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This paper presents a method to generate, analyse and 
represent test cases from protocol specification. The language 
of temporal ordering specification (LOTOS) is mapped into an 
extended finite state machine (EFSM). Test cases are 
generated from EFSM. The generated test cases are modelled 
as a dependence graph. Predicate slices are used to identify 
infeasible test cases that must be eliminated. Redundant 
assignments and predicates in all the feasible test cases are 
removed by reducing the test case dependence graph. The 
reduced test case dependence graph is adapted for a local 
single-layer (LS) architecture. The reduced test cases for the 
LS architecture are enhanced to represent the tester’s 
behaviour. The dynamic behaviour of the test cases is 
represented in the form of control graphs by inverting the 
events, assigning verdicts to the events in the enhanced 
dependence graph. 
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Increasing use of the formal description techniques 
LOTOS’, Estelle* and SDL3 for the specification of 
complex distributed systems has created considerable 
interest in the derivation of test cases from the 
specification for the purpose of testing implementations 
for conformance to their specifications. In the last 
decade, a large number of algorithms have been 
proposed to design test suites from formal specitica- 
tions. The emphasis in most of these algorithms is 
placed on the fault detection capability and optimiza- 
tion of the generated test suites. However, the test 
architectures have not been taken into consideration in 
the design of test suites. Moreover, the generated test 
cases have never been analysed. In this paper, the 
emphasis is placed on the development of new algo- 
rithms, which are general in nature to generate, analyse 
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and represent the test cases through a more efficient 
formulation of the formal model. 

Earlier Milner’s Chart, a particular kind of EFSM, 
has been used to generate test cases from the LOTOS 
specilication4. In this paper, we model the generated test 
case by a dependence graph, which is similar to program 
dependence graphs5. The test case dependence graph is 
then evaluated by taking a predicate slice from it. 
Slicing is the abstraction of a set of statements that 
influence the value of a variable at a particular location. 
The notion of slice, originally introduced by Mark 
WeiseP, is useful in program debugging, automatic 
parallelization and program integration. In this paper, 
we use the concept of slicing with respect to a predicate 
to detect infeasible test cases. A test case is infeasible 
when it contains a path from the specification that is 
unexecutable, in the sense that the predicate in that path 
can never be satisfied whatever constraints are imposed 
on the input event. Hence, some additional effort is 
needed to avoid having some test cases corresponding to 
infeasible paths. Identification of an infeasible (feasible) 
test case is a difficult task, posing many complex 
problems. In fact, the general problem is undecidable. 
Therefore, to circumvent this problem it is necessary to 
consider heuristics with minimum human interaction. 
Hence, in this paper we assume that infeasible test cases 
can be eliminated by evaluating predicate slices. The 
predicate slice of a test case with respect to a predicate 
consists of all statements of a test case whose execution 
might affect the value of that predicate. The feasible test 
cases modelled as a test case dependence graph can be 
reduced by eliminating extraneous statements that 
cannot affect the parameters of the event, or the 
control flow of the test case. 

The reduced test case dependence graph represents 
the behaviour of a particular fragment of the protocol 
specification. This behaviour has to be transformed into 
test suites, which comprise the tester’s behaviour. The 
tester’s behaviour is the dual of the protocol entity, 
therefore the tester’s behaviour can be obtained by 
behaviour inversion of the reduced test case depen- 
dence graph. Also, the predicates in the reduced test 
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case dependence graph can be eliminated in the 
inversion process, because its presence is insignificant. 
However, predicates are useful in generating input test 
data. 

The rest of the paper is structured as follows. In the 
next section, the concept of EFSM is introduced. 
Generation and analysis of the test cases are then 
discussed, and the representation of test cases given. 
Other work related to ours is summarized and, finally, 
conclusions drawn. 

PRELIMINARIES 

This section introduces EFSM. An EFSM is similar to a 
finite state machine (FSM), with the extensions that a 
set of variables is added to the FSM, an enabling 
condition is associated with each transition in the 
machine, and a set of assignment functions are 
executed while firing a transition. 

EFSM model 

We define an extended finite state machine as: 
M = <S, Vv,sO, S,, R,E>, where S is a set of states, V, 

is a set of data declarations (variables), s, is the set’s 
initial state, $ is a set of final states, R is the set of 
transitions (or rules), and E is a set of initial value 
assignments to some variables V,. 

A transition in M is a seven-tuple: 
r = <a,s,s’,n,p, c,f>, where a is an action (the event 
clause of r), s is the ‘from’ state of r, s’ is the ‘to’ state of 
r, n is the transition number of r, p is the guard clause of 
r, c is the condition clause of r, and f is a set of 
assignment functions of the transition. 

A transition n occurs when the EFSM is in control 
state s and the predicate p is true for the current 
assignment of the variables; then it may participate in 
an event that matches the action a if the condition c is 
satisfied. This leads to the new control state s’. The 
boolean condition c is introduced to capture the 
selection predicate features of LOTOS specification, 
whereas the condition p is to capture the guard feature 
of LOTOS. 

In this paper, we classify the events (actions) that 
allow us to distinguish input (receive) and output (send) 
events. Question marks denote inputs, while exclama- 
tion marks denote outputs. Note that a LOTOS 
specification may not necessarily make this distinction, 
but it helps to read the specification. 

LOTOS specification and its EFSM model 
A LOTOS specification contains two major sections: 
type dejinition and behaviour expression. The data types 
are declared using Abstract Data Types7, and behaviour 
expression is described using the algebraic theory of 
processes, based on Milner’s Calculus of Communi- 
cating Systems (CCS)8. Behaviour description is essen- 
tially a hierarchy of nested processes that interact using 
gates. 
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We first state some assumptions on a LOTOS 
specification. The methodology to derive an EFSM 
from a LOTOS specification consists of two steps: 
simplification of the specification; and application of a 
translation rule to each operator in the specification. 

Roughly speaking, for any LOTOS behaviour expres- 
sion, we can construct an EFSM. Unfortunately, 
derivation of EFSM often diverges’. To avoid diver- 
gence, we have to impose some restriction on the 
specifications. First, we need to define some termi- 
nology. A guard is an external visible event, said to be 
an exit guard if it precedes an exit or a free guard if it 
precedes a free identifier X. For example, X is a free 
identifier in the left operand of the parallel composition 
in a; (XI[S]I,uY.(b; Y)), where p is a fixed point operator 
used for process declaration. The event a is an exit 
guard in a; exit but not in a; 6; exit. Similarly, the event 
a is a free guard in a; X but not in a; 6; X. However, the 
event b is a free guard in a; 6; X as well as an exit guard 
in a; b; exit. A free occurrence of X in B is guarded in B 

if it occurs within some subexpression a; B’ of B. For 
example, X is guarded in a; X but neither in X nor in 
a; X[]X. Operands of the general parallel operator are 
said to be synchronous if the free guard and exit guard 
synchronize. For example, in X: = a; b; exitl[b]lb; X, the 
operands are synchronous, since they synchronize at 6, 

which is a free guard in 6; X and an exit guard in 
a; b; exit. 

