171 research outputs found

    SYSTEM-ON-A-CHIP (SOC)-BASED HARDWARE ACCELERATION FOR HUMAN ACTION RECOGNITION WITH CORE COMPONENTS

    Get PDF
    Today, the implementation of machine vision algorithms on embedded platforms or in portable systems is growing rapidly due to the demand for machine vision in daily human life. Among the applications of machine vision, human action and activity recognition has become an active research area, and market demand for providing integrated smart security systems is growing rapidly. Among the available approaches, embedded vision is in the top tier; however, current embedded platforms may not be able to fully exploit the potential performance of machine vision algorithms, especially in terms of low power consumption. Complex algorithms can impose immense computation and communication demands, especially action recognition algorithms, which require various stages of preprocessing, processing and machine learning blocks that need to operate concurrently. The market demands embedded platforms that operate with a power consumption of only a few watts. Attempts have been mad to improve the performance of traditional embedded approaches by adding more powerful processors; this solution may solve the computation problem but increases the power consumption. System-on-a-chip eld-programmable gate arrays (SoC-FPGAs) have emerged as a major architecture approach for improving power eciency while increasing computational performance. In a SoC-FPGA, an embedded processor and an FPGA serving as an accelerator are fabricated in the same die to simultaneously improve power consumption and performance. Still, current SoC-FPGA-based vision implementations either shy away from supporting complex and adaptive vision algorithms or operate at very limited resolutions due to the immense communication and computation demands. The aim of this research is to develop a SoC-based hardware acceleration workflow for the realization of advanced vision algorithms. Hardware acceleration can improve performance for highly complex mathematical calculations or repeated functions. The performance of a SoC system can thus be improved by using hardware acceleration method to accelerate the element that incurs the highest performance overhead. The outcome of this research could be used for the implementation of various vision algorithms, such as face recognition, object detection or object tracking, on embedded platforms. The contributions of SoC-based hardware acceleration for hardware-software codesign platforms include the following: (1) development of frameworks for complex human action recognition in both 2D and 3D; (2) realization of a framework with four main implemented IPs, namely, foreground and background subtraction (foreground probability), human detection, 2D/3D point-of-interest detection and feature extraction, and OS-ELM as a machine learning algorithm for action identication; (3) use of an FPGA-based hardware acceleration method to resolve system bottlenecks and improve system performance; and (4) measurement and analysis of system specications, such as the acceleration factor, power consumption, and resource utilization. Experimental results show that the proposed SoC-based hardware acceleration approach provides better performance in terms of the acceleration factor, resource utilization and power consumption among all recent works. In addition, a comparison of the accuracy of the framework that runs on the proposed embedded platform (SoCFPGA) with the accuracy of other PC-based frameworks shows that the proposed approach outperforms most other approaches

    Hardware Considerations for Signal Processing Systems: A Step Toward the Unconventional.

    Full text link
    As we progress into the future, signal processing algorithms are becoming more computationally intensive and power hungry while the desire for mobile products and low power devices is also increasing. An integrated ASIC solution is one of the primary ways chip developers can improve performance and add functionality while keeping the power budget low. This work discusses ASIC hardware for both conventional and unconventional signal processing systems, and how integration, error resilience, emerging devices, and new algorithms can be leveraged by signal processing systems to further improve performance and enable new applications. Specifically this work presents three case studies: 1) a conventional and highly parallel mix signal cross-correlator ASIC for a weather satellite performing real-time synthetic aperture imaging, 2) an unconventional native stochastic computing architecture enabled by memristors, and 3) two unconventional sparse neural network ASICs for feature extraction and object classification. As improvements from technology scaling alone slow down, and the demand for energy efficient mobile electronics increases, such optimization techniques at the device, circuit, and system level will become more critical to advance signal processing capabilities in the future.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116685/1/knagphil_1.pd

