
Matisse : Painting 2D regions for Modeling Free-Form

Shapes

Adrien Bernhardt, Adeline Pihuit, Marie-Paule Cani, Löıc Barthe

To cite this version:

Adrien Bernhardt, Adeline Pihuit, Marie-Paule Cani, Löıc Barthe. Matisse : Painting 2D re-
gions for Modeling Free-Form Shapes. Christine Alvarado and Marie-Paule Cani. SBM’08 -
Eurographics Workshop on Sketch-Based Interfaces and Modeling, Jun 2008, Annecy, France.
Eurographics Association, pp.57-64, 2008, SBM’08 Proceedings of the Fifth Eurographics con-
ference on Sketch-Based Interfaces and Modeling. <10.2312/SBM/SBM08/057-064>. <inria-
00336688v2>

HAL Id: inria-00336688

https://hal.inria.fr/inria-00336688v2

Submitted on 11 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00336688v2

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)
C. Alvarado and M.- P. Cani (Editors)

Matisse : Painting 2D regions for Modeling Free-Form Shapes

A. Bernhardt1, A. Pihuit1, M. P. Cani1, L. Barthe2

1Grenoble Universities (LJK-CNRS) & INRIA, France
2University of Toulouse (IRIT-CNRS), France

Abstract

This paper presentsMatisse, an interactive modeling system aimed at providing the public with a very easy way to

design free-form 3D shapes. The user progressively creates a model by painting 2D regions of arbitrary topology

while freely changing the view-point and zoom factor. Each region is converted into a 3D shape, using a variant of

implicit modeling that fits convolution surfaces to regions with no need of any optimization step. We use intuitive,

automatic ways of inferring the thickness and position in depth of each implicit primitive, enabling the user to

concentrate only on shape design. When he or she paints partly on top of an existing primitive, the shapes are

blended in a local region around the intersection, avoiding some of the well known unwanted blending artifacts

of implicit surfaces. The locality of the blend depends on the size of smallest feature, enabling the user to enhance

large, smooth primitives with smaller details without blurring the latter away. As the results show, our system

enables any unprepared user to create 3D geometry in a very intuitive way.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Object Modeling(implicit
surfaces); I.3.6 [Computer Graphics]: Methodology and techniques(sketch-based interaction).

1. Introduction

Designing 3D shapes is not easily accessible to the public:
sculpting the model one has in mind from a piece of clay
or wood requires some skills, while sketching, if easier, will
only provide a single 2D view of the shape. Digital shape
modeling, supported by impressive advances in shape rep-
resentation and editing, is an interesting alternative. How-
ever, standard modeling systems are far from being usable
by un-trained users: they usually require some understand-
ing of the underlying geometrical representation, are often
limited to some indirect control (e.g. manipulating control
structures or weight values) and require a tedious training
process before mastering the interface. Most novice users
would get discouraged before being able to enjoy a creative
design task.

Recently, systems based on 2D sketching have been pro-
posed to ease the modeling of 3D shapes. However, keeping
the simplicity of use of real sketches - where 3D somehow
emerges from the sketch - without introducing restrictions
on the shape being modeled, is very challenging. This pa-
per presents a solution where smooth free-form shapes of
any topology can be constructed by progressively painting

and refining them from different viewpoints. An example is
shown in Figure 1.

Figure 1: Left: Original art-work from Matisse. Right: 3D

model created with our system using 10 sketching steps from

different viewpoints. The Matisse art-work served as a loose

inspiration.

c© The Eurographics Association 2008.

A. Bernhardt & A. Pihuit & M. P. Cani & L. Barthe / Matisse : Painting 2D regions for Modeling Free-Form Shapes

1.1. Related Work

Sketch-based modeling systems can be divided in two cate-
gories. The first category groups systems dedicated to a spe-
cific application. This includes modeling clothes [TWB∗06],
trees [IOI06, OOI07], hair [WBC07] or architectural
shapes [Ske]. In these systems, 3D is inferred using some
a priori knowledge of the object being modeled. The second
category, which includes the seminal paper Teddy [IMT99],
groups systems for modeling general free-form shapes from
the sketch only. Let us review this second category, to which
our work belongs.

