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Abstract

Many modern applications rely on Arti�cial Intelligence methods such as automatic

classi�cation. However, the computational cost associated with these techniques limit their

use in resource constrained embedded platforms. A high amount of data may overcome the

computational power available in such embedded environments while turning the process of

designing them a challenging task. Common processing pipelines use many high computational

cost functions, which brings the necessity of combining high computational capacity with

energy e�ciency.

One of the strategies to overcome this limitation and provide su�cient computational

power allied with low energy consumption is the use of specialized hardware such as Field

Programmable Gateway Arrays (FPGAs). This class of devices is widely known for their per-

formance to consumption ratio, being an interesting alternative to building capable embedded

systems.

This thesis proposes an FPGA-based framework for performance acceleration of a classi-

�cation algorithm to be implemented in an embedded system. Acceleration is achieved using

Single Instructions, Multiple Data (SIMD)-based parallelization scheme, taking advantage

of FPGA characteristics of �ne-grain parallelism. The proposed system is implemented and

tested in actual FPGA hardware. For the architecture validation, a graph-based classi�er, the

Optimum-path Forest (OPF), is evaluated in an application proposition and afterward applied

to the proposed architecture. The OPF study led to a proposition of a new learning algorithm

using evolutionary computation concepts, aiming at classi�cation processing time reduction,

which combined to the hardware implementation o�ers su�cient performance acceleration to

be applied in a variety of embedded systems.

Keywords: FPGA (Field Programmable Gateway Array); Embedded computer systems; Ma-

chine learning; Pattern Recognition; Optimum-path forest.



Resumo

Muitas aplicações modernas dependem de métodos de Inteligência Arti�cial, tais como

classi�cação automática. Entretanto, o alto custo computacional associado a essas técnicas

limita seu uso em plataformas embarcadas com recursos restritos. Grandes quantidades de

dados podem superar o poder computacional disponível em tais ambientes, o que torna o

processo de projetá-los uma tarefa desa�adora. As condutas de processamento mais comuns

usam muitas funções de custo computacional elevadas, o que traz a necessidade de combinar

alta capacidade computacional com e�ciência energética.

Uma possível estratégia para superar essas limitações e prover poder computacional

su�ciente aliado ao baixo consumo de energia é o uso de hardware especializado como, por ex-

emplo, Field Programmable Gateway Arrays (FPGAs). Esta classe de dispositivos é amplamente

conhecida por sua boa relação desempenho/consumo, sendo uma alternativa interessante para

a construção de sistemas embarcados e�cazes e e�cientes.

Esta tese propõe um framework baseado em FPGA para a aceleração de desempenho de

um algoritmo de classi�cação a ser implementado em um sistema embarcado. A aceleração

do desempenho foi atingida usando o esquema de paralelização Single Instructions, Multiple

Data (SIMD), aproveitando as características de paralelismo de grão �no dos FPGAs. O sistema

proposto foi implementado e testado em hardware FPGA real. Para a validação da arquitetura,

um classi�cador baseado em Teoria dos Grafos, o Optimum-path Forest (OPF), foi avaliado

em uma proposta de aplicação e posteriormente implementado na arquitetura proposta. O

estudo do OPF levou à proposição de um novo algoritmo de aprendizagem para o mesmo,

usando conceitos de Computação Evolutiva, visando a redução do tempo de processamento

de classi�cação, que, combinada à implementação em hardware, oferece uma aceleração de

desempenho su�ciente para ser aplicada em uma variedade de sistemas embarcados.

Palavras-chave: FPGA (Field Programmable Gateway Array); Sistemas embarcados (Computa-

dores); Aprendizado de máquina; Reconhecimento de padrões; Floresta de caminhos ótimos.



Résumé

De nombreuses applications modernes s’appuient sur des méthodes d’Intelligence Arti�-

cielle telles que la classi�cation automatique. Cependant, le coût de calcul associé à ces tech-

niques limite leur utilisation dans les plates-formes embarquées contraintes par les ressources.

Une grande quantité de données peut surmonter la puissance de calcul disponible dans de tels

environnements embarqués, transformant le processus de concevoir une tâche di�cile. Les

pipelines de traitement courants utilisent de nombreuses fonctions de coût de calcul élevé, ce

qui amène la nécessité de combiner une capacité de calcul élevée avec une e�cacité énergétique.

Une des stratégies pour surmonter cette limitation et fournir une puissance de calcul

su�sante alliée à la faible consommation d’énergie est l’utilisation de matériel spécialisé tel

que Field Programmable Gateway Arrays (FPGAs). Cette classe de dispositifs est largement

connue pour leur rapport performance/consommation, étant une alternative intéressante à la

construction de systèmes embarqués capables.

Cette thèse propose un framework basé sur FPGA pour l’accélération de la performance

d’un algorithme de classi�cation à implémenter dans un système embarqué. L’accélération est

réalisée en utilisant le système de parallélisation basé sur Single Instructions, Multiple Data

(SIMD), en tirant parti des caractéristiques de parallélisme à grain �n presentées pour les FPGA.

Le système proposé est implémenté et testé dans un plate-forme actuel de dévelloppement

FPGA. Pour la validation de l’architecture, un classi�cateur basé sur la théorie des graphes,

l’Optimum-path Forest (OPF), est évalué dans une proposition d’application ensuite realisé dans

l’architecture proposée. L’étude de l’OPF a conduit à la proposition d’un nouvel algorithme

d’apprentissage pour l’OPF, en utilisant des concepts de calcul évolutifs, visant à réduire le

temps de traitement de la classi�cation, combiné à la mise en œuvre matérielle o�rant une

accélération de performance su�sante pour être appliquée dans une variété de systèmes

embarqués.

Mots-clés: FPGA (Field Programmable Gateway Array); Systèmes embarqués; Apprentissage

mécanique; Reconaissance des formes; Optimum-path Forest .
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Chapter 1

Introduction

“Start by doing what is necessary, then do what is possible, and suddenly
you are doing the impossible.”

— St. Francis of Assisi

Technology has made its way into our modern society as an everyday companion. Ad-

vances in electronics and computer industries made possible to the common citizen to

have contact with computing devices every day. Cell phones, for example, evolved from big

and clumsy devices, with telephony as their only goal, to sophisticated smartphones, packing a

degree of computational power that rivals with last decade desktop computers and acting as a

multimedia device capable of delivering many di�erent applications. All this computational

capability available nowadays makes possible the conception of interesting applications, which

generates value to users and at the same time, contributes to improving their lives. To be

successful, these applications must display simplicity of use, �uidity, and fast responses. To

achieve this simplicity, most of times, it will depend on the computational power of the device

where it is running, hiding the inner complexity necessary to display the simple yet useful

surface. A considerable number of these tasks will be executing in an embedded system.

A general de�nition of embedded systems could be: “embedded systems are computing

systems with tightly coupled hardware and software integration, that are designed to perform

a dedicated function.” (LI; YAO, 2003). However, considering the computational power available

for embedded systems nowadays, this de�nition can be extended in the sense that the dedi-

cated embedded function may encompass several complex subsystems and runtime routines.

