexity [29] and interactive proofs of proximity [26]. Finally, we also
mention that the role of the number of adaptive measurements used by sparse recovery
algorithms was shown to be very significant [27].

Organization

In Section 2 we provide the preliminaries required for the technical sections. In Section 3 we
provide a precise definition for testers with bounded adaptivity. In Section 4 we prove our
main result, which is a strong adaptivity hierarchy theorem for a property of functions. In
Section 5 we prove an adaptivity hierarchy theorem with respect to a natural property of
graphs. Finally, in Section 6 we discuss adaptivity round reductions, as well as a connection
to communication complexity, and the relation between round and tail adaptivity.

2 Preliminaries

We begin with standard notations:
We denote the relative Hamming distance, over alphabet Σ, between two vectors x ∈ Σn

and y ∈ Σn by dist(x, y) def= |{xi 6= yi : i ∈ [n]}| /n. If dist(x, y) ≤ ε, we say that x
is ε-close to y, and otherwise we say that x is ε-far from y. Similarly, we denote the

3 We remark that in the bounded-degree model, algorithms typically rely on random walks or breadth-first
searches. In this case the depth of the walks or searches, which may be smaller than the query complexity,
tends to determine the adaptivity.
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relative distance of x from a non-empty set S ⊆ Σn by dist(x, S) def= miny∈S dist(x, y). If
dist(x, S) ≤ ε, we say that x is ε-close to S, and otherwise we say that x is ε-far from S.
We denote by Ax(y) the output of algorithm A given direct access to input y and oracle
access to string x. Given two interactive machines A and B, we denote by (Ax, B(y))(z)
the output of A when interacting with B, where A (respectively, B) is given oracle access
to x (respectively, direct access to y) and both parties have direct access to z. Throughout
this work, probabilistic expressions that involve a randomized algorithm A are taken over
the inner randomness of A (e.g., when we write Pr[Ax(y) = z], the probability is taken
over the coin tosses of A).
We use the notations Õ(f), Ω̃(f) to hide polylogarithmic dependencies on the argument,
i.e. for expressions of the form O(f logc f) and Ω(f logc f) (for some absolute constant c).
Finally, all our logarithms are in base 2.

Integrality. For simplicity of notation, we hereafter use the convention that all (relevant)
integer parameters that are stated as real numbers are implicitly rounded to the closest
integer.

Uniformity. To facilitate notation, throughout this work we define all algorithms non-
uniformly; that is, we fix an integer n ∈ N and restrict the algorithms to inputs of length n.
Despite fixing n, we view it as a generic parameter and allow ourselves to write asymptotic
expressions such as O(n). We remark that while our results are proved in terms of non-uniform
algorithms, they can be extended to the uniform setting in a straightforward manner.

3 The Definition of Testers with Bounded Adaptivity

In this section, we provide a formal abstraction that captures the notion of bounded adaptivity
within the framework of property testing. We define two notions of bounded adaptivity:
(1) round-adaptivity, which refers to algorithms that are allowed to make a bounded number
of “batches” of queries, where the queries in each batch may depend on the answers to
previous batches; (2) tail-adaptivity, which refers to algorithms that first make a large number
of non-adaptive queries and subsequently make a bounded number of adaptive queries.

We remark that while tail-adaptivity can be easily emulated via round-adaptivity, the
converse does not hold. Indeed, in Section 6.3 we show that round-adaptive testers can be
much more powerful than tail-adaptive testers. Nonetheless, our lower bounds hold for the
stronger round-adaptivity notion, whereas out upper bounds hold for the more restrictive
tail-adaptivity.

I Definition 3 (Round-Adaptive Testing Algorithms). Let [n] be a domain of cardinality n,
and let k, q ≤ n. A randomized algorithm is said to be a (k, q)-round-adaptive tester for
a property P ⊆ 2[n], if, on proximity parameter ε ∈ (0, 1] and granted query access to a
function f : [n]→ {0, 1}, the following holds.
1. Query Generation: The algorithm proceeds in k + 1 rounds, such that at round ` ≥ 0, it

produces a set of queries Q`
def= {x(`),1, . . . , x(`),|Q`|} ⊆ [n] (possibly empty), based on its

own internal randomness and the answers to the previous sets of queries Q0, . . . , Q`−1,
and receives f(Q`) = {f(x(`),1), . . . , f(x(`),|Q`|)};

2. Completeness: If f ∈ P, then the algorithm outputs accept with probability at least 2/3;
3. Soundness: If dist(f,P) > ε, then the algorithm outputs reject with probability at least

2/3.
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The query complexity q of the tester is the total number of queries made to f , i.e., q =∑k
`=0 |Q`|. If the algorithm returns accept with probability one whenever f ∈ P , it is said to

have one-sided error (otherwise, it has two-sided error). We will sometimes refer to a tester
with respect to proximity parameter ε as an ε-tester.

I Remark (On amplification). We note that, as usual in property testing, the probability of
success can be amplified by repetition to any 1− δ, at the price of an O(log(1/δ)) factor in
the query complexity. Crucially, this can be done with no increase in the number of adaptive
rounds: while repetition would naïvely multiply both q and k by this factor, one can avoid
the latter by running the O(log(1/δ)) independent copies of the algorithm in parallel, instead
of sequentially.

I Definition 4 (Tail-Adaptive Testing Algorithms). Let [n] be a domain of cardinality n, and
let k, q ≤ n. A randomized algorithm is said to be a (k, q)-tail-adaptive tester for a property
P ⊆ 2[n], if, on proximity parameter ε ∈ (0, 1], error parameter δ ∈ (0, 1], and granted query
access to a function f : [n]→ {0, 1}, the following holds.
1. Query Generation: The algorithm proceeds in k+ 1 rounds, such that in the first round, it

produces a set of queries Q def= {x(0),1, . . . , x(0),|Q|} ⊆ [n] (possibly empty), based on its
own internal randomness; and receives f(Q) = {f(x(0),1), . . . , f(x(0),|Q|)}; then it makes,
over the next k rounds, k adaptive queries to f , denoted x(1), . . . , x(k);

2. Completeness: If f ∈ P , then the algorithm outputs accept with probability at least 1− δ;
3. Soundness: If dist(f,P) > ε, then the algorithm outputs reject with probability at least

1− δ.
The query complexity q of the tester is the total number of queries made to f , i.e., q = |Q|+k.
If the algorithm returns accept with probability one whenever f ∈ P , it is said to be one-sided
(otherwise, it is two-sided).

I Remark (On (lack of) amplification). Unlike the round-adaptive algorithms, tail-adaptive
testing algorithms do not enjoy a simple success amplification procedure which would leave
unchanged the adaptivity parameter, only affecting the query complexity. This is the reason
why the success probability δ is explicitly mentioned in Definition 4.

4 A Strong Adaptivity Hierarchy

In this section we prove the adaptivity hierarchy theorem, which shows that, loosely speaking,
up to a nearly linear threshold, each additional round of adaptivity can significantly augment
the power of testing algorithms.

I Theorem 5 (Adaptivity Hierarchy Theorem). Fix any α ∈ (0, 1). There exists a constant
β ∈ (0, 1) such that, for every n ∈ N, the following holds. For every integer 0 ≤ k ≤ nβ,
there exists a property Pk ⊆ Fn1+α

n such that, for any constant ε ∈ (0, 1],
1. there exists a (k, Õ(k))-round-adaptive (one-sided) tester for Pk; yet
2. any (k − 1, q)-round-adaptive (two-sided) tester for Pk must satisfy q = Ω̃

(
n/k2).

We remark that, in fact, the algorithm shown in the first item of Theorem 5 also gives
an upper bound for the more restricted model of tail adaptivity. Specifically, for every k
there also exists an (O(k), Õ(k))-tail-adaptive (one-sided) tester for Pk. Since a (k − 1, q)-
round-adaptive lower bound implies a (k − 1, q)-tail-adaptive lower bound (see discussion in
Section 3), this implies an adaptivity hierarchy (albeit slightly weaker than in Theorem 5)
with respect to tail-adaptive testers.
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To prove Theorem 5, we use a technique that allows us to “lift” bounds on decision tree
complexity to the setting of property testing, relying on error-correcting codes with local
properties. In more detail, we shall begin by proving an analogous version of Theorem 5
for the (linear) decision tree model, which is an elementary computation model that is
significantly easier to analyze than property testing (in particular, it deals with exact decision
problems, rather than approximate decision problems). Then, we shall consider an encoded
version of the decision tree problem, where the encoding is via a code that admits strong local
testability and a relaxed form of local decodability. Capitalizing on the foregoing properties
of the code, we show transference lemmas that allow us to “lift” our bounds on the decision
tree problem to bounds on the complexity of the encoded problem in the property testing
model. (We believe that this “lifting” technique may find further uses in property testing, by
allowing one to show results in the simpler decision tree problem before carrying them over
to property testing.)

