
Analysis and representation of test
cases generated from LOTOS
P Tripathy*+ and B Sarikaya$

This paper presents a method to generate, analyse and
represent test cases from protocol specification. The language
of temporal ordering specification (LOTOS) is mapped into an
extended finite state machine (EFSM). Test cases are
generated from EFSM. The generated test cases are modelled
as a dependence graph. Predicate slices are used to identify
infeasible test cases that must be eliminated. Redundant
assignments and predicates in all the feasible test cases are
removed by reducing the test case dependence graph. The
reduced test case dependence graph is adapted for a local
single-layer (LS) architecture. The reduced test cases for the
LS architecture are enhanced to represent the tester’s
behaviour. The dynamic behaviour of the test cases is
represented in the form of control graphs by inverting the
events, assigning verdicts to the events in the enhanced
dependence graph.

Keywords: abstract data types, conformance testing, dependence
graph, LOTOS, program slice

Increasing use of the formal description techniques
LOTOS’, Estelle* and SDL3 for the specification of
complex distributed systems has created considerable
interest in the derivation of test cases from the
specification for the purpose of testing implementations
for conformance to their specifications. In the last
decade, a large number of algorithms have been
proposed to design test suites from formal specitica-
tions. The emphasis in most of these algorithms is
placed on the fault detection capability and optimiza-
tion of the generated test suites. However, the test
architectures have not been taken into consideration in
the design of test suites. Moreover, the generated test
cases have never been analysed. In this paper, the
emphasis is placed on the development of new algo-
rithms, which are general in nature to generate, analyse

*Bell-Northern Research, PO Box 351 I. Station C, Ottawa, Ontario,
Canada K I Y 4H7
+Formerly with: Acceptance Testing Group, Eicon Research Inc.,
2196-32nd Avenue (Lachine), Montreal, Quebec, Canada HST 3H7
$Department of Computer and Information Sciences, Bilkent Uni-
versity, Bilkent, Ankara, 06533, Turkey
Paper received: 12 October 1993; revisedpaper received: 23 March 1994

and represent the test cases through a more efficient
formulation of the formal model.

Earlier Milner’s Chart, a particular kind of EFSM,
has been used to generate test cases from the LOTOS
specilication4. In this paper, we model the generated test
case by a dependence graph, which is similar to program
dependence graphs5. The test case dependence graph is
then evaluated by taking a predicate slice from it.
Slicing is the abstraction of a set of statements that
influence the value of a variable at a particular location.
The notion of slice, originally introduced by Mark
WeiseP, is useful in program debugging, automatic
parallelization and program integration. In this paper,
we use the concept of slicing with respect to a predicate
to detect infeasible test cases. A test case is infeasible
when it contains a path from the specification that is
unexecutable, in the sense that the predicate in that path
can never be satisfied whatever constraints are imposed
on the input event. Hence, some additional effort is
needed to avoid having some test cases corresponding to
infeasible paths. Identification of an infeasible (feasible)
test case is a difficult task, posing many complex
problems. In fact, the general problem is undecidable.
Therefore, to circumvent this problem it is necessary to
consider heuristics with minimum human interaction.
Hence, in this paper we assume that infeasible test cases
can be eliminated by evaluating predicate slices. The
predicate slice of a test case with respect to a predicate
consists of all statements of a test case whose execution
might affect the value of that predicate. The feasible test
cases modelled as a test case dependence graph can be
reduced by eliminating extraneous statements that
cannot affect the parameters of the event, or the
control flow of the test case.

The reduced test case dependence graph represents
the behaviour of a particular fragment of the protocol
specification. This behaviour has to be transformed into
test suites, which comprise the tester’s behaviour. The
tester’s behaviour is the dual of the protocol entity,
therefore the tester’s behaviour can be obtained by
behaviour inversion of the reduced test case depen-
dence graph. Also, the predicates in the reduced test

0140-3664/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved

computer communications volume 18 number 7 july 1995 493

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52921752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Test cases generated from LOTOS: F? Tripathy and B Sarikaya

case dependence graph can be eliminated in the
inversion process, because its presence is insignificant.
However, predicates are useful in generating input test
data.

The rest of the paper is structured as follows. In the
next section, the concept of EFSM is introduced.
Generation and analysis of the test cases are then
discussed, and the representation of test cases given.
Other work related to ours is summarized and, finally,
conclusions drawn.

PRELIMINARIES

This section introduces EFSM. An EFSM is similar to a
finite state machine (FSM), with the extensions that a
set of variables is added to the FSM, an enabling
condition is associated with each transition in the
machine, and a set of assignment functions are
executed while firing a transition.

EFSM model

We define an extended finite state machine as:
M = <S, Vv,sO, S,, R,E>, where S is a set of states, V,

is a set of data declarations (variables), s, is the set’s
initial state, $ is a set of final states, R is the set of
transitions (or rules), and E is a set of initial value
assignments to some variables V,.

A transition in M is a seven-tuple:
r = <a,s,s’,n,p, c,f>, where a is an action (the event
clause of r), s is the ‘from’ state of r, s’ is the ‘to’ state of
r, n is the transition number of r, p is the guard clause of
r, c is the condition clause of r, and f is a set of
assignment functions of the transition.

A transition n occurs when the EFSM is in control
state s and the predicate p is true for the current
assignment of the variables; then it may participate in
an event that matches the action a if the condition c is
satisfied. This leads to the new control state s’. The
boolean condition c is introduced to capture the
selection predicate features of LOTOS specification,
whereas the condition p is to capture the guard feature
of LOTOS.

In this paper, we classify the events (actions) that
allow us to distinguish input (receive) and output (send)
events. Question marks denote inputs, while exclama-
tion marks denote outputs. Note that a LOTOS
specification may not necessarily make this distinction,
but it helps to read the specification.

LOTOS specification and its EFSM model
A LOTOS specification contains two major sections:
type dejinition and behaviour expression. The data types
are declared using Abstract Data Types7, and behaviour
expression is described using the algebraic theory of
processes, based on Milner’s Calculus of Communi-
cating Systems (CCS)8. Behaviour description is essen-
tially a hierarchy of nested processes that interact using
gates.

494 computer communications volume 18 number 7 july

We first state some assumptions on a LOTOS
specification. The methodology to derive an EFSM
from a LOTOS specification consists of two steps:
simplification of the specification; and application of a
translation rule to each operator in the specification.

Roughly speaking, for any LOTOS behaviour expres-
sion, we can construct an EFSM. Unfortunately,
derivation of EFSM often diverges’. To avoid diver-
gence, we have to impose some restriction on the
specifications. First, we need to define some termi-
nology. A guard is an external visible event, said to be
an exit guard if it precedes an exit or a free guard if it
precedes a free identifier X. For example, X is a free
identifier in the left operand of the parallel composition
in a; (XI[S]I,uY.(b; Y)), where p is a fixed point operator
used for process declaration. The event a is an exit
guard in a; exit but not in a; 6; exit. Similarly, the event
a is a free guard in a; X but not in a; 6; X. However, the
event b is a free guard in a; 6; X as well as an exit guard
in a; b; exit. A free occurrence of X in B is guarded in B

if it occurs within some subexpression a; B’ of B. For
example, X is guarded in a; X but neither in X nor in
a; X[]X. Operands of the general parallel operator are
said to be synchronous if the free guard and exit guard
synchronize. For example, in X: = a; b; exitl[b]lb; X, the
operands are synchronous, since they synchronize at 6,

which is a free guard in 6; X and an exit guard in
a; b; exit.