Therefore, embedded systems take a variety of forms, ranging from industrial controllers,

medical devices, and personal devices to space exploration and �eld research. Comparing with

general purpose microprocessors, like the ones found in desktop computers, the devices that are

used in general for embedded systems lack raw computational power. Nonetheless, embedded

microprocessors must generally meet size and power consumption requirements, which is

the factor that classi�es them as low power devices. And yet, many modern applications still
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demand embedded systems capable of solving complex tasks without breaking the foretold

requirements. Industry has always searched for developing new devices capable to completely

ful�ll these speci�cations.

With the emerging of these new technologies, embedded systems also evolved and started

to cover new innovative applications. We are now familiar with mobile robots, as small drones

are seen everywhere. Large ones have been used by many institutions for vigilance, reporting

or research. Autonomous vehicles are close to being released to the public. In space, our

robotic explorers unravel new discoveries, increasing our understanding of the universe and

our role in it. All these innovative applications share one thing in common: They depend

on e�cient embedded systems. Therefore, researching suitable techniques to explore these

systems capabilities to the maximum are of prime interest.

Nowadays, the daily produced quantity of information around the world is huge. Ac-

cording to IBM, in 2014, Humanity was able to produce every day, 2.5 quintillion bytes of

data – so much that 90% of the data in the world today has been created in the last two years

alone (IBM, 2014). All these data need to be processed to produce meaningful information.

Logically, it is impossible to trust this data to human processing, thus, we must get computers

to be able to do so. Arti�cial Intelligence (AI) is one �eld that makes this possible. Among the

many techniques and methods under AI hood, Machine Learning (ML) is one that has received

crescent interest lately. De�ned as the set of methods that gives the computer capacity to learn

from data, without being explicitly programmed to do so. These techniques aid computers to

reach the ability to �nd the relevant information from all that amount of data.

Perhaps the most frequent task in ML is data classi�cation. It allows computers to identify

classes of objects from data acquired by a range of sensors. For example, an autonomous vehicle

needs to identify the road it is running on, other vehicles in transit, people, and transit signs,

all in order to build and follow its navigation plan. The data can be obtained by a camera and

after some processing, ML can be applied to identify each class of the objects showing in the

image. This task is amazingly well done by the human brain, but equally di�cult to implement

on computers. Nonetheless, modern approaches are able to get close to brain performance,

but as one can imagine, they require a considerable amount of computational power, which

makes them hard to apply to embedded systems. However, some implementations depend on

embedded systems , requiring development e�ort to design solutions capable of realizing those
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di�cult tasks.

This chapter introduces the problem of ML applied to embedded systems. An e�cient

implementation can have many applications, like mobile robotics, human-machine interaction,

automatic data analysis for personal or commercial applications, and intelligent autonomous

vehicles. It starts with the context and motivations that lead to this work development in

Section 1.1 followed by an overview of the general process to produce information from gathered

data used as the guideline in this work in Section 1.2. An introduction on ML applications for

embedded systems is given in Section 1.3. Section 1.4 presents an overview of the proposed

approach for this works implementations and Section 1.5 closes the chapter with a summary of

this work contributions and published works.

1.1 Context and motivations

This thesis is part of a doctorate program with a joint supervision agreement between the

Department of Computational Mechanics of the Faculty of Mechanical Engineering from Uni-

versity of Campinas (DMC/FEM/UNICAMP) in São Paulo, Brazil, and the Heudiasyc Laboratory,

UMR 7253 CNRS/UTC at the Sorbonne Universités, Université de Technologie de Compiègne

(UTC) (Heudiasyc/CNRS/UTC) in Compiègne, France.

Universidade Estadual de Campinas (UNICAMP) and UTC have been working jointly in

the context of the Bra�tec project (GELAS et al., 2007), an exchange program for French and

Brazilian Engineering undergraduate students. During a visit of the program coordinator at

UTC, prof. Alessandro CORREA VICTORINO, a proposition for scienti�c collaboration for grad-

uate students, relating to Research and Technological Development was made. Following the

proposition, UTC received at Heuristique et Diagnose de Systèmes Complexes (Heudiasyc) the

�rst exchange Ph.D. candidate in 2008. Since then, three more joint supervision thesis projects

were accepted, with the current thesis being the third to be in conclusion. The know-how and

excellence of Heudiasyc laboratory, currently labeled as part of Labex MS2T and ROBOTEX

projects was one of the determining factors to proceed with the partnership, increasing the

level of France-Brazil scienti�c relationship.

This research received a scholarship from Coordination for Improvement of Higher
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Education Personnel (CAPES) under the process nº 13.077/2013-9 from Brazilian Government.

Most of the experimental part of this work was carried out and funded in the framework of

the Labex MS2T (Reference ANR-11-IDEX-0004-02), from French Government, through the

program "Investments for the future" managed by the National Agency for Research in France.

The motivations for this research are born from the growing necessity of advanced

embedded systems in many �elds. However, the increasing performance of such systems is

often accompanied by an increase in power consumption, leading to the use of heavier power

sources. Depending on the type of application, this can be a severe drawback. Let us take an

example: a small quadcopter drone equipped with a camera, like the one shown in Figure 1.1.

Figure 1.1 – The Bebop drone made by Parrot Inc. is an example of an advanced embed-

ded system. The drone is equipped with a high definition camera that can transmit video

over a wireless connection. Its control board packs a significant amount of intelligence,

making it easy to operate by minimally skilled people. The control and video algorithms

are quite demanding, a fact that is perceived from its relatively short autonomy, 25

minutes, according to the manufacturer.

Source: <www.parrot.com>

This setup can be used in many applications, like surveillance of a restricted area. It

could search for people inside the perimeter and �y to a location where it could take a good

shot of the trespasser, and then send it to be identi�ed and then answer for his acts later. Such

an application would demand capabilities to identify a person, predict a suitable �ight route

and send the retrieved data over a wireless connection. An ML algorithm could be used to

identify the detected object as a person or not, and based on this recognition, proceed with the

corresponding action.

www.parrot.com
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This is one among many examples of how signi�cant applications can be accomplished

by using ML in embedded systems. Next Section will present a survey of such applications.

1.2 Data to information general process

Considering the applications that were previously mentioned in this chapter, it is clear that

the main di�culty for implementing ML into embedded systems is achieving the computational

power to meet hard real-time requirements in resource-constrained systems. This limitation

greatly restrains the applications that can be built in such systems. An ML system usually is

structured around three basic tasks:

Data preparation: Data acquired by the sensors rarely comes in a directly usable format.

They require treatment before they can be e�ectively used by the ML algorithm. This process

adds a layer of processing that must be incorporated in the platform design.

Data processing: After being prepared, the data can now be properly used by the ML algo-

rithm. This is usually the most costly process, in terms of computational power, then it can

be identi�ed as the critical task. This stage performance can severely a�ect the other tasks

sharing the resources.

Data presentation: After data processing, the derived information can be used to actually

complete the main task.

Meeting hard real-time requirements with just these tasks alone is already a challenge

itself. Furthermore, there are other tasks that will sum up and compete for processing time.

1.3 Machine Learning applications for embedded systems

ML has been used in a vast range of applications that can be implemented in embedded

systems. For example, recently, NVIDIA™ has launched the Drive™ PX 2, shown in Figure 1.2,

which is a Single Board Computer (SBC) aimed for autonomous vehicles development. Besides

interfaces for several types of sensors, it includes a pair of Tegra® X1 System on a Chip (SoC),
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alongside a middleware o�ering ML solutions. The SoCs can be programmed with CUDA™ ,

the proprietary language for general purpose programming of the Graphics Processing Units

(GPUs) brand. The language o�ers the GPUs parallel processing characteristics to be explored

for all kinds of computations, aside from graphics processing, and have been used worldwide

since its debut in 2008.