The basic idea is to reconstruct a 3D shape from contour
curves, interpreted as silhouettes. In most cases, the silhou-
ettes are restricted to closed curves and considered to be
planar, which restricts reconstructed shapes to those with
a flat medial axis. In contrast, [KH06] allows the user to
draw complex contours including cusps and branching point,
from which more general 3D shapes can be inferred. Most
of these systems allow adding extra shape components from
other viewpoints, for instance through cutting and extrud-
ing the model [IMT99]. To capture shapes of more general
topological genus, some systems allow the creation of holes
within the planar sketch of the shape, using conventions such
as sketching a contour in clockwise order inside a counter-
clockwise outer contour [SWSJ05,KH06]. However, this re-
quires the user to learn specific sketching rules. Our painting
metaphor reuses the idea of modeling planar silhouette com-
ponents extended from different viewpoints. However, we
use a painting instead of a sketching metaphor, making the
creation of components of arbitrary genus straightforward.

Let us now discuss the methods used in previous systems
to fit the sketched contours. A first group of methods belong
to variational modeling, and are thus based on optimization:
points on the sketched contours, projected into 3D, are used
as position constraints for a 3D surface, using either varia-
tional implicit modeling [KHR02,ZS03,CEC∗05] or Lapla-
cian mesh editing [NISA07]. In [SWSJ05], a 2D variational
field function is fitted to each contour, with choice between
extrusion, revolution or standard inflation to get a 3D shape.
Components sketched from different viewpoints are merged
using the blobtree blending mechanisms.

A second approach for fitting a 3D shape is to rely on ge-
ometric analysis of the contour to reduce the need for an op-
timisation: a skeleton (or medial axis) is extracted from the
contour and used to generate a 3D shape [IMT99, TZF04,
AGB]. A difficulty in reconstructing such a shape is get-
tig a smooth surface. Recent techniques use the skeleton
for defining an implicit surface, modeled as blobs [AGB]
or as a convolution primitive [TZF04, ABCG05]. On one
hand, blobs often create oscillations on the shape. On the
other hand, the use of convolution smoothes thickness vari-
ations so much that directly fitting the contour is difficult.
[ABCG05] is supposed to solve this problem but never ex-
plains how it is done. We suspect that ad-hoc correspon-

dances tables were precomputed. [TZF04] instead intro-
duces an extra optimization step.

In this work, we use same convolution surface model
(namely, a closed-form solution for the Cauchy-kernel) but
we propose a closed form formula based power transform of
radius values and adapted iso-values to limit the smoothing
of thickness variations. It makes our system fully interactive.

1.2. Contributions

This paper presents an interactive modeling system designed
for novice users. Smooth, free-form shapes of arbitrary topo-
logical genus are progressively created by blending surfaces
created from different viewing angles and zoom factors. Our
main contribution is the introduction of a region-painting
metaphor, that makes the creation of shape components of
arbitrary topological genus straightforward. The main fea-
tures of our painting system are:

• a mechanism to reconstruct a region with an implicit sur-
face without any optimization step;

• improved, automatic ways of inferring the depth of a
shape component from the elements already being drawn;

• a new local blending mechanism, which only blends com-
ponents where the user painted some overlap, and whose
parameters are automatically chosen to prevent small de-
tails from being blurred into larger shapes.

• an adaptive meshing algorithm which meshes each primi-
tive according to the size of smallest features and locally
re-meshes the surface after blending operations.

The remainder of this paper develops as follows: section
2 presents our solution for reconstructing a painted region.
Section 3 details the way new shape components are com-
bined with existing ones. Section 4 reviews the interface and
presents results. We conclude and discuss future work in sec-
tion 5.

2. Converting a painted region into a 3D shape

This section details the process we use for modeling a 3D
shape from 2D user input. After explaining the benefits of
using painted regions rather than silhouettes, we detail the
way a convolution skeleton is extracted from a region, and
how the convolution surface parameters are chosen so that
the shape fits the region.

2.1. Painting regions instead of sketching silhouettes

In most sketch-based systems [IMT99, SWSJ05, AGB,
KH06], the user is required to sketch a 2D contour, from
which a 3D shape is inflated. Except in [KH06], the contour
is a simple closed line, interpreted as a flat silhouette, which
restricts the family of shapes one can build. Complex shapes
can however be created from this mechanism, by blending
flat-silhouette components built under different viewpoints.

c© The Eurographics Association 2008.