We begin by describing the decision tree problem with respect to which we prove the
hierarchy theorem. Hereafter we assume, without loss of generality,4 that n is a prime
number, and consider Fn, the field of order n. We will consider the following sequence
of “k-iterated address” functions (fk)k≥0 from Fnn to {0, 1}, which will in turn lead to the
definition of the properties (Pk)k≥0 that we use to show the hierarchy theorem. Loosely
speaking, fk receives a vector x of n pointers (indices in [n]) and indicates whether when
jumping from pointer to pointer k times, starting from an arbitrarily predetermined pointer,
we reach a location in which x takes an even value.

To formally define the foregoing functions, first consider g : Fnn × Fn → Fn given by
g(x, a) = xa+1; that is, g returns the coordinate of x ∈ Fnn “pointed to” by a ∈ {0, . . . , n− 1}.
Based on this, we define the iterated versions of g, g0, . . . , gn, . . . : Fnn → Fn, as

g0(x) = g(x, 0) ,
gk(x) = g(x, gk−1(x)) . (k ≥ 1)

Finally, we define the k-iterated address function fk : Fnn → {0, 1} by

fk(x) = 1{gk(x) even} =
{

1 if gk(x) is even,
0 otherwise.

(For instance, f0(x) = 1 if and only if x1 is even; and f1(x) = 1 if and only if the coordinate
of x pointed to by x1, that is xx1+1, is even.) We proceed to describe the outline of the proof
of Theorem 5.

4.1 High-Level Overview
Broadly speaking, our roadmap for proving Theorem 5 consists of two main steps:

1. We first consider the adaptivity hierarchy question in the setting of randomized decision
tree (DT) complexity (see Section 4.2). We can view a randomized DT for computing a
function f as a probabilistic algorithm that is given query access to an input x and is
required to output f(x) with high probability. Adapting the definition of round adaptivity
(Definition 3) in the natural way to decision trees, we will prove the randomized DT
analogue of our adaptivity hierarchy theorem, using the foregoing family of address

4 If n is not prime, we choose a prime p such that n ≤ p ≤ 2p, and use standard padding techniques.
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functions (fk)k≥0. Namely, we prove that for any k ≥ 0 with k = o(n), it holds that
(i) fk can be computed by an algorithm making k + 1 queries, in k adaptive rounds; but
(ii) any algorithm using only k − 1 rounds of adaptivity must make Ω̃

(
n/k2) queries.

2. We then show a bidirectional connection between adaptivity-bounded randomized DT
and property testers, which extends the connection observed by Tell [39]. This allows
us to “lift” the DT adaptivity hierarchy theorem to property testing. Specifically, we
provide two blackbox reductions between the DT problem of computing function f and
property testing for a related property Pf , which preserve both the number of adaptive
rounds and (roughly) the number of queries. We remark these reductions strongly rely on
high-rate codes that exhibit both strong local testability and relaxed local decodability.

The caveat with the above is that to “lift” DT lower bounds to testing algorithms via
our methodology, we actually need to show lower bounds on a stronger model of DT (this
stems from the reductions of the second item, in which we will encode the input via linear
codes, requiring the DT algorithm to compute coordinates of this encoding).

Hence, we will actually work in the linear decision tree (LDT) model, wherein the
algorithm is allowed to query any linear combination (over Fn) of the coordinates, instead of
only querying individual coordinates. (We note that in the case of F2, this corresponds to
the parity decision tree model.) That is, we will proceed as follows:
1. (L)DT hierarchy: show that for any k ≥ 0, the function fk (i) can be computed by an

efficient (k,O(k))-round-adaptive (deterministic) DT algorithm, but (ii) does not admit
any (k − 1, o(n))-round-adaptive (randomized, two-sided) LDT algorithm;

2. Transference lemmas: Show that for any function f : Fnn → Fn, there exists a property
Cf ⊆ Fm(n)

n such that, for any k ≥ 0,
a. a (k, q)-round-adaptive testing algorithm for Cf implies a (k, q)-round-adaptive LDT

algorithm for f (Lemma 14).
b. a (k, q)-round-adaptive DT algorithm for f implies a (k, Õ(q))-round-adaptive testing

algorithm for Cf (Lemma 15).
Combining the items above will directly imply our hierarchy theorem for property testing
(Theorem 5):

Proof. Proof of Theorem 5 The upper bound 1 follows immediately from Claim 7 and
Lemma 15, while combining Lemma 8 and Lemma 14 establishes the lower bound 2. J

Organization for the rest of the section. In Section 4.2, we define the decision tree
models and complexities that we shall need. Then, in Section 4.3, we prove the adaptivity
hierarchy theorem for randomized (linear) decision trees. Finally, in Section 4.4 we prove the
transference lemmas that allow us to lift the foregoing hierarchy theorem to the property
testing framework.

4.2 Decision Tree Zoo
We shall need to extend the definitions of several different types of decision tree algorithms
(see [13] for an extensive survey of decision tree complexity) to the setting of bounded
adaptivity.

Recall that a deterministic decision tree is a model of computation for computing a function
f : [n]n → [n]. The decision tree is a rooted ordered |[n]|-ary tree. Each internal vertex of
the tree is labeled with a value i ∈ {1, . . . , n} and the leaves of the tree are labeled with
the elements in [n]. Given an input x ∈ [n]n, the decision tree is recursively evaluated by
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choosing to recurse on the i’th subtree in the j’th level if and only if xj = i. Once a leaf is
reached, we output the label of that leaf and halt.

Equivalently, we can view deterministic decision trees as algorithms that get oracle access
to an input x ∈ [n]n, then adaptively make queries to x, to the end of computing f(x). (Note
that the j’th query corresponds to the j’th layer of the corresponding decision tree, and
that the different vertices in the j’th layer represent the choices of the next queries, with
respect to the answers obtained for previous queries). We define the deterministic decision
tree complexity of a function f to be the minimal number of queries a deterministic decision
tree algorithm needs to make to compute f in the worst case.5

Taking the algorithmic perspective, we define k-round-adaptive deterministic decision
tree algorithms as algorithms that generate their queries in k rounds, where queries in each
round may depend on queries from previous rounds. The extension of the foregoing definition
to randomized decision tree algorithms is done in the natural way, by allowing the algorithm
to toss random coins and succeed with high probability (say, 2/3) in computing f(x). Finally,
we shall also extend the definition to linear decision trees, which are decision trees algorithms
wherein each query is a linear combination of the elements of the domain. We remark that
linear decision trees can be thought of as generalizing both parity decision trees and algebraic
query complexity algorithms [1].

More accurately, the aforementioned notions are defined below. We provide the definition
of the most general model and derive the more restricted models as special cases.

I Definition 6 (Round-Adaptive Decision Tree Algorithms). Let F be a finite field of cardinality
n, and let k, q ≤ n. A (randomized) algorithm D is said to be a (k, q)-round-adaptive (linear)
decision tree algorithm for computing a function f : Fn → F if, granted query access to a
string x ∈ Fn, the following holds.

1. Query Generation: The algorithm proceeds in k + 1 rounds, such that at round ` ≥ 0, it
produces a set of (linear) queries Q`

def= {L`,1, . . . , L`,|Q`|}, where L`,j ∈ Fn specifies a
linear combination, based on its internal randomness and the answers to the previous
sets of queries Q0, . . . , Q`−1, and receives the answers 〈L`,1, x〉, . . . , 〈L`,|Q`|, x〉.

2. Computation: The algorithm computes f(x) with high probability using the answers it
received in all k rounds; that is, Pr[Dx = f(x)] ≥ 2/3.