Figure 1.2 – The Drive
™

PX 2 board is NVIDIA
™

’s response to an emerging marketing

for ML capable embedded systems. Equipped with a pair of Tegra
®

X1 SoCs and a

middleware with integrated solutions it o�ers up to 2.3 TFLOPS of processing power.

Notice the liquid cooling solution necessary due to the 250 W TDP.

Source: <h�p://www.clubic.com/>

Clearly visible in Figure1.2, the pipes of the liquid cooling system required to dissipate

the heat generated by the SoC. Although GPUs have been widely used as ML computational

platform, they are still power hungry devices. Even the embedded version used in the PX 2

most capable con�guration has a Thermal Design Power (TDP) of 250 W, requiring that liquid

cooling solution (ANANDTECH, 2016). These requirements severely restrain the range of

devices that can bene�t from the board.

Still, in autonomous and semi-autonomous vehicles �eld, some players have chosen a

di�erent platform. In order to integrate the many di�erent tasks needed to bring together

a functional system, Audi AG contracted Austrian group TTTech Computertechnik AG to

design and manufacture their Central Driver Assistance Controller (zFAS) system, presented in

Figure 1.3 (Safe Car News, 2015).

The board makes use of an Altera® Cyclone V to perform the heavy data fusion from

the many sensors installed around the vehicle. The data is then integrated to provide a range

http://www.clubic.com/
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Figure 1.3 – Audi AG has chosen Austrian TTTech group to supply their zFAS system.

The board uses a Cyclone
™

V FPGA alongside a Tegra
™

processor to capture and fuse

data from various sensors. This data is used to provide ADAS services to the driver. The

technology is present in the newer Audi A8 car.

Source: Wikimedia Commons.

of Advanced Driver Assistance Systems (ADAS) services to help the driver to get a better

situational awareness of the environment, improving safety for him and the other characters

the vehicle interacts while in transit.

Space exploration is another area that has been using Field Programmable Gateway

Arrays (FPGAs) to improve their computational power while keeping low power consumption.

In fact, satellites and space probes have probably the harshest design requirements, as they

operate in extreme environments, exposed to a varied range of harms. Low temperatures,

radiation, power surges, and impacts are common. Therefore, increasing their computational

power without exceeding power, thermal dissipation and weight restrictions is an imperative

design choice.

The European Space Agency (ESA) made extensive studies about the feasibility of FPGA

for space applications as early as 2002 (HABINC, 2002). The study concentrated on the resis-

tance and mitigation strategies to Single Event Upsets (SEUs) that Static RAM (SRAM)-based

reprogrammable FPGAs would be exposed due to space radiation. One proven FPGA user in

space application is the USA agency National Aeronautic and Space Administration (NASA).

One very well known mission to use FPGAs as processing unit were the Mars Exploration

Rovers (MERs) Spirit and Opportunity. They used four Xilinx XQR4062XL FPGAs to control

the lander pyrotechnics that was crucial to the Entry, Descent and Landing phases of the

mission (PINGREE, 2010). The more recent Curiosity rover pushed the limits even far, being

equipped with 31 FPGAs. Also, the Juno mission, that reached Jupiter recently this year, was

equipped with an One Time Programmable (OTP) FPGA in one key instrument, the Microwave
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Radiometer (MWR). Although OTP FPGAs o�ers the advantages of hardware acceleration, they

cannot be updated later.

With their robustness and capabilities proven in a varied range of applications with

di�erent requirements, but having in common a demand for computational power alongside

low power consumption, FPGAs have shown to be an interesting choice for accelerating

embedded ML applications.

1.4 Proposed approach overview

The proposed approach for embedded ML is to use an FPGA-based architecture to

provide hardware acceleration by specialized process encoding and parallelism. The specialized

hardware built into FPGA fabric encompasses the parallelization of the chosen algorithm and

will be used as an auxiliary processor. A host processor will carry on general tasks including

data preparation and program �ow control and also control the auxiliary processor. They will

communicate with each other through a channel. Figure 1.4 shows this organization.

Main Host

Processor

Auxiliary Parallel

Processor

I

n

t

e

r

f

a

c

e

Figure 1.4 – The proposed architecture uses a host processor to perform data prepara-

tion and an auxiliary parallel processor to do the heavy processing. A communication

interface between them manage the exchange of data and commands.

In parallel computing, granularity refers to the amount of work executed in a compu-

tational task over a parallel processing system. It can be also perceived as the ratio between

the computation time of a task and the communication time required to exchange data among

the parallel elements (HWANG; KAI, 1992; KWIATKOWSKI, 2002). Parallel algorithms can

be classi�ed according to their granularity as coarse, medium or �ne-grained. Coarse-grained
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algorithms are those in which the program is divided into large tasks. Usually, this kind is

performed in distributed systems using message-passing architectures to communicate data.

Medium-grained algorithms are those in which there is a compromise in the computation

to communication ratio, and it encompasses the majority of general-purpose parallel com-

puters (MILLER; STOUT, 1997). Finally, �ne-grained algorithms are those where the task is

evenly divided among a large number of processing elements, hence, load-balancing plays an

important role. This kind of parallelism is found in general-purpose GPU programming and

vectorial processors.

Parallel computing systems can also be classi�ed according to their parallel characteristics.

Flynn’s Taxonomy is the generally adopted classi�cation, which states four categories based

on the kind of parallelism they present (FLYNN, 1966 apud HENNESSY; PATTERSON, 2006):

SISD: Single Instructions, Single Data, this is the uniprocessor, a single processing element

executes instructions that operate in a single data, one at the time.

SIMD: Single Instructions, Multiple Data, this category of processors exploit data-level

parallelism by applying the same operations to multiple items of data in parallel,

but using a unique instruction memory in a control processors, that dispatches the

instructions to the processing elements. Each processing element has its own data

stream. GPUs and vectorial processors are included in this category. This category

is suited to tasks that are linked to �ne-grain parallelism.

MISD: Multiple Instructions, Single Data, here, di�erent processing elements with dif-

ferent instructions operate in a unique piece of data. This category is regarded

as hypotetical, as no practical design of it exists yet. Some authors consider the

systolic array proposed by Kung & Leiserson (1978) and pipelined processors to

belong here, but there is no consensus. Pipelined processors expore instruction-

level parallelism, taking advantage of overlapping instructions to evaluate them

in parallel. Others include in this category fault-tolerant computers, which have

redundant processing elements operating in parallel, applying the same processing

leading to equal results, to detect and correct errors.

MIMD: Multiple Instructions, Multiple Data, the most general class, where a series of

processing elements, each one possessing its own �ow of instructions and data,

operate in parallel in possibly uncorrelated processes. Multi-core processors present

in modern computer systems belong to this category, as they explore thread-level
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parallelism that is optimal for general purpose computing devices.