A. Bernhardt & A. Pihuit & M. P. Cani & L. Barthe / Matisse : Painting 2D regions for Modeling Free-Form Shapes

In this work, we re-use the idea of defining shape com-
ponents that all have a flat silhouette, since it makes both
design by novices and 3D reconstruction much simpler than
with complex contours. However, to ease the user task, we
use a painting metaphor rather than a sketch-based one: the
user selects a brush of a given size and is free to paint either
a stroke (closed or not) or to fill a region, which can be done
quickly using a paint bucket. An eraser is provided to edit
the painting (see the mouth in Figure 2).

Using a painting rather than a sketching metaphor brings
several benefits: from the user side, long and thin elements
can be painted in a single gesture and edition using an eraser
is very intuitive. From the system side, there is no need of
monitoring the user input, such as checking that a well de-
fined closed contour has been sketched; moreover, no extra
interface is required for enabling the creation of shapes of ar-
bitrary topological genus: complex regions such as the one
in Figure 2 will be very naturally defined using the painting
metaphor.

Figure 2: Painting with different sizes of brush (a), filling

the surface with paint bucket (b) and erasing for adding the

mouth and correcting the eyes (c).

2.2. Converting 2D regions into convolution skeletons

The region the user paints is stored in a texture image of a
fixed size for further processing. The second step is to ex-
tract the medial axis of this region (defined as the locus of
maximal circles included within the region) and convert it
into a graph of branching poly-lines, usable as the skeleton
for a convolution surface [AJC02].

Rather than processing a constrained Delaunay triangula-
tion followed by a chordal axis extraction as in many previ-
ous works [IMT99, TZF04,AGB], we use a fast processing
method (namely iterative erosion) to extract a set of pixels
that approximates the medial axis. [Hal89]. The resulting
skeleton image (Figure 3 (b)) is stored in a second texture.
A benefit of this method is that the resolution of the skele-
ton is fixed with respect to the texture image: in practice,
they will correspond to skeletons of various resolutions in
the world referential, since the user freely zooms in and out
before painting. Our method thus straightforwardly adapts
the resolution of the skeletons to the size of shape features.

In addition to the skeleton image, we compute a Weighted
Distance Transform (WDT) that uses a scan-line algorithm
to propagate the distance from the border of the region: after

initializing distance values to zero outside the region and one
inside, two passes of forward and then backward scan are
applied to each pixel P, in scan-line order:

f1(P) = min(N5 +a,N4 +b,N3 +a,N2 +b)

f2(P) = min(P,N1 +a,N8 +b,N7 +a,N6 +b)

where a and b are metric weights (we use the 3-4 metric
of Figure 3) and Ni = 1..8 are the pixel’s neighbors. This
provides each pixel, including those of the skeleton image,
with the radius of the maximal disc centered at this pixel and
included into the region (see Figure 3 (c)).

Figure 3: Skeleton image (a), Mask used for WDT (b) and

Distance image (c)

The last step is to convert the skeleton and distance images
to a convolution skeleton, that is a graph of branching poly-
lines with adequate weight at vertices.

The pixel-based skeleton is first re-sampled and converted
into poly-lines at an adequate resolution. To be sure that both
the shape of curved branches and the variation of radii along
branches are well captured, we use a sampling resolution
which depends on both geometry and brush size. We first
create vertices at skeleton pixel positions that correspond
to branching points between three branches of more (pix-
els with 3 neighbors or more), and at pixels with a single
neighbor, corresponding to the extremities of branches; then
we refine each branch by adding vertices at skeleton pixels
corresponding to the local extrema of curvature along the
branch. Finally, we refine the branch further if needed, us-
ing a resolution depending on the brush radius. Experimen-
tal tests show that resampling the branch is necessary if the
radius varies over a threshold of 10% of its maximal value.
A result is shown in Figure 4 (a).

Figure 4: Convolution skeleton (with branches) extracted

from a region (a) and the resulting convolution surface (b).

Note that the user gets a smoothed version of his design.

c© The Eurographics Association 2008.

A. Bernhardt & A. Pihuit & M. P. Cani & L. Barthe / Matisse : Painting 2D regions for Modeling Free-Form Shapes

This process outputs a graph of branching poly-lines,
which will be used as a convolution skeleton. A radius value
ri corresponding to the pixel value in the WDT is stored at
each vertex Si of this skeleton.