The query complexity q of the tester is the total number of (linear) queries made to f , i.e.,
q =

∑k
`=0 |Q`|. The randomized (k, q)-round-adaptive linear decision tree complexity of a

function f , denoted R⊕k (f), is the minimal query complexity for a (k, q)-round-adaptive
randomized linear decision tree algorithm that computes f .

If for all ` ∈ [k + 1] and j ∈ [|Q`|] the linear combination L`,j only includes a single
element (i.e., L`,j only has a single non-zero entry), we say that D is a randomized (k, q)-
round-adaptive decision tree algorithm complexity, and denote its corresponding complexity
by Rk(f). If, in addition, the algorithm does not toss any random coins and succeeds with
probability 1, we say that D is a deterministic (k, q)-round-adaptive decision tree algorithm
complexity, and denote its corresponding complexity by Dk(f).

5 We remark that this definition corresponds to the depth the of decision tree, and not to the number of
vertices or edges in the tree.
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4.3 Decision Tree Hierarchy: Some Things Only Adaptivity Can
Address

We first establish the upper bound part of our adaptivity hierarchy theorem for DT, which
follows immediately from the construction.

I Claim 7. For every k ≥ 0, there exists a (k, k + 1)-round-adaptive (deterministic) DT
algorithm which computes fk; that is, Dk(fk) ≤ k + 1.

Proof. The algorithm is straightforward: on input x ∈ Fnn, it sequentially queries x1 = g0(x),
xg0(x)+1 = g1(x), . . . , xgk−1(x)+1 = gk(x); and returns 1 if gk(x) is even, and 0 otherwise. By
definition of fk, this always correctly computes the function, is deterministic, and clearly
satisfies the definition of a (k, k + 1)-round-adaptive DT algorithm. J

We proceed to show the lower bound part of our adaptivity hierarchy theorem for DT,
which is proven via a reduction from communication complexity.

I Lemma 8. There exists an absolute constant c > 0 such that the following holds. For
every 0 ≤ k ≤ c

(
n

logn

)1/3
, there is no (k, o(n/(k2 logn)))-round-adaptive (randomized) LDT

algorithm which computes fk+1; that is, R⊕k (fk+1) = Ω
(
n/(k2 logn)

)
.

Proof. We will reduce to the computation of fk+1 (in k rounds of adaptivity) a related
k-round two-party randomized communication complexity problem, the “pointer-following”
problem introduced by Papadimitriou and Sipser [30], and conclude by invoking the lower
bound of Nisan and Wigderson [29] on this problem.

This communication complexity problem between two computationally unbounded players,
Alice and Bob, is defined as follows. Let VA and VB be two disjoint sets of cardinality n/2, and
let v0 ∈ VA be a fixed element known to both players. The input is a pair of functions (χA, χB),
where χA : VA → VB and χB : VB → VA. Alice and Bob are given χA and χB respectively,
as well as a common random string, and their goal is to compute πk(χA, χB) def= χ(k)(v0)
with high probability, where χ(`) is the `-iterate of the function χ:

χ : VA ∪ VB → VA ∪ VB

v 7→

{
χA(v) v ∈ VA
χB(v) v ∈ VB .

(In other terms, one can see the communication problem as Alice and Bob sharing the edges
of a bipartite directed graph where each node has out-degree exactly one, and the goal is to
find at which vertex the path of length k starting at a prespecified vertex v0, on Alice’s side,
ends.)

We will rely on the following lower bound on the k-round, randomized (public-coin)
version of this problem.

I Theorem 9 ([29], rephrased). Any k-round randomized communication protocol for the
“pointer-following” problem, in which Bob sends the first message, must have total commu-
nication complexity Ω

(
n
k2 − k logn

)
, even to only compute a single bit of πk(χA, χB) with

probability at least 2/3.

Note that as long as k �
(

n
logn

)1/3
, this lower bound is Ω

(
n
k2

)
. We remark that the fact

that the lower bound still holds even when only a single bit of the answer is to be computed
will be crucial for us, as our goal is to reduce the communication complexity problem of
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“pointer-following” to computing the Boolean function fk+1 in the randomized decision tree
model.

LetA be any (k, q)-round-adaptive (randomized) LDT algorithm computing fk+1. Writing
VA = {v0, . . . , vn2−1} and VB = {u0, . . . , un2−1}, fix a bijection between V def= VA ∪ VB (of
size n) and Fn mapping v0 to 1, so that we identify V with Fn. On input (χA, χB),
Alice and Bob implicitly define the element x ∈ Fnn by x1 = χA(v0), x2 = χA(v1), . . . ,
xn

2
= χA(vn

2−1) and xn
2 +1 = χB(u0), xn

2 +2 = χA(u1), . . . , xn = χA(un
2−1). From this, we

get that πk+2(χA, χB) = gk+1(x), recalling that gk(x) = g(x, gk−1(x)) is recursively defined
for k ≥ 1, and g0(x) = x1. Hence deciding whether πk+2(χA, χB) is even is exactly equivalent
to computing fk+1(x).

Alice and Bob can then simulate the execution of A as follows. Without loss of generality,
assume it is Alice’s turn to speak. To answer a query of the form φa(x) =

∑n
i=1 aixi, she

computes
∑
i∈VA aixi and sends it to Bob; on his side, Bob computes

∑
i∈VB aixi, and

receiving Alice’s message can then recover the value φa(x) and feed it to the algorithm. (In
the next round, when sending his side of the (new) queries to Alice, Bob will also send this
value φa(x), to make sure that both sides know the answers to all queries so far.) Since all
queries of a given adaptive round of A can be prepared and sent in parallel (costing O(logn)
bits of communication per query), this simulation can be performed in k + 1 rounds (as
many as A takes) with communication complexity O(q log). At the end, whichever of Alice
and Bob received the latest message holds the answer (to “is πk+1(χA, χB) an even node?”),
which by assumption on A is correct with probability at least 2/3. Alice and Bob then use
an extra round of communication to broadcast the answer to the other party, bringing the
total number of rounds to k + 2.

But by Theorem 9, computing this bit of πk+2(χA, χB) with only k + 2 rounds of
communication (Bob speaking first) requires Ω

(
n
k2

)
bits of communication, and so we must

have q = Ω
(

n
k2 logn

)
. J

4.4 Adaptivity Bounded Testers and Decision Trees: There and Back
Again

In this section we show how to reduce problems in the adaptivity bounded property testing
model to problems in the adaptivity bounded (linear) decision tree model, and vice versa.
We begin in Section 4.4.1, by presenting the required preliminaries regarding error-correction
codes. Then, in Section 4.4.2, we prove the “transference lemmas” between these models.

4.4.1 Preliminaries: Locally Testable and Decodable Codes
Let k, n ∈ N. A code over alphabet Σ with distance d is a function C : Σk → Σn that maps
messages to codewords such that the distance between any two codewords is at least d = d(n).
If d = Ω(n), C is said to have linear distance. If Σ = {0, 1}, we say that C is a binary code.
If C is a linear map, we say that it is a linear code. The relative distance of C, denoted by
δ(C), is d/n, and its rate is k/n. When it is clear from the context, we shall sometime abuse
notation and refer to the code C as the set of all codewords {C(x)}x∈Σk . Following the
discussion in the introduction, we define locally testable codes and locally decodable codes
as follows.

I Definition 10 (Locally Testable Codes). A code C : Σk → Σn is a locally testable code (LTC)
if there exists a probabilistic algorithm (tester) T that makes O(1) queries to a purported
codeword w ∈ Σn and satisfies:
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1. Completeness: For any codeword w of C it holds that PrT [Tw = 1] ≥ 2/3.
2. Strong Soundness: For all w ∈ Σn,

Pr
T

[Tw = 0] ≥ poly
(

dist(w,C)
)
.

I Definition 11 (Locally Decodable Codes). A code C : Σk → Σn is a locally decodable code
(LDC) if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm (decoder)
D that, given oracle access to w ∈ Σn and direct access to index i ∈ [k], satisfies the following
condition: For any i ∈ [k] and w ∈ Σn that is δradius-close to a codeword C(x) it holds that
Pr[Dw(i) = xi] ≥ 2/3. The query complexity of a LDC is the number of queries made by its
decoder.

