469 research outputs found

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Three-Dimensional Motion Reconstruction and Analysis of the Right Ventricle Using Tagged MRI

    Get PDF
    Right ventricular (RV) dysfunction can serve as an indicator of heart and lung disease and can adversely affect the left ventricle (LV). However, normal RV function must be characterized before abnormal states can be detected. We can describe a method for reconstructing the 3D motion of the RV images by fitting of a deformable model to extracted tag and contour data from multiview tagged magnetic resonance images(MRI). The deformable model is a biventricular finite element mesh built directly from the contours. Our approach accommodates the geometrically complex RV by using the entire lengths of the tags, localized degrees of freedom (DOFs), and finite elements for geometric modeling. We convert the results of the reconstruction into potentially useful motion variables, such as strains and displacements. The fitting technique is applied to synthetic data, two normal hearts, and a heart with right ventricular hypertrophy (RVH). The results in this paper are limited to the RV free wall and septum. We find noticeable differences between the motion variables calculated for the normal volunteers and the RVH patient

    USER DEFINED GEOMETRIC FEATURE FOR THE CREATION OF THE FEMORAL NECK ENVELOPING SURFACE

    Get PDF
    There is a growing demand for application of personalized bone implants (endoprostheses or macro-scaffolds, and fixators) which conform the anatomy of patient. Hence the need for a CAD procedure that enables fast and sufficiently accurate digital reconstruction of the traumatized bone geometry. Research presented in this paper addresses digital reconstruction of the femoral neck fracture. The results point out that User-Defined (geometric) Feature (UDF) concept is the most convenient to use in digital reconstruction of numerous variants of the same topology, such as in this kind of bone region. UDF, named FemoNeck, is developed to demonstrate capability of the chosen concept. Its geometry, controlled by a dozen of parameters, can be easily shaped according to anatomy of femoral neck region of the specific patient. That kind of CAD procedure should use minimally required set of geometric (anatomical) parameters, which can be easily captured from X-ray or Computed Tomography (CT) images. For the statistical analysis of geometry and UDF development we used CT scans of proximal femur of 24 Caucasian female and male adults. The validation of the proposed method was done by applying it for remodeling four femoral necks of four different proximal femurs and by comparing the geometrical congruency between the raw polygonal models gained directly from CT scan and reconstructed models

    Matisse : Painting 2D regions for Modeling Free-Form Shapes

    Get PDF
    International audienceThis paper presents "Matisse", an interactive modeling system aimed at providing the public with a very easy way to design free-form 3D shapes. The user progressively creates a model by painting 2D regions of arbitrary topology while freely changing the view-point and zoom factor. Each region is converted into a 3D shape, using a variant of implicit modeling that fits convolution surfaces to regions with no need of any optimization step. We use intuitive, automatic ways of inferring the thickness and position in depth of each implicit primitive, enabling the user to concentrate only on shape design. When he or she paints partly on top of an existing primitive, the shapes are blended in a local region around the intersection, avoiding some of the well known unwanted blending artifacts of implicit surfaces. The locality of the blend depends on the size of smallest feature, enabling the user to enhance large, smooth primitives with smaller details without blurring the latter away. As the results show, our system enables any unprepared user to create 3D geometry in a very intuitive way

    Anatomical shape reconstruction and manufacturing: solving topological changes of lumen vessel trough geometric approach

    Get PDF
    Over the last years there has been an increasing growth of interest in Rapid Prototyping (RP) techniques applied to various fields of medicine. RP makes it possible, in vascular surgery, to produce accurate anatomic replicas of patient vessels. These replicas can help the customization of surgical invasive interventions such as in situ stent-graft insertion in carotid region. The main goal of this work is to obtain high quality in lumen reconstruction and manufacturing replicas by RP technique. This goal is achieved through the complete control of each phase of the generating process. We present a semi-automatic method for carotid lumen reconstruction based on Boundary Representation (BRep). All parameters influencing the quality of the shape reconstruction are presented and discussed: shape acquisition, shape reconstruction and shape manufacturing. The shape acquisition starts by extracting the points belonging to the boundary of the lumen vessel, from Computer Tomography (CT) images. These points, parameterised in a vector, are the input data of the shape reconstruction algorithm based on B-Spline interpolation. The B-Spline type for representing curves and surfaces were chosen because of their properties of continuity and local control. In the shape reconstruction stage we had to face problems due to the topological change on the vessel structure. For vessel regions where there are not changes of topology, we use the closed B-Spline curves (belonging to adjacent acquisition planes) as generating curves to build a B-Spline surface. For vessel regions with at least a change of topology (ex. bifurcation region) our algorithm split automatically the involved curves to obtain three rectangular B-Spline patches. Such patches are joined together to obtain the bifurcation vessel lumen. The set of lumen surfaces is then inserted in a Boundary Representation in order to get a valid solid. To analyse the quality of the reconstructed shapes, the final object is compared with the acquisition image. This solid is correctly tessellated in triangles to produce the data format used by the RP devices (STL)

    Three Dimensional Panoramic Fast Flourescence Imaging of Cardiac Arryhtymias in the Rabbit Heart

    Get PDF
    Cardiac high spatio-temporal optical mapping provides a unique opportunity to investigate the dynamics of propagating waves of excitation during ventricular arrhythmia and defibrillation. However, studies using single camera imaging systems are hampered by the inability to monitor electrical activity from the entire surface of the heart. We have developed a three dimensional panoramic imaging system which allows high-resolution and high-dynamic-range optical mapping from the entire surface of the heart. Rabbit hearts (n=4) were Langendorff perfused and imaged by the system during sinus rhythm, epicardial pacing, and arrhythmias. The reconstructed 3D electrical activity provides us with a powerful tool to investigate fundamental mechanisms of arrhythmia and antiarrhythmia therapy in normal and diseased hearts
    corecore