FPGA possess a large number of logical cells, therefore, their parallelization capabilities

are, by its nature, more suitable to encoding algorithms that display �ne-grain parallelism a�n-

ity. Although it is possible to implement coarse-grained and task parallelism into FPGA devices,

�ne-grain makes the most pro�t from the combinational nature of FPGA circuits. Therefore,

choosing to encode an ML algorithm which displays �ne-grain parallelism capabilities indicated

the path followed in the work presented in this thesis.

Among the many ML techniques, automatic classi�cation plays a prominent role, serving

as a starting point for developing more complex solutions. A recently developed graph-based

classi�cation method called Optimum-path Forest (OPF) was chosen to be adapted as a hardware

function, in order to demonstrate the architecture operation. The method has been tested

through diverse applications and presented attractive characteristics, con�rming the expected

�ne-grain parallelism potential (CHIACHIA et al., 2009; PISANI et al., 2011; SPADOTTO et

al., 2008; GUIDO et al., 2010). The OPF is presented in details in Section 2.3. A proposed new

application of this method is also proposed and discussed in Chapter 3.

Additionally, a new supervised learning algorithm for an OPF classi�er was proposed and

implemented. It was able to accelerate the classi�cation with negligible performance penalty.

Chapter 4 presents and discusses this proposition.

The �nal goal is to achieve processing acceleration in comparison with the software-only

version of the method executed by an embedded processor. The resulting time reduction can

make possible the future development of new applications focusing embedded systems, as well

as contribute to improving current implementations. Although the architecture is conceived

around a speci�c algorithm, it was designed to be �exible enough to accommodate di�erent ones

that are best suited for a given application. Nonetheless, the acceleration and parallelization

capacities of FPGA-based architectures can drive innovative embedded solutions.
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1.5 Summary of contributions

To achieve its main goal, this thesis faces the challenges of designing, implementing,

and testing an FPGA-based embedded architecture for classi�cation, validating the proposed

architecture with an established classi�cation algorithm.

There are three major contributions that derived from this goal pursuit:

• The �rst one is the implementation evaluation of a new application for the OPF, a

Pedestrian Detection system. The system performance is evaluated and compared

with known methods used in current implementations, which provides insights to

contribute to a better understanding of the algorithm itself, as well as presenting a

new option for building object detection systems.

• The second contribution is the development of a new supervised learning algorithm

for training an OPF classi�er. The new algorithm changes the way used to build the

solution, aiming to reduce the amount of data necessary to reach a feasible classi�er.

It uses concepts of Self-organizing Map (SOM) algorithm to iteratively build the

classi�er from fewer seed nodes, di�erently from the classical OPF, that uses all

nodes in a previously de�ned training set. The new proposition is able to accelerate

the classi�cation time , having in average a drop of less than 3% in accuracy yet in

some cases, presenting a better one. This is a signi�cant characteristic considering

that online training is necessary for real classi�cation applications, as discussed

later in this work.

• Finally, the main contribution is the development of an FPGA-based architecture for

classi�cation, with hardware acceleration and low power consumption, enabling

the use of ML techniques by resource-constrained embedded systems. The proposed

architecture makes use of intrinsic algorithmic parallelism translation to a parallel

hardware using FPGAs potential for this kind of implementations. Although vali-

dated with the OPF algorithm, the system is �exible enough to allow acceleration

of di�erent algorithms that can bene�t from the same kind of �ne-grain parallelism,

contributing to performance enhancement of many applications.

Alongside the main contributions, a new work�ow for FPGA programming was used
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in this work, which made possible to evaluate how much it contributes to diminishing the

technical challenges that are often associated with FPGA development.

The propositions and results detailed in this thesis were also published in the following

papers:

DINIZ, W. F. S. et al. Evaluation of optimum path forest classi�er for pedestrian detection.

In: 2015 IEEE International Conference onRobotics and Biomimetics (ROBIO). Zhuhai:

IEEE, 2015. p. 899–904. ISBN 978-1-4673-9675-2. Disponível em: <doi://10.1109/ROBIO.2015.

7418885>.

. FPGA accelerated Optimum-Path Forest classi�er framework for embedded systems.

Microprocessors and Microsystems, 2017. Under review.

1.6 Document outline

This chapter presented a general introduction to the problem of implementing ML meth-

ods on embedded systems, described some possible applications that could bene�t from such a

system, as well provided some background on current developments and perspectives. Then

�nished with an overview of the proposed architecture and a summary of the key contributions

produced during this Ph.D. development. The following chapters proceed as detailed now:

Chapter 2 presents the fundamental concepts necessary for fully understanding the archi-

tecture that this work proposes. It presents the basics of embedded systems design using

FPGAs.

Chapter 3 discusses the implementation of a Pedestrian Detection system using the classical

form of a supervised learning OPF algorithm. It also presents the motivations behind such

implementation and the methodology to analyze the results.

Chapter 4 presents a new supervised learning algorithm for training an OPF classi�er, aiming

to reduce the classi�cation processing time, with a complete description of the method and an

analysis of its performance.

Chapter 5 shows the main contribution of this work, the design, implementation and testing

doi://10.1109/ROBIO.2015.7418885
doi://10.1109/ROBIO.2015.7418885
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of an FPGA-based architecture for classi�cation, using OPF as an example of application. The

acceleration provided by the new architecture is evaluated by comparison with software-only

OPF classical form.

Chapter 6 �nally concludes this work with a subsume of the key contributions and prospects

for future development.
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Chapter 2

Fundamental concepts

“Learn from yesterday, live for today, hope for tomorrow. The important
thing is not to stop questioning.”

— Albert Einstein

This chapter describes the scienti�c and technical backgrounds necessary to develop this

thesis propositions. It starts with a brief history and introduction to concepts related

to FPGAs in Section 2.1. Then it proceeds to Section 2.2, which presents the adopted design

methodology for implementation of the proposed embedded machine learning architecture.

Finally, Section 2.3 presents the algorithms of the classi�er used to exemplify the complete

framework proposition.

2.1 Embedded design with FPGAs

Modern integrated circuits include many interesting devices; among them, FPGAs are a

class of Programmable Logic Devices (PLDs), meaning that they can be con�gured to assume

any task that can be accomplished by a digital circuit. They were created to supply the necessity

of highly-e�cient digital circuits design while cutting o� development and production costs.

The origins of PLDs can be traced back to the early 1960s, tightly tied to the development

of the integrated circuit itself. First attempts on creating a con�gurable integrated circuit

took the form of Cellular Arrays, which contained a series of simple logic cells with �xed,

point-to-point communication, arranged as a two-dimensional array. These devices could be

programmed by a metalization process at manufacturing and o�ered two-inputs logic functions.

They could be used to develop custom combinational circuits, but, due to the lack of �ip-�ops,

they could not be used to develop sequential circuits (KUON et al., 2007).
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By the mid 60s, including programmable fuses in the cellular arrays led to the ability of

programming the devices after its manufacturing. That ability was named �eld-programmability.

The connections between cells were �xed, but their functionality could be programmed by

applying speci�c currents or photo-conductive exposure (KUON et al., 2007 apud MINNICK,

1997). In the following decade, Read-only Memory (ROM)-based programmable devices were

introduced, but the crescent costs due to increasing area exigencies for large logic severely

restrained their growth.