We treat LOTOS specifications satisfying the 
following requirements: 

If pX.B is a subexpression of the process, then X is 
guarded in B (p is a fixed point operator used for 
process declaration). 
Operands of the general parallel operator are either 
closed or synchronous. 
Operands of the pure interleaving operator are 
closed. 

To be able to use a few simple rules to translate a 
LOTOS specification to an EFSM, and to avoid any 
conflict in the use of the same variable names in 
different processes, the following simplification steps 
are applied to a specification. First, a behaviour 
expression containing a full synchronization operator is 
transformed into a generalized parallel composition 
expression. Second, a sequential composition expres- 
sion is simplified to a parallel composition expression, 
allowing us to use one rule to translate parallel and 
sequential expressions to EFSMs. Third, each process 
instantiation is replaced by its corresponding definition 
until the recursion point. Finally, variables in the 
processes are uniquely renamed. 

Conceptually, a simplified LOTOS specification is 
rooted at its main behaviour with process names and 
behaviour composition operators constituting the 
internal nodes, the events in the specification consti- 
tuting the arcs, and the exit, stop and recursive 
processes constituting the leaf nodes. The translation 
algorithm scans the simplified specification tree bottom- 
up. Initially, when the algorithm starts with the leaf 



nodes, a simple partial EFSM with only one state and 
no transition is generated for each leaf node. If the leaf 
node is a process name, then the state is tagged with the 
process name to resolve the recursion at a future instant 
of time. As the algorithm scans the specification tree 
bottom-up, the partial EFSMs are updated and merged 
by using a translation rule for each composition 
operator”. Conceptually, each translation rule derives 
all possible sequential behaviour from two operand 
behaviours related by the operator. One needs transla- 
tion rules only for the operators not eliminated during 
the simplification process. 

We use an is event (spontaneous) in EFSM to 
distinguish the internal event in the specifications from 
the internal event due to the hide construct. In other 
words, an i, event in EFSM is due to the internal event i 
in the LOTOS specifications, whereas an i event in the 
EFSM is due to the hide construct of the LOTOS 
specifications. 

Example specification 
A formal specification of the Association Control 
Service Elements (ACSE)” protocol in LOTOS is 
taken as the main example. The specification consists 
of two main parts. The first part describes abstract data 
types and structures used by ACSE, i.e. protocol data 
units (PDU), abstract service primitives (ASP) and their 
parameter types. The behaviour of ACSE is specified 
using a mixture of resource and state oriented styles. It 
has a total of some 2297 lines of LOTOS code, out of 
which 88% is about abstract data types. The behaviour 
part of the specification is given in Appendix A. An 
EFSM is automatically constructed from this specifica- 
tion’*. The resulting EFSM has 113 states and 169 
transitions. 

GENERATION AND ANALYSIS OF TEST 
CASES 

This section deals with the generation and analysis of 
test cases. First, test cases are generated from the 
EFSM, then they are analysed to detect infeasible test 
cases. Reductions are carried out in the feasible test 
cases to remove redundant assignments and predi- 
cates. 

Generation of test cases 

A test generated from a deterministic finite state 
machine consists of a sequence of test events. 
However, with a nondeterministic protocol model, a 
test case cannot be represented by a pure sequence 
of events, because to correctly judge the behaviour 
of such a protocol a test case must contain expected 
alternative behaviour due to nondeterminism in the 
protocol. 

The algorithm we proposed earlier4 to generate test 
cases from the EFSM takes nondeterminism into 
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consideration. An outline of that algorithm is as 
follows. First, a transition tour of the EFSM is 
generated. The tour is divided into sequences that start 
from the initial state and end either in the initial state or 
one of the final states. The sequence is called a partial 
test case. The partial test case may contain spontaneous 
transition (is transitions). Next, check if there exists a 
spontaneous transition which is not present in the 
partial test case, but is an alternative to any one of the 
transitions in the partial test case. Then update the 
partial test case by adding a sequence of transitions such 
that the sequence starts with a spontaneous transition 
and ends either in a final state or in a state belonging to 
the partial test case. The procedure is repeated until no 
spontaneous transitions exist as alternatives to the 
updated partial test case. The partial test case is then a 
complete test case. 

The application of the above algorithm to the ACSE 
EFSM yields 44 test cases. One complete test case, t2s, is 
shown in Listing 1. In the following test case, each tuple 
< . . . > represents a transition that is defined above. 

<A?x29, 256, 121, 1, true, [IsAASCreq(x29), E>, 
< P!ACSE_apdu(ACSE_apdu_genere_O(AARQ_apdu(BIT( 1), 
app_context_name(get_AASCreq(x29)), called_ap_title(get_ 

AASCreq(x29)), 
called_ae_qualifier(get_AASCreq(x29)), 
called_ap invocation id(get_AASCreq(x29)), 
called_aejnvocationjd(get_AASCreq(x29)), 
calling_ap_title(get_AASCreq(x29)), 
calling_ae_qualifier(get AASCreq(x29)), 
calling_ap_invocation_id(get_AASCreq(x29)), 
calling_ae_invocation_id(get_AASCreq(x29), 
type_genereOlO(Not_Present), user_info(get_AASCreq 

(x29))))):ACSE_apdu, 121, 120, 4, true, true, E >, 
< P?xl4:ACSE_apdu, 120, 109, 9, true, [IsAARE(xl4)], E >, 
< i, 109, 103, 14, [eq(result(get_AARE(xl4)),accepted)], 

true, E >, 
< A!primitive(AASCcnf(application_context_name(get_ 

AARE(xl4)), 
responding_AP_title(get_AARE(xl4)), responding_AE_ 

qualifier(get_AARE(x14), 
responding_AP invocation_id(gej_AARE(xl4)), 
responding_AEIinvocation_id(get_AARE(xl4)), user_ 

information(get_AARE(xl4)), 
result(get_AARE(xl4)), acse_service-user, 
optional(result_source_diagnostic(get_AARE(xl4))), 
emptygresentationgarms-set)): primitive, 103, 102, 22, true, 

true, c 12 + calling > , 
< A?xl2 primitive, 102, 90, 30, true, [IsARLSreq(xl2)], E > , 
< P!ACSE apdu(ACSE apdu_genere_2(RLRQ_apdu 

(reason(get_ARLSreq(x 12)), 
user_info(get_ARLSreq(x 12))))):ACSE_apdu), 90, 89, 40, 

true, true, clO+cl2>, 
< P?xlO:ACSE_apdu, 89, 77, 53, true, [IsRLRQ(xlO)], E > , 
< A!primitive(ARLSind(ARLSind(reason(get_RLRQ(xlO)), 
user-information (get_RLRQ(xlO)))) :primitive, 77, 76, 66, 

true, true, E > , 
< i, 76, 74, 84, [eq(clO,calling)], true E >, 
< A?x7:primitive, 74, 67, 101, true, [IsAABRreq(xS)], E >, 
< P!ABRT apdu(acse_service_user,type%enere023(Not_ 

Present))yABRT_apdu, 67, 256, 116, true, true, E > 

Listing 1 tzx test case 
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The test case listed consists of 12 transitions. There 
are no spontaneous transitions (is transitions). The 
assignment function of the transition is denoted by 
y c E, which means that the value of expression E is 
assigned to the variable y. The empty assignment clause 
is denoted by E, whereas empty guard and condition 
clauses are denoted by a ‘true’ value. 