We shall also need the notion of relaxed-LDCs (introduced in [3]). Similarly to LDCs,
these codes have decoders that make few queries to an input in attempt to decode a given
location in the message. However, unlike LDCs, the relaxed decoders are allowed to output a
special symbol that indicates that the decoder detected a corruption in the codeword and
is unable to decode this location. Note that the decoder must still avoid errors (with high
probability).6

I Definition 12 (Relaxed-LDC). A code C : Σk → Σn is a relaxed-LDC if there exists a
constant δradius ∈ (0, δ(C)/2) such that the following holds.
1. (Perfect) Completeness: For any i ∈ [k] and x ∈ Σk it holds that DC(x)(i) = xi.
2. Relaxed Soundness: For any i ∈ [k] and any w ∈ Σn that is δradius-close to a (unique)

codeword C(x), it holds that

Pr[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

There are a couple of efficient constructions of codes that are both relaxed-LDCs and LTCs
(see [3, 22]). We shall need the construction in [22], which has the best parameters for our
setting.7

I Theorem 13 (e.g., [22, Theorem 1.1]). For every k ∈ N, α > 0, and finite field F there
exists an F-linear code C : Fk → Fk1+α with linear distance, which is both a relaxed-LDC
and a (one-sided error) LTC with query complexity poly(1/ε); furthermore, both testing and
(relaxed) decoding procedures are non-adaptive.

4.4.2 Transference Lemmas
Fix any α > 0. Let C : Fnn → Fmn be a code with constant relative distance δ(C) > 0, with
the following properties:

linearity: for all i ∈ [m], there exists an element a(i) ∈ Fnn such that C(x)i = 〈a(i), x〉 for
all x ∈ Fnn;

6 The full definition of relaxed-LDCs, as defined in [3] includes an additional condition on the success
rate of the decoder. Namely, for every w ∈ {0, 1}n that is δradius-close to a codeword C(x), and for at
least a ρ fraction of the indices i ∈ [k], with probability at least 2/3 the decoder D outputs the i’th
bit of x. That is, there exists a set Iw ⊆ [k] of size at least ρk such that for every i ∈ Iw it holds that
Pr [Dw(i) = xi] ≥ 2/3. We omit this condition since it is irrelevant to our application, and remark
that every relaxed-LDC that satisfies the first two conditions can also be modified to satisfy the third
conditions (see [3, Lemmas 4.9 and 4.10]).

7 Specifically, the codes in [22] are meaningful for every value of the proximity parameter, whereas the
codes in [3] require ε > 1/polylog(k).
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rate: m ≤ n1+α;
testability: C is a strong-LTC with one-sided error and non-adaptive tester;
decodability: C is a relaxed-LDC.

We will rely on Theorem 13 for the existence of such codes. Before delving into the details,
we briefly explain the reason for each of the points above. The linearity will be crucial to
reduce to and from the LDT model: indeed, any coordinate of a codeword corresponds to a
fixed linear combination of the coordinates of the message, which corresponds to a single
LDT query on that particular linear combination. The rate bound is required since our
lower bounds are in terms of the dimension n and upper bounds in terms of the block-lengh
m. Ideally, we would like m = O(n), to have a direct correspondence between the LDT
and the property testing query complexities; however, this nearly-linear rate is the best
known achievable for constant-query LTCs and relaxed-LDCs [22]. The LTC property will
be useful to us in the reduction from property testing to DT query complexity (where we
will need to first check that our input is close to a codeword, in view of decoding the closest
message during the reduction), where the strong testability (i.e., rejection with probability
proportional to the distance from a valid codeword) will allow us do deal with arbitrarily
small values of the proximity parameter. Similarly, we will rely on the (relaxed) LDC property
in that same reduction, in order to obtain individual coordinates of the message, given query
access to an input close to a codeword.

We proceed to show the framework for reducing property testing to decision tree
complexity and vice-versa. For a fixed function f : Fnn → {0, 1}, consider the subset
f−1(1) ⊆ Fnn; and define the sets of codewords C def= C(Fnn) ⊆ Fmn , Cf

def= C(f−1(1)) =
{ C(x) : x ∈ Fnn, f(x) = 1 } ⊆ C.

Consider now testing the property Cf : we will reduce the LDT computation of f to the
testing of Cf . Specifically, we prove the following.

I Lemma 14 (LDT  PT Reduction Lemma). Fix any f : Fnn → {0, 1}. If there exists an
(k, q)-round-adaptive tester for Cf , then there is an (k, q)-round-adaptive LDT algorithm
for f .

Proof. Suppose there exists a (k, q)-round-adaptive tester T for Cf . On input x ∈ Fnn, we
emulate the invocation of T , with respect to proximity parameter ε = δ(C), on the encoded
input y def= C(x) ∈ Fmn and output 1 if and only if T returns accept. To see why this is
correct, observe that by definition, if f(x) = 1 then y ∈ Cf . However, if f(x) = 0, then for
any y′ ∈ Cf such that y′ = C(x) we must have dist(y, y′) > ε, by the distance of our code.

It remains to show that this simulation can be achieved efficiently, as claimed. To do so,
we will rely on the fact that C is a linear code: whenever T queries yi, we can compute the
element a(i) ∈ Fnn (which only depends on C, and not on x), and perform the LDT query
〈a(i), x〉. The simulation clearly preserves the number of adaptive rounds as well, concluding
the proof. J

In our next lemma, we give a partial converse relating property testing and decision tree
complexity, with some logarithmic overhead in the resulting query complexity.

I Lemma 15 (PT DT Reduction Lemma). Fix any f : Fnn → {0, 1}. If there exists an (k, q)-
round-adaptive (randomized) DT algorithm for f , then there is a (k,O(q log q) + poly(1/ε))-
round-adaptive tester for Cf . (Moreover, if the DT algorithm is always correct, then this
tester is one-sided.)
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Proof. Fix k ≥ 0, and suppose there exists such a (k, q)-round-adaptive DT algorithm A
for f . On input y ∈ Fmn and proximity parameter ε ∈ (0, 1], we would like to decode y to a
message x ∈ Fnn and invoke the algorithm on x to determine if f(x) = 1; more precisely, we
wish to invoke the DT algorithm while simulating each query to x by locally decoding y using
O(1) queries. The issue, however, is that the success of the local decodable is only guaranteed
for inputs that are sufficiently close to a valid codeword, and we have no such guarantee on
y a priori. However, recalling that C is a strong-LTC, we can handle this as follows. Letting
δradius > 0 be the decodability radius of the relaxed-LDC C, we set δ∗ def= min(δradius, ε).

1. Run independently O(poly(1/δ∗)) times the local tester for the strong-LTC C on y,
and output reject if any of these rejected. Since every invocation of the local tester
makes O(1) queries to y, this has query complexity O(poly(1/δ∗)) = O(poly(1/ε)); and
if dist(y, C) > δ∗ then this step outputs reject with probability at least 9/10.

2. Invoke A on the message x def= argmin { dist(C(x), y) : x ∈ Fnn }, answering each query
xi by calling the local decoder for the relaxed-LDC C. This is done so that the decoder
is correct with probability at least 1/(10q), by standard repetition (taking the plurality
value); with the subtlety that we output reject immediately whenever the decoder returns
⊥. Since each query can be simulated by O(log(q)) queries (repeating the O(1) queries of
the decoder O(log q) times), this step has query complexity O(q log q); and at the end,
we output accept if, and only if, A returns the value 1 for f(x).

Importantly, Step 1 can be run in parallel to Step 2, and in particular can be executed during
the first “batch” of queries A makes. This guarantees that the whole simulation above uses
the same number of adaptive rounds as A, as claimed. It remains to argue correctness.

Completeness. Assume y ∈ Cf . In particular, y is a codeword of C, and the (one-sided)
local tester returns accept with probability one in 1. Then, since by definition there is a
unique x ∈ Fnn such that C(x) = y, the local decoder of Step 2 will correctly output the
correct answer for each query with probability 1, and therefore A will correctly output f(x)
with probability 2/3 – so that the tester returns accept with probability at least 2/3 overall.
(Moreover, if the DT algorithm A always correctly compute f , then the tester returns accept
with probability one.)

