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A semi-formal method for deriving test cases from specifications in LOTOS is de-
scribed.  The method is applied to the LAP-B standard, for which a complete  LOTOS
specification was developed.  Execution trees are derived from the specification by us-
ing an interpreter, and test cases are obtained by inspection. The results of our experi-
ment compare favorably with the ones obtained in an earlier work that used a state table
description of LAP-B.

1.  INTRODUCTION

In [KLPU] [Kan] a  method for deriving conformance test suites for protocol implemen-
tations is discussed, which involves constructing the state transition tables for the protocol speci-
fication and then deriving from them test cases following three steps:

1) Initialization step, which brings the IUT (Implementation Under Test)
 to a specific test state

2) Evaluation step, which executes a single transition and checks the output of the IUT 

3) Verification step, which verifies the state of the IUT  after the transition. 

This method was followed to obtain a test suite for the X.25 Level 2 (LAP-B) protocol
[ISO5], suite that currently is in advanced state of standardization within ISO [ISO2][ISO3].  The
method is based on a number of results in the area of protocol and finite-state machine testing, for
which we refer to [KLPU][Kan][SL][SD].

In [GL] a method for deriving test cases from LOTOS [BB][ISO1] specifications by using
an interpreter was proposed.  Briefly, the method consists in constructing (possibly partial) sym-
bolic execution trees of the specification.  This can be done automatically, by using packages such
as LOLA [QPF] or the University of Ottawa LOTOS interpreter [GHL] (see also [V]). These pack-
ages perform a (possibly partial) expansion [Mil] of the specification, by removing operators such
as parallel composition and disable, and reducing the specification to a tree of alternatives.  This
tree explicitly indicates all possible execution sequences of the entity specified, at least up to some
maximum length. Therefore, it can be used as a test tree by reversing the direction of the data flow
(whenever the IUT accepts a value, the tester provides it, etc.). In this paper, we show how this
method has been applied to obtain test cases for LAP-B that are comparable, and in fact occasion-
ally better, than those obtained by [KLPU][Kan].  Since TTCN is a common language for the spec-
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ification of test trees, the test cases obtained are written  in TTCN (we should observe, however,
that LOTOS itself appears to be adequate for the specification of test trees [Steen]). 

This technique appears to be valuable for conformance testing, at least until such time as
the more formal approaches being developed by other authors become available (see Section 7). It
makes it possible to extract test cases directly from (possibly standardized) formal descriptions,
eliminating or reducing the importance of the interpretation of the informally specified standard.
The formal specification is more complete and precise than the state tables and, unlike the latter,
allows full formal treatment of the data part.  For example, we shall show that automatic or semi-
automatic generation of frame values appear to be possible by using the information contained in
selection predicates.

2.  SYMBOLIC EXECUTION TREES FOR LOTOS PROCESSES
       

As mentioned above, the University of Ottawa LOTOS interpreter is capable of generat-
ing the symbolic execution tree of a process under interpretation, by using symbolic evaluation.
This means that, in such trees, variable values are represented by variable names, with the addition
of appropriate numerical suffixes to differentiate among different values for the same variable
name. The construction algorithm is able to recognize cases where a previously encountered state
(i.e., behavior expression)  is found again, in which case the branch of the tree is closed by an
again.  In cases where the branch continues beyond a specified maximum length, it is closed by a
continue. For example, consider the following process:

         process disconnect[l,phl] : exit(Bool) :=
              (phl ? f:frame[Incorrect(f)];
               disconnect[l,phl])
              []
                l ? p:primitive[Is_ConReq(p)]; 
                phl ! SABM;
                (phl ? f : frame[Is_UA(f)];
                  exit(true)
                []
                  phl ? f : frame[Is_DM(f)];
                  exit(false))
         endproc

The tree generated is::

bh0 * 1 phl ?f:frame [Incorrect(f)] [13] ==> again bh0
       * 2 l ?p:primitive [Is_ConReq(p)] [16]
bh1 * | 1 phl !SABM:frame [17]
bh2 * | | 1 phl ?f:frame [Is_UA(f)] [18]
bh3 * | | | 1 exit !true:Bool ** EXIT SUCCEED ** [19]
       * | | 2 phl ?f:frame [Is_DM(f)] [21]
bh4 * | | | 1 exit !false:Bool ** EXIT SUCCEED ** [22]

It is possible that some branches of the tree involve predicates that can be evaluated to
false.  Such branches are pruned from the tree, yielding what we call the Simplified Synchroniza-
tion Tree or SST [GL]. Note that value expressions containing symbolic values cannot be evaluat-
ed, thus predicates involving such expressions are assumed to be true, unless they can be evaluated
to false without consideration of the symbolic values.