Test case dependence graph 

In this section, we define the test case dependence 
graph (TCDG) in terms of the control flow graph of a 
test case. The control flow graph CC = (V, E, en) of a 
test case is a directed graph having a unique entry 
node en. V is a set of nodes corresponding to 
assignments (s-node), actions (a-node) and predicates 
(p-node). Graphically, a-, p- and s-nodes are repre- 
sented by a circle, triangle and a rectangle, respec- 
tively. E is a set of control edges which represents a 
possible transfer of control from one node to another. 
The control edge from node vi to node vj is denoted 

by vi + cvj. 
The TCDG of a test case is the control graph of the 

test case with the addition of data dependence edges. A 
data dependence edge from node vi to node vi implies 
that the computation performed at node vi directly 
depends upon the value computed at node vi. More 
precisely, it means that the computation performed at 
node vi uses a variable, var, that is defined at node vi, 
and there is an execution path from vj to vi along with 
the variable; var is not (re-)defined. The data depen- 
dence edge from node vi to node vj is denoted by 
vi j dvj. 

Formally, a test case dependence graph for a test case 
t is a digraph G, = (V,, E,, en) with V, = V, u If, u VP, 
E, = Ed U E,., and a unique entry node en E V,, where 
V, = {vlv is an a-node }; vV = { vlv is an s-node }; V,, = 
{vlv is a p-node }; Ed = {(u, v)lu +dv}; EC = {(u, v)l 
u ---f g>. 

We provide an algorithm to construct a control flow 
graph CC = (V, E, en) of a generated test case t. Before 
that we need some definitions. We assume that the 
assignment clausefof any transition r is in the form of a 
tuple f = < fi , A. . . , fn >, where each h is of the form 
Y+-WI,X~,... ,x,J, where E is a value expression 
containing variables xl, x2,. . . , x,. For any transition 
r E t, we define the following functions: 

1. From[r] returns the from clause of r. 
2. Action[r] returns the action clause of r. 
3. To[r] returns the to clause of r. 
4. Transition[r] returns the transition number of r. 
5. Guard[r] returns the guard clause of r. 
6. Condition[r] returns the condition clause of r. 
7. Assignment[r] returns the assignment clause of r. 
8. J;(assignment[r]) returns the ith item of the assign- 

ment clausef= <s,f2, . . . ,fn>. 
9. Initial[t] returns the initial state of the test case t, 

which is nothing but the initial state of the EFSM M. 

Algorithm: Test case control graph construction. 
Input: Test case t in the form of EFSM transitions R,. 
Output: Test case control graph CC = (V, E, en). 
We can assume that appropriate data structures are 
available to create different types of nodes and arcs. 
Also available in the structure is a place for a label for 
each node. We use two functions, last-node and 
first-node, for each transition to keep track of the last 
and first nodes of the transition: 

Sl. For all r E R, do mark ‘new’; 

S2* Let &niria/[r] := {rjr E R,, from[r] = initial[t]}. 
S3. For all r E Rini,ia,I,j in R, do mark ‘old’. 
S4. Construct the initial node en of the test case 

control graph. 
S5. DRAW_CONTROL( Rini,i,,[,], R,, en). 

Procedure DRAW_CONTROL(R, R,, ev); 

Sl. For each r E R do 
(i) Set last_node[transition[r]] := ev and first_ 

node[transition[r]] := 0; 
(ii) If guard[r] < > ‘true’ then do 

(a) Create a p-node ‘u’ with label guard[r]; 
(b) Construct a control edge from last-node 

[transition[r]] to the p-node ‘u’; 
(c) Set last_node[transition[r]] := u and first_ 

node[transition[r]] := u. 
(iii) If action[r] < > i then do 

(a) Create an a-node ‘u’ with label action[r]; 
(b) Construct a control edge from last-node 

[transition[r]] to the a-node ‘u’; 
(c) Set last_node[transition[r]] := u; 
(d) If first_node[transition[r] = 0 then first_ 

node[transition[r]] := u. 
(iv) If condition[r] < > ‘true’ then do 

(a) Create a p-node ‘u’ with label action[r]; 
(b) Construct a control edge from last-node 

[transition[r]] to the p-node ‘u’; 
(c) Set last_node[transition[r]] := u; 
(d) If first_node[transition[r]] = 0 then first_ 

node[transition[r]] := u. 
(v) If assignment[r] < > E then for each assign- 

ment statement J E < fi ,f2, . . . ,fn >, where 
ldidndo 
(a) Create an s-node ‘U’ with label 

,f;-(assignment[r]); 
(b) Construct a control edge from last-node 

[transition[r]] to the s-node ‘u’; 
(c) Set last_node[transition[r]] := u; 
(d) If first_node[transition[r]] = 0 then first_ 

node[transition[r]] := u. 
S2. For each r E R do 

(i) Let T,,M := (~1s t R, and from[s] = to[r]}. 
(ii) If every s E T,+I in R, is marked ‘old’ then for 

each s E T,,[,l construct a control edge from 
last_node[transition[r]] to first-node 
[transition[.s]] else mark each t E T,+] in R, as 

‘old’ and call DRAW-CONTROL (T,,,,,, R,, 
last_node[transition[r]]). 
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Each variable occurrence in a graph CG is classified as 
being a definition or use13. We use the following 
convention to identify definition and use of each 
variable in CG: 

I. An action ?x: u in an a-node contains definition of 
variable x. 

2. An action !E(xi, x2,. . . ,x,) in an a-node contains 
uses of xl,. . ,x2, where E is a value expression 
containing variables xl, x2,. . . ,x,. 

3. An assignment statement y t E(xl, x2,. . . ,x,) in an 
s-node contains uses of xi,. . ,x2 followed by a 
definition of y, where E is a value expression 
containing variables XI, x2,. . . ,x,. 