The modern FPGA saw its �rst light when Xilinx® introduced in 1984 its �rst commercially

available FPGA device, although the name was not used until 1988. That �rst FPGA introduced

the now classic Con�gurable Logic Array, with 64 logic blocks and 58 inputs/outputs (KUON et

al., 2007 apud CARTER et al., 1986). Today they evolved to include millions of logic blocks and

with the advent of specialized blocks, like phase-locked loops, �oating-point multipliers, and

Digital Signal Processor (DSP) blocks, they o�er higher levels of �exibility and applicability.

Among the suppliers available today, the market is dominated by Xilinx® and Altera® (the

latter recently acquired by Intel® ), which hold together nearly 80% of the market-share. Other

FPGA manufacturers have recently emerged since the 1990s, like former Actel® , now absorbed

into Microsemi® , Lattice Semiconductors® , and QuickLogic® Corporation.

The modern FPGA internal architecture uses a bidimensional arrange of logic blocks

with several interconnect bus lines linking them, as exempli�ed in Figure 2.1. Con�gurable

routers switch the data paths to form the requested logic function. The most used solution for

holding the chip con�guration is a Look-up Table (LUT) composed by SRAM cells. This is a

volatile con�guration, meaning that once the device power is shut down, the con�guration is

lost. An external �ash memory must be used to hold the con�guration and a programming

circuit added to the system for con�guring back the device when it is turned on again. Another

family of devices, called Flash-based FPGAs, have the ability to hold the con�guration when

powered down. Finally, there exists OTP FPGA, that uses con�gurable fuses and only admit

being programmed once. They lose their �exibility, as they can not be reprogrammed, but o�er

smaller form factor and other characteristics that can be desirable for speci�c applications.

The logic block architecture is a trade secret for each individual supplier, however, they

follow a basic scheme like the one shown in Figure 2.2. It consists of a 4-input LUT, a register,

and multiplexer. The combination of the LUT inputs results in the desired logic function, while



33

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

I/O

block

I/O

block

I/O

block

I/O

block

Logic

Block

Logic

Block

Logic

Block

I/O

block

I/O

block

Logic

Block

Logic

Block

Logic

Block

I/O

block

I/O

block

Logic

Block

Logic

Block

Logic

Block

I/O

block

I/O

block

I/O

block

I/O

block

Figure 2.1 – The internal architecture of a modern SRAM-based FPGA is a bidimensional

arrange of logic blocs interconnected by datapaths. Switches configured by a bit in the

configuration memory connect I/O blocks and logic blocks, giving form to the desired

circuit.

the multiplexer determines if the output will be synchronous or asynchronous. Clock signals

have their own interconnection, independent of the data ones.

One interesting property of FPGAs is that they can be used to solve any computable

problem. This can be easily demonstrated by the possibility of using them to implement Soft

Processor Systems (SPSs). An SPS is a microprocessor architecture fully implemented using

FPGA chip. The major suppliers o�er their own SPS implementations in form of reusable

Intellectual Properties (IPs), like Altera® NIOS® II and Xilinx® MicroBlaze™ . SPSs introduction

greatly improved the variety of applications that can bene�t from FPGA technology.

The latest introduction in the FPGA family are the so-called SoC/FPGAs. These devices

are constituted by a Hard Processor System (HPS) and FPGA fabric in a single packaging, with



34

LUT

Register

Clock

Figure 2.2 – A basic logic cell is formed by a multiple input LUT and a register. A

multiplexer selects if the output will be synchronous or asynchronous. A logic block

may contain several logic cells grouped together. Modern FPGAs incorporate specialized

elements to some of these blocks, like adders and multipliers, enhancing the device’s

capabilities.

a communication interface between them. An HPS, di�erently from an SPS, is an actually

separated hard microprocessor. It can also possess a variety of peripherals and, as it is separated

from the FPGA fabric, it can run independently. However, their full capacity is brought when

the FPGA specialization characteristics are used to build custom solutions for complex compu-

tational problems. The communication interface between the devices grants them the ability to

exchange data, allowing shared processing. This kind of systems opened a new perspective to

design and implement embedded systems.

FPGA development has traditionally used the same Hardware Description Languages

(HDLs) used for developing other integrated circuits designs, like Application Speci�c Inte-

grated Circuits (ASICs). VHSIC Hardware Description Language (VHDL) and Verilog are the

most common languages, with all suppliers providing their own Integrated Development Envi-

ronments (IDEs) speci�c tools for all development phases. Using those languages, the developer

has to describe the behavior of the system, with the asynchronous parts as combinations

of logic functions and synchronous parts as register-based memory operations. Because of

these characteristics, it is called Register Transfer Level (RTL) design. It leads to a speci�c

work�ow that must be followed by the designer, who must possess an also speci�c set of skills

to fully dominate all the development steps. Although development and integration times are

quite smaller than the necessary for fully custom non-programmable devices, they are still

a lot larger than software driven projects. This fact has always been a wall that drove away

non-electronic/computer developers from using them, which otherwise could bene�t from

FPGA technology.

To deal with this issue, a range of high-level design tools were introduced to o�er more
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abstraction to FPGA development. The latest trend in this direction was the launching of Open

Computing Language (OpenCL) compatible tools for FPGA development.

2.2 OpenCL as an option for FPGA development

With the barriers imposed by crescent power consumption as the clock speed increased,

Central Processing Units (CPUs) manufacturers started to adopt parallelism as a way to increase

computational power without exceeding a limited power envelope. Almost at the same time,

some people started to use GPUs to perform general computing besides their natural graphics

processing, mapping general computing like matrix multiplication into graphics Application

Programming Interfaces (APIs) like Open Graphics Language (OpenGL) and DirectX® . A

growing, but highly fragmented, heterogeneous ecosystem for parallel programming started

to emerge, as each supplier was managing their own technology and releasing their own

proprietary Software Development Kits (SDKs). That diversity made integrating di�erent

technologies rather complicated, so it was necessary to develop a common standard capable

of unifying all those technologies under the same guidelines. The response for this request is

OpenCL. It was developed in its �rst stages by Apple™ Computer Inc. By 2008, its �rst draft

was ready. On August 28, 2009, several hardware providers like Intel® , AMD® , NVIDIA® and

others, uni�ed under the Khronos™ Group, released the �rst revision as an open standard.

OpenCL™ is an open royalty-free standard for general purpose parallel programming

across CPUs, GPUs, and other processors, giving software developers portable and e�cient

access to the power of these heterogeneous processing platforms (Khronos Group, 2009). It

provides a framework for parallel computing, including a C/C++ language extension for writing

programs for parallel devices, an API for controlling the program execution in those devices,

libraries and runtime components. Its goal is to de�ne a common point for parallel programming

regardless of the employed hardware. To accomplish this, it de�nes standards and protocols

that hardware providers must adopt to build a compliant device. Following those standards

enables di�erent types of hardware to execute the same code. The speci�c optimizations or

specialized instructions for complying the code to each platform are hidden from the developer,

as they are, in this point, obliged to comply with the computation model proposed by OpenCL.

The developper then can concentrate only on its algorithm design, with the task of generating
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the speci�c machine code to the platform he is developing for, taken care by the compiler.

Presenting highly parallel characteristics, FPGAs inclusion to OpenCL ecosystem seems

natural. The historically demanding skills for FPGA development always encouraged endeavors

in creating high-level tools; C-like languages as descriptors for automatic code generation tools

were not uncommon. The emerging of OpenCL represents a unifying point for these initiatives,

it provides as well a large community of users ready to explore the bene�ts of FPGA technology.