We treat LOTOS specifications satisfying the
following requirements:

If pX.B is a subexpression of the process, then X is
guarded in B (p is a fixed point operator used for
process declaration).
Operands of the general parallel operator are either
closed or synchronous.
Operands of the pure interleaving operator are
closed.

To be able to use a few simple rules to translate a
LOTOS specification to an EFSM, and to avoid any
conflict in the use of the same variable names in
different processes, the following simplification steps
are applied to a specification. First, a behaviour
expression containing a full synchronization operator is
transformed into a generalized parallel composition
expression. Second, a sequential composition expres-
sion is simplified to a parallel composition expression,
allowing us to use one rule to translate parallel and
sequential expressions to EFSMs. Third, each process
instantiation is replaced by its corresponding definition
until the recursion point. Finally, variables in the
processes are uniquely renamed.

Conceptually, a simplified LOTOS specification is
rooted at its main behaviour with process names and
behaviour composition operators constituting the
internal nodes, the events in the specification consti-
tuting the arcs, and the exit, stop and recursive
processes constituting the leaf nodes. The translation
algorithm scans the simplified specification tree bottom-
up. Initially, when the algorithm starts with the leaf

nodes, a simple partial EFSM with only one state and
no transition is generated for each leaf node. If the leaf
node is a process name, then the state is tagged with the
process name to resolve the recursion at a future instant
of time. As the algorithm scans the specification tree
bottom-up, the partial EFSMs are updated and merged
by using a translation rule for each composition
operator”. Conceptually, each translation rule derives
all possible sequential behaviour from two operand
behaviours related by the operator. One needs transla-
tion rules only for the operators not eliminated during
the simplification process.

We use an is event (spontaneous) in EFSM to
distinguish the internal event in the specifications from
the internal event due to the hide construct. In other
words, an i, event in EFSM is due to the internal event i
in the LOTOS specifications, whereas an i event in the
EFSM is due to the hide construct of the LOTOS
specifications.

Example specification
A formal specification of the Association Control
Service Elements (ACSE)” protocol in LOTOS is
taken as the main example. The specification consists
of two main parts. The first part describes abstract data
types and structures used by ACSE, i.e. protocol data
units (PDU), abstract service primitives (ASP) and their
parameter types. The behaviour of ACSE is specified
using a mixture of resource and state oriented styles. It
has a total of some 2297 lines of LOTOS code, out of
which 88% is about abstract data types. The behaviour
part of the specification is given in Appendix A. An
EFSM is automatically constructed from this specifica-
tion’*. The resulting EFSM has 113 states and 169
transitions.

GENERATION AND ANALYSIS OF TEST
CASES

This section deals with the generation and analysis of
test cases. First, test cases are generated from the
EFSM, then they are analysed to detect infeasible test
cases. Reductions are carried out in the feasible test
cases to remove redundant assignments and predi-
cates.

Generation of test cases

A test generated from a deterministic finite state
machine consists of a sequence of test events.
However, with a nondeterministic protocol model, a
test case cannot be represented by a pure sequence
of events, because to correctly judge the behaviour
of such a protocol a test case must contain expected
alternative behaviour due to nondeterminism in the
protocol.

The algorithm we proposed earlier4 to generate test
cases from the EFSM takes nondeterminism into

rest cases generated from LOTOS: P Tripathy and 6 Sarikaya

consideration. An outline of that algorithm is as
follows. First, a transition tour of the EFSM is
generated. The tour is divided into sequences that start
from the initial state and end either in the initial state or
one of the final states. The sequence is called a partial
test case. The partial test case may contain spontaneous
transition (is transitions). Next, check if there exists a
spontaneous transition which is not present in the
partial test case, but is an alternative to any one of the
transitions in the partial test case. Then update the
partial test case by adding a sequence of transitions such
that the sequence starts with a spontaneous transition
and ends either in a final state or in a state belonging to
the partial test case. The procedure is repeated until no
spontaneous transitions exist as alternatives to the
updated partial test case. The partial test case is then a
complete test case.

The application of the above algorithm to the ACSE
EFSM yields 44 test cases. One complete test case, t2s, is
shown in Listing 1. In the following test case, each tuple
< . . . > represents a transition that is defined above.

<A?x29, 256, 121, 1, true, [IsAASCreq(x29), E>,
< P!ACSE_apdu(ACSE_apdu_genere_O(AARQ_apdu(BIT(1),
app_context_name(get_AASCreq(x29)), called_ap_title(get_

AASCreq(x29)),
called_ae_qualifier(get_AASCreq(x29)),
called_ap invocation id(get_AASCreq(x29)),
called_aejnvocationjd(get_AASCreq(x29)),
calling_ap_title(get_AASCreq(x29)),
calling_ae_qualifier(get AASCreq(x29)),
calling_ap_invocation_id(get_AASCreq(x29)),
calling_ae_invocation_id(get_AASCreq(x29),
type_genereOlO(Not_Present), user_info(get_AASCreq

(x29))))):ACSE_apdu, 121, 120, 4, true, true, E >,
< P?xl4:ACSE_apdu, 120, 109, 9, true, [IsAARE(xl4)], E >,
< i, 109, 103, 14, [eq(result(get_AARE(xl4)),accepted)],

true, E >,
< A!primitive(AASCcnf(application_context_name(get_

AARE(xl4)),
responding_AP_title(get_AARE(xl4)), responding_AE_

qualifier(get_AARE(x14),
responding_AP invocation_id(gej_AARE(xl4)),
responding_AEIinvocation_id(get_AARE(xl4)), user_

information(get_AARE(xl4)),
result(get_AARE(xl4)), acse_service-user,
optional(result_source_diagnostic(get_AARE(xl4))),
emptygresentationgarms-set)): primitive, 103, 102, 22, true,

true, c 12 + calling > ,
< A?xl2 primitive, 102, 90, 30, true, [IsARLSreq(xl2)], E > ,
< P!ACSE apdu(ACSE apdu_genere_2(RLRQ_apdu

(reason(get_ARLSreq(x 12)),
user_info(get_ARLSreq(x 12))))):ACSE_apdu), 90, 89, 40,

true, true, clO+cl2>,
< P?xlO:ACSE_apdu, 89, 77, 53, true, [IsRLRQ(xlO)], E > ,
< A!primitive(ARLSind(ARLSind(reason(get_RLRQ(xlO)),
user-information (get_RLRQ(xlO)))) :primitive, 77, 76, 66,

true, true, E > ,
< i, 76, 74, 84, [eq(clO,calling)], true E >,
< A?x7:primitive, 74, 67, 101, true, [IsAABRreq(xS)], E >,
< P!ABRT apdu(acse_service_user,type%enere023(Not_

Present))yABRT_apdu, 67, 256, 116, true, true, E >

Listing 1 tzx test case

computer communications volume 18 number 7 july 1995 495

Test cases generated from LOTOS: P Tripathy and B Sarikaya

The test case listed consists of 12 transitions. There
are no spontaneous transitions (is transitions). The
assignment function of the transition is denoted by
y c E, which means that the value of expression E is
assigned to the variable y. The empty assignment clause
is denoted by E, whereas empty guard and condition
clauses are denoted by a ‘true’ value.