4. A predicate p(xi, x2,. . . ,x,) in a p-node contains 
uses of xi, x2, . , x,. 

Based on the above classification, we can create a set of 
data dependence edges in the test case control flow 
graph CG. 

Algorithm: Test case dependence graph construction. 
Input: Test case control graph CG = ( V, E, en). 

Output: Test case dependence graph G, = (V, E U Ed, en). 

For 

Sl. 
s2. 

each v E V, do 

Evaluate X,, := {xix is a definition in v}. 
For each x E X,, do the following. If there exists a 
node u E V, where x is used and u can be reachable 
from v through the control edges along which x is 
not (re-)defined, then create a data dependence 
edge from node u to node Y. 

The event i in EFSh4 is due to the hide construct of 
the LOTOS specifications. There will be no alternative 
to this event in the test case dependence graph. It is not 
the real internal event of the LOTOS specifications, 
therefore the event i may be suppressed in the depen- 
dence graph. However, a spontaneous transition (G 
transition) is represented by an a-node, which plays an 
important role in the representation of a test case. As an 
example, consider the test case t28. Figure 1 shows its 
test case dependence graph. For convenience, the nodes 
are numbered as follows. First the transition number is 
placed, followed by a period and the tuple number. For 
a-nodes the tuple number is 1, for p-nodes 5 or 6 
(depending on whether it is in the guard or condition 
clause of the transition). Similarly, for s-nodes the tuple 
number is 7. 

Predicate slices 
The predicate slice of a test case with respect to a 
predicate, pred at a p-node, consists of all nodes whose 
execution could possibly affect the boolean value of 
pred at the p-node. The predicate slice of a p-node can 
be constructed easily by traversing the data dependence 
edges of the test case dependence graph beginning at p- 
node. The nodes visited during traversal constitute the 
desired slice. We will provide an algorithm to get all the 
predicate slices from the test case dependence graph. 
Before that we need some definitions. 

Given a node v E V,, we define the set Df[v], D,[v], 

Figure I Test case dependency graph for t18 

Cf[Vl, G[vL v 1 v and N,[v] as follows. Q[v] = {(u, v)l 

I”, v’, E 2,‘; @[VI = (6~ w)l(v, 4 E &I; G[vl = {<u, v>l 
c ; C,[vl = ((~2 w)l(v, 4 E Ec}; 

(:: ‘:, E E,.}; Nf[v] = {wl(v, w) E E,}. 
Nt[vl = (4 

For a p-node p of a test case dependence graph G,, 
the predicate slice of G, with respect to p, denoted by 
G ,,,,, is a graph containing all nodes on which p has a 
data dependence (i.e. all nodes that can reach from p 
via a data dependence edge): V(G,lp) = { wjw E V, and 
p Ad IV}. We extend the definition to the set of all p- 
nodes If,, = Uipi as follows. V(G,/V,) = V(G,/Uip;) = 

U; V(G,/pJ. The edges in the graph G,/ If,, are essentially 
those in the subgraph G, induced by V(G,/V,), with the 
restriction that only data dependence edges are 
included. We define E(G,/ V,,) = {(v, w)j(v 3d w) E Ed 

and v, IV E V(G,/ V,)}. 

Algorithm: Predicate slices. 
Input: Test case dependence graph G, = (V,, Et). 

Output: Two sets V’ = V(G,/v,,) and E’ = E(G,/v,), 

which represent predicate slices for each p-node V~ E V,. 

The recursive procedure slice(v) adds edge (v, w) to E’ if 
node w is first reached during the search by a data 
dependence edge from v. For each p-node, all the nodes 
are marked ‘new’ and procedure SLICE is invoked. 

1. Let V,, be the set p-nodes in V,; 

2. v’ := VP; 
3. E’:=qb; 

4. for each vI, in VP do 
begin 

5. for all v in V, do mark v ‘new’; 
6. SLICE( v,,); 

end. 

procedure SLICE(v); 

1. add (v} to V; 
2. mark v ‘old’; 
3. for each edge (v, w) on Df [v] do 

begin 
4. if u’ is marked ‘new’ then 

begin 
5. add (v, w) to E’; 
6. SLICE(w); 

end; 
end. 

The time complexity of the algorithm given above in the 
worst case is O(lV,,l(lV,l + IE,I)). Lines 1 and 5 of 
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Figure 2 Predicate slices of the test case dependency graph t2s 

Predicate Slices take time O(l V,). Lines 5-6 are called 
exactly 1 VP1 times. The time spent in SLICE is exclusive 
of recursive calls to itself, proportional to ]D,[v]l. Since 
C,,E ,,, ]Df[v]I = O(]E,]), the total cost of executing lines 
3-5 of SLICE is O(]&]). The procedure SLICE is called 
exactly once for each vertex v E I’,, since v is marked 
‘old’ the first time SLICE is called. Thus, the total time 
spent in Predicate Slices is O(] V,,](l I’,] + I.&])). 

Figure 2 shows the graph that results from taking 
predicate slices of the test case dependence graph from 
Figure 1. 

Classification of Predicate Slices 
We classify the predicate slices into three classes, and 
discuss their role in protocol testing: 

(a> Determinable Predicate Slices. In communication 
protocols, there are two kinds of determinable 
predicates: 

l The static predicates. 
l The dynamic predicates. 

(b) 

cc> 

The static predicates are those which concern 
variables whose values do not change. These types 
of predicates are generated in the EFSM due to the 
value matching type of interaction in resolving 
parallel composition. The dynamic predicates are 
those whose values are changed by an assignment 
clause of the rule following a specific event. A 
predicate slice is said to be a determinable 
predicate slice if it contains either a static or 
dynamic predicate. For example, the p-node 84.5 
of Figure 2 is a determinable predicate, hence the 
predicate slice is a determinable predicate slice. 
Undeterminable Predicate Slices. The undetermin- 
able predicates are those that concern variables 
whose values are generated nondeterministically. 
This happens in the case of value generation, e.g. 
generalized choice constructs and hiding of input 
events. These predicates can be neither completely 
controlled by the IUT nor by the tester. A 
predicate slice is said to be an undeterminable 
predicate slice if it contains an undeterminable 
predicate. 
Settable Predicate Slice. The settable predicates are 
those that depend upon the parameter value of the 
input primitive. A predicate slice is said to be a 
settable predicate slice if it contains a settable 
predicate. These predicates can be set to true by 
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choosing the proper values for the parameters of 
the input primitives. For example, the p-nodes 1.6, 
9.6, 14.5, 30.6, 53.6 and 101.6 of Figure 2 are 
settable predicates, hence the predicate slices are 
settable predicate slices. 

Infeasible paths in test cases 
Predicate plays an important role in the evaluation of 
test cases generated from the protocol specification. 
Some of the test cases generated may not be feasible, in 
other words, the predicates can never be satisfied on a 
path due to the existence of an assignment on that path 
that will cause the predicate to be set to false. Infeasible 
paths in a test case can be detected by evaluating the 
determinable predicate slices. 