2.3. From the skeleton to a convolution surface

Our assumption while reconstructing a 3D shape from a 2D
region is that the local thickness of the shape in the third
dimension should be similar to its thickness in the painting
plane. The validity of this assumption will be discussed in
Section 4. Implicit surfaces are a natural choice for recon-
structing a smooth surface from a skeleton. Moreover, this
representation will ease the blending of shape components
designed from different viewpoints. To be able to use graphs
of poly-lines as skeletons while avoiding the well known
bulging problems at joints [BW97], we base our method
on convolution surfaces. More precisely, we use the closed-
form formula for the convolution integral of the Cauchy ker-
nel, also used in [TZF04]. The implicit surface is defined as
the set of points P such that: F(P) = T where T is a given
isovalue and the field function F is the integral of the kernel
function h along the skeleton Sk:

F(P) =
Z

Sk

hS(P)dS (1)

Since an integral over a given support is equal to the sum of
the integrals over a partition of this support, F is computed
by summing the integrals along the different line-segments
composing the skeleton. To get a fast yet precise computa-
tion, we use the Cauchy kernel, which yields a closed form
solution for the convolution integral [She99]:

hS(P) =
1

(1+ s2d2(P,S))2
(2)

where d(P,S) is the distance between the point P and the
skeleton point S, and s is a tangent parameter that allows
to control the kernel width, and thus the way this primitive
will blend with others.

As shown in [TZF04], the closed form solution for the
convolution integral of the Cauchy kernel can be extended to
line-segments with a varying radius. Using the formulation
from [TZF04], we express the field value at a point p as:

F(P) = wHFH(P)+
wT −wH

l
FT (P) (3)

where wH (resp. wT) is the weight of the segment’s head

(resp. tail), FH (P) (resp. FT (P)) is a field value only de-
pending on the branch’s head (resp. tail) and l is the branch
length.

2.4. Choosing convolution parameters

Intuitively, one would except that in using the desired surface
radii as weights wH and wT in the formula above, a surface
of the right thickness would be constructed. Unfortunately,

some extra tuning is required: due to the integral formula-
tion of convolution surfaces, the resulting surface is thicker
than the weight values, due to the summed contribution of
all points S along the skeleton. Previous work solved the
problem by either manually tabulating the correspondence
between weights and thicknesses and pre-inverting the ta-
ble [ABCG05] or by using iterative optimization to find the
weight values that best fit the region [TZF04].

We propose a simpler solution. Based on the fact that we
work with texture images of fixed size, and thus that the size
of the shape to reconstruct is always within the same range
of values, we compute convolution weights by scaling the
radius values at vertices using:

wi = (C ∗ ri)
3 (4)

where ri is the desired radius along the branch, and C is a
constant factor depending on the image size that normalizes
distances. In practice, C = 1

(width (in pixels) o f the image) ∗ 3
works well.

We first experimented with wi = C ∗ ri but curvatures of
the reconstructed shape were much too smooth compared
to the original drawing. We introduced the power of 3 to
anticipate for convolution’s smoothing. This formula for the
weights scales the field function to the right range of values.

Our last enhancement is to insure that the surface fits the
region by selecting the iso-surface of the field function: we
compute the field value at points located on the contour, near
the extremity of each branch. This gives us the iso-values the
surface should go through. To best fit the region, we set the
iso-value T to an average of these values.

The convolution surface resulting from this step is de-
picted in Figure 4 (b). As expected, the surface is smooth
but only approximates the painted region. The quality of this
reconstruction will be discussed in Section 4 (including the
remaining problem in case of high thickness variations along
a branch).

2.5. Meshing a surface component

The convolution surface resulting from the process we just
described is tessellated into a mesh using [Blo94]. We set the
grid resolution to half of the smallest radius value along the
convolution skeleton, which corresponds to the size of the
smallest feature to reconstruct.

To make field queries more efficient, we truncate the field
function generated by each line-segment outside of a bound-
ing region, using the fact that integrals of the Cauchy kernel
quickly fall to zero at a distance from the skeleton. In our
implementation, this is done by computing an axis paral-
lel bounding box around each line segment augmented with
discs corresponding to the local surface radius; then the size
of the box is multiplied by a constant factor, and the field
value is considered to be zero outside of this larger box.

c© The Eurographics Association 2008.

A. Bernhardt & A. Pihuit & M. P. Cani & L. Barthe / Matisse : Painting 2D regions for Modeling Free-Form Shapes

3. Combining different shape components

3.1. Positioning new shapes into the scene

The Matisse system uses 2D painting from different view-
ing angles to generate 3D shapes. When someone paints or
draws on a sheet of paper, he or she can imagine the relative
depth position of the scene elements and thus "see" a 3D
scene. To design an intuitive sketch-based system, we have
to guess this relative depth position in a plausible way.