3. SPECIFICATION OF LAP-B IN LOTOS

In order to perform this experiment, a full specification of the X.25 LAP-B was written.
It includes all the options specified in the standard, for a total of some 2300 lines of LOTOS code
[Gue].

In [VSV] it was shown how different specification styles can be used in LOTOS.  Namely,
that paper identified four major styles: the monolithic style, the constraint-oriented style [Tur], the
state-oriented style, and the resource-oriented style.  The constraint-oriented style is the one that is
usually considered the most expressive and the most abstract, and accordingly, is the one that has
most frequently been used in specifications of standards [LS][SAC][SS].  However, in  [GL] it was
shown that specifications written in the constraint-oriented style tend to yield unmanageably large
execution trees, containing many infeasible paths (recall that predicates involving symbolic values
are normally assumed to be true).  Such paths could be pruned by using theorem-proving methods,
however suitable tools are not available for LOTOS yet.  Therefore, the technique described in this
paper could not be used easily with the constraint-oriented style.  Our specification is a mixture of
the three other styles, each chosen according to the needs of executability and clarity.

The ISO/DIS 7776 [ISO5] specifies the X.25 level 2 LAPB interface operation as viewed
by the DTE. The interface between LAPB and X.25 network layer is not defined in the ISO/DIS
7776. For this, primitives that allow communication between X.25 and LAPB have been defined.
The LAPB  can be accessed through a gate called dl.  For example:
                    dl ? p: primitive [IS-CON-REQ(p)]
represents the possible occurrence of a connection request.  The gate phl is the gate on which trans-
mission and reception of frames is done by the DTE.  This gate should be hidden, but in order to
show more clearly the trees used in the test case generation, we made it visible.   The figure below
shows the gate configuration of the specification.

A point worth mentioning is the treatment of the timers.  These are described as processes,
which are composed in parallel with the processes that use them, and share with them a gate t.  On
this gate, operations such as start, expired, and reset are possible.  A process can start or reset a
timer, where a reset is modeled as disabling the timer.  Similarly, a timer can perform an expiration,
which is prefixed by an internal action and  causes a disable in the main process. This treatment
was found to be adequate for our problem. 

 Also, it is interesting to note that, although the specification makes little use of explicit
states, the obtained execution trees show that there are seven states in LAP-B, and this corresponds
to the results of [KLPU] [SHW].

4. TEST ARCHITECTURE

The test architecture we have assumed is the same as the one described in [KLPU], i.e. it is the one

   LAPB

  Gate dl

Gate phl



of the remote test method. The tester interacts with the IUT Point of Control and Observation L,
which corresponds to gate phl in the specification. This gate represents the DTE-DCE interface.

5. TEST SEQUENCE DERIVATION METHOD

The test sequence derivation method is based on the use of the SSTs and of the UIO
(Unique Input-Output) method [SD] [SL]. In order to obtain manageable SSTs, the specification is
divided in the three following phases:

-- Connection Phase.
-- Data Phase
-- Termination Phase.

and for each phase the SSTs are generated.  Note that the tester behaves the opposite way as  the
DTE.  A receive (symbol ?) in the obtained trees corresponds to a send (symbol !) for the tester;
and a send in the obtained tree (symbol !) corresponds to a receive (symbol ?) for the tester.

As mentioned above, a test case consists of three parts (1)  initialization step (2) evalua-
tion step and (3) verification step.