Nonetheless, the all-new way of thinking FPGA development deserves a study to understand

its characteristics and to make better use of them.

OpenCL Concepts

The next sections introduce some key concepts for understanding how to develop FPGA

applications using the OpenCL framework. It is largely based on OpenCL Reference Guide,

Revision 1 (Khronos Group, 2009).

OpenCL introduces its own architecture for organizing parallel programming, based on

four models:

1. Platform model;

2. Execution model;

3. Memory model;

4. Programming model.

Each one of these models governs an aspect of the development philosophy resulting in the

uni�cation of parallel programming methodology and an abstraction of hardware capabilities.

The Platform Model de�nes the entities that take part in parallel code execution. The

main entity is the host, that will be connected to one or more OpenCL devices. Parallel code

is executed in devices, while hosts take care of non-parallel tasks, data distribution among

entities, and controlling the devices execution. The computing runs on the host according

to its own model. When necessary, it dispatches commands to the devices enabling parallel

computation to occur. OpenCL devices are divided in Compute Units (CUs) that are further
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divided into Processing Elements (PEs). Figure 2.3 shows the platform model hierarchy.

Host

...

...

...

Device

Compute Unit

Processing Elements

Figure 2.3 – The OpenCL architecture defines a Platform Model consisting of a host and

one or several devices. The hosts manage non-parallel tasks and dispatches commands

to control the parallel execution on devices. Devices themselves are divided in Compute

Units, and these are divided in Processing Elements.

The Execution Model de�nes the directives to organize how the code runs. The host code is

the part of an OpenCL program that runs on the non-parallel host processor. The parallel code

is executed on the devices under the form of kernel functions. The OpenCL compiler converts

the kernels into the platform speci�c machine code according to the programmable device.

The core of OpenCL execution model is the organization under which kernels are executed.

When a kernel is enlisted to be executed, the API creates an index space to organize the data

access. The kernel instructions are then executed in each point of this space. An individual

instance of a kernel is called a work-item. They are uniquely identi�ed by a global identi�er

associated with a point in the index space. A coarser division of the index space is provided

by work-groups. They also receive a unique identi�er with the same dimensionality of the

work-items index space. Each work-item also receives a unique work-group level identi�er,

meaning that an individual work-item can be referenced by its global identi�er or a combination

of the identi�er of the work-group it belongs to with its local identi�er within the work-group.

The set of work-items in the same work-group executes in parallel, on the processing elements

of a computing unit, thus making the bridge between platform and execution models.

A collection of API commands prepares the data indexing to execution. OpenCL supports
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two models of parallel execution: data parallelism and task parallelism. The set-up of the context

and the data indexing is the developer responsibility and must be done in the host code using

the appropriate API functions.

The next model is the Memory Model. It determines how hosts and devices must manage

their access to the data. There are four de�ned memory spaces that have their own speci�c

characteristics and are de�ned during compiling time using the respective quali�ers in the

source code. They are:

Global Memory: this memory space can be accessed by both host and devices. All work-

items and all work-groups have read and write access to any memory object allocated in this

space. Depending on the hardware capabilities, the access can be cached to improve timing.

Constant Memory: the items allocated here remains constant during a kernel execution,

hence the name. The host allocates and initializes the memory objects before calling the kernel,

that will have read-only access. The memory content can be changed again by the host before

executing another kernel call.

Local Memory: a memory that has local access to a work-group. It is used to store data that

is shared among the work-items belonging to the same work-group. Depending on hardware

design it can be either a speci�c memory bank on the OpenCL device or a mapped region of

the global memory.

Private Memory: the deepest memory level that is individual for each work-item. The data

stored here can not be seen by any other work-item than its owner.

The implementation of these memory spaces to the corresponding hardware speci�cation

is platform-dependent, meaning that the hardware manufacturer itself decides which type and

amount of memory circuits, as long as the implementation respects the model. Logically, this

decision impacts either on the device performance and on development, production, and �nal

cost. Faster memory is more expensive, thus it is usually provided in smaller amounts and

used for Local and Private memories, the ones closer to the work-items, thus providing better

performance. Nevertheless, the framework provides functions to query the device capabilities

so the developer has the information to adapt the program con�guration in the most suited

way to the platform of choice. Figure 2.4 shows a diagram of the memory model.

Finally, the Programming Model de�nes the guidelines for writing the programs. Although

OpenCL focuses in data parallelism, it supports both data and task parallel programming models.
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Figure 2.4 – OpenCL defines a Memory Model based on four memory spaces. The Global

Memory can be accessed by both Host and Devices, with read and write capabilities. It

is generally the largest available memory, but with the slowest access timing. It also may

be cached, to improve timing. Each device has a Local Memory that can be accessed

by all CUs and PEs, also for read and write. Each PE has also its own Private Memory,

which only the owner can access. The last space is the Constant Memory, which the

Host accesses for read/write and CUs and PEs as read-only. The implementation of the

model to actual hardware is entirely up to manufacturer’s decision.

Data parallelism is done under Single Instructions, Multiple Data (SIMD) paradigm, that is,

a same instruction or sequence of instructions is executed in parallel over a collection of

similar data, following the execution and memory models. The index space determines how

the elements of the memory objects will be allocated to the processing elements. A strict

data parallel model ensures a one-to-one mapping between memory elements and processing

elements. OpenCL implements a relaxed model for data parallelism, so this one-to-one map is

not required. It allows for the �exibility of using heterogeneous hardware platforms.

Task parallelism is achieved by executing a single kernel independently of any indexing. It

is logically equivalent to executing a kernel on a computing unit with a work-group containing

a single work-item. Parallelism is achieved by dispatching several tasks or using device speci�c
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data vectors.

OpenCL work�ow for FPGA programming

OpenCL is available as an FPGA design option since 2013, when Altera® released an

SDK for its products, what was followed by Xilinx® . The language adoption represents a

considerable advance to FPGA development (HILL et al., 2015). In reality, it introduces an

entirely new work�ow with a higher level of abstraction for FPGA-based systems development.

Traditionally, the RTL work�ow is used for FPGA development when an HDL is the

programmer option. Although these languages can always be used to design parallel systems,

this process requires a deep knowledge of digital circuit singular design and involves time-

consuming simulation and veri�cation stages. However, the OpenCL work�ow, with its higher

abstraction level, facilitates the complete development in general, and it has to be forcefully

adopted when OpenCL language is used. The main advantage of the OpenCL work�ow is to in-

corporate the RTL procedures in a transparent way, which brings e�ciency to the development.

Figure 2.5 shows the relation between both work�ows.

It can be seen in Figure 2.5 that RTL work�ow comprises some fundamental steps, taken

after the code development, which are: functional simulation of the compiled code, synthesis of

the approved simulated code, routing of the viable synthesis result considering all power and

timing constraints, to �nally upload to the target board the bitstream hardware con�guration

�le. All these steps are manually controlled by the developer, and the process has to return to

the initial step if any intermediary check fails, requiring a number of iterative loops to ensure

correctness at each stage. It is common to reach a high number of iterations until a design gets

approved.