Test case dependence graph

In this section, we define the test case dependence
graph (TCDG) in terms of the control flow graph of a
test case. The control flow graph CC = (V, E, en) of a
test case is a directed graph having a unique entry
node en. V is a set of nodes corresponding to
assignments (s-node), actions (a-node) and predicates
(p-node). Graphically, a-, p- and s-nodes are repre-
sented by a circle, triangle and a rectangle, respec-
tively. E is a set of control edges which represents a
possible transfer of control from one node to another.
The control edge from node vi to node vj is denoted

by vi + cvj.
The TCDG of a test case is the control graph of the

test case with the addition of data dependence edges. A
data dependence edge from node vi to node vi implies
that the computation performed at node vi directly
depends upon the value computed at node vi. More
precisely, it means that the computation performed at
node vi uses a variable, var, that is defined at node vi,
and there is an execution path from vj to vi along with
the variable; var is not (re-)defined. The data depen-
dence edge from node vi to node vj is denoted by
vi j dvj.

Formally, a test case dependence graph for a test case
t is a digraph G, = (V,, E,, en) with V, = V, u If, u VP,
E, = Ed U E,., and a unique entry node en E V,, where
V, = {vlv is an a-node }; vV = { vlv is an s-node }; V,, =
{vlv is a p-node }; Ed = {(u, v)lu +dv}; EC = {(u, v)l
u ---f g>.

We provide an algorithm to construct a control flow
graph CC = (V, E, en) of a generated test case t. Before
that we need some definitions. We assume that the
assignment clausefof any transition r is in the form of a
tuple f = < fi , A. . . , fn >, where each h is of the form
Y+-WI,X~,... ,x,J, where E is a value expression
containing variables xl, x2,. . . , x,. For any transition
r E t, we define the following functions:

1. From[r] returns the from clause of r.
2. Action[r] returns the action clause of r.
3. To[r] returns the to clause of r.
4. Transition[r] returns the transition number of r.
5. Guard[r] returns the guard clause of r.
6. Condition[r] returns the condition clause of r.
7. Assignment[r] returns the assignment clause of r.
8. J;(assignment[r]) returns the ith item of the assign-

ment clausef= <s,f2, . . . ,fn>.
9. Initial[t] returns the initial state of the test case t,

which is nothing but the initial state of the EFSM M.

Algorithm: Test case control graph construction.
Input: Test case t in the form of EFSM transitions R,.
Output: Test case control graph CC = (V, E, en).
We can assume that appropriate data structures are
available to create different types of nodes and arcs.
Also available in the structure is a place for a label for
each node. We use two functions, last-node and
first-node, for each transition to keep track of the last
and first nodes of the transition:

Sl. For all r E R, do mark ‘new’;

S2* Let &niria/[r] := {rjr E R,, from[r] = initial[t]}.
S3. For all r E Rini,ia,I,j in R, do mark ‘old’.
S4. Construct the initial node en of the test case

control graph.
S5. DRAW_CONTROL(Rini,i,,[,], R,, en).

Procedure DRAW_CONTROL(R, R,, ev);

Sl. For each r E R do
(i) Set last_node[transition[r]] := ev and first_

node[transition[r]] := 0;
(ii) If guard[r] < > ‘true’ then do

(a) Create a p-node ‘u’ with label guard[r];
(b) Construct a control edge from last-node

[transition[r]] to the p-node ‘u’;
(c) Set last_node[transition[r]] := u and first_

node[transition[r]] := u.
(iii) If action[r] < > i then do

(a) Create an a-node ‘u’ with label action[r];
(b) Construct a control edge from last-node

[transition[r]] to the a-node ‘u’;
(c) Set last_node[transition[r]] := u;
(d) If first_node[transition[r] = 0 then first_

node[transition[r]] := u.
(iv) If condition[r] < > ‘true’ then do

(a) Create a p-node ‘u’ with label action[r];
(b) Construct a control edge from last-node

[transition[r]] to the p-node ‘u’;
(c) Set last_node[transition[r]] := u;
(d) If first_node[transition[r]] = 0 then first_

node[transition[r]] := u.
(v) If assignment[r] < > E then for each assign-

ment statement J E < fi ,f2, . . . ,fn >, where
ldidndo
(a) Create an s-node ‘U’ with label

,f;-(assignment[r]);
(b) Construct a control edge from last-node

[transition[r]] to the s-node ‘u’;
(c) Set last_node[transition[r]] := u;
(d) If first_node[transition[r]] = 0 then first_

node[transition[r]] := u.
S2. For each r E R do

(i) Let T,,M := (~1s t R, and from[s] = to[r]}.
(ii) If every s E T,+I in R, is marked ‘old’ then for

each s E T,,[,l construct a control edge from
last_node[transition[r]] to first-node
[transition[.s]] else mark each t E T,+] in R, as

‘old’ and call DRAW-CONTROL (T,,,,,, R,,
last_node[transition[r]]).

496 computer communications volume 18 number 7 july 1995

rest cases generated from LOTOS: P Tripathy and B Sarikaya

Each variable occurrence in a graph CG is classified as
being a definition or use13. We use the following
convention to identify definition and use of each
variable in CG:

I. An action ?x: u in an a-node contains definition of
variable x.

2. An action !E(xi, x2,. . . ,x,) in an a-node contains
uses of xl,. . ,x2, where E is a value expression
containing variables xl, x2,. . . ,x,.

3. An assignment statement y t E(xl, x2,. . . ,x,) in an
s-node contains uses of xi,. . ,x2 followed by a
definition of y, where E is a value expression
containing variables XI, x2,. . . ,x,.

4. A predicate p(xi, x2,. . . ,x,) in a p-node contains
uses of xi, x2, . , x,.

Based on the above classification, we can create a set of
data dependence edges in the test case control flow
graph CG.

Algorithm: Test case dependence graph construction.
Input: Test case control graph CG = (V, E, en).

Output: Test case dependence graph G, = (V, E U Ed, en).

For

Sl.
s2.

each v E V, do

Evaluate X,, := {xix is a definition in v}.
For each x E X,, do the following. If there exists a
node u E V, where x is used and u can be reachable
from v through the control edges along which x is
not (re-)defined, then create a data dependence
edge from node u to node Y.

The event i in EFSh4 is due to the hide construct of
the LOTOS specifications. There will be no alternative
to this event in the test case dependence graph. It is not
the real internal event of the LOTOS specifications,
therefore the event i may be suppressed in the depen-
dence graph. However, a spontaneous transition (G
transition) is represented by an a-node, which plays an
important role in the representation of a test case. As an
example, consider the test case t28. Figure 1 shows its
test case dependence graph. For convenience, the nodes
are numbered as follows. First the transition number is
placed, followed by a period and the tuple number. For
a-nodes the tuple number is 1, for p-nodes 5 or 6
(depending on whether it is in the guard or condition
clause of the transition). Similarly, for s-nodes the tuple
number is 7.

Predicate slices
The predicate slice of a test case with respect to a
predicate, pred at a p-node, consists of all nodes whose
execution could possibly affect the boolean value of
pred at the p-node. The predicate slice of a p-node can
be constructed easily by traversing the data dependence
edges of the test case dependence graph beginning at p-
node. The nodes visited during traversal constitute the
desired slice. We will provide an algorithm to get all the
predicate slices from the test case dependence graph.
Before that we need some definitions.