To correct infeasibilities we have to exchange the 
transition containing the unsatisfiable predicate with a 
new transition, which means that the path following the 
old transition must be eliminated and a new path has to 
be selected following the new transition. The result of 
this is two-fold: the new path is the same as one of the 
test cases already generated, where no new test case is 
added; otherwise, the new path becomes one of the test 
cases. In both cases, the infeasible test cases are 
eliminated. 

In the determinable predicate slice of Figure 2, the 
determinable predicate node 84.5 is dependent on the 
assignment node 40.7, which is in turn dependent on the 
assignment node 22.7, and evaluates to true. The reason 
is that at s-node 22.7, cl2 is assigned to ‘calling’, and 
then at s-node 40.7 it is assigned to ~10, i.e. now cl0 has 
the value of ‘calling’. The predicate at p-node 84.5 is 
evaluated to be true because cl0 is assigned the value 
‘calling’. Out of 44 test cases generated from the ACSE 
protocol, seven of them were found to be infeasible. 

Reduction of test cases 

Once the test case is modelled by a dependence graph, it 
can be reduced by eliminating extraneous statements 
that cannot affect the parameters of the event or the 
control flow of the test case. The s-nodes in the TCDG 
with no incoming data dependence edges can be 
eliminated, since these nodes neither affect the para- 
meters of the events nor the control flow of the test case. 
Since infeasibilities are already removed before this step, 
we can reduce further the TCDG by eliminating all p- 
nodes from which a-nodes are not reachable through 
the data dependence edges. For example, in the 
determinable predicate slice of Figure 2b, no a-nodes 
can be reachable starting from the p-nodes 84.5. 
Clearly, these p-nodes have no influence on the input/ 
output domain of the test case. In other words, we keep 
all the settable predicates in the test case dependence 
graph that depend upon the parameter values of the 
input primitives. Intuitively, redundant assignments and 
predicates are those that may be executed, but its 
elimination would not change the function of the test 
case computed over its domain. The resulting test case 
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dependence graph obtained after elimination of 

redundant assignments and predicates is called the 

reduced test case dependence graph (RTCDG). 

Algorithm: Reduced test case dependence graph. 
Input: Test case dependence graph G = (V, E). 

Output: Reduced test case dependence graph 

G’ = (V’, E’). 

The recursive procedure SEARCH eliminates an s-node 
that has no data dependence edge incident on it. The main 

algorithm eliminates all the p-nodes from which a-nodes 

are not reachable through the data dependence edges. 

1. 
2. 

3. 
4. 

5. 
6. 

1. 

8. 

v’ := v; 
E’:=E: 

Let ZP:={v E VpIvf++dw, where w E V,}; 

for each v E Z,, do 

begin 
V’:= V’ - v; 

Let En,,,. := ((u, w)lw t Nf[v] and u E N,[v]); 

E’ I= {E’ - j&[v]‘U C&j U c,[V]} 

end; 
SEARCH( V’, E’). 

procedure SEARCH( V’, E’); 

1. Let VD = {vlD,[v] = 4 and v E V’, c 

2. IfVDo +then 

3. 
4. 

begin 

Let 1’ be any element in VII; 
V’ := V’ - v; 

5. 

6. 
7. 

Let E,,,,,. := {(u, w)Iw E N,.[v] and u E N,[v]}; 

E’:= {E’ - {D,[v] u C,[v] u C,[v]}} u En,,,.; 
SEARCH( V’, E’) 

end; 

The time complexity of the algorithm given above in 

the worst case is O(l V II V,?I). The cost of executing line 3 

of RTCDG can be 0( 1 V 11 P’, I). The loop on the line 5-7 
of RTCDG is executed 1 V,,I times. The total cost of 

executing SEARCH, exclusive of recursive calls to itself, 

is O(l VI). The procedure SEARCH is invoked I V,I 

times, each time one vertex v E V, is deleted. Thus, the 

total time spent in SEARCH is O(lV lIV,yl). Hence, the 

time complexity of the RTCDG algorithm is 0( I V 1 I V, I). 

The reduced test case dependence graph of test case 

fz8 is shown in Figure 3. 

TEST SUITE REPRESENTATION 

According to the LS test architecture of the ISO, any 

implementation under test (IUT) can be tested by a 
lower tester (LT) and upper tester (UT) located at the 

bottom and top interfaces, respectively (see Figure 4)14. 

Test cases generated from the specification define the 
behaviour of the IUT. The behaviour of the LT and UT 
considered together comprises the tester’s behaviour. 
The tester’s behaviour is the dual of the IUT’s 
behaviour, therefore the tester’s behaviour can be 
obtained by behaviour inversion. Behaviour inversion 
is based on viewing each test case as an extended finite 

Figure 3 Reduced test case dependency graph tzx 

Upper Tester 

t 

IUT 

Lower Tester 
I- 

Figure 4 LS test architecture 

state machine. Complete behaviour generation of the 

test case EFSMs is a complex process consisting of 
several steps. We have already discussed the steps of 

specification transformation, test case generation and 

test case reduction. In this section, we represent 
dynamic behaviour of the test case. 

Control flow behaviour representation 

Events and assignments in a test case comprise the 
dynamic behaviour of the test case. The settable 

predicates are useful in generating input test data, but 
its presence in the dynamic behaviour of the test case 

will be redundant, hence, it can be eliminated. 

The flow of control is sequential except when there is 

spontaneous transition. Graphical representation of the 
control flow can be directly obtained from RTCDG by 
simply dropping the settable predicate p-nodes and the 
associated s-nodes with no incoming data dependence 

edge. The settable predicates are useful in generating 
input test data, but its presence in the dynamic 
behaviour of the test case will be redundant, hence it 

can be eliminated. Except for i,y a-nodes, all other nodes 
are inverted, which means that events are inverted. In 

other words, input events are converted to output 

events, and vice versa. 

Algorithm: Control flow behaviour representation 
(CFBR). 
Input: Reduced test case dependence graph 

RTDCG = (V, E). 
Output: Control flow behaviour representation 
CFBR = (V’, E’). 
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@+J-@- 30.1* 

3 

Figure 5 Control flow behaviour representation of the RTCDG of 

128 

The main algorithm eliminates all the p-nodes. The 
actions are inverted. The procedure SEARCH is the 
same as defined in the reduced test case dependence 
graph algorithm. 

1. 
2. 
3. 

4. 
5. 
6. 

7. 
8. 

9. 