Soundness. Assume dist(y, Cf ) > ε. If dist(y, C) > δ∗, then the local tester returns
reject with probability at least 9/10 in Step 1. Therefore, we can continue assuming that
dist(y, C) ≤ δ∗, which satisfies the precondition of the relaxed-LDC decoder in Step 2. By a
union bound over all q queries, with probability at least 9/10 we have that the decodings
performed in Step 2 are all correct; in which case we answer the queries of the algorithm
according to x def= argmin { dist(C(x), y) : x ∈ Fnn } (or possibly answered by ⊥, in which
case the tester immediately outputs reject and we are done). Since dist(y, C(x)) ≤ δ∗ ≤ ε,
we must have C(x) 6∈ Cf , which implies that A correctly returns f(x) = 0 with probability
at least 2/3, in which case the tester outputs reject. Overall, this happens with probability
at least 9/10 · 9/10 · 2/3 = 27/50.

Thus, in both cases the tester is correct with probability at least 27/50; repeating a
constant number of times (as explained in the remark of page 27:6) and taking the majority
vote allows us to amplify the probability of success to 2/3. J
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5 An Adaptivity Hierarchy with respect to a Natural Property

In this section we show a natural property of graphs for which, broadly speaking, more
adaptivity implies more power. More specifically, we prove the following adaptivity hierarchy
theorem with respect to the property of k-cycle freeness in the bounded-degree graph model
(see definitions in Section 5.1).

I Theorem 16. Let k ∈ N be a constant. Then,
1. there exists a (k,O(1/ε))-round-adaptive (one-sided) tester for (2k + 1)-cycle freeness in

the bounded-degree graph model; yet
2. any (k− 1, q)-round-adaptive (two-sided) tester for (2k+ 1)-cycle freeness in the bounded-

degree graph model must satisfy q = Ω(
√
n).

We stress that although Theorem 5 establishes an adaptivity hierarchy with stronger
separations, the merit of Theorem 16 is in showing that an adaptivity hierarchy also holds for
a natural well-studied property. We further observe that the choice of the bounded-degree
graph model is not insignificant: one cannot hope to establish such a striking gap in other
settings such as the dense graph model or in the Boolean function testing setting. Indeed, as
discussed in Section 1.2 it is well-known that in these two models, any adaptive tester can
be made (fully) non-adaptive at the price of only a quadratic and exponential blowup in the
query complexity, respectively(see [2, 25] for the former; the latter is folklore). We remark
that in Section 6.1 we discuss emulating testers with k rounds of adaptivity by testers with
k′ < k rounds.

5.1 Cycle Freeness in the Bounded Degree Graph Model
In the subsection we provide the necessary definitions and establish a basic upper bound on
the complexity of k-adaptive testing of cycle freeness in the bounded degree graph model.
We begin with a definition of the model.

Let G = (V,E) be a graph with constant degree bound d < |V |, represented by its
adjacency list; that is, represented by a function g : V × d→ V such that g(v, i) = u ∈ V
if u is the ith neighbor of v and g(v, i) = 0 if v has fewer than i neighbors. A bounded
degree graph property P is a subset of graphs (represented by their adjacency list) that is
closed under isomorphism; that is, for every permutation π it holds that G ∈ P if and only if
G ∈ π(G). The distance of graph G from property P is the minimal fraction of entries in g
one has to change to reach an element of P.

We extend the definition of functional round-adaptive testing algorithms to the bounded
degree graph model in the natural way.

I Definition 17 (Round-Adaptive Testing in the Bounded Degree Graph Model). Let G = (V,E)
be a graph with constant degree bound d < |V |, represented by its adjacency list g : V ×d→ V ,
and let k, q ≤ n. A randomized algorithm is said to be a (k, q)-round-adaptive tester for a
(bounded degree) graph property P, if, on proximity parameter ε ∈ (0, 1] and granted query
access to g, the following holds.
1. Query Generation: The algorithm proceeds in k + 1 rounds, such that at round ` ≥ 0, it

produces a set of queries Q`
def= {x(`),1, . . . , x(`),|Q`|} ⊆ [n] (possibly empty), based on its

own internal randomness and the answers to the previous sets of queries Q0, . . . , Q`−1,
and receives f(Q`) = {g(x(`),1), . . . , g(x(`),|Q`|)};

2. Completeness: If G ∈ P, then the algorithm outputs accept with probability at least 2/3;
3. Soundness: If dist(G,P) > ε, then the algorithm outputs reject with probability at least

2/3.
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The query complexity q of the tester is the total number of queries made to f , i.e., q =∑k
`=0 |Q`|. If the algorithm returns accept with probability one whenever f ∈ P , it is said to

have one-sided error (otherwise, it has two-sided error). As before, we will sometimes refer
to a tester with respect to proximity parameter ε as an ε-tester.

Next, we define the (bounded degree) graph property of k-cycle freeness.

I Definition 18 (Cycle Freeness). Let k ∈ N. A graph G = (V,E) is said to be k-cycle free
if it does not contain any cycle of length less or equal to k; that is, if for every t ≤ k and
v1, . . . , vt ∈ V either (vt, v1) 6∈ E or there exists i ∈ [t− 1] such that (vi, vi+1) 6∈ E.

Finally, we make the following observation, which roughly speaking implies that when
surpassing a certain threshold of round adaptivity, testing cycle freeness in the bounded
degree graph model becomes “easy.”8

I Observation 19. For every k ∈ N there exists a (k, q)-round-adaptive testing algorithm
for (2k+ 1)-cycle freeness and (2k+ 2)-cycle freeness in the bounded-degree graph model with
query complexity q = O(dk+1/ε).

Proof. The algorithm explores the graph in the most natural way: starting from O(1/ε)
“source vertices” selected uniformly at random, it adaptively explore their neighborhoods
by querying at each round the neighbors of the previously reached vertices, in a breadth-
first-search fashion. If any (2k + 1)-cycle (resp. (2k + 2)-cycle) is detected, the algorithm
rejects, and accepts otherwise. (Clearly, this tester is one-sided.) It is easy to see that if any
of the source vertices belongs to a (2k + 1)- or (2k + 2)-cycle, then this bounded-depth BFS
will detect it; thus, we only need to argue that if the graph is ε-far from cycle freeness, with
constant probability, one of the source vertices will participate in such a cycle. But this is
the case, as any such graph must have at least εn vertices participating in a cycle (indeed,
otherwise one could “correct” the graph by removing fewer than εdn vertices, contradicting
the distance).

Finally, for each source vertex, after k rounds of adaptivity the number of nodes visited
is at most O(dk+1), hence the claimed query complexity. J

5.2 Lower Bounds for Round-Adaptive Testers
In this subsection, we prove the following lemma, which roughly speaking shows that testing
(2k + 3)-cycle freeness is hard for k-round-adaptive testing algorithms.

I Lemma 20. Let k ∈ N be constant. Then, any (k, q)-round-adaptive testing algorithm for
(2k + 3)-cycle freeness in the bounded-degree graph model must satisfy q = Ω(

√
n).

In stark contrast, recall that Observation 19 shows that testing (2k + 2)-cycle freeness is
easy for k-round-adaptive testing algorithms. Indeed, the proof of Theorem 16 follows by
combining Observation 19 and Lemma 20 together.

Proof. Proof of Lemma 20 We will show a distribution of (2k+ 3)-cycle free graphs, denoted
Y , and a distribution of graphs that are “far” from being (2k+ 3)-cycle free, denoted N , and
prove that no (k, q)-round-adaptive testing algorithm can distinguish, with high probability,
between Y and N . Loosely speaking, Y consists of all graphs whose vertices are covered via

8 This is a specific case of a more general algorithm for testing subgraph freeness; see e.g. [20, Section
9.2.1].
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disjoint (2k + 4)-cycles, and N consists of all graphs whose vertices are covered via disjoint
(2k + 3)-cycles.