Initialization Step. The initialization step consists in finding an initialization path which brings
the DTE to a given state. Consider the following example which shows the DTE at the Disconnect-
ed Phase.  It is, of course, much simplified with respect to reality.  The DTE Disconnected State
can be represented by the following transition tree.  This tree is a small part of the tree called Dis-
connected shown in the Appendix.

bh0 * 1 phl ?f : frame[is_disc(f)]
       * | 1 phl ! DM ==> again bh0
bh1 * 2 phl ?f : frame[is_dm(f)]
       * | 1 phl ! SABM ==> continue
bh2 * 3 phl ?f : frame[is_ua(f)] ==> again bh0
bh3 * 4 phl ?f : frame[is_sabm(f)] 
       *  | 1 phl ! DM ==> again bh0

This transition tree can be represented by the following state diagram

The initialization path (ipl1) which brings the DTE to the Disconnected Phase (state L1)
is not shown in this figure.  The path ipl1 is given by the Termination Phase part of the specifica-
tion.  It is added as a preamble to the test cases generated for state L1.

The initialization path (ipl2) which brings the DTE to state L2 is obtained by following
the  edge (l2) which goes to state L2.  The path (ipl2) is, therefore, obtained by concatenating path

L1

L2

sabm/dm

disc/dm

ua

dm/sabm (l2)



ipl1 with edge  l2:

(ipl2)         +ipl1
                        L ! DM
                            L ? SABM

In general, given a current state, the transition tree for this state is obtained.  Next, test
cases for this state are generated (see evaluation step).  Then the edges of the current transition tree
which do not contain an again are explored, meaning that, probably, new states are reached.  The
initialization paths of the new states are obtained by concatenating the initialization path of the cur-
rent state with those edges which lead to these states.

Evaluation Step. The evaluation step consists in obtaining the transition tree for the state follow-
ing the initialization step, and then performing all the transitions given by this tree. A transition is
a stimulus to which the DTE may or may not respond.  It is constructed in the following way.  For
a reception of a frame fs in the transition tree, there is a transmission of the frame fs in the evalua-
tion step.  Successively, for a transmission of a frame fr in the transition tree, there is a reception
of the frame fr in the evaluation step.  The transmission of fs and the reception of fr, if any, repre-
sent the body of the test case.

If a frame  fr is received after sending fs, the verification path of what follows the recep-
tion of fr is added to the body of the test case after reception of fr. If no reception follows the send-
ing of fs and there is an exit to a next phase, the verification path of the next phase is added to the
body of  the test case.  If no reception follows the sending of fs and there is no exit to a next phase,
the verification path of next actions is added to the test case after the timer starts and stops (to make
sure that nothing is received).  An otherwise is added and a verdict fail is issued at any point where
something different from what is expected to be received can occur. All this is summarized in the
following:

phl ! fs
  --if reception
            phl ? fr
               +verification path of what follows
  --else (no reception)
      --if exit to next phase
               + verification path of next phase
      --else (no exit to next phase)
                --start timer
                     --time-out
                            + verification path of what follows
                     --otherwise:                                                                    fail
  -- otherwise                                                                                       fail
  -- expiration of timer                                                                         fail

Consider the previous example with the transition tree of state L2 as shown below.  This
tree can be considered as a small part of the tree called Linksetup shown in the Appendix.

bh0 * 1 phl ?f : frame[is_disc(f)]
       * | 1 phl ! DM ==> continue
bh1 * 2 phl ?f : frame[is_sabm(f)]
       * | 1 phl ! UA  ** EXIT SUCCEED **
bh2 * 3 phl ?f : frame[is_ua(f)]  ** EXIT SUCCEED **



bh3 * 4 phl ?f : frame[is_dm(f)] ==> again bh0
bh4 * 5 t ! expire : time 
       *  | 1 phl ! SABM ==> again bh0

 
This transition tree can be represented by the following state diagram.  Edge (l4) expresses

the fact that when a time-out occurs and the DTE does not receive anything, a SABM is sent and
the DTE stays in state L2 waiting for a response.  Note that this condition is not tested.  

Therefore the following four test cases are obtained:

(1) +ipl2
           L ! DISC
               L ? DM
                  + verif_l1
               L ? Otherwise                                            fail
               ?Elapse Td                                                 fail

(2) +ipl2
           L ! SABM
               L  ? UA
                    + verif_l4
               L ? Otherwise                                           fail
               ?Elapse Td                                                fail

(3) +ipl2
          phl ! UA
                 + verif_l4
                               
(4)  +ipl2
            L ! DM
                  (Start Timer)
                       ?Timeout   Timer
                             + verif_l2            
                       L ? Otherwise                                  fail

The TTCN subtrees verif_l1, verif_l2 and verif_l4 are the verification paths of respective-
ly states L1,  L2 and L4.