Given a node v E V,, we define the set Df[v], D,[v],

Figure I Test case dependency graph for t18

Cf[Vl, G[vL v 1 v and N,[v] as follows. Q[v] = {(u, v)l

I”, v’, E 2,‘; @[VI = (6~ w)l(v, 4 E &I; G[vl = {<u, v>l
c ; C,[vl = ((~2 w)l(v, 4 E Ec};

(:: ‘:, E E,.}; Nf[v] = {wl(v, w) E E,}.
Nt[vl = (4

For a p-node p of a test case dependence graph G,,
the predicate slice of G, with respect to p, denoted by
G ,,,,, is a graph containing all nodes on which p has a
data dependence (i.e. all nodes that can reach from p
via a data dependence edge): V(G,lp) = { wjw E V, and
p Ad IV}. We extend the definition to the set of all p-
nodes If,, = Uipi as follows. V(G,/V,) = V(G,/Uip;) =

U; V(G,/pJ. The edges in the graph G,/ If,, are essentially
those in the subgraph G, induced by V(G,/V,), with the
restriction that only data dependence edges are
included. We define E(G,/ V,,) = {(v, w)j(v 3d w) E Ed

and v, IV E V(G,/ V,)}.

Algorithm: Predicate slices.
Input: Test case dependence graph G, = (V,, Et).

Output: Two sets V’ = V(G,/v,,) and E’ = E(G,/v,),

which represent predicate slices for each p-node V~ E V,.

The recursive procedure slice(v) adds edge (v, w) to E’ if
node w is first reached during the search by a data
dependence edge from v. For each p-node, all the nodes
are marked ‘new’ and procedure SLICE is invoked.

1. Let V,, be the set p-nodes in V,;

2. v’ := VP;
3. E’:=qb;

4. for each vI, in VP do
begin

5. for all v in V, do mark v ‘new’;
6. SLICE(v,,);

end.

procedure SLICE(v);

1. add (v} to V;
2. mark v ‘old’;
3. for each edge (v, w) on Df [v] do

begin
4. if u’ is marked ‘new’ then

begin
5. add (v, w) to E’;
6. SLICE(w);

end;
end.

The time complexity of the algorithm given above in the
worst case is O(lV,,l(lV,l + IE,I)). Lines 1 and 5 of

computer communications volume 18 number 7 july 1995 497

Test cases generated from LOTOS: P Tripathy and 6 Sarikaya

”
,..a pi-J . . .

.,...’ A 84.5

Figure 2 Predicate slices of the test case dependency graph t2s

Predicate Slices take time O(l V,). Lines 5-6 are called
exactly 1 VP1 times. The time spent in SLICE is exclusive
of recursive calls to itself, proportional to]D,[v]l. Since
C,,E ,,,]Df[v]I = O(]E,]), the total cost of executing lines
3-5 of SLICE is O(]&]). The procedure SLICE is called
exactly once for each vertex v E I’,, since v is marked
‘old’ the first time SLICE is called. Thus, the total time
spent in Predicate Slices is O(] V,,](l I’,] + I.&])).

Figure 2 shows the graph that results from taking
predicate slices of the test case dependence graph from
Figure 1.

Classification of Predicate Slices
We classify the predicate slices into three classes, and
discuss their role in protocol testing:

(a> Determinable Predicate Slices. In communication
protocols, there are two kinds of determinable
predicates:

l The static predicates.
l The dynamic predicates.

(b)

cc>

The static predicates are those which concern
variables whose values do not change. These types
of predicates are generated in the EFSM due to the
value matching type of interaction in resolving
parallel composition. The dynamic predicates are
those whose values are changed by an assignment
clause of the rule following a specific event. A
predicate slice is said to be a determinable
predicate slice if it contains either a static or
dynamic predicate. For example, the p-node 84.5
of Figure 2 is a determinable predicate, hence the
predicate slice is a determinable predicate slice.
Undeterminable Predicate Slices. The undetermin-
able predicates are those that concern variables
whose values are generated nondeterministically.
This happens in the case of value generation, e.g.
generalized choice constructs and hiding of input
events. These predicates can be neither completely
controlled by the IUT nor by the tester. A
predicate slice is said to be an undeterminable
predicate slice if it contains an undeterminable
predicate.
Settable Predicate Slice. The settable predicates are
those that depend upon the parameter value of the
input primitive. A predicate slice is said to be a
settable predicate slice if it contains a settable
predicate. These predicates can be set to true by

498 computer communications volume 18 number 7 july

choosing the proper values for the parameters of
the input primitives. For example, the p-nodes 1.6,
9.6, 14.5, 30.6, 53.6 and 101.6 of Figure 2 are
settable predicates, hence the predicate slices are
settable predicate slices.

Infeasible paths in test cases
Predicate plays an important role in the evaluation of
test cases generated from the protocol specification.
Some of the test cases generated may not be feasible, in
other words, the predicates can never be satisfied on a
path due to the existence of an assignment on that path
that will cause the predicate to be set to false. Infeasible
paths in a test case can be detected by evaluating the
determinable predicate slices.

To correct infeasibilities we have to exchange the
transition containing the unsatisfiable predicate with a
new transition, which means that the path following the
old transition must be eliminated and a new path has to
be selected following the new transition. The result of
this is two-fold: the new path is the same as one of the
test cases already generated, where no new test case is
added; otherwise, the new path becomes one of the test
cases. In both cases, the infeasible test cases are
eliminated.

In the determinable predicate slice of Figure 2, the
determinable predicate node 84.5 is dependent on the
assignment node 40.7, which is in turn dependent on the
assignment node 22.7, and evaluates to true. The reason
is that at s-node 22.7, cl2 is assigned to ‘calling’, and
then at s-node 40.7 it is assigned to ~10, i.e. now cl0 has
the value of ‘calling’. The predicate at p-node 84.5 is
evaluated to be true because cl0 is assigned the value
‘calling’. Out of 44 test cases generated from the ACSE
protocol, seven of them were found to be infeasible.

Reduction of test cases

Once the test case is modelled by a dependence graph, it
can be reduced by eliminating extraneous statements
that cannot affect the parameters of the event or the
control flow of the test case. The s-nodes in the TCDG
with no incoming data dependence edges can be
eliminated, since these nodes neither affect the para-
meters of the events nor the control flow of the test case.
Since infeasibilities are already removed before this step,
we can reduce further the TCDG by eliminating all p-
nodes from which a-nodes are not reachable through
the data dependence edges. For example, in the
determinable predicate slice of Figure 2b, no a-nodes
can be reachable starting from the p-nodes 84.5.
Clearly, these p-nodes have no influence on the input/
output domain of the test case. In other words, we keep
all the settable predicates in the test case dependence
graph that depend upon the parameter values of the
input primitives. Intuitively, redundant assignments and
predicates are those that may be executed, but its
elimination would not change the function of the test
case computed over its domain. The resulting test case

1995

Test cases generated from LOTOS: P Tripathy and B Sarikaya

dependence graph obtained after elimination of

redundant assignments and predicates is called the

reduced test case dependence graph (RTCDG).

Algorithm: Reduced test case dependence graph.
Input: Test case dependence graph G = (V, E).

Output: Reduced test case dependence graph

G’ = (V’, E’).

The recursive procedure SEARCH eliminates an s-node
that has no data dependence edge incident on it. The main

algorithm eliminates all the p-nodes from which a-nodes

are not reachable through the data dependence edges.

1.
2.

3.
4.

5.
6.

1.

8.

v’ := v;
E’:=E:

Let ZP:={v E VpIvf++dw, where w E V,};

for each v E Z,, do

begin
V’:= V’ - v;

Let En,,,. := ((u, w)lw t Nf[v] and u E N,[v]);

E’ I= {E’ - j&[v]‘U C&j U c,[V]}

end;
SEARCH(V’, E’).

procedure SEARCH(V’, E’);

1. Let VD = {vlD,[v] = 4 and v E V’, c

2. IfVDo +then

3.
4.

begin

Let 1’ be any element in VII;
V’ := V’ - v;

5.