More accurately, denote by Pt,n,d the subset of n-node graphs with maximum degree
at most d that are t-cycle-free. Let Σt,s be the 2-regular graph on st vertices made of s
disjoint t-cycles, namely (v1, . . . , vt), (vt+1, . . . , v2t), (v(s−1)t+1, . . . , vst). Denote also by Isr
the independent set on r vertices. For two graphs G,G′ on respectively m and m′ vertices
and with e and e′ edges, we write G tG′ for the graph on m+m′ vertices and with e+ e′

edges obtained by concatenating disjoint copies of G,G′.
For k = O(1), we let ` def=

⌊
n

(2k+4)

⌋
, `′ def=

⌊
n

(2k+3)

⌋
, and define the two distributions over

n-node graphs Y and N as follows.
Y is the uniform distribution over all isomorphic copies of Gyes

k

def= Σ(2k+4),` t Isn−(2k+4)`;
N is the uniform distribution over all isomorphic copies of Gno

k
def= Σ(2k+3),`′ tIsn−(2k+3)`′ .

The next claim establishes that indeed Y consists of yes-instances, whereas N consists of
no-instances.

I Claim 21. Y is supported on P(2k+3),n,d, while every graph in the support of N is Ω(1)-far
from P(2k+3),n,d.

Proof. The first part is obvious, as the only cycles in Gyes
k are (2k + 4)-cycles. As for

the second, it immediately follows from observing that Gno
k contains `′ disjoint (2k + 3)-

cycles, and thus at least `′ edges have to be removed to make it (2k + 3)-cycle free. Thus,
dist

(
Gno
k ,P(2k+3),n,d

)
≥ `′

dn/2 = Ω
( 1
dk

)
= Ωd(1). J

Let T be a deterministic testing algorithm with k rounds of adaptivity and query
complexity q′ = o(

√
n). The following lemma concludes the proof of Lemma 20 by showing

that T cannot distinguish, with high probability, between graphs in Y and graphs in N .
Denote T ’s (disjoint) query sets, per round, by Q0, . . . , Qk ⊆ V , where a query is a vertex
v. Denote the corresponding sets of answers by A0, . . . , Ak, where the answer to a query v
consists of the labels of all neighbors of v (i.e., either two or zero vertices). Since k = O(1),
without loss of generality, we can assume (by padding) that all query sets have the same
size q def= |Qi| = q′

k+1 = Θ(q′) for every i ∈ {0, . . . , k}. Moreover, we can also assume that no
vertex is queried twice, i.e. that all Qi’s are disjoint.

I Lemma 22.
∣∣PrG∼Y

[
T G accepts

]
− PrG∼N

[
T G accepts

]∣∣ ≤ 1
10 .

Proof. For j ∈ {0, . . . , k}, define by Yj and Nj the distribution of (A0, . . . , Aj) when G ∼ Y
and when G ∼ N , respectively. We shall prove that dTV(Yk, Nk) ≤ 1

10 , which by the data
processing inequality will imply the claim of Lemma 22.

The high-level idea is that in each round, the tester can either query “fresh” vertices,
of which it has no prior information, or query the boundaries (i.e., the direct neighbors) of
previously queried vertices. Then, loosely speaking we can argue that, on the one hand, if
the total number of queries is o(

√
n), then both for graphs in Y and N all queries of “fresh”

vertices (obtained during all rounds) with high probability would only fall into previously
unattained disjoint cycles, in which case the answer would be a uniform sequence of “fresh”
labels. On the other hand, the local view obtained by querying the boundary, using at most
k rounds of adaptive queries, of each vertex previously obtained via a “fresh” query (which
by the above lies in a cycle wherein the tester has no information of the labels of the other
vertices participating in this cycle) is isomorphic to the tail graph over fresh labels, both for
instances taken from Y and N (that is, we do not have enough adaptive queries to observe a
full cycle). The foregoing intuition is formalized below.
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For i ∈ {0, . . . , k}, define

Sf
i

def= Qi \ ∪i−1
j=0Aj

Sb
i

def= Qi ∩ ∪i−1
j=0Aj

to be, respectively, the set of “entirely fresh” nodes queried at round i (that is, nodes that
are not neighbors of any previously queried node), and the set of “boundary nodes” (which
are the not-yet-queried nodes neighbors of a previously queried node).

First, we bound the probability that any of the q′ queries made “hits” the set of discon-
nected nodes:

I Claim 23. Let E1(G) denote the event that T queries an isolated vertex of G, that is
E1(G) def= {∃i, v s.t. v ∈ Qi, deg(v) = 0}. Then PrG∼Y [E1(G) ] ,PrG∼N [E1(G) ] = o(1).

Proof. This follows by induction: at step i, conditioned on no isolated node having been
queried yet, the algorithm has degree information about

∣∣∪i−1
j=0Qj

⋃
∪i−1
j=0Aj

∣∣ ≤∑i−1
j=0 |Qj |+∑i−1

j=0 |Aj | ≤ 3q · i nodes, so there remain at least n − 3kq nodes on which the algorithm
has no degree information at all. Among these, there are n − (2k + 4)` ≤ (2k + 4) (or
n − (2k + 3)`′ ≤ (2k + 3), in the no-case) isolated nodes. By symmetry, this means that
in the new batch of q queries, the algorithm will query one of these isolated nodes with
probability at most 1−

(
1− (2k+4)

n−3kq−(2k+4)

)q
= 1−

(
1− O(1)

n

)q
= O

(
q
n

)
= o(1). Therefore,

overall there will be an isolated node queried with probability at most k · o(1) = o(1). J

Next, we argue that at each step, with overwhelming probability all the “fresh nodes”
queried fall in distinct cycles, which have not been attained yet.

I Claim 24. Let E2(G) denote the event that at some round i, one of the queries in Sf
i belongs

to the same cycle (either a (2k+4)- or a (2k+3)-cycle, depending on whether the graph is drawn
from Y or N ) as one of the previous queries

⋃i−1
j=0Qj . Then PrG∼Y [E2(G) ] ,PrG∼N [E2(G) ] =

o(1).

Proof. We will show that PrG∼Y [E2(G) ] = o(1); the no-case is similar. For i ∈ {1, . . . , k},
let E(i)

2 (G) denote the event that at some round i, one of the queries in Sf
i belongs to the

same cycle as a previous query, so that E2(G) =
⋃k
i=1E

(i)
2 (G).

Note that since |
⋃i−1
j=0Qj | = iq, we have |

⋃i−1
j=0Aj | ≤ 2iq (and the number of distinct

cycles reached is at most |
⋃i−1
j=0Qj |). Therefore, at round i each of the at most q distinct

queries in Sf
i falls independently in a previously visited cycle with probability upper bounded

by

iq · (2k + 4)
n− 3iq ≤ kq · (2k + 4)

n− 3kq ≤ 2k2q

n

recalling that q = o(n) and k = O(1). A union bound over all at most q queries of Sf
i , and then

over the k rounds then shows that PrG∼Y [E2(G) ] ≤ 2k3q2

n = o(1) (since q = o(
√
n)). J

To conclude the proof, note that by the above, with probability 1− o(1) neither E1 nor
E2 occurs; that is, none of the isolated vertices was queried, and all the “fresh” queries
(during all rounds ) fell in previously unattained distinct cycles. In this case, at each round
of adaptivity the algorithm can at most discover two new nodes out of every cycle it reached
before (by including the one or two end nodes of the current “discovered portion” into Sb

i ).
Therefore, on any cycle ever reached, the (k, q)-round-adaptive testing algorithm can observe
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at most 2k + 2 nodes (which then form a consecutive path). We show that this implies
that the algorithm cannot distinguish between a no-instance and a yes-instance, as loosely
speaking, in both cases its local view is of a tail graph over uniformly distributed fresh labels,
and so it is unable to determine whether it belongs to a cycle of length 2k + 3 or 2k + 4.

To make the argument more precise, we will actually show a stronger statement; namely,
we show that, conditioning on neither E1 nor E2 occuring, a simulator with no access to the
graph can answer the queries of the testing algorithm in a way that is indistinguishable from
the tuple of answers obtained from querying a graph distributed according to either Y or N .
This simulator operates as follows: at round i,
1. Order (arbitrarily) all the nodes of Qi: v1, . . . , vq, and initialize the set of available-to-

sample nodes U ← V \
(
Qi ∪

⋃i−1
j=0Qj ∪

⋃i−1
j=0Aj

)
.