Verification Step. For the verification step, we must find a verification path. A verification path
for a given state is obtained from the transition tree of that state using the UIO method, in other
words we look for a path from the state which is unique to the corresponding transition tree.  This
path consists of either the transmission of a frame fs followed by the reception of a frame fr, or by

L2

L4

disc/dmto state L1

ua sabm/ua

time expire/sabm

dm

(l4)



the reception of a frame fr before the timer expires.  In this latter case, the tester starts its timer and
does not send anything, in which case the DTE should send the frame fr after its timer expires.
Therefore the tester should receive frame fr before its timer expires; otherwise the test case fails. 

Consider again the previous example with the transition tree of state L4 as shown below.
This tree is a small part of the tree called Dataphase which, for reasons of space, cannot be shown
in the paper (it is shown in [Gue]):

bh0 * 1 phl ?f : frame[is_disc(f)]
       * | 1 phl ! UA ==> continue
bh1 * 2 phl ?f : frame[is_sabm(f)]
       * | 1 phl ! UA  ==> again bh0
bh2 * 3 phl ?f : frame[is_ua(f)]  ==> again bh0
bh3 * 4 phl ?f : frame[is_dm(f)] 
       * | 1 phl ! SABM ==> continue

This transition tree can be represented by the following state diagram:
 

We want to obtain the verification paths for states L1, L2 and L4.  Let us start by looking
for the potential verification paths of each state.  The potential verification paths of state L1, which
are obtained from the transition tree of state L1, are:

(pvp1.1)  L ! DISC                                                         
                      L ? DM                               pass
                      L ? Otherwise                    fail
                      ?Elapse Td                         fail

(pvp1.2)  L ! SABM
                      L ? DM                               pass
                      L ? Otherwise                    fail
                      ?Elapse  Td                        fail

(pvp1.3)  L ! DM
                      L ? SABM                          pass
                      L ? Otherwise                    fail
                      ?Elapse  Td                        fail

(pvp1.4)  L ! UA
                    (Start Timer)
                         ?Timeout  Timer              pass
                         L ? Otherwise                 fail

The potential verification paths for state L2 are:

L4

 L2

uasabm/ua

disc/ua
dm/sabm

to state to state L1



(pvp2.1)  L ! DISC
                      L ? DM                               pass
                      L ? Otherwise                    fail
                      ?Elapse  Td                        fail

(pvp2.2)  L ! SABM
                      L ? UA                                pass
                      L ? Otherwise                    fail
                      ?Elapse  Td                        fail

(pvp2.3)  L ! UA
                    (Start  Timer)
                        ?Timeout  Timer                pass
                        L ? Otherwise                   fail

(pvp2.4)  L ! DM
                    (Start  Timer)
                         ?Timeout  Timer               pass
                         L ? Otherwise                  fail

(pvp2.5)  (Start Timer)
                    L ? SABM                          pass
                    L ? Otherwise                     fail
                    ?Timeout Timer                   fail

The potential verification paths for state L4 are:

(pvp4.1)  L ! DISC
                      L ? UA                               pass
                      L ? Otherwise                   fail
                      ?Elapse  Td                       fail

(pvp4.2)  L ! SABM
                      L ? UA                               pass
                      L ? Otherwise                   fail
                      ?Elapse  Td                       fail

(pvp4.3)  L ! DM
                      L ? SABM                         pass
                      L ? Otherwise                   fail
                      ?Elapse  Td                       fail

(pvp4.4)  L ! UA
                   (Start  Timer)
                           ?Timeout   Timer               pass
                           L ? Otherwise                   fail

The potential verification paths which are common to some states are removed from the
potential verification paths of those states.  Paths (pvp1.1) and (pvp2.1) are identical.  Paths
(pvp1.3) and (pvp4.3) are identical.  Paths (pvp2.2) and (pvp4.2) are identical.  Paths (pvp1.4), (pvp
2.3) and (pvp4.4) are identical.  For state L1 the only potential verification path that remains is



(pvp1.2).  For state L2 the only potential verification paths that remain are (pvp2.4) and (pvp2.5).
For state L4 the only potential verification path that remains is (pvp4.1). Now these potential ver-
ification paths must be compared with all potential verification paths of all other states, including
those yet to be considered, so the same process must be repeated with respect to all these other
paths. 