6.
7.

Let E,,,,,. := {(u, w)Iw E N,.[v] and u E N,[v]};

E’:= {E’ - {D,[v] u C,[v] u C,[v]}} u En,,,.;
SEARCH(V’, E’)

end;

The time complexity of the algorithm given above in

the worst case is O(l V II V,?I). The cost of executing line 3

of RTCDG can be 0(1 V 11 P’, I). The loop on the line 5-7
of RTCDG is executed 1 V,,I times. The total cost of

executing SEARCH, exclusive of recursive calls to itself,

is O(l VI). The procedure SEARCH is invoked I V,I

times, each time one vertex v E V, is deleted. Thus, the

total time spent in SEARCH is O(lV lIV,yl). Hence, the

time complexity of the RTCDG algorithm is 0(I V 1 I V, I).

The reduced test case dependence graph of test case

fz8 is shown in Figure 3.

TEST SUITE REPRESENTATION

According to the LS test architecture of the ISO, any

implementation under test (IUT) can be tested by a
lower tester (LT) and upper tester (UT) located at the

bottom and top interfaces, respectively (see Figure 4)14.

Test cases generated from the specification define the
behaviour of the IUT. The behaviour of the LT and UT
considered together comprises the tester’s behaviour.
The tester’s behaviour is the dual of the IUT’s
behaviour, therefore the tester’s behaviour can be
obtained by behaviour inversion. Behaviour inversion
is based on viewing each test case as an extended finite

Figure 3 Reduced test case dependency graph tzx

Upper Tester

t

IUT

Lower Tester
I-

Figure 4 LS test architecture

state machine. Complete behaviour generation of the

test case EFSMs is a complex process consisting of
several steps. We have already discussed the steps of

specification transformation, test case generation and

test case reduction. In this section, we represent
dynamic behaviour of the test case.

Control flow behaviour representation

Events and assignments in a test case comprise the
dynamic behaviour of the test case. The settable

predicates are useful in generating input test data, but
its presence in the dynamic behaviour of the test case

will be redundant, hence, it can be eliminated.

The flow of control is sequential except when there is

spontaneous transition. Graphical representation of the
control flow can be directly obtained from RTCDG by
simply dropping the settable predicate p-nodes and the
associated s-nodes with no incoming data dependence

edge. The settable predicates are useful in generating
input test data, but its presence in the dynamic
behaviour of the test case will be redundant, hence it

can be eliminated. Except for i,y a-nodes, all other nodes
are inverted, which means that events are inverted. In

other words, input events are converted to output

events, and vice versa.

Algorithm: Control flow behaviour representation
(CFBR).
Input: Reduced test case dependence graph

RTDCG = (V, E).
Output: Control flow behaviour representation
CFBR = (V’, E’).

computer communications volume 18 number 7 july 1995 499

Test cases generated from LOTOS: P Tripathy and 6 Sarikaya

@+J-@- 30.1*

3

Figure 5 Control flow behaviour representation of the RTCDG of

128

The main algorithm eliminates all the p-nodes. The
actions are inverted. The procedure SEARCH is the
same as defined in the reduced test case dependence
graph algorithm.

1.
2.
3.

4.
5.
6.

7.
8.

9.

10.
11.

v’:= v;
El:=&

foreachvE V,,c Vdo

begin
v’ = v’ - v;

Let E,,,,, := {(u, $1~ E Nf[vl and u E N,[vl};
E’ := {E’ - {Q[v] U Cf[v] U C,[v]}} U E,,,,.;

end;
SEARCH(V’, E’);

for each v E V’, c V’ of the form gdi , . . . , d,, do
begin

for i = 1 to n do
begin

if di is in the form !ti then change it to ?ui : si
else if di is in the form of ?ui : si then change
it to !t;

end;
end.

The graphical control flow behaviour representation of
the test case t2g is given in Figure 5. The ‘*’ in the a-
nodes represents the inversion.

Behaviour enhancements

Here, control flow behaviour representation (CFBR) of
the selected test cases is analysed, and several enhance-
ments are carried out. In the following, we outline an
algorithm to enhance CFBR of the selected valid
behaviour test case:

Algorithm: Behaviour enhancement.
Input: Control flow behaviour representation (CFBR).
Output: Enhanced CFBR.

A new type of receive a-node (?OTHERWISE) is
created as an alternative to all receive a-nodes to
specify a tester’s behaviour against invalid IUT
behaviour. Verdicts are assigned to the receive and
OTHERWISE a-nodes.

Designing test cases (suites) from formal specifications
is an active area in protocol testing. Research in this
area is inspired by the rich results obtained previously in
hardware/software testing. Nevertheless, it is evolving
towards its own set of techniques, tools and disciplines,
possibly due to the distinct characteristics of protocols
and their architectures. In the last decade, a large
number of algorithms have been proposed to design
test suites from formal specification. We will discuss the
existing protocol test case design based on Estelle,
LOTOS and SDL.

Estelle-based test design

Sl. for each receive a-node do Since deterministic FSMs model only the control
add an alternative path which contains an arc and component of the protocol/services, there is a need to
a receive a-node of type OTHERWISE. No other extend the FSM-based techniques to cover the data

500 computer communications volume 18 number 7 july 1995

Figure 6 Enhanced CFBR of the selected test case tzS

s2.

s3.

arcs are added to this path, i.e. OTHERWISE a-
nodes can only be at the final states.
For each OTHERWISE a-node 01 do ver-
dict(0 1) := fail;
For each receive a-node Rl do
If Rl is the last event in the path and the path Ieads
to the initial state then verdict(R1) := pass;
For each & a-node Al do
for each receive a-node R2 following Al do
if R2 is the final node or predecessor of the final
node then verdict(R2) := inconclusive.

Applying the behaviour enhancement algorithm, a
pass verdict is associated with the a-node 116.1*, and
OTHERWISE a-nodes are added to become alterna-
tives to the a-nodes 4.1*, 22.1*, 40.1*, 66.1* and 116.1*.
Step 2 assigns fail verdicts to all these OTHERWISE a-
nodes. The test starts at node l.l* and ends successfully
at a-node 116.1*, or unsuccessfully at any
OTHERWISE a-node. The enhanced CFBR of the test
case t2g is shown in Figure 6.

RELATED RESEARCH IN TEST SUITE
DESIGN

component, i.e. interaction primitive processing and
data transfer mechanisms. Recently, two methods have
been proposed to design test cases from EFSM. The
first method17, I8 is based on data flow analysis
techniques19, and focuses on tracing the flow of data
through the associations between assignments of values
to variables and references of these variables in either
assigning values to other variables or determining the
outcome of conditional branching. The second
method*’ applies the principles of functional testing*‘.
In the functional testing method, two different graphs
are obtained from the normalized specification: a
control graph for major state change, and a data flow
graph to show the flow of data from input service
primitive/protocol data unit parameters to the context
variables, and from the context variables to output
service primitive/protocol data unit parameters. The
control graph is an FSM, from which test cases are
generated. The data flow graph is partitioned into
blocks, where each block corresponds to functions of
the protocol. The test suite design with this metho-
dology is based on obtaining the control sequence for a
test case and enumerating the parameters of the
interaction primitives. Each block is tested with one or
more test cases until all the arcs in the partitioned data
flow graph are covered. The resulting tests are used as
behaviour tests for establishing the dynamic confor-
mance testing.