Frontal painting at the right depth : The first idea is
to paint on a plane facing the camera, perpendicular to the
viewing direction. When the user clicks on the scene using
the painting tool a frontal painting plane is created. Our strat-
egy for selecting a depth for this plane when no other infor-
mation is provided is to always keep the same depth value in
the camera’s referential. This way, the distance to the paint-
ing plane adapts to the zoom level: when the user zooms in,
he or she can paint closer details, while large background
elements can be easily painted when he or she zooms out.

In most cases, the user has already started painting a shape
and would like to add another component or some details to
it from a different viewpoint. We then use a relative posi-
tioning mechanism: when the painting starts on an existing
shape, we create a frontal plane at the depth of the point the
user clicked on similarly to [CHZ00]. Since the skeleton
of the new component is located in this plane, this results
in slightly overlapping shape components, which allows for
smooth blending between sub-shapes, as explained later in
this section.

In order to give better feedback to the user when browsing
the scene, we always display an almost transparent frontal
plane which indicates where the next drawing will take place
if the user clicks at the current mouse position. This virtual
plane is rendered like clear plastic so that the meshes be-
hind it are lighter (see Figure 5 (left)). Whatever the painting
plane, the shape is created at the scale of the painted image.
Then it is positioned in 3D at the right depth and scale, so
that it superimposes with the painted region [CHZ00].

Figure 5: Semi-transparent display of the frontal plane the

user has selected while sketching a nose (left) and the result

(right)

Bridging between existing shapes : In some cases, the
user would like to paint a connection between several exist-
ing shape components. In this case, the painting is not ex-
pected to take place in front of the camera, but in an oblique

plane connecting these elements [CHZ00]. In our implemen-
tation, we allow such a bridging mechanism (see Figure 6).
It can either be used for bridging between two shapes (e.g.
painting a wire between two trees) or between two points
on the same shape (see the arm on the right of Figure1).
We select the two points giving the depths to interpolate as
midway between the front and the back depth of the shape
at the point the user clicks on. Since passing through two
points is an under-constrained problem, we keep the paint-
ing plane vertical with respect to the current camera view.
When the user paints on an oblique plane, his painting is

Figure 6: Bridging between two shapes: sketch (left) and

rotated result (right)

distorted with respect to the shape component he is creat-
ing. To keep the benefits of the constant size texture image
used in skeleton computation, we still compute the skeleton
as if the region was facing the camera. Then we project it in
the oblique painting plane while editing radius values so that
the shape’s frontal projection still corresponds to the painted
region. The resulting oblique skeleton generates the convo-
lution surface.

3.2. Soft blending

After reconstruction, new parts are blended to the object.
Since our objects are reconstructed using truncated convo-
lution surfaces, they can be considered as implicit surfaces
with compact support so the whole range of blending opera-
tors can be used. This goes from a simple sum [Bli82,BW90]
to more advanced arc-of-an-ellipse [BWG04] or displace-
ment [HL03] blends.

Since our system allows the user to create large compo-
nents as well as very small ones in the same framework
and with an adapted resolution, the blending operator we
choose must overcome the well-known problem of small
objects ”absorption” when blended with significantly larger
ones [WW00], i.e. the small part being completely embed-
ded into a smooth bump on the large object. A first solu-
tion to this was proposed in [BWG04]. But it only holds for
a large object blended with one or several smaller ones of
equivalent size, which is not usable in our case. We rather
use the second version of the arc-of-an-ellipse operator also
described in [BWG04]. It provides an accurate control of
the transition size independently on each blended primitive,
making it especially well suited to our purpose.

Let us denote M1 and M2 the meshes representing a pair

c© The Eurographics Association 2008.