10. 
11. 

v’:= v; 
El:=& 

foreachvE V,,c Vdo 

begin 
v’ = v’ - v; 

Let E,,,,, := {(u, $1~ E Nf[vl and u E N,[vl}; 
E’ := {E’ - {Q[v] U Cf[v] U C,[v]}} U E,,,,.; 

end; 
SEARCH( V’, E’); 

for each v E V’, c V’ of the form gdi , . . . , d,, do 
begin 

for i = 1 to n do 
begin 

if di is in the form !ti then change it to ?ui : si 
else if di is in the form of ?ui : si then change 
it to !t; 

end; 
end. 

The graphical control flow behaviour representation of 
the test case t2g is given in Figure 5. The ‘*’ in the a- 
nodes represents the inversion. 

Behaviour enhancements 

Here, control flow behaviour representation (CFBR) of 
the selected test cases is analysed, and several enhance- 
ments are carried out. In the following, we outline an 
algorithm to enhance CFBR of the selected valid 
behaviour test case: 

Algorithm: Behaviour enhancement. 
Input: Control flow behaviour representation (CFBR). 
Output: Enhanced CFBR. 

A new type of receive a-node (?OTHERWISE) is 
created as an alternative to all receive a-nodes to 
specify a tester’s behaviour against invalid IUT 
behaviour. Verdicts are assigned to the receive and 
OTHERWISE a-nodes. 

Designing test cases (suites) from formal specifications 
is an active area in protocol testing. Research in this 
area is inspired by the rich results obtained previously in 
hardware/software testing. Nevertheless, it is evolving 
towards its own set of techniques, tools and disciplines, 
possibly due to the distinct characteristics of protocols 
and their architectures. In the last decade, a large 
number of algorithms have been proposed to design 
test suites from formal specification. We will discuss the 
existing protocol test case design based on Estelle, 
LOTOS and SDL. 

Estelle-based test design 

Sl. for each receive a-node do Since deterministic FSMs model only the control 
add an alternative path which contains an arc and component of the protocol/services, there is a need to 
a receive a-node of type OTHERWISE. No other extend the FSM-based techniques to cover the data 
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Figure 6 Enhanced CFBR of the selected test case tzS 

s2. 

s3. 

arcs are added to this path, i.e. OTHERWISE a- 
nodes can only be at the final states. 
For each OTHERWISE a-node 01 do ver- 
dict(0 1) := fail; 
For each receive a-node Rl do 
If Rl is the last event in the path and the path Ieads 
to the initial state then verdict(R1) := pass; 
For each & a-node Al do 
for each receive a-node R2 following Al do 
if R2 is the final node or predecessor of the final 
node then verdict(R2) := inconclusive. 

Applying the behaviour enhancement algorithm, a 
pass verdict is associated with the a-node 116.1*, and 
OTHERWISE a-nodes are added to become alterna- 
tives to the a-nodes 4.1*, 22.1*, 40.1*, 66.1* and 116.1*. 
Step 2 assigns fail verdicts to all these OTHERWISE a- 
nodes. The test starts at node l.l* and ends successfully 
at a-node 116.1*, or unsuccessfully at any 
OTHERWISE a-node. The enhanced CFBR of the test 
case t2g is shown in Figure 6. 

RELATED RESEARCH IN TEST SUITE 
DESIGN 



component, i.e. interaction primitive processing and 
data transfer mechanisms. Recently, two methods have 
been proposed to design test cases from EFSM. The 
first method17, I8 is based on data flow analysis 
techniques19, and focuses on tracing the flow of data 
through the associations between assignments of values 
to variables and references of these variables in either 
assigning values to other variables or determining the 
outcome of conditional branching. The second 
method*’ applies the principles of functional testing*‘. 
In the functional testing method, two different graphs 
are obtained from the normalized specification: a 
control graph for major state change, and a data flow 
graph to show the flow of data from input service 
primitive/protocol data unit parameters to the context 
variables, and from the context variables to output 
service primitive/protocol data unit parameters. The 
control graph is an FSM, from which test cases are 
generated. The data flow graph is partitioned into 
blocks, where each block corresponds to functions of 
the protocol. The test suite design with this metho- 
dology is based on obtaining the control sequence for a 
test case and enumerating the parameters of the 
interaction primitives. Each block is tested with one or 
more test cases until all the arcs in the partitioned data 
flow graph are covered. The resulting tests are used as 
behaviour tests for establishing the dynamic confor- 
mance testing. 

A semi-automatic test generation method, which 
considers the context and predicates of specifications 
written in Estelle is described by Favreau and Linn2*. In 
this method, tests are generated in two steps. First, a 
state machine is created from an abstract machine and 
an initial context, where an abstract machine is a kind 
of FSM extended with predicates and variables. Second, 
the transition-tour technique is applied to the FSM 
generated in the first step. Most of the semi-automatic 
methods have an advantage in that they include human 
intuition to express the test’s purposes, which is an 
important aspect of conformance testing23. 

Recent results in this area are reported elsewhere2k26. 
In Miller and Pau124, weak mutation testing is adopted 
in contrast to functional testing, whereas in Wang and 
Liu25, a program verification technique called axiomatic 
semantics is applied to the conformance testing area. In 
Lee and Lee26, the issue of testing data flow is not 
addressed. They consider the problem of generating a 
control flow graph for a protocol entity specified as a 
collection of communicating modules. 

The emphasis in most of the algorithms discussed 
above is placed on the generation of test cases from the 
Estelle specifications. However, the test cases generated 
have never been analysed in the design of test suites. In 
our approach, emphasis is given to analysis of the test 
cases generated. This paper supplements recent investi- 
gations on the design of test suites by presenting a 
formal, general model for representation of the 
generated test cases. The analysis presented in this 
paper, by modelling a test case as a test case depen- 
dence graph, combines traditional control flow analysis 
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and data flow analysis, hence it can be implemented 
efficiently. 

LOTOS-based test design 

There has been much research on test suite generation 
from LOTOS specifications. The first related work can 
be found in Brinksma and Wezeman28, where the 
derivation of the conformance testers T(S) for any 
specification S has been investigated. In Brinksma27, a 
failure model is used to identify processes that are 
testing equivalently, whereas in Wezeman28, a syntac- 
tical approach is explored, based on the work reported 
in Steenbergen29. The method is named the CO-OP 
method after its main components, the set called 
COmpulsory and Optional behaviours. 