A semi-automatic test generation method, which
considers the context and predicates of specifications
written in Estelle is described by Favreau and Linn2*. In
this method, tests are generated in two steps. First, a
state machine is created from an abstract machine and
an initial context, where an abstract machine is a kind
of FSM extended with predicates and variables. Second,
the transition-tour technique is applied to the FSM
generated in the first step. Most of the semi-automatic
methods have an advantage in that they include human
intuition to express the test’s purposes, which is an
important aspect of conformance testing23.

Recent results in this area are reported elsewhere2k26.
In Miller and Pau124, weak mutation testing is adopted
in contrast to functional testing, whereas in Wang and
Liu25, a program verification technique called axiomatic
semantics is applied to the conformance testing area. In
Lee and Lee26, the issue of testing data flow is not
addressed. They consider the problem of generating a
control flow graph for a protocol entity specified as a
collection of communicating modules.

The emphasis in most of the algorithms discussed
above is placed on the generation of test cases from the
Estelle specifications. However, the test cases generated
have never been analysed in the design of test suites. In
our approach, emphasis is given to analysis of the test
cases generated. This paper supplements recent investi-
gations on the design of test suites by presenting a
formal, general model for representation of the
generated test cases. The analysis presented in this
paper, by modelling a test case as a test case depen-
dence graph, combines traditional control flow analysis

rest cases generated from LOTOS: P Tripathy and B Sarikaya

and data flow analysis, hence it can be implemented
efficiently.

LOTOS-based test design

There has been much research on test suite generation
from LOTOS specifications. The first related work can
be found in Brinksma and Wezeman28, where the
derivation of the conformance testers T(S) for any
specification S has been investigated. In Brinksma27, a
failure model is used to identify processes that are
testing equivalently, whereas in Wezeman28, a syntac-
tical approach is explored, based on the work reported
in Steenbergen29. The method is named the CO-OP
method after its main components, the set called
COmpulsory and Optional behaviours.

Recent results in this area have been reported3w32. In
Tretmans3*, a conformance relation conf is defined to
establish whether an implementation under test (IUT)
conforms to its specification. The conf relation can be
explained as follows. If Bl and 82 are processes, then
Bl conf B2 if Bl contains no unexpected deadlocks with
respect to traces in 82. However, it does not allow Bl to
possess traces not specified in B2. For example
B1 = (a; exit[]i; 6; exit[]c; exit) conforms to B2 =
(a; exit[]i; b; exit) even though Bl has a trace
(c; exit) that is not included in B2. But it is not the case
that B3 = (a; exit[]i; exit) conf B2. This relation is taken
as a formal basis for extending the CO-OP method to a
restricted form of full LOTOS. Process definition and
recursion of the LOTOS are not considered. Only
choice, the action prefix and a limited action denota-
tion are considered. The method only uses the COmpul-
sory set, unlike in the CO-OP method, where
COmpulsory and Optional sets are used. In Wezeman
et al.3o*3’, the CO-OP method is extended to a restricted
subset of full LOTOS that handles events involving the
exchange of data. The CO-OP method is used in
deriving conformance testers in the IS0 Conformance
Testing Methodology and Framework standard14.

In related work33, where manually an FSM model is
derived using a LOTOS interpreter35, classical methods
are then applied to generate test cases. The authors have
not yet considered the data flow aspect with the
interpretation approach. Recently, a group of
researchers at Neher laboratories34 proposed an inter-
active methodology to generate test cases from LOTOS
specification. A symbolic evaluation is used to derive
test cases. However, the methodology is not algorithmic
in nature. It is similar to the method proposed by
Gueraichi and Logrippo3’.

SDL-based test design

Generation of a test suite from SDL has been studied by
Hogrefe36. In this model, SDL processes are trans-
formed into an intermediate form called the asynchro-
nous communication tree (ACT). The ACT is a tree

computer communications volume 18 number 7 july 1995 501

Test cases generated from LOTOS: P Tripathy and B Sarikaya

where the root is the initial system state, the nodes are
all other system states, and the arcs represent the valid
transition. The tree is constructed by considering in turn
every possible distinct event that may occur at each
node. The arc is labelled with the event, and the node is
identified by the resulting process states and queue
contents. The depth of the tree is restricted by
comparing the current state with the states generated
previously; if an identical state is found, that branch is
terminated. Finally, this ACT is traversed to generate
test cases. Nondeterminism has not been taken into
consideration in the generation of test cases. The test
generation algorithm proposed in this paper, which
deals with nondeterminism, can be used to generate a
test suite from an ACT.

Several test generation tools”6”7 based on the SDL
specification have been developed. The tools assume a
single module and use the Abstract Syntax Notation
One (ASN.1)38 description of data units as the data
input format.

CONCLUSIONS

The objective of this paper is twofold: first, to introduce
an intermediate model, and to use this as an interim step
for the generation of tests from protocol specifications;
and second, to represent the dynamic behaviour of the
test case generated. To achieve the first goal, we have
demonstrated that LOTOS can be transformed into
EFSM, and have shown that the test cases can be
generated easily from the EFSM.

To achieve our second goal, the test cases generated are
modelled as a test case dependence graph and then
evaluated by taking predicate slices from it. The
predicate slices are classified into three classes: determin-
able, undeterminable and settable. These three classes of
predicate slices are analysed to evaluate their role in
protocol testing. Redundant assignments along with
determinable and undeterminable predicates in all the
feasible test cases are removed by reducing the test cases.
Finally, the control flow behaviour is represented by
inverting the direction of the actions, assigning verdicts
to the actions, and eliminating all the settable predicates
from the reduced test case dependence graph. We have
demonstrated the applicability of this method by applying
it to a LOTOS specification of the ACSE protocol. The
methodology is schematically shown in Figure 7.

The nature of research is such that the solution to one
problem often gives rise to many new questions or
problems. In the case of the research presented in this
paper, the following questions surface naturally.
Further investigation could be the generation of input
test data. The settable predicate slices may be useful for
that purpose. The input test data must be generated
from these settable predicates such that the predicates
evaluated are true.

Representation of the test cases in the form of an
abstract test suite for different architectures used in
practice, such as distributed, coordinated and remote

LOTOS Specification

EFSM Construction

Test Case Control
Graph Algorithm

Test Case Dependence
Graph Algorithm

J,

st Case Dependence
Graph

h

Reduced Test Case
Dependence Graph

Algorithm

e

Feasible Test Case
Dependence Graph

1
I

I
, T

Predicate Slice
Algorithm

I
Predicate Slices

Figure 7 Test suite derivation methodology

test architectures, is another line of future research.
Finally, it would be interesting to automate the
methodology discussed here.