Of course, such unique I/O sequences are not guaranteed to exist in general. For LAP-B,
however, we were always able to find them.  

 Since (pvp4.1) was found to be the verification path for state L4, a complete test case (2)
for state L2 (see Evaluation Step) is:

+ipl2
      L ! SABM
            L ? UA
                 +(pvp4.1)
            L ? Otherwise                            fail
            ?Elapse Td                                 fail

Resolution of Selection Predicates in SSTs (The Treatment of Data).  It has already been men-
tioned that to the reception of a frame by the IUT, shown in the generated SSTs by the symbol ?,
corresponds the transmission of a frame by the tester.  Selection predicates may be associated with
this reception.  Frame value(s) must be generated from these selection predicates, such that the
predicates are true.  These frames are the ones to be sent by the tester, and  to each frame value
corresponds a test case. For example, consider the following frame reception

phl  ?f : frame[is-disc(f)]
the only frame value which can be generated from the selection predicate [is-disc(f)] is a DISC
frame.  In reality, more complex selection predicates that admit  more that one frame value appear.
Assume that the following reception is shown in a tree:

phl  ?f : frame[is-disc(f) or (pf(f) eq 1)]
The selection predicate of this reception, [is-disc(f)  or (pf(f) eq 1)] means that a DISC frame or
any frame for which the field pf is equal to 1 are acceptable. Suitable instances of such frames must
be generated for testing purposes. The selection predicate shown in the tree can also be specified
as a combination of predicates.  The following example illustrates this:

phl  ?f : frame[Incorrect(f)]
where the predicate Incorrect is defined in the specification as:

Incorrect(f) = Not(Is-valid(f)) or Not(Not-abort(f))
Again, in order to specify the test cases one must see how predicates Is-valid and Not-abort are
defined in the specification, and frame values which satisfy either predicate Not(Is-valid(f)) or
predicate Not(Not-abort(f)) must be generated.  

The frame generation was done manually.  However, it would be possible to automate it
to a certain extent, for example by using logic programming techniques.

6. COMPARISON

Following is a brief comparison between our method and results and those of
[Kan][KLPU].  The method is indeed similar, however LOTOS enables a much more precise de-
scription of protocols than state tables, since it allows to specify not only the control structure, but
also the data and related constraints.  Furthermore, while the test cases of [Kan][KLPU] were ob-
tained manually from a state table, we were able to use the tree-building facilities of our LOTOS
interpreter.



The results are also similar, at least no differences were found in the test cases obtained
for the initialization and evaluation steps.  In the verification steps, however, we were able to find,
in some cases, what we believe to be better verification sequences, as documented in [Gue].  Un-
fortunately, space does not allow to discuss this point here.

7. CONCLUSIONS

We have presented a semi-formal  method for deriving test cases from LOTOS specifica-
tions, and we have shown how the method has been applied in order to obtain test  cases for LAP-
B.  The results obtained have been shown to compare favorably with those of a similar semi-formal
method based on the use of state tables. 

Our method is semi-formal because it has no claim of completeness and depends for its
use on the skill of the test specifier in finding relevant paths. Furthermore, it depends on the use (or
avoidance) of certain LOTOS specifications styles.  Based on LOTOS theory, a formal method is
being developed, for deriving test cases from specifications [Brink1][Brink2][E][L][W]. So far,
however, this method is of limited practical value because it only applies to a small subset of LO-
TOS.  In [LS] a method which appears somewhat related to ours is presented, and is applied to the
Alternating Bit Protocol.  Hopefully, with further study it will become clear how these different
approaches can be integrated and it will be possible to find techniques that are more formal and
more automated.   We believe that our method is valuable at least until such time as this research
has developed to the point where it is able to handle specifications of complexity comparable to
the one discussed here.
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Appendix: Some Trees Used in  Test Case Generation