2. Do sequentially the following, for s = 1 . . . q:
if vs ∈ Sf

i (fresh node: no previous neighbors known), pick uniformly at random two
distinct nodes u, u′ in Us and return them as answers (i.e., declare them as neighbors
of vs);
otherwise, vs ∈ Sb

i (boundary node: exactly one already known neighbor, call it u):
pick uniformly at random one other node u′ in Us, and return (u, u′) as answers;
update U by removing u, u′: U ← U \ {u, u′}

It is straightforward to verify that, since we conditioned on E1 and E2, this simulates exactly
the same distribution over nodes (over the choice of G); since this is the same both for Y and
N , we get that dTV

(
(Yk | E1 ∪ E2)), (Nk | E1 ∪ E2))

)
= 0, which combined with Claim 23

and Claim 24 finishes the proof. J

This concludes the proof of Lemma 20. J

6 Some Miscellaneous Remarks

In this section we discuss adaptivity round reductions, as well as a connection to commu-
nication complexity, and the relation between round and tail adaptivity. Specifically, in
Section 6.1 we show how to simulate k rounds of adaptivity via k − 1 rounds (at the cost of
an increase in query complexity). In Section 6.2 we extend the communication complexity
methodology for proving property testing lower bounds [9] to k-round adaptive testers, then
sketch an alternative proof of item (2) of Theorem 5 using it; and show how it can also
be leveraged to prove a hierarchy of lower bounds on the power of k-adaptive testers for a
fundamental class of Boolean functions. Finally, in Section 6.3 we show a separation between
the power of round-adaptive and tail-adaptive testers.

6.1 On Simulating k Rounds With Fewer
As mentioned in the beginning of Section 5, in the Boolean setting any adaptive property
testing algorithm can be simulated non-adaptively with only an exponential blowup in the
query complexity. Phrased differently, this implies that any property of Boolean functions
which admits a (k, q)-round-adaptive tester also has a (0, 2q − 1)-round-adaptive tester.

This begs the following more general question: let P =
⋃
n Pn be a property of Boolean

functions, such that there exists a (k, q)-round-adaptive tester for P. For ` < k, what upper
bound can we obtain on the query complexity q′ of the best (`, q′)-round-adaptive tester for
P?

Denoting by q` this query complexity, the above discussion immediately implies:
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I Fact 25. For any 0 ≤ ` ≤ k, one has qk ≤ q` ≤ 2qk − 1.

In what follows, we provide a example of a more fine-grained version of this fact, in the
case when ` = k − 1 (that is, one wishes to reduce the number of rounds of adaptivity by
one).

I Proposition 26. For any 0 < k, one has qk ≤ qk−1 ≤ qk(1 + 2
qk
k ).

Proof. Let Tk be a (k, q)-round-adaptive tester for P , which can be viewed as a distribution
over deterministic algorithms. Thus, it is sufficient to explain how to simulate any determin-
istic algorithm with k rounds of adaptivity by one with ` rounds. Fix such a (k, q)-round
deterministic algorithm: this can be seen equivalently as a depth-(k + 1) binary tree, where
each internal node v is labeled by the set of queries Qv made at that stage, and the leaves are
either accept or reject. By assumption, we have that on each path (v0, v1, . . . , vk, v

∗) from
the root to a leaf,

∑k
j=0

∣∣Qvj ∣∣ ≤ q; moreover, one can assume without loss of generality that
this is an equality.

The idea is then to contract, on any path, two consecutive nodes as follows: instead of
querying Qvj , receiving the answers, and then querying the (adaptively chosen) set Qvj+1 ,
one can idea query simultaneously Qvj and the union of all possible sets Qvj+1 : since the
latter depends only on the previous queries, and the only unknown answers are those to the
queries in Qvj , there are at most 2|Qvj | possibilities for Qvj+1 . As clearly no matter what
Qvj+1 would be, its size is at most q, the set Q′i = Qvj ∪

⋃
Q : possible Qvj+1

Q queried has size

at most
∣∣Qvj ∣∣+ q2|Qvj |. Thus, by contradicting the two rounds i and i+ 1, one incurs an

additional number of queries upper bounded by q2|Qvj | −
∣∣Qvj+1

∣∣ ≤ q2|Qvj |
By an averaging argument, since on every such path we have

∑k
j=0

∣∣Qvj ∣∣ = q, there
must exist an index j∗ such that

∣∣Qvj∗ ∣∣ ≤ q
k+1 . Since we would like to “contract” rounds

j∗ and j∗ + 1 into a single round, we additionally want to ensure j∗ < k. But similarly, as∑k−1
j=0

∣∣Qvj ∣∣ ≤ q there exists i∗ such that |Qvi∗ | ≤
q
k . We then get an index i∗ < k (which

depends on the path taken down the tree) to which we can apply the above transformation.
That is, whenever the deterministic algorithm is executed it will reach an index i∗ < k where
it should make |Qvi∗ | ≤

q
k queries. At that point, it makes instead these queries, along with

all queries this should have triggered at the next round, and thus is able to skip round i∗ + 1
at the price of an additional (at most) q2

q
k queries. J

I Remark. Note that in the above proof, while one can assume without loss of generality
that the algorithm always makes exactly q queries, one cannot however assume that for any
two such paths (v0, v1, . . . , vk, v

∗) and (u0, u1, . . . , uk, u
∗),
∣∣Qvj ∣∣ =

∣∣Quj ∣∣ for all 0 ≤ j ≤ k.
That is, the number of queries made in round j may not be the same depending on the path
followed down by the algorithm, but instead depend adaptively on the previous queries made.

The above remark shows the difficulty in extending the proof of Proposition 26 further
than a single round. If one is willing to assume that the number of queries at each round is
non-adaptive, it becomes possible to obtain a more general statement for 0 ≤ ` < k; however,
it is unclear how to proceed without this extra assumption, leading to the following question:

I Open Problem 3. Can one obtain a general round-reduction upper bound for 0 ≤ ` < k

of the form q` ≤ φ(qk, `, k), improving on Fact 25 for ` > 0?

6.2 On the Connection with Communication Complexity
As exemplified in the proof of Lemma 8, there exists a striking parallel between the notion
of k-round-adaptive testing algorithms, and that of k-round protocols in communication
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complexity. In this section, we make this parallel rigorous, and give a blackbox reduction
between the two that one can leverage to establish lower bounds on k-round-adaptive testing.

In more detail, we build on the communication complexity methodology for proving
property testing lower bounds due to [9] (more precisely, to the general formulation of this
methodology as laid out in [19]). Although the results stated there hold for non-adaptive
lower bounds (in the case of one-way communication or simultaneous message passing) or
fully adaptive lower bounds in property testing (in the case of two-way communication), it is
easy to obtain their counterpart for k-round-adaptive, given in Theorem 27 below. But first,
we need to recall some notations.

In what follows, for a property P, integer k, and parameters ε, δ ∈ [0, 1], we write
Q

(k)
δ (ε,P) for the minimum query complexity of any k-round-adaptive tester for P with

error probability δ and distance parameter ε. Given a communication complexity predicate
F , we let CC(k)

δ (F ), −→CCδ(F ), and ←−CCδ(F ) denote respectively the minimum communication
complexity of a public-coin protocol for F with error δ in (i) k-rounds, (ii) one-way from
Alice to Bob, and (iii) one-way from Bob to Alice, respectively (note that the case δ = 0
then corresponds to protocols with perfect completeness).

I Theorem 27. Let Ψ = (P, S) be a promise problem such that P, S ⊆ {0, 1}2n, P ⊆ {0, 1}`
be a property, and ε, δ > 0. Suppose the mapping F : {0, 1}2n → {0, 1}` satisfies the following
two conditions:
1. for every (x, y) ∈ P ∩ S, it holds that F (x, y) ∈ P;
2. for every (x, y) ∈ P \ S, it holds that F (x, y) is ε-far from P.
Then Q

(k)
δ (ε,P) ≥ 1

B+1 CC(k+2)
2δ (Ψ), where B def= maxi∈[`] max(−→CC δ

n
(Fi),

←−CC δ
n

(Fi)) (and

Fi(x, y) is the i’th bit of F (x, y)). Moreover, if B′ def= maxi∈[`] max(−→CC0(Fi),
←−CC0(Fi)), then

Q
(k)
δ (ε,P) ≥ 1

B′+1 CC(k+2)
δ (Ψ).

