418 research outputs found

    Experiments towards model-based testing using Plan 9: Labelled transition file systems, stacking file systems, on-the-fly coverage measuring

    Get PDF
    We report on experiments that we did on Plan 9/Inferno to gain more experience with the file-system-as-tool-interface approach. We reimplemented functionality that we earlier worked on in Unix, trying to use Plan 9 file system interfaces. The application domain for those experiments was model-based testing.\ud \ud The idea we wanted to experiment with consists of building small, reusable pieces of functionality which are then composed to achieve the intended functionality. In particular we want to experiment with the idea of 'stacking' file servers (fs) on top of each other, where the upper fs acts as a 'filter' on the data and structure provided by the lower fs.\ud \ud For this experiment we designed a file system interface (ltsfs) that gives fine-grained access to a labelled transition system, and made two implementations of it.\ud We developed a small fs that, when 'stacked' on top of the ltsfs, extends it with additional files, and an application that uses the resulting file system.\ud \ud The hope was that an interface like the one offered by ltsfs could be used as a general interface between (specification language specific) programs that give access to state spaces and (specification language independent) programs that use (walk) those state spaces like simulators, model checkers, or test derivation programs.\ud \ud Initial results (obtained on a less-than-modern machine) suggest that, although the approach by itself is definitely feasible in principle, in practice the fine-grained access offered by ltsfs may involve many file (9p) transactions which may seriously affect performance. In Unix we used a more conservative approach where the access was less fine-grained which likely explains why there we did not suffer from this problem.\ud \ud In addition we report on experiments to use acid to obtain coverage information that is updated on-the-fly while the program is running. This worked quite well. The main observation from those experiments is that the basic block notion of this approach, which has a more 'semantical' nature, differs from the more 'syntactical' nature of the basic block notion in Unix coverage measurement tools\ud like tcov or gcov

    Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation

    Get PDF
    This paper studies testing based on labelled transition systems, presenting two test generation algorithms with their corresponding implementation relations. The first algorithm assumes that implementations communicate with their environment via symmetric, synchronous interactions. It is based on the theory of testing equivalence and preorder, as is most of the testing theory for labelled transition systems, and it is found in the literature in some slightly different variations. The second algorithm is based on the assumption that implementations communicate with their environment via inputs and outputs. Such implementations are formalized by restricting the class of labelled transition systems to those systems that can always accept input actions. For these implementations a testing theory is developed, analogous to the theory of testing equivalence and preorder. It consists of implementation relations formalizing the notion of conformance of these implementations with respect to labelled transition system specifications, test cases and test suites, test execution, the notion of passing a test suite, and the test generation algorithm, which is proved to produce sound test suites for one of the implementation relations

    Addressing performance requirements in the FDT-based design of distributed systems

    Get PDF
    The development of distributed systems is generally regarded as a complex and costly task, and for this reason formal description techniques such as LOTOS and ESTELLE (both standardized by the ISO) are increasingly used in this process. Our experience is that LOTOS can be exploited at many stages on the design trajectory, from requirements specification to implementation, but that the language elements do not allow direct formalization of performance requirements. To avoid duplication of effort by using two formalisms with distinct approaches, we propose a design method that incorporates performance constraints in an heuristic but effective manner

    Analysis and representation of test cases generated from LOTOS

    Get PDF
    Cataloged from PDF version of article.This paper presents a method to generate, analyse and represent test cases from protocol specification. The language of temporal ordering specification (LOTOS) is mapped into an extended finite state machine (EFSM). Test cases are generated from EFSM. The generated test cases are modelled as a dependence graph. Predicate slices are used to identify infeasible test cases that must be eliminated. Redundant assignments and predicates in all the feasible test cases are removed by reducing the test case dependence graph. The reduced test case dependence graph is adapted for a local single-layer (LS) architecture. The reduced test cases for the LS architecture are enhanced to represent the tester's behaviour. The dynamic behaviour of the test cases is represented in the form of control graphs by inverting the events, assigning verdicts to the events in the enhanced dependence graph. Ā© 1995

    Formally-Based Testing of Radiotherapy Accelerators

    Get PDF
    The paper presents the aims and research plan of the CONFORMED project (Conformance Of Radiological/Medical Devices). This three-year project will develop tools and techniques for modelling and testing radiotherapy equipment. Formal specifications in LOTOS (Language Of Temporal Ordering Specification) will be used to model accelerators formally and to derive tests rigorously based on these specifications

    Derivation of Test Cases for LAP-B from a LOTOS Specification

    Get PDF
    this paper, we show how this method has been applied to obtain test cases for LAP-B that are comparable, and in fact occasionally better, than those obtained by [KLPU][Kan]. Since TTCN is a common language for the spec- ification of test trees, the test cases obtained are written in TTCN (we should observe, however, that LOTOS itself appears to be adequate for the specification of test trees [Steen]). This technique appears to be valuable for conformance testing, at least until such time as the more formal approaches being developed by other authors become available (see Section 7). It makes it possible to extract test cases directly from (possibly standardized) formal descriptions, eliminating or reducing the importance of the interpretation of the informally specified standard. The formal specification is more complete and precise than the state tables and, unlike the latter, allows full formal treatment of the data part. For example, we shall show that automatic or semiautomatic generation of frame values appear to be possible by using the information contained in selection predicates

    Testing Transition Systems: An Annotated Bibliography

    Get PDF
    • ā€¦
    corecore