Disconnected Tree

bh0  * 1 phl ?[sframe,sframe]eframe  (1) 
              [or(and(correct(sframe),and(eq(pf(sframe),$1),eq(adrs(sframe),from))),is_disc(get_f(sframe)))] 
              [not(or(and(eq(tmode,basic),is_sabm(get_f(sframe))),and(eq(tmode,extended),is_sabme(get_f(sframe)))))]  [619,622]
bh1  * | 1 i (enable: exit !pf(sframe):Bit) [620,623]
bh2  * | | 1 phl !m(make_dm(flagging,from,ctl_uframe(b),fc,flagging),noinfor,correct,notless,noabort):eframe [624]
bh3  * | | | 1 i (enable: exit) [626] ==> again bh0
        * 2 phl ?[sframe,sframe]eframe(2)
              [and(not(or(and(correct(sframe),and(eq(pf(sframe),$1),eq(adrs(sframe),from))),is_disc(get_f(sframe)))),
              not(and(is_dm(get_f(sframe)),eq(pf(sframe),$0))))] 
              [not(or(and(eq(tmode,basic),is_sabm(get_f(sframe))),and(eq(tmode,extended),is_sabme(get_f(sframe)))))]  [629,633]



bh4  * | 1 i (enable: exit) [631,634] ==> again bh0
        * 3 dl ?p:primitive(3)
             [is_dl_est_req(p)]  [639]
bh5  * | 1 [eq(tmode,basic)] i (hiding: [lt(init,n2)] p !$1:Nat) [1096,1150]
bh6  * | | 1 phl !f:eframe [1097,1151]
bh7  * | | | 1 i (hiding: t !start:time) [1078,547] ==> continue
        * | 2 [eq(tmode,basic)] i (hiding: [eq(init,n2)] p !$0:Bit) [1108,1153]
bh8  * | | 1 exit !false:Bool !false:Bool ** EXIT SUCCEED ** [1109,1154]
        * | 3 [eq(tmode,extended)] i (hiding: [lt(init,n2)] p !$1:Nat) [1096,1150]
bh9  * | | 1 phl !f:eframe [1097,1151]
bh10* | | | 1 i (hiding: t !start:time) [1078,547] ==> continue
        * | 4 [eq(tmode,extended)] i (hiding: [eq(init,n2)] p !$0:Bit) [1108,1153] ==> again bh8
        * | 5 i (hiding: [lt(init,n2)] p !$1:Nat) [1096,1150]
bh11 * | | 1 phl !f:eframe [1097,1151]
bh12 * | | | 1 i (hiding: t !start:time) [1078,547] ==> continue
         * | 6 i (hiding: [eq(init,n2)] p !$0:Bit) [1128,1166] ==> again bh8
         * | 7 [senddmoption] i (hiding: [lt(init,n2)] p !$1:Nat) [682,719]
bh13 * | | 1 phl !m(make_dm(flagging,to,ctl_uframe($0),fc,flagging),noinfor,correct,notless,noabort):eframe [683,720]
bh14 * | | | 1 i (hiding: t !start:time) [684,536] ==> continue
         * | 8 i (hiding: [eq(init,n2)] p !$0:Bit) [695,722] ==> again bh8
         * 4 phl ?sframe:eframe(4)
             [and(or(and(is_sabm(get_f(sframe)),eq(tmode,basic)),and(is_sabme(get_f(sframe)),eq(tmode,extended))),
              correct(sframe))]  [596]
bh15 * | 1 i [598]
         * | | 1 phl !m(make_ua(flagging,from,ctl_uframe(pf(sframe)),fc,flagging),noinfor,correct,notless,noabort):eframe [598]
bh16 * | | | 1 exit !true:Bool !false:Bool ** EXIT SUCCEED ** [598]
         * | 2 i [602]
         * | | 1 phl !m(make_dm(flagging,from,ctl_uframe(pf(sframe)),fc,flagging),noinfor,correct,notless,noabort):eframe [602]
bh17 * | | | 1 exit !false:Bool !false:Bool ** EXIT SUCCEED ** [603]
         * 5 phl ?sframe:eframe(5)
              [and(correct(sframe),and(is_dm(get_f(sframe)),eq(pf(sframe),$0)))]  [607]
         * | 1 i [609] 
bh18 * | | 1 i (hiding: [lt(init,n2)] p !$1:Nat) [1096,1150]
bh19 * | | | 1 phl !f:eframe [1097,1151] ==> again bh7
         * | | 1 i (hiding: [eq(init,n2)] p !$0:Bit) [1128,1166] ==> again bh8
         * | 2 i [613]
         * | | 1 phl !m(make_disc(flagging,to,ctl_uframe(pf(sframe)),fc,flagging),noinfor,correct,notless,noabort):
                 eframe [613] ==> again bh17
         * 6 phl ?f:eframe(6)
                 [not(correct(f))]  [830] ==> again bh3