A. Bernhardt & A. Pihuit & M. P. Cani & L. Barthe / Matisse : Painting 2D regions for Modeling Free-Form Shapes

of objects to combine, notedO1 (defined by function F1) and
O2 (defined by function F2). The operator we use restricts
the blending to a local volume between two isovalues : V1 (
resp V2) the value of function F1 (resp F2) at the blending
boundary on O2 (resp O1) (see Figure 7). The idea is to
carefully choose these isovalues so that the smallest surface
component is not blend into the larger one. To do this we
evaluate F1 (resp F2) in a point P′

1 (resp P′
2) at an adequat

distance from object’sO1 (respO2) along the field gradient.
So we have V1 = F1(P

′
1) and we choose :

P′
1 = P1−w2,min

∇F1(P1)
‖∇F1(P1)‖

(5)

Where P1 is choosen on O1 closed to the intersection and
w2,min, the minimum in the weights of object O2 skeleton
(see section 2.4), gives a good estimation of O2 smallest de-
tail.

3.3. Local application of the blend

A well known problem with implicit modeling is unwanted
blending. When the user creates a complex model by suc-
cessively blending several primitives, the later will very of-
ten blend all along. For instance, modeling an arm which
blends with the body of a character at the shoulder but re-
mains separated elsewhere is not easy. It usually requires the
use of complex mechanisms such as blending graphs and de-
cay functions [AJC02]. Fortunately, the controlled blending
operators we use in our application enable us to set up a sim-
pler, intuitive solution.

First of all, we consider that the user has expressed his
wishes about regions to be blended by painting some local
overlap between shapes (see Figure 7 left). Once a new shape
component is constructed, we only blend it where its mesh
overlaps with others. We achieve this through some process-
ing on the meshes that represent the implicit surfaces to be
blended: we compute the union of the meshes (a first ap-
proximation for the mesh of the blended shape we are look-
ing for), together with the contour(s) of the intersection (see
Figure 7 (a)), expressed as a list of segments. Note that there
may be several separated such contours if the new compo-
nent overlaps with the existing shape in several distinct re-
gions (in our implementation this is done using the LGPL
GTS library).

Starting on each contour, we remove from the union
mesh the region affected by the local blending operations
described in the last section. This is done by testing, at
each vertex, the value of the field function representing the
blended shape. If this value is not close to zero, the vertex be-
longs to the region to re-compute. Faces entirely constructed
on such vertices are removed (see Figure 7 (b), (c)). Then a
triangle strip is created to fill the gap between the remaining
parts of the mesh. This strip is progressively refined by re-
cursively subdividing triangles into 4 triangles where needed

Figure 7: Local blending of two shapes : intersection con-

tour extraction (a), intersection removal (b), blending sur-

face remeshing and growing (c).

according to a curvature criterion: new points at the middle
of edges are created and converged to the new, blended im-
plicit surface each time their field value is smaller than the
threshold.

A benefit of this mechanism is that, although we do not
use any blending graph structure, blending remains local:
two shapes blend in the region where the user made them
overlap (slightly extended according to the parameters of the
local blending operators). If other parts of the same surfaces
come close to each other elsewhere, but without having their
meshes overlap, they will not blend in that other region. This
makes the system much more predictable than usual implicit
modeling, although the resulting mesh is no longer the iso-
surface of a usually defined field function.

4. Results and performances

4.1. Overview of the interface

Matisse provides the user with many tools not only for paint-
ing and for exploring the 3D scene but also for saving and
re-using his work. These tools are:

• a paint bucket, a brush and an eraser of adjustable size
• a color-selection panel
• zoom, rotation and translation, usable at any time
• undo, redo, save, load and screenshot buttons

In everyday life, after drawing the global shape of an
object, the average person’s behavior is to rotate the sheet
of paper to ease sketching in another direction, or to come
closer for adding details. To keep this simplicity of use, our
system does not require the user to click any button to re-
construct a 3D shape before further sketching: the 3D shape
is automatically computed and displayed while he or she
changes the point of view by zooming or moving into the
scene. This is done without freezing the interface since the
computation of the surface is done in threads. Thus, as in
everyday life, the user is only concerned about painting and
moving his drawing for filling it out. The resulting, intuitive
interface can immediately be used without a learning stage.

c© The Eurographics Association 2008.

A. Bernhardt & A. Pihuit & M. P. Cani & L. Barthe / Matisse : Painting 2D regions for Modeling Free-Form Shapes

Figure 8: Creations by 18, 67 and 12 year old novice users

4.2. Performances

In Matisse adding a surface component requires 3 main
steps : skeleton computation, initial meshing, and blend-
ing.Table 1 gives some performances times on a 1.8 Ghz
centrino computer (times given in milliseconds). Note that
the meshing mechanism we used (Section 2.5) was far from
optimized. Results would be made much faster by improving
this step.