The OpenCL work�ow, also shown in Figure 2.5, rests over the RTL one. It means that the

RTL steps are still necessary, but now they proceed in an automatic and transparent way. This

happens because the OpenCL compiler uses veri�ed IPs to handle the data interfacing. These

IPs have their constraints already mapped, then there is no need to execute a full analysis one

more time.
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Following the compilation of the OpenCL code, the functional veri�cation is done through

emulation of the target system in the host developing computer. After functionally approved,

the system is ready to be optimized and checked against the resource constraints, according

to the speci�c FPGA device in use. The optimizations in this point are done by the compiler,

meant for giving the developer a view of possible bottlenecks in the translated architecture. By

following speci�c guidelines, these bottlenecks can be mitigated. The procedure follows up

with the automatic synthesis and routing steps. This avoids the always present feedback to the

initial step imposed from using the manual procedure.

The compiler also takes care of handling the interfacing between the Host and the Device

through prede�ned interconnect IPs that map the data exchange to the target hardware. This

is traditionally the most time-consuming task in the system design using RTL work�ow, as the

developer must tune his solution to work in very speci�c protocols to be able to manage the

data transfer between the system components and extract the best performance, linking the

design with the actual hardware in use.

In the previous sections, the technology and development methodology for the FPGA

architecture implementation of the chosen classi�cation algorithm were already introduced.

Next section follows with an introductory overview of the OPF characteristics and main

algorithms.

2.3 The Optimum-path Forest classi�er

Classi�cation problems are de�ned as the task of �nding a way to partition a space,

formed by feature vectors describing a set of samples, and then attributing a class to unknown

samples corresponding to each partition found. In simple terms, they map labels to samples

according to some decision boundaries. Automatic Classi�cation has been a recurrent challenge

in many science �elds, driving considerable research that gave light to several methods. Many

modern AI applications, for example, rely on classi�cation as the basis for decision making.

The initial step for all classi�cation methods is to learn about the problem to be classi�ed, a

procedure usually called as training. According to how the methods gather the knowledge about

the classes and their distributions in the feature space, the learning methods can be classi�ed in
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Figure 2.5 – The FPGA OpenCL programming workflow. It incorporates theRTLworkflow

as an automatic process, based on verified components. This introduces a higher level

of abstraction to the development, as the user will concentrate on the algorithm design.

three variations: Supervised, Unsupervised or Semi-supervised methods. In supervised methods,

the learning is accomplished by analyzing a set of training samples whose classes are fully

labeled. The unsupervised methods lack any information about the classes at training time.

They are also known as clusterization methods, as they try to group samples by similarity and

then infer classes from those groups. The semi-supervised methods use partially labeled data

to classify the unknown samples. New classes can be created if the learning procedure includes

that capacity.
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There are di�erent approaches to �nd the decision boundaries in the feature space that

map the classi�cation. Some classi�ers use geometrical approaches, that is, they try to �nd

descriptions of the decision boundary and classify the samples in relation to them. Support

Vector Machiness (SVMs) apply this methodology. However, the feature space is not always

linearly separable. For those cases, SVM solution is mapping the feature space to a higher

dimension, making it linearly separable in a hyperspace. The goal is to �nd an optimal mapping

to that high dimensional space. When a suitable mapping is found, it returns a description

of the hyperplanes corresponding to the decision boundaries; this description is based on

a collection of support vectors that corresponds to frontier elements in feature space. The

hyperplane divides the feature space into two halves, each one belonging to a class. By verifying

in which half a sample lies in feature space, the classi�cation is achieved. However, it is not

always possible to �nd a �nite dimension that separates the classes or the computational

cost grows fast with the increasing number of feature vectors (COLLOBERT; BENGIO, 2004;

TANG; MAZZONI, 2006; PANDA et al., 2006). To solve this issue, SVM uses a kernel function

to implicitly work in the higher dimension, without having to actually map the space, what is

called the kernel trick. Other methods, like Bayesian Classi�cation, use statistical analysis to

�nd probability distributions to describe the decision boundaries.

Graph-based classi�cation is a set of methods that represent feature spaces using Graph

Theory paradigm. The �eld was introduced in the late 70s and represent an interesting and

powerful framework for building classi�ers. However, its use decreased as the computational

complexity of graph algorithms increased. Starting in the late 90s, recent years have seen a

renewed interest in the �eld, as the computational power of the current computer generation

is more compatible with the cost of those algorithms (CONTE et al., 2004). A growing number

of publications demonstrated new applications, especially on image and video processing.

Table 2.1, reproduced from Conte et al. (2004), shows the research scenario so far for Graph

Matching, one of the available graph-based methods.

Table 2.1 – Graph matching based applications published up to 2002, according to Conte

et al. (2004).

Period 2D & 3D
Image Analysis

Document
Processing

Biometric
Identification

Image
Databases

Video
Analysis

Biomedical/
Biological

up to 1990 3 (0) 1 (1)

1991–1994 3 (0) 2 (2) 1 (1) 1 (1)

1995–1998 8 (3) 9 (5) 6 (6) 5 (5) 1 (0)

1999–2002 19 (6) 8 (4) 8 (8) 8 (7) 6 (6) 2 (2)
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The last decade saw new developments to the area, with the adoption of new approaches

and applications. An updated survey is presented by Foggia et al. (2014), surveying more

than 180 papers in the topic. It shows recent advances and prospects to further development,

including a comprehensive introduction to the most used techniques.

In the late 2000s, a new graph-based classi�er, called OPF, was proposed by Papa et al.

(2009). The method represents each class by one or more optimum-path trees rooted at key

samples called prototypes. A heuristic for de�ning prototypes directs the graph partitioning

whose goal is to expose a relationship between the nodes, that will form homogeneous groups.

The classi�cation is done by a competition where each tree will try to conquer the presented

sample o�ering path-cost to connect the sample with a prototype, considering all possible

paths to each prototype originating on every node. As the costs of each node are a measure of

similarity, it can be concluded that the classi�cation process is connectivity by minimization of

dissimilarity.

The actual form of OPF as a general classi�er derived from an application for image

processing known as Image Foresting Transform (IFT) (TORRES et al., 2002). The IFT central

concept is to consider a digital image as a graph, whose nodes are pixels and the edges are

determined by a previously de�ned adjacency relation. The most common adjacency relation

are 4-connectivity, where each pixel is linked to four neighbors, two vertical and two horizontal.

The algorithm extracts a forest of minimum cost paths rooted on a previously de�ned set of

seed pixels, obeying an application-speci�c path-cost function. In its essence, IFT consists of a

generalization of Dijkstra’s shortest path algorithm, notably, with the ability to use multiple

starting nodes and general cost functions. Specifying di�erent cost functions produces di�erent

applications (FALCÃO et al., 2004).

The concepts of IFT can be extended from images to general graphs, giving birth to

a generalized framework from which the OPF classi�er was developed (PAPA et al., 2009).

What were pixels and intensity/color values in the image processing domain are converted to

graph nodes and their respective feature vectors. Features can be extracted in many di�erent

application-speci�c ways.

OPF classi�ers can be constructed using either supervised or unsupervised learning (PAPA,

2008). This thesis focuses on the supervised variation as it is the most common variation with

the majority of applications. Next Section describes in details the training and classi�cation
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stages of a supervised learning based OPF classi�er.