Linksetup  Tree

bh0  * 1 i (hiding: [lt(init,n2)] p !Succ(0):Nat) [1096,1150]
bh1  * | 1 phl !m(make_sabm(flagging,b,ctl_uframe($1),fc,flagging),noinfor,correct,notless,noabort):eframe [1097,1151]
bh2  * | | 1 i (hiding: t !start:time) [1098,547]
bh3  * | | | 1 i (specified explicitly) [548](1)
bh4  * | | | | 1 i (hiding: t !expired:time) [1100,549]
bh5  * | | | | | 1 i (enable: exit) [1100]
bh6  * | | | | | | 1 i (hiding: [lt(init,n2)] p !Succ(0):Nat) [1096,906,931,956,992,1027]
bh7  * | | | | | | | 1 phl !m(make_sabm(flagging,b,ctl_uframe($1),fc,flagging),noinfor,correct,notless,noabort):
                            eframe [1097,907,932,957,993,1028] ==> again bh2 
        * | | | | | | 2 i (hiding: [eq(init,n2)] p !0:Bit) [1108,1153]
bh8  * | | | | | | | 1 exit !false:Bool !false:Bool  !$f1  ** EXIT SUCCEED ** [1109,1154,550]
bh9  * | | | 2 phl ?[fram,sframe,f,f,f,f]eframe(2)
           [and(correct(sframe),or(is-sabm(get-f(sframe)),or(or(is-disc(get-f(sframe)),and(is-ua(get-f(sframe)),
                   eq(pf(sframe),1))),and(is-dm(get-f(sframe)),eq(pf(sframe),1)))))] 
           [and(correct(f),and(is-ua(get-f(f)),eq(pf(f),1)))] 
           [not(and(correct(f),and(is-dm(get-f(f)),eq(pf(f),1))))] 
           [not(and(correct(f),or(is-sabm(get-f(f)),is-sabme(get-f(f)))))] 
           [not(and(correct(f),is-disc(get-f(f))))]  [1127,882,921,938,979,1000]
         * | | | | | 1 i (hiding: pp !0:Nat) [1113,890,922,941,983,1003]
bh10 * | | | | | | 1 i (hiding: t !reset:time) [1114,552]
bh11 * | | | | | | | 1 exit !true:Bool !false:Bool !$f1:eframe  ** EXIT SUCCEED ** [1115,891,917,942,984,1004,553]



         * | | | 3 phl ?[fram,sframe,f,f,f,f]eframe(3)
                [and(correct(sframe),or(is-sabm(get-f(sframe)),or(or(is-disc(get-f(sframe)),and(is-ua(get-f(sframe)),
                  eq(pf(sframe),1))),and(is-dm(get-f(sframe)),eq(pf(sframe),1)))))] 
                [not(and(correct(f),and(is-ua(get-f(f)),eq(pf(f),1))))] 
                [and(correct(f),and(is-dm(get-f(f)),eq(pf(f),1)))] 
                [not(and(correct(f),or(is-sabm(get-f(f)),is-sabme(get-f(f)))))] 
                [not(and(correct(f),is-disc(get-f(f))))]  [1127,882,913,945,979,1000]
         * | | | | | 1 i (hiding: pp !0:Nat) [1113,890,916,947,983,1003]
bh12 * | | | | | | 1 i (hiding: t !reset:time) [1114,552]
bh13 * | | | | | | | 1 exit !false:Bool !false:Bool !$f6:eframe  ** EXIT SUCCEED ** [1115,891,917,948,984,1004,553]
         * | | | 4 phl ?[fram,sframe,f,f,f,f]eframe(4)
                [and(correct(sframe),or(is-sabm(get-f(sframe)),or(or(is-disc(get-f(sframe)),and(is-ua(get-f(sframe)),
                eq(pf(sframe),1))),and(is-dm(get-f(sframe)),eq(pf(sframe),1)))))] 
                [not(and(correct(f),and(is-ua(get-f(f)),eq(pf(f),1))))] 
                [not(and(correct(f),and(is-dm(get-f(f)),eq(pf(f),1))))] 
                [not(and(correct(f),or(is-sabm(get-f(f)),is-sabme(get-f(f)))))] 
                [and(correct(f),is-disc(get-f(f)))]  [1127,882,913,938,979,1007]