REFERENCES

1

2

3

4

Bolognesi, T and Brinksma, E ‘Introduction to the IS0
specification language LOTOS’, Comput. Networks ISDN Sysr.,
Vol 14 (1987) pp 25-59
Budkowski, S and Dembinski, P ‘An introduction to Estelle: a
specification language for distributed systems’, Compur.
Networks ISDN Syst., Vol. 14 (1987) pp 3-23
Belina, F and Hogrefe, D ‘The CCITT-specification and
description language SDL’, Comput. Networks ISDN Sysr., Vol
16 (1989) pp 311-341
Tripathy, P and Sarikaya, B ‘Test case generation from LOTOS
specification’, IEEE Trans. Cornput., Vol40 No 4 (1991) pp 543-
552
Ferrante, J, Ottenstein, K J and Warren, _I D ‘The program
dependence graph and its uses in optimization’, ACM Trans.
Program. Lang. Syst., Vol 9 No 3 (July 1987) pp 319-349
Weiser, M ‘Program slicing’, IEEE Trans. Sofw. Eng., Vol 10
No 4 (1984) pp 352-357
Ehrig, H and Mahr, B Fundamentals of Algebraic Specification,
Springer-Verlag, Berlin (1985)
Milner, R A Calculus of Communicating Systems: Lecrure Notes
in Cornpurer Science, Vol 92, Springer-Verlag, Berlin (I 980)
Karjoth, G ‘Implementing process algebra specifications by state
machines’. IFIP PSTV VIII, Atlantic City, NJ (June 1988)
rripathy, P A Uninified Model for Protocol Test Suite Design, PhD
Thesis, Concordia University (November 1992)

502 computer communications volume 18 number 7 july 1995

Test cases generated from LOTOS: P Tripathy and B Sarikaya

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Protocol
Elements,
1988)
Tripathy,

Specification for the Association Control Service
IS0 DIS8650, ISO, Geneva, Switzerland (January

25

P and Sarikaya, B LOTEST: A LOTOS Test Case 26
Generation Tool, Tech. Rep. (1992)
Frankl, P G and Weyuker, E J ‘An application family of data
flow testing criteria’, IEEE Trans. Softw. Eng., Vol 14 (1988) pp
1483-1489
Information Technology-Open Systems Interconnection - Confor-
mance Testing Methodologv and Framework. ISOIIEC 9646. ISO.
Geneva, SwiGerland (I 99-l)
Sidhu, D P and Leuing, T-K ‘Formal methods for protocol
testing: detailed study’, IEEE Trans. Softw. Eng., Vol 15 No 4
(April 1989) pp 413426
Dahbura, A T, Sabnani, K K and Uyar, M U ‘Formal methods
for generating protocol conformance test sequences’, Proc. IEEE,
Vol78 (1990) pp 1317-1326
Ural, H ‘Test sequence selection based on static data flow
analysis’, Comput. Commun., Vol IO No 5 (October 1987)
Ural, H and Yang, B ‘A test sequence selection method for
protocol testing’, IEEE Trans. Commun., Vol 39 No 4 (1991) pp
514-523
Rapps, S and Weyuker, E J ‘Selecting software test data using
data flow information’ ZEEE Trans. Softw. Eng., Vol 11 (1985)
pp 367-375
Sarikaya, B, von Bochmann, G and Cerny, E ‘A test design
methodology for protocol testing’, IEEE Trans. Softw. Eng., Vol
13 (May 1987)
Howden, W E Functional Program Testing and Analysis,
McGraw Hill, New York (1987)
Favreau, J P and Linn, R J ‘Automatic generation of test
scenario skeletons from protocol specification writen in Estelle’,
ZFZP PSTV VI (1986)
Linn, R J ‘Conformance evaluation methodology and protocol
testing’, IEEE Trans. Selected Areas in Commun., Vol 7 No 7
(September 1989) pp 1141-l 158
Miller, R E and Paul, S ‘Generating conformance test sequences
for combined control and data flow of communication
protocols’, IFIP PSTV XZZ (1992)

27

28

29

30

31

32

33

34

35

36

37

38

Wang, C-J and Liu, M T ‘A test suite generation method for
extended finite state machines using axiomatic semantics
approach’, ZFZP PSTV XZZ (1992)
Lee, D Y and Lee, J Y ‘A well-defined Estelle specification for
automatic test generation’, IEEE Trans. Comput., Vol 40 No 4
(1991) pp 526542
Brinksma, E ‘A theory for the derivation of tests’, ZFZP PSTV
VZZZ, North-Holland, Amsterdam (1988) pp 63-74
Wezeman, C ‘The CO-OP method for compositional derivation
of conformance testers’, ZFZP PSTV IX (1989) pp 145-I 58
Steenbergen, C Conformance Testing of OSZ Systems, MSc
Thesis, University of Twente (1986)
Wezeman, C, Batley, S and Lynch, J ‘Formal methods to
assist conformance testing: a case study’, Proc. 3rd Znt. Con/:
Formal Description Techniques (FORTE ‘90). Madrid, Spain
(1990)
Wezeman. C ‘Deriving tests from LOTOS specifications’, Proc.
3rd Lotosphere Workshop and Seminar, Pisa, Italy (September
1992)
Tretmans, J A Formal Approch to Conformance Testing, PhD
Thesis, University of Twente (December 1992)
Gueraichi, D and Logrippo, L. ‘Derivation of test cases for
LAP-B from LOTOS specification’, Proc. 2nd Int. Conf.
Formal Description Techniques (FORTE’89). Vancouver,
Canada (I 989)
van de Burgt, S P. Kroon, J, Kwast, E and Wilts, H J ‘The RNL
conformance Kit’, Proc. IFIP T6 Second Int. Workshop Protocol
Test Systems, Berlin, Germany (October 1989)
Logrippo, L, Obaid, A, Braind, J P and Fehri, M C ‘An
interpreter for LOTOS. a specification language for distributed
systems’, Softw-Practice Exper.. Vol 18 No 4 (April 1988) pp
365-385
Hogrefe, D ‘Automatic generation of test case from SDL
specification’, SDL Newsletter, No 12 (June 1988)
Katsuyama, K, Sato, F, Nakakawaji, T and Mizuno, T ‘Strategic
testing environment with formal description techniques’, ZEEE
Trans. Comput., Vol40 (April 1991) pp 514523
Profile of Abstract Syntax Notation-one. IS0 8824, ISO, Geneva,
Switzerland (1987)

APPENDIX A

behaviour
ACSE[A,Pl
where

processACSE[A,Pl :noexit :=
unassociated[A,P] [>protocol_error[A,Pl
endproc (*ACSE*)

processunassociated[A,Pl :noexit:=
A? x :primitive [IsAASCreq(x)l;

P !ACSE apdu(ACSE_apdu_genere_O(AARQ_apdu(
Bit(l)>pp_context_name(get_AASCreq(x)),
called_ap_title(get_AASCreq(x)),
called_ae_qualifier(get_AASCreq(x)),
called_ap_invocation_id(get_AASCreq(x)),
called_ae_invocation_id(get_AASCreq(x)),
calling_ap_title(get_AASCreq(x)),
calling_ae_qualifier(get_AASCreq(x)J,
calling_ap_invocation_id(get_AASCreq(x)),
calling_ae_invocation_id(get_AASCreq(x)),
type_genereOlO(Not_Present),user_info(get_AASCreq(x)))));
awaitAARE[A,P]

A]?x : ACSE_apdu [IsAARQ(x) 1;

tNot(commonqrot_version(get_AARQ(x)))I ->
P!ACSE apdu(ACSE_apdu_genere_l(AARE_apdu(
Bit(l),
application_context_name(get_AARQ(x)),
rejectedgermanent,
Associate_source_diagnostic(Associate_source_diagnostic_genere-l

(no_common_acse_version)),
type_genere013(Not_Present),

computer communications volume 18 number 7 july 1995 503

Test cases generated from LOTOS: P Tripathy and B Sarikaya

type_genere014(Not_Present),
type_genereOlS(Not_Present),
type_genere016(Not_Present),
type_genere017(Not_Present),
type_genere018(Not_Present))));
unassociated[A,Pl