Model Implicit Skeleton Blending with
Reconstruction Meshing existing component

Sun 120 6500 -
Star’s body 70 1180 -
Tree’s trunk 30 1040 -

Tree’s branches 100 5360 750
Tree’s bridge 20 310 740

Table 1: Performance times for the Star (Fig 5), the Sun

(Fig 2), Trees and Bridge (Fig 6)

4.3. Informal validation by end-users

Since Matisse is designed for the general public, we tested
the system with two kinds of users: novice users and tradi-
tional artists. The category of novice users was composed of
about 10 teenagers and seniors, using the system with a sim-
ple mouse on a laptop. Their main feedback was to ask for
colors, since they were provided with an earlier, mono-color
version of the system. These users enjoyed both the simplic-
ity of painting and the 3D nature of the shapes. Teenagers
got accustomed very quickly to navigating through the scene
and zooming to add local details. They never complained
about the computed 3D shapes, although each surface com-
ponent did not exactly fit their input so that they often had to
bend several components to fit a slope with extreme thick-
ness variations (see Figure 9). However, they would have
liked a 3D eraser tool to remove parts of the surfaces that
they disliked.

The second category of users was artists, using the system
on a tablet: a CG designer and a traditional artist who never
worked on computer. The traditional artist was impressed by
the functionalities provided, such as undo/redo or load/save.
Both asked for a more precise reconstruction of their input
and for the possibility to create flat shapes, such as leaves or
petals (see Figure 10). Overall, both enjoyed the simplicity

Figure 9: Our system only provides an approximated re-

construction of regions with extreme thickness variations:

painting region (a), convolution skeleton (b) and resulting

3D shape (c), a shape reconstructed by blending 2 compo-

nents (d).

of Matisse for creating free-form 3D shapes and asked to
come back for a further test session.

Figure 10: A traditional artist using Matisse

5. Conclusion

This paper presented an interactive modeling system de-
signed for novice users. It enables the creation and refine-
ment of smooth free-form shapes by progressively painting
the regions they cover from different viewing angles and
with adapted zoom factors. An implicit formulation based
on convolution surfaces is used to reconstruct each part of
the shape and blend it locally to the existing geometry. Our
results shows the relevance of combining shapes of arbitrary
genus, each reconstructed from a single drawing. Matisse

can immediately be used by unprepared, novice users.

Being able to remove a region from a shape instead of
only adding components was required by several users. This
extension should be easy thanks to the implicit surface for-
malism we are using: we just need to include a difference
operator, together with the adequate local re-computation of
the mesh. Moreover, we are planning to improve the place-
ment of details sketched over larger shapes by projecting
their skeleton onto the underlying surface and extending the
bridge mechanism to bridge between three scene elements,
removing the ambiguity of a plane defined by two points.

c© The Eurographics Association 2008.

A. Bernhardt & A. Pihuit & M. P. Cani & L. Barthe / Matisse : Painting 2D regions for Modeling Free-Form Shapes

Local blending was achieved thanks to an hybrid im-
plicit/mesh representation enabling to apply the blend in
regions where the meshes intersected. A useful extension
would be to provide a similar mechanism while keeping a
well-defined, implicit representation for the whole shape.

Future work will also include investigating a more ac-
curate reconstruction method for the painted regions. We
would, however, like to keep the method purely geometric,
since optimization would reduce performance and be less
controllable in terms of smoothness.

Lastly, the thickness of each reconstructed element is re-
lated to its local size in the current version of the system and
cannot be edited. Generating flat surface components could
be done with surface skeletons as in [ABCG05]. However,
an intuitive way for the user to select the desired thickness
while sketching still has to be thought of.

5.1. Acknowledgments

We are very grateful to Gregoire Aujay for his important contribu-
tions to the implementation of Matisse, and to the artist Virginia
Alfonso for helping us to validate the system. We also would like to
thank the company Axiatec and the PPF "Interaction multimodale"
for funding this project.

References

[ABCG05] ALEXE A., BARTHE L., CANI M.-P., GAILDRAT V.:
Shape modeling by sketching using convolution surfaces. In Pa-

cific Graphics (Macau, China, 2005), Short paper.

[AGB] ALEXE A., GAILDRAT V., BARTHE L.: Interactive mod-
elling from sketches using spherical implicit functions. In AFRI-
GRAPH ’04, ACM, pp. 25–34.