Recent results in this area have been reported3w32. In 
Tretmans3*, a conformance relation conf is defined to 
establish whether an implementation under test (IUT) 
conforms to its specification. The conf relation can be 
explained as follows. If Bl and 82 are processes, then 
Bl conf B2 if Bl contains no unexpected deadlocks with 
respect to traces in 82. However, it does not allow Bl to 
possess traces not specified in B2. For example 
B1 = (a; exit[]i; 6; exit[]c; exit) conforms to B2 = 
(a; exit[]i; b; exit) even though Bl has a trace 
(c; exit) that is not included in B2. But it is not the case 
that B3 = (a; exit[]i; exit) conf B2. This relation is taken 
as a formal basis for extending the CO-OP method to a 
restricted form of full LOTOS. Process definition and 
recursion of the LOTOS are not considered. Only 
choice, the action prefix and a limited action denota- 
tion are considered. The method only uses the COmpul- 
sory set, unlike in the CO-OP method, where 
COmpulsory and Optional sets are used. In Wezeman 
et al.3o*3’, the CO-OP method is extended to a restricted 
subset of full LOTOS that handles events involving the 
exchange of data. The CO-OP method is used in 
deriving conformance testers in the IS0 Conformance 
Testing Methodology and Framework standard14. 

In related work33, where manually an FSM model is 
derived using a LOTOS interpreter35, classical methods 
are then applied to generate test cases. The authors have 
not yet considered the data flow aspect with the 
interpretation approach. Recently, a group of 
researchers at Neher laboratories34 proposed an inter- 
active methodology to generate test cases from LOTOS 
specification. A symbolic evaluation is used to derive 
test cases. However, the methodology is not algorithmic 
in nature. It is similar to the method proposed by 
Gueraichi and Logrippo3’. 

SDL-based test design 

Generation of a test suite from SDL has been studied by 
Hogrefe36. In this model, SDL processes are trans- 
formed into an intermediate form called the asynchro- 
nous communication tree (ACT). The ACT is a tree 
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where the root is the initial system state, the nodes are 
all other system states, and the arcs represent the valid 
transition. The tree is constructed by considering in turn 
every possible distinct event that may occur at each 
node. The arc is labelled with the event, and the node is 
identified by the resulting process states and queue 
contents. The depth of the tree is restricted by 
comparing the current state with the states generated 
previously; if an identical state is found, that branch is 
terminated. Finally, this ACT is traversed to generate 
test cases. Nondeterminism has not been taken into 
consideration in the generation of test cases. The test 
generation algorithm proposed in this paper, which 
deals with nondeterminism, can be used to generate a 
test suite from an ACT. 

Several test generation tools”6”7 based on the SDL 
specification have been developed. The tools assume a 
single module and use the Abstract Syntax Notation 
One (ASN.1)38 description of data units as the data 
input format. 

CONCLUSIONS 

The objective of this paper is twofold: first, to introduce 
an intermediate model, and to use this as an interim step 
for the generation of tests from protocol specifications; 
and second, to represent the dynamic behaviour of the 
test case generated. To achieve the first goal, we have 
demonstrated that LOTOS can be transformed into 
EFSM, and have shown that the test cases can be 
generated easily from the EFSM. 

To achieve our second goal, the test cases generated are 
modelled as a test case dependence graph and then 
evaluated by taking predicate slices from it. The 
predicate slices are classified into three classes: determin- 
able, undeterminable and settable. These three classes of 
predicate slices are analysed to evaluate their role in 
protocol testing. Redundant assignments along with 
determinable and undeterminable predicates in all the 
feasible test cases are removed by reducing the test cases. 
Finally, the control flow behaviour is represented by 
inverting the direction of the actions, assigning verdicts 
to the actions, and eliminating all the settable predicates 
from the reduced test case dependence graph. We have 
demonstrated the applicability of this method by applying 
it to a LOTOS specification of the ACSE protocol. The 
methodology is schematically shown in Figure 7. 

The nature of research is such that the solution to one 
problem often gives rise to many new questions or 
problems. In the case of the research presented in this 
paper, the following questions surface naturally. 
Further investigation could be the generation of input 
test data. The settable predicate slices may be useful for 
that purpose. The input test data must be generated 
from these settable predicates such that the predicates 
evaluated are true. 

Representation of the test cases in the form of an 
abstract test suite for different architectures used in 
practice, such as distributed, coordinated and remote 
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Graph Algorithm 

J, 
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Algorithm 
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I 
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Predicate Slice 
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Figure 7 Test suite derivation methodology 

test architectures, is another line of future research. 
Finally, it would be interesting to automate the 
methodology discussed here. 
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APPENDIX A 

behaviour 
ACSE[A,Pl 
where 

processACSE[A,Pl :noexit := 
unassociated[A,P] [>protocol_error[A,Pl 
endproc (*ACSE*) 

processunassociated[A,Pl :noexit:= 
A? x :primitive [IsAASCreq(x)l; 

P !ACSE apdu(ACSE_apdu_genere_O(AARQ_apdu( 
Bit(l)>pp_context_name(get_AASCreq(x)), 
called_ap_title(get_AASCreq(x)), 
called_ae_qualifier(get_AASCreq(x)), 
called_ap_invocation_id(get_AASCreq(x)), 
called_ae_invocation_id(get_AASCreq(x) ), 
calling_ap_title(get_AASCreq(x)), 
calling_ae_qualifier(get_AASCreq(x)J, 
calling_ap_invocation_id(get_AASCreq(x)), 
calling_ae_invocation_id(get_AASCreq(x)), 
type_genereOlO(Not_Present),user_info(get_AASCreq(x))))); 
awaitAARE[A,P] 

A]?x : ACSE_apdu [IsAARQ(x) 1; 

tNot( commonqrot_version(get_AARQ(x)) )I -> 
P!ACSE apdu(ACSE_apdu_genere_l(AARE_apdu( 
Bit(l), 
application_context_name(get_AARQ(x)), 
rejectedgermanent, 
Associate_source_diagnostic(Associate_source_diagnostic_genere-l 

(no_common_acse_version)), 
type_genere013(Not_Present), 
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type_genere014(Not_Present), 
type_genereOlS(Not_Present), 
type_genere016(Not_Present), 
type_genere017(Not_Present), 
type_genere018(Not_Present)))); 
unassociated[A,Pl 

[coxk!on_prot version(get_AARQ(x))l -> 
A !primitive(%ASCind( 

optional(normal), 
application_context_name(get_AARQ(x)), 
calling_AP_title(get_AARQ(x) ), 

calling_AE_qualifier(get_AARQ(x)), 
calling_AP_invocation_id(get_AARQ(xJ 1, 
calling_AE_invocation_id(get_AARQ(x)), 
called_AP_title(get_AARQ(x)), 
called_AE_qualifier(get_AARQ(x), 
called_AP_invocation_id(get_AARQ(x)), 
called_AE_invocation_id(get_AARQ(x)), 
user_information(get_AARQ(x)), 
emptygresentationqarms_set)); 
awaitAASCrsp[A,Pl 

where 
processawaitAARE[A,P] :noexit:= 
P?x:ACSE_apdu [ISAARE(X))~; 