    Content rendering and interaction technologies for digital heritage systems

    Get PDF
    Existing digital heritage systems accommodate a huge amount of digital repository information; however their content rendering and interaction components generally lack the more interesting functionality that allows better interaction with heritage contents. Many digital heritage libraries are simply collections of 2D images with associated metadata and textual content, i.e. little more than museum catalogues presented online. However, over the last few years, largely as a result of EU framework projects, some 3D representation of digital heritage objects are beginning to appear in a digital library context. In the cultural heritage domain, where researchers and museum visitors like to observe cultural objects as closely as possible and to feel their existence and use in the past, giving the user only 2D images along with textual descriptions significantly limits interaction and hence understanding of their heritage. The availability of powerful content rendering technologies, such as 3D authoring tools to create 3D objects and heritage scenes, grid tools for rendering complex 3D scenes, gaming engines to display 3D interactively, and recent advances in motion capture technologies for embodied immersion, allow the development of unique solutions for enhancing user experience and interaction with digital heritage resources and objects giving a higher level of understanding and greater benefit to the community. This thesis describes DISPLAYS (Digital Library Services for Playing with Shared Heritage Resources), which is a novel conceptual framework where five unique services are proposed for digital content: creation, archival, exposition, presentation and interaction services. These services or tools are designed to allow the heritage community to create, interpret, use and explore digital heritage resources organised as an online exhibition (or virtual museum). This thesis presents innovative solutions for two of these services or tools: content creation where a cost effective render grid is proposed; and an interaction service, where a heritage scenario is presented online using a real-time motion capture and digital puppeteer solution for the user to explore through embodied immersive interaction their digital heritage

    Concepção e realização de um framework para sistemas embarcados baseados em FPGA aplicado a um classificador Floresta de Caminhos Ótimos

    Get PDF
    Orientadores: Eurípedes Guilherme de Oliveira Nóbrega, Isabelle Fantoni-Coichot, Vincent FrémontTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Université de Technologie de CompiègneResumo: Muitas aplicações modernas dependem de métodos de Inteligência Artificial, tais como classificação automática. Entretanto, o alto custo computacional associado a essas técnicas limita seu uso em plataformas embarcadas com recursos restritos. Grandes quantidades de dados podem superar o poder computacional disponível em tais ambientes, o que torna o processo de projetá-los uma tarefa desafiadora. As condutas de processamento mais comuns usam muitas funções de custo computacional elevadas, o que traz a necessidade de combinar alta capacidade computacional com eficiência energética. Uma possível estratégia para superar essas limitações e prover poder computacional suficiente aliado ao baixo consumo de energia é o uso de hardware especializado como, por exemplo, FPGA. Esta classe de dispositivos é amplamente conhecida por sua boa relação desempenho/consumo, sendo uma alternativa interessante para a construção de sistemas embarcados eficazes e eficientes. Esta tese propõe um framework baseado em FPGA para a aceleração de desempenho de um algoritmo de classificação a ser implementado em um sistema embarcado. A aceleração do desempenho foi atingida usando o esquema de paralelização SIMD, aproveitando as características de paralelismo de grão fino dos FPGA. O sistema proposto foi implementado e testado em hardware FPGA real. Para a validação da arquitetura, um classificador baseado em Teoria dos Grafos, o OPF, foi avaliado em uma proposta de aplicação e posteriormente implementado na arquitetura proposta. O estudo do OPF levou à proposição de um novo algoritmo de aprendizagem para o mesmo, usando conceitos de Computação Evolutiva, visando a redução do tempo de processamento de classificação, que, combinada à implementação em hardware, oferece uma aceleração de desempenho suficiente para ser aplicada em uma variedade de sistemas embarcadosAbstract: Many modern applications rely on Artificial Intelligence methods such as automatic classification. However, the computational cost associated with these techniques limit their use in resource constrained embedded platforms. A high amount of data may overcome the computational power available in such embedded environments while turning the process of designing them a challenging task. Common processing pipelines use many high computational cost functions, which brings the necessity of combining high computational capacity with energy efficiency. One of the strategies to overcome this limitation and provide sufficient computational power allied with low energy consumption is the use of specialized hardware such as FPGA. This class of devices is widely known for their performance to consumption ratio, being an interesting alternative to building capable embedded systems. This thesis proposes an FPGA-based framework for performance acceleration of a classification algorithm to be implemented in an embedded system. Acceleration is achieved using SIMD-based parallelization scheme, taking advantage of FPGA characteristics of fine-grain parallelism. The proposed system is implemented and tested in actual FPGA hardware. For the architecture validation, a graph-based classifier, the OPF, is evaluated in an application proposition and afterward applied to the proposed architecture. The OPF study led to a proposition of a new learning algorithm using evolutionary computation concepts, aiming at classification processing time reduction, which combined to the hardware implementation offers sufficient performance acceleration to be applied in a variety of embedded systemsDoutoradoMecanica dos Sólidos e Projeto MecanicoDoutor em Engenharia Mecânica3077/2013-09CAPE

    Hardware/Software Co-design for Multicore Architectures

    Get PDF
    Siirretty Doriast

    Field Programmable Gate Arrays (FPGAs) II

    Get PDF
    This Edited Volume Field Programmable Gate Arrays (FPGAs) II is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Computer and Information Science. The book comprises single chapters authored by various researchers and edited by an expert active in the Computer and Information Science research area. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on Computer and Information Science, and open new possible research paths for further novel developments

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations
    corecore