[AJC02] ANGELIDIS A., JEPP P., CANI M.-P.: Implicit mod-
eling with skeleton curves: Controlled blending in contact situa-
tions. In Shape Modeling International (2002). Banff, Canada.

[Bli82] BLINN J.: A generalization of algebriac surface drawing.
ACM Transaction on Graphics 1, 3 (1982), 235–256.

[Blo94] BLOOMENTHAL J.: An implicit surface polygonizer.
Graphics gems IV (1994), 324–349.

[BW90] BLOOMENTHAL J., WYVILL B.: Interactive techniques
for implicit modeling. Computer Graphics (Proc. of SIGGRAPH
1990) 24, 2 (1990), 109–116.

[BW97] BLOOMENTHAL J., WYVILL B. (Eds.): Introduction to

Implicit Surfaces. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1997.

[BWG04] BARTHE L., WYVILL B., GROOT E. D.: Controllable
binary operators for soft objects. International Journal of Shape
Modeling 10, 2 (2004), 135–154.

[CEC∗05] CUNO A., ESPERANÃĞA C., CAVALCANTI P., CAV-
ALCANTI R., FARIAS R.: 3d free free-form modeling with vari-
ational surfaces. WSCG (2005).

[CHZ00] COHEN J. M., HUGHES J. F., ZELEZNIK R. C.:
Harold: A world made of drawings. In NPAR 2000 : First Inter-

national Symposium on Non Photorealistic Animation and Ren-

dering (June 2000), pp. 83–90.

[Hal89] HALL R. W.: Fast parallel thinning algorithms: paral-
lel speed and connectivity preservation. Commun. ACM 32, 1
(1989), 124–131.

[HL03] HSU P., LEE C.: The scale method for blending oper-
ations in functionally-based constructive geometry. Computer

Graphics Forum 22, 2 (2003), 143–158.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: a
sketching interface for 3d freeform design. In SIGGRAPH ’99

(New York, NY, USA, 1999), ACM Press/Addison-Wesley Pub-
lishing Co., pp. 409–416.

[IOI06] IJIRI T., OWADA S., IGARASHI T.: The sketch l-system:
Global control of tree modeling using free-form strokes. In Smart
Graphics (2006), pp. 138–146.

[KH06] KARPENKO O. A., HUGHES J. F.: Smoothsketch: 3d
free-form shapes from complex sketches. In SIGGRAPH ’06

(New York, NY, USA, 2006), ACM, pp. 589–598.

[KHR02] KARPENKO O., HUGHES J. F., RASKAR R.: Free-
form sketching with variational implicit surfaces. Computer

Graphics Forum 21, 3 (2002), 585–594.

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.:
Fibermesh: designing freeform surfaces with 3d curves. ACM

Trans. Graph. 26, 3 (2007), 41.

[OOI07] OKABE M., OWADA S., IGARASHI T.: Interactive de-
sign of botanical trees using freehand sketches and example-
based editing. In SIGGRAPH ’07: ACM SIGGRAPH 2007

courses (2007), ACM, p. 26.

[She99] SHERSTYUK A.: Kernel functions in convolution sur-
faces: a comparative analysis. The Visual Computer 15, 4 (1999),
171–182.

[Ske] Sketchup software: 3d sketching software for the conceptual
phases of design. http://www.sketchup.com.

[SWSJ05] SCHMIDT R., WYVILL B., SOUSA M., JORGE J.:
Shapeshop: Sketch-based solid modeling with blobtrees. In SBIM
(2005).

[TWB∗06] TURQUIN E., WITHER J., BOISSIEUX L., CANI M.-
P., HUGHES J.: A sketch-based interface for clothing vir-
tual characters. IEEE Computer Graphics and Applications 27

(2006), 72–81.

[TZF04] TAI C., ZHANG H., FONG J.: Prototype modeling from
sketched silhouettes based on convolution surfaces. Computer

Graphics Forum 23 (2004), 71–83.

[WBC07] WITHER J., BERTAILS F., CANI M.-P.: Realistic hair
from a sketch. In Shape Modeling International (June 2007).

[WW00] WYVILL B., WYVILL G.: Better blending of implicit
objects at different scales. SIGGRAPH Sketch (2000).

[ZS03] ZENKA R., SLAVIK P.: New dimension for sketches. In
Spring Conference on Computer Graphics (Budmerice, Slovak
Republic, 2003).

c© The Eurographics Association 2008.