[coxk!on_prot version(get_AARQ(x))l ->
A !primitive(%ASCind(

optional(normal),
application_context_name(get_AARQ(x)),
calling_AP_title(get_AARQ(x)),

calling_AE_qualifier(get_AARQ(x)),
calling_AP_invocation_id(get_AARQ(xJ 1,
calling_AE_invocation_id(get_AARQ(x)),
called_AP_title(get_AARQ(x)),
called_AE_qualifier(get_AARQ(x),
called_AP_invocation_id(get_AARQ(x)),
called_AE_invocation_id(get_AARQ(x)),
user_information(get_AARQ(x)),
emptygresentationqarms_set));
awaitAASCrsp[A,Pl

where
processawaitAARE[A,P] :noexit:=
P?x:ACSE_apdu [ISAARE(X))~;

[result(get_AARE(x)) eqacceptedl ->
A !primitive(AASCcnf(
application_context_name(get_AARE(x) 1,
responding_AP_title(get_AARE(x) 1,
responding_AE_qualifier(get_AARE(x) 1,
responding_AP_invocation_id(get_AARE(x)),
responding_AE_invocation_id(get_AARE(x)),
user_information(get_AARE(x),
result(get_AARE(x)),
acse_service_user,
optional(result_source_diagnostic(get_AARE(x))),
emptygresentationgarms_set)J;
associated[A,Pl(calling)

[I
[result(get_AARE(x)) eqrejectedgermanentl->

A !primitive(AASCcnf(
application_context_name(get_AARE(x) 1,
responding_AP_title(get_AARE(x) 1,
responding_AE_qualifier(get_AARE(x)),
responding_AP_invocation_id(get_AARE(x)),
responding_AE_invocation_id(get_AARE(x)J,
user_information(get_AARE(x),
result(get_AARE(x)),
acse_service_user,
optional(result_source_diagnostic(get_AARE(x))),
emptyqresentationgarms_set));
unassociated[A,Pl

)
[> abort[A,Pl

endproc (* awaitAARE *)
processawaitAASCrsp[A,Pl : noexit :=

A?x :primitive [IsAASCrsp(x)l;
(
[result(get_AASCrsp(x)) eqacceptedl ->
P !ACSE apdu(ACSE_apdu_genere_l(AARE_apdu(

Bit(l),
app_context_name(get_AASCrsp(x)),
result(get_AASCrsp(x)J,
Associate_source_diagnostic(Associate_source.
diagnostic_genere_O(no_reason_given)),

responding_ap_title(get_AASCrsp(x)J,
responding_ae_qualifier(get_AASCrsp(x)J,
responding_ap_invocation_id(get_AASCrsp(xJJ,
responding_ae_invocation_id(get_AASCrsp(x) 1,
type_genere017(Not_Present),

504 computer communications volume 18 number 7 july 1995

Test cases generated from LOTOS: P Tripathy and B Sarikaya

user_info(get_AASCrsp(x)~~~~;
associated[A,Pl(called)

[I
[not(result(get_AASCrsp(x)) eqacccepted)] ->
P !ACSE apdu(ACSE_apdu_genere_l(AARE_apdu(

Bit(l),
app_context_name(get_AASCrsp(x)),
result(get_AASCrsp(x)J,
Associate_source_diagnostic(Associate_source.
diagnostic_genere_O(no_reason_given)),

responding_ap_titlefget_APPSCrsp(x)),
responding_ae_qualifier(get_AASCTsp(xff,
responding_ap_invocation_id(get_AASCrsp(x1),
responding_ae_invocation_id(get_AASCrsp(x)),
type_genere017(Not_Present),
user_info(get_AASCrsp(x)))l);

unassociated[A,Pl

[> adort[A,Pl
endproc (* awaitAASCrsp "1

endproc (*unassociated*)
processassociated[A,P](c : calltype) : noexit :=

P?X: ACSE_apdu [IsRLRQ(x)l;
A !primitive(ARLSind(reason(get_RLRQ(x)),

user_information(get_RLRQ(x))));
awaitARLSrsp[A,Pl (c)

II
A?x:primitive [IsARLSreq(x)l;
P !ACSE - apdu(ACSE_apdu_genere_2(RLRQ_apdu(reason(get_ARLSreq(x)),

user_info(get_ARLSreq(x)))));
awaitRLRE[A,Pl (c)

[> abort[A,Pl
where

processawaitRLRE[A,Pl(c : calltype) :noexit :=
P? x : ACSE_apdu [ISRLRE(X)~;

(*onsupposequ'onareculeRLREdansunPCONcnf+*)
A!primitive(ARLScnf(reason(get_RLRE(x)),

user_information(get_RLRE(x) 1,
accepted));

unassociated[A,Pl
[I
P?X: ACSE_apdu [ISRLRQ(X)~;
A!primitive(ARLSind(reason(get_RLRQ(x)),

user_information(get_RLRQ(x) 1) 1;
(
[c eqcalledl ->

collision_associated_responder[A,Pl
[I

[c eqcallingl ->
collision_association_initiator[A,Pl

[> abort[A,Pl
where

process collision_association_initiator[A,Pl : noexit :=
A? x :primitive [IsARLSrsp(x)l;

(
[result(get_ARLSrsp(x)) eqacceptedl ->

P !ACSE apdu(ACSE_apdu_genere_3(RLRE_apdu(reason
(get_ARLSrsp(x)f,user_info(get_ARLSr.sp(x~~~~~

awaitRLRE[A,Pl(caIIing)
1

[> abort[A,Pl
endproc (* collision_association_initiator "1
processcollision_association_responder[A,P) : noexit :=

P? x : ACSE_apdu [IsRLRE(x) 1
(*CnsupposequeleRLREprovientd'unPCONcnf+*)

A!primitive(ARLScnf(reason(get_RLRE(x)),
user_information(get_RLRE(x)),

accepted));
awaitARLSrsp[A,Pl (called)

[>abort[A,Pl
endproc (* coIlision_association_responder "1

computer communications volume 18 number 7 july 1995 505

Test cases generated from LOTOS: P Tripathy and 6 Sarikaya

endproc {* awaitRLRE *)
processawaitARLSrsp[A,Pl (c : Calltype : noexit :=

A?x :primitive [IsARLSrsp(x)l;
(
[result(get_ARLSrsp(x)) eqacceptedl ->

P !ACSE apdu(ACSE_apdu_genere_3(RLRE_apdu(reason
(get_~RLSrsp(x)),user_info(get_ARLSrsp(x)))));

unassociated[A,Pl
[I
[result(get_ARLSrsp(x)) eqrejectedl ->

P !ACSE apdu(ACSE_apdu_genere_3(RLRE_apdu(reason
(get_iRLSrsp(x)),user_info(get_ARLSrsp(x)))));

associated[A,Pl(c)

[>abort[A,P]
endproc {* awaitARLSrsp *)

endproc (*associated*)
process (abort[A,Pl : noexit :=

A?x :primitive IIsAABRreq(x)l;
P !ABRT apdu(acse_serviceqrovider,type_genereO23(Not_Present))
unassoGated[A,Pl

[I
P?X: ACSE_apdu [ISABRT(X)~;
A !AABRind(acse serviceqrovider,type_genereO2O(Not_Present));
unassociated[A>l

endproc (*abort*)
processprotocol_error[A,Pl : noexit :=

A !AABRind(acse serviceqrovider,type_genereO2O(Not_Present));
P !ABRT apdu(acse_servicegrovider,type_genere023(Not_Present));
ACSE[A,Pl

endproc (*protocol_error *)
endspec

506 computer communications volume 18 number 7 july 1995