          * | | | | 1 i (enable: exit !false:Bool !m(make_disc(flagging,b,ctl_uframe($1),fc,flagging),noinfor,correct,notless,noabort)
                          eframe) [1008]
bh14  * | | | | | 1 i (hiding: pp !$1:Nat) [1118,890,916,941,983,1011] 
          * | | | | | | 1 i (hiding: t !reset:time) [1119,552]
          * | | | | | | | 1 i (hiding: p !$0:Nat) [1120,900,925,950,986,1012] 
bh15  * | | | | | | | | 1 phl !m(make_dm(flagging,a,ctl_uframe(1),fc,flagging),noinfor,correct,notless,noabort)
                             :eframe [1121,901,926,951,987,1013]  
           * | | | | | | | | | 1 exit !false:Bool !false:Bool !$f8  ** EXIT SUCCEED ** [1122,902,927,952,988,1014,550]
           * | | | 5 phl ?[fram,sframe,f,f,f,f]eframe(5)
                [and(correct(sframe),or(is-sabm(get-f(sframe)),or(or(is-disc(get-f(sframe)),and(is-ua(get-f(sframe)),
                  eq(pf(sframe),1))),and(is-dm(get-f(sframe)),eq(pf(sframe),1)))))] 
                [not(and(correct(f),and(is-ua(get-f(f)),eq(pf(f),1))))] 
                [not(and(correct(f),and(is-dm(get-f(f)),eq(pf(f),1))))] 
                [and(correct(f),or(is-sabm(get-f(f)),is-sabme(get-f(f))))] 
                [not(and(correct(f),is-disc(get-f(f))))]  [1127,882,913,938,964,1000]
           * | | | | 1 i (enable: exit !true:Bool  !m(make_sabm(flagging,b,ctl_uframe($1),fc,flagging),noinfor,correct,notless,noabort)
                  :eframe) [965]
           * | | | | | 1 i (hiding: [collis(m(make_sabm(flagging,b,ctl_uframe($1),fc,flagging),noinfor,correct,notless,noabort),
                              m(make_sabm(flagging,b,ctl_uframe($1),fc,flagging),noinfor,correct,notless,noabort))] 
                              pp !$1:Nat) [1118,890,916,941,1035,1003] ==> continue
bh16    * | | | | | | 1 i (hiding: t !reset:time) [1119,552]
bh17    * | | | | | | | 1 i (hiding: p !$0:Nat) [1120,900,925,950,1036,1021]
bh18    * | | | | | | | | 1 phl !m(make_ua(flagging,a,ctl_uframe(1),fc,flagging),noinfor,correct,notless,noabort) :
                                  eframe [1121,901,926,951,1037,1022] ==> continue 
            * | | | 6 phl ?[fram,f,f,sframe,f,f]eframe(6)
                [not(and(correct(f),or(is-sabm(get-f(f)),is-sabme(get-f(f)))))]
                [not(and(correct(f),is-disc(get-f(f))))]
                [not(or(and(correct(sframe),is-sabm(get-f(sframe))),or(is-disc(get-f(sframe)),or(and(is-ua(get-f(sframe)),
                   eq(pf(sframe),1)),and(is-dm(get-f(sframe)),eq(pf(sframe),1))))))]
                [not(and(correct(f),and(is-ua(get-f(f)),eq(pf(f),1))))]
                [not(and(correct(f),and(is-dm(get-f(f)),eq(pf(f),1))))]  [1127,895,913,938,979,1000] ==> again bh9
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