[result(get_AARE(x)) eqacceptedl -> 
A !primitive(AASCcnf( 
application_context_name(get_AARE(x) 1, 
responding_AP_title(get_AARE(x) 1, 
responding_AE_qualifier(get_AARE(x) 1, 
responding_AP_invocation_id(get_AARE(x)), 
responding_AE_invocation_id(get_AARE(x) ), 
user_information(get_AARE(x), 
result(get_AARE(x)), 
acse_service_user, 
optional(result_source_diagnostic(get_AARE(x))), 
emptygresentationgarms_set)J; 
associated[A,Pl(calling) 

[I 
[result(get_AARE(x)) eqrejectedgermanentl-> 

A !primitive(AASCcnf( 
application_context_name(get_AARE(x) 1, 
responding_AP_title(get_AARE(x) 1, 
responding_AE_qualifier(get_AARE(x)), 
responding_AP_invocation_id(get_AARE(x)), 
responding_AE_invocation_id(get_AARE(x)J, 
user_information(get_AARE(x), 
result(get_AARE(x)), 
acse_service_user, 
optional(result_source_diagnostic(get_AARE(x))), 
emptyqresentationgarms_set)); 
unassociated[A,Pl 

) 
[> abort[A,Pl 

endproc (* awaitAARE *) 
processawaitAASCrsp[A,Pl : noexit := 

A?x :primitive [IsAASCrsp(x)l; 
( 
[result(get_AASCrsp(x)) eqacceptedl -> 
P !ACSE apdu(ACSE_apdu_genere_l(AARE_apdu( 

Bit(l), 
app_context_name(get_AASCrsp(x)), 
result(get_AASCrsp(x)J, 
Associate_source_diagnostic(Associate_source. 
diagnostic_genere_O(no_reason_given)), 

responding_ap_title(get_AASCrsp(x)J, 
responding_ae_qualifier(get_AASCrsp(x)J, 
responding_ap_invocation_id(get_AASCrsp(xJJ, 
responding_ae_invocation_id(get_AASCrsp(x) 1, 
type_genere017(Not_Present), 
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user_info(get_AASCrsp(x)~~~~; 
associated[A,Pl(called) 

[I 
[not(result(get_AASCrsp(x)) eqacccepted)] -> 
P !ACSE apdu(ACSE_apdu_genere_l(AARE_apdu( 

Bit(l), 
app_context_name(get_AASCrsp(x)), 
result(get_AASCrsp(x)J, 
Associate_source_diagnostic(Associate_source. 
diagnostic_genere_O(no_reason_given)), 

responding_ap_titlefget_APPSCrsp(x)), 
responding_ae_qualifier(get_AASCTsp(xff, 
responding_ap_invocation_id(get_AASCrsp(x1), 
responding_ae_invocation_id(get_AASCrsp(x)), 
type_genere017(Not_Present), 
user_info(get_AASCrsp(x)))l); 

unassociated[A,Pl 

[> adort[A,Pl 
endproc (* awaitAASCrsp "1 

endproc (*unassociated*) 
processassociated[A,P](c : calltype) : noexit := 

P?X: ACSE_apdu [IsRLRQ(x)l; 
A !primitive(ARLSind(reason(get_RLRQ(x)), 

user_information(get_RLRQ(x)))); 
awaitARLSrsp[A,Pl (c) 

II 
A?x:primitive [IsARLSreq(x)l; 
P !ACSE - apdu(ACSE_apdu_genere_2(RLRQ_apdu(reason(get_ARLSreq(x)), 

user_info(get_ARLSreq(x))))); 
awaitRLRE[A,Pl (c) 

[> abort[A,Pl 
where 

processawaitRLRE[A,Pl(c : calltype) :noexit := 
P? x : ACSE_apdu [ISRLRE(X)~; 

(*onsupposequ'onareculeRLREdansunPCONcnf+*) 
A!primitive(ARLScnf(reason(get_RLRE(x)), 

user_information(get_RLRE(x) 1, 
accepted)); 

unassociated[A,Pl 
[I 
P?X: ACSE_apdu [ISRLRQ(X)~; 
A!primitive(ARLSind(reason(get_RLRQ(x)), 

user_information(get_RLRQ(x) 1) 1; 
( 
[c eqcalledl -> 

collision_associated_responder[A,Pl 
[I 

[c eqcallingl -> 
collision_association_initiator[A,Pl 

[> abort[A,Pl 
where 

process collision_association_initiator[A,Pl : noexit := 
A? x :primitive [IsARLSrsp(x)l; 

( 
[result(get_ARLSrsp(x)) eqacceptedl -> 

P !ACSE apdu(ACSE_apdu_genere_3(RLRE_apdu(reason 
(get_ARLSrsp(x)f,user_info(get_ARLSr.sp(x~~~~~ 

awaitRLRE[A,Pl(caIIing) 
1 

[> abort[A,Pl 
endproc (* collision_association_initiator "1 
processcollision_association_responder[A,P) : noexit := 

P? x : ACSE_apdu [IsRLRE(x) 1 
(*CnsupposequeleRLREprovientd'unPCONcnf+*) 

A!primitive(ARLScnf(reason(get_RLRE(x)), 
user_information(get_RLRE(x)), 

accepted)); 
awaitARLSrsp[A,Pl (called) 

[>abort[A,Pl 
endproc (* coIlision_association_responder "1 
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endproc {* awaitRLRE *) 
processawaitARLSrsp[A,Pl (c : Calltype : noexit := 

A?x :primitive [IsARLSrsp(x)l; 
( 
[result(get_ARLSrsp(x)) eqacceptedl -> 

P !ACSE apdu(ACSE_apdu_genere_3(RLRE_apdu(reason 
(get_~RLSrsp(x)),user_info(get_ARLSrsp(x))))); 

unassociated[A,Pl 
[I 
[result(get_ARLSrsp(x)) eqrejectedl -> 

P !ACSE apdu(ACSE_apdu_genere_3(RLRE_apdu(reason 
(get_iRLSrsp(x)),user_info(get_ARLSrsp(x))))); 

associated[A,Pl(c) 

[>abort[A,P] 
endproc {* awaitARLSrsp *) 

endproc (*associated*) 
process (abort[A,Pl : noexit := 

A?x :primitive IIsAABRreq(x)l; 
P !ABRT apdu(acse_serviceqrovider,type_genereO23(Not_Present)) 
unassoGated[A,Pl 

[I 
P?X: ACSE_apdu [ISABRT(X)~; 
A !AABRind(acse serviceqrovider,type_genereO2O(Not_Present)); 
unassociated[A>l 

endproc (*abort*) 
processprotocol_error[A,Pl : noexit := 

A !AABRind(acse serviceqrovider,type_genereO2O(Not_Present)); 
P !ABRT apdu(acse_servicegrovider,type_genere023(Not_Present)); 
ACSE[A,Pl 

endproc (*protocol_error *) 
endspec 
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