Proof. The proof will be identical to that of [19, Theorem 3.1], where we only need to check
that Alice and Bob can each simulate the execution of the property testing algorithm (using
their public random coins), answering the queries made to F (x, y) while preserving the
number of rounds. Running the testing algorithm, Alice first sends the bits allowing Bob to
compute the answers to the first q0 queries, using her input x and the one-way protocols
for the relevant Fi’s. Bob then answers with the q0 bits corresponding to the answers he
computed, as well as the bits allowing Alice to compute the answers to the next q1 queries
made by the tester, using now his input y and the one-way protocols for the relevant Fi’s.
They do so for k + 1 rounds of communication in total, until the last player to receive a
message gets from the other player both the answers to the queries in Qk−1 as well as the
bits needed to compute (given their own input) the answers to the last qk queries. At that
point, it only remains to use a last round of communication (the (k + 2)’nd) to communicate
to the other player the answers to these last qk queries, so that both Alice and Bob can finish
running their copy of the testing algorithm and know the answer.

Note that the number of bits communicated at round 1 ≤ i ≤ k + 2 is by definition of B
(resp. B′) at most B · qi−1 + qi−2 (resp. B′ · qi−1 + qi−2), so that at most (B + 1)q (resp.
(B′ + 1)q) bits are communicated in total. This concludes the proof. J

To illustrate the above methodology, we show how it can be leveraged to prove a hierarchy
of lower bounds on the power of k-adaptive testers for testing a very fundamental class of
Boolean functions, that of m-linear functions.9

9 We observe that establishing the upper bound counterpart to this result would provide an answer to
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I Proposition 28. Let PARns ⊆ 22n denote the class of parities of size s (over n variables),
and fix m def=

√
n

2 . Then, for any 0 ≤ k ≤ log∗m − 2, any (k, q)-round-adaptive tester for
PARn2m must satisfy q = Ω

(
m log(k+2)m

)
.

Proof. We will rely on a result of Sağlam and Tardos [37], which implies the following (tight)
lower bound on the communication complexity of sparse set-disjointness (DISJnm, where both
inputs x, y ∈ {0, 1}n are promised to have Hamming weight m):

I Theorem (Corollary of [37, Theorem 4]). For any 1 ≤ k ≤ log∗m, any k-round probab-
ilistic protocol for DISJ4m2

m with error probability at most 1/3 must have communication
Ω
(
m log(k)m

)
.

It then suffices to provide a reduction from DISJ4m2

m to testing PAR4m2

2m . We follow the known
reduction, as can be found in [9, 14]. Namely, on input x ∈ {0, 1}n (resp. y ∈ {0, 1}n), Alice
(resp. Bob) forms the parity function χx (resp. χy). As |x⊕ y| = |x| + |y| − 2 |x ∩ y| =
2m− 2 |x ∩ y|, the function χx⊕y is a 2(m− |x ∩ y|)-parity. Moreover, as for any z ∈ {0, 1}n
we have χx⊕y(z) = χx(z)⊕ χy(z), each query can be answered (with zero error) by one bit
of communication in either direction.

Put in the language of our reduction theorem, Ψ = (P, S) with P = {u ∈ {0, 1}n :
|u| = m}2 and S = { (x, y) ∈ P : |x ∩ y| 6= 0 }; while ` = 2n, P = PARn2m ⊆ 2`; and
F : {0, 1}2n → {0, 1}` maps (x, y) to the truth table of χx⊕y. Since any two distinct parities
are at distance 1

2 , we can take any ε ≤ 1
2 . We then have B′ = 1, and by the theorem above we

know that CC(k+2)
1/3 (Ψ) = Ω

(
m log(k+2)m

)
for any 0 ≤ k ≤ log∗m− 2. Invoking Theorem 27

concludes the proof. J

We also outline below how Theorem 27 enables us to establish directly the lower bound
part of Theorem 5, without relying on the transference theorem for LDTs.

Alternate proof of item (2) of Theorem 5. We start from the same communication com-
plexity problem, “pointer-following,” as in Section 4.3. Recall that an input to this problem
is a pair of mappings (χA, χB) with χA : VA → VB, χB : VB → VA (where VA, VB are two
disjoint sets {v0, . . . , vn/2−1} and {vn/2, . . . , vn−1} of nodes of cardinality n/2). The function
to compute is the indicator of the event where the vertex vi = χ(k+2)(v0), reached by following
the path of length k + 2 starting at v0, has an even index i.

We define Ψ = (P, S) by setting P def= { (χA, χB) : χA : VA → VB , χB : VB → VA } and
S

def=
{

(χA, χB) ∈ P : χ(k+2)(v0) is an even-index node
}
. The property is, as in The-

orem 5, the subset of codewords Cfk+1 corresponding to the function fk+1 : Fnn → {0, 1} of
Section 4 (for a good code C : Fnn → Fmn as in Section 4.4.2).

Identifying V def= VA ∪ VB = {v0, . . . , vn−1} with Fn in the natural way, we define the
mapping F : P → Fnn by

F (χA, χB) = (χA(v0), χA(v1) . . . , χA(n/2− 1), χB(n/2), . . . , χB(n− 1)).

From there, it is easy to check that by construction, (i) (χA, χB) ∈ P ∩S implies F (χA, χB) ∈
Cfk+1 , while (ii) (χA, χB) ∈ P \ S implies that F (χA, χB) is ε0-far from Cfk+1 , for some con-
stant ε0 > 0 depending on the code C. Observing thatB′ def= maxi∈[`] max(−→CC0(Fi),

←−CC0(Fi)) =

Open Problem 1, although one rather weak quantitatively. It also, as a special case, would separate
adaptive and non-adaptive testing of m-linearity for m = o(n), a longstanding open question [10, 6].
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O(logn) (as each Fi is specified by O(logn) bits), we can invoke Theorem 27 along with
the communication complexity lower bound of Theorem 9 to obtain that Q(k)

1/3(ε0, Cfk+1) ≥
1

B′+1 CC(k+2)
1/3 (Ψ) = Ω

(
n

k2 logn

)
. J

6.3 On the Relative Power of Round-Adaptive and Tail-Adaptive
Testers

In this section, we show that the two notions of round- and tail-adaptive testers we introduced
are not equivalent. As mentioned in Section 3, while round-adaptive testers are at least as
powerful as tail-adaptive ones, there exist properties for which the separation is strict:

I Theorem 29. Fix any α ∈ (0, 1). There exists a constant β ∈ (0, 1) such that, for every
n ∈ N, the following holds. For every integer 0 ≤ k ≤ nβ, there exists a property Pk ⊆ Fn1+α

n

such that, for any constant ε ∈ (0, 1],
1. there exists a (k, Õ(k))-round-adaptive (one-sided) tester for Pk; yet
2. any (k, q)-tail-adaptive (two-sided) tester for Pk must satisfy q = Ω(n).

Proof Sketch. The argument is very similar to that of Theorem 5, and follows the same
overall structure. Namely, we slightly modify the k-iterated function fk of Section 4 (which
was computable by a (k, k + 1)-tail-adaptive algorithm) to rule out tail-adaptive algorithms
but not round-adaptive ones: that is, we define the function f ′k : Fnn → Fn by

f ′k(x) =
{

1 if xx,gk−1(x) = xx,gk−1(x)+1 mod n

0 otherwise.

(Perhaps more clearly, f ′k is computed by iterating the pointer function k times, and then
checking if the value xi at the final coordinate i ∈ [n] reached, and the value xi+1 at the
adjacent coordinate i+ 1, are equal.) It is not hard to see that the counterparts of Claim 7
and Lemma 8 still hold for f ′k: first, the function is still easy to compute by (k, k + 2)-round-
adaptive algorithms. However, because the very last round requires 2 queries and not one
(to query xi and xi+1, once the value of i = gk−1(x) has been obtained), tail-round-adaptive
algorithms are no longer able to leverage this, and analogously to Lemma 8 we can conclude
that there is no (k, o(n/(k2 logn)))-round-adaptive (randomized) LDT algorithm which
computes f ′k. It then only remains to lift this DT separation to property testing: we can do
this as before (noting, in the case of lifting the lower bound, that the reduction of Lemma 14
preserves the number of queries per round, and thus the “tailness” of the algorithm). J
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