2.3.1 Supervised learning variation

Training algorithm

The basic training routine presented in Papa et al. (2009) proceeds in two distinct stages

called �tting and learning. The �tting stage starts by selecting a subset of samples from the

problem universe, referred from now as the training set. As this is a supervised learning

procedure, all samples are already labeled with their correct classes. One requirement of the

training set is that it must contain at least a sample for every class in the problem. From the

training set, a complete graph using the samples as nodes is constructed with the edges weights

determined by a previously de�ned dissimilarity function. The Euclidean Distance (L2 norm)

is a common dissimilarity function, used in many methods, however, any function that suits a

particular requirement of an application can be used instead. From the complete graph, the

algorithm proceeds with the extraction of a Minimum Spanning Tree (MST). The MST exposes

a similarity relation between the nodes. Decision boundaries can be found in this structure in

the points where two nodes that belong to di�erent classes are connected. This is the heuristic

for �nding the prototypes. The edges between the prototypes are removed and they receive an

associated path-cost of 0, representing that they are roots of homogeneous trees, that is, all

nodes in the same tree belong to the same class represented by its corresponding prototype.

Each non-prototype node will receive an associated cost that is equal to the path-cost to reach

their respective prototype. The path-cost is given by the OPF connectivity function, de�ned as:

fmax(πn,p) = max{wn,...,wp}, (2.1)

where πn,p is a path from node n to prototype p, represented by a sequence of all edges weights

in the respective path. So, each node associated cost will be in the end, the value of the largest

edge weight in the path from itself to the respective prototype.

As mentioned before, the weights are calculated by the dissimilarity function d(s,t).



46

Algorithm 2.1 is called OPF algorithm, and calculates the minimization of the connectivity

function de�ned in Equation 2.1 on the domain of graph T , formed with the training set nodes.

Algorithm 2.1 OPF classifier training algorithm. The priority queue is a particular data

structure that has an ordered storage policy; it ensures that the element in the head always has

the minimum cost in the queue and also permits arbitrary removal. The λ function returns a

label that identifies the class that the sample belongs to and function d(x,y) is the dissimilarity

function, that returns a metric of how separated the samples are in the feature space.

Require: Training set graph T , prototypes set S ⊂ T
Auxiliary: priority queue Q, real variable cst, function d(x,y)
Output: classifier P , cost map C , label map L

1: function OPF_Training(T )

2: for all t ∈ T \S do
3: C(t)←+∞
4: for all s ∈ S do
5: C(s)← 0, L(s)← λ(s), P (s)← nil, insert s in Q

6: while Q 6= ∅ do
7: Remove s from Q such that C(s) is minimum

8: for all t ∈ T | t 6= s and C(t)> C(s) do
9: cst←max{C(s),d(s,t)}

10: if cst < C(t) then
11: if C(t) 6= +∞ then
12: Remove t from Q

13: P (t)← s, L(t)← L(s), C(t)← cst
14: Insert t in Q

return P

Figure 2.6 shows a graphical representation of the algorithm.

There is a relation between MST and the minimization of fmax, in the sense that all

possible paths in a MST are minimal. The implication is that each edge will have a weight that

is corresponding to the distance between adjacent nodes.

The classi�cation algorithm

The OPF classi�cation algorithm assigns to the unknown sample the class of the most

connected prototype considering all possible paths originating from every classi�er node. It

can be viewed as a competitive process, where each tree will try to conquer the new node

for itself o�ering a reward, that is the path-cost to its prototype. The one that o�ers the best

reward, meaning the optimum path, will connect to the sample and propagate its labels. As
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Figure 2.6 – Training sequence for the OPF classifier.

(a) The complete graph with edges weighted by dissimilarity.

(b) The Minimum Spanning Tree is found.

(c) The prototypes are marked and their connections undone.

(d) The last step is to assign the labels and the costs for each node. The prototypes are

assigned a cost of 0 and propagate their labels to the nodes in their trees. The cost of

the nodes are the maximum value of the edges in the path from them to their respective

prototypes.

the path-costs are given by the dissimilarity function, the classi�cation is, most essentially, a

process of dissimilarity minimization.

Formally, for a given unknown sample s, its resulting classi�cation label λ(s) is given by

the classi�cation function de�ned as:

λ(s) = λ(t) | t= min
∀t∈T
{max{C(t),d(s,t)}}, (2.2)

where T is the classi�er set graph,C(t) is the classi�er cost map and d(s,t) is the value returned

by the dissimilarity function. The classi�cation process is ilustrated in Figure 2.7.

The naive implementation of OPF algorithm is an extensive search where all the possible

paths to all prototypes are searched. However, (PAPA et al., 2010) presented a variation of

the algorithm that explores a theoretical property of the OPF that can make the classi�cation



48

(0,0.4)

(0,0.5)

(0,0.0)

(1,0.5)

(1,0.3)

(1,0.0)

0.6

0.3

0.9

0.5

0.4

0.8

(a)

(0,0.4)

(0,0.5)

(0,0.0)

(1,0.5)

(1,0.3)

(1,0.0)

(1,0.4)

(b)

Figure 2.7 – Classification sequence for the Optimum-Path Forest classifier.

(a) The unknown sample is presented to the classifier nodes. The classifier nodes then

try to connect to the unknown sample, o�ering it their costs. The resulting cost for the

unknown sample is the greatest value between the cost o�ered by the classifier’s node

and the distance from the unknown to the sample in question.

(b) The node that o�ers the minimum cost path connects to the unknown sample and

gives it its class label. Note that although the closest node to the unknown sample is

of the class circle, the most connected prototype is one of the class squares. Thus, the

sample is classified as square.

faster. As the classi�er must �nd the node that o�ers the minimum cost to connect to the

unknown sample, one can assume that the winning one will have a small cost (not necessarily

the lowest). So, if the classi�er presents its nodes in an ascending order of their associated costs,

the probability of the winning one to be at the beginning of the list is high. Then, one must

search through the list until it �nishes (in the worst case) or until �nding a node whose o�ered

cost is greater than the assumed cost for the unknown sample to connect to the previous node.

This previous node will then be the winner. Algorithm 2.2 shows the enhanced classi�cation

algorithm.

Learning from errors in the classi�cation

The resulting forest from the �tting algorithm is already suitable to classify unknown

samples. However, a learning method was proposed to increase the classi�er accuracy (PAPA

et al., 2009). The current version of the learning algorithm published in the library used in

this work consists of using a third set of samples called evaluation set to assess the accuracy

of classi�cation. This set is kept apart during the �tting stage so that the classi�er does not

know any of its samples. This procedure keeps the training set from producing an over-�tted

classi�er. The classi�er accuracy is evaluated by classifying the samples in the evaluation set.
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Algorithm 2.2 Enhanced OPF training algorithm. A theoretical property of the OPF can make

the classification faster. As the classification is a minimization problem, the search may be

faster if the nodes are presented in order. The probability of the winner node to be at the

beginning of the list high, thus, not necessarily all nodes need to be checked.

Require: Ordered classifier set T , label map λ(T ), connectivity cost C(T ) and test set S.

Output: Test set label map λ(S).

Auxiliary: Variables tmp and mincost, counter i.
1: function OPF_Classifying(T )

2: for all s ∈ S do
3: i← 1
4: mincost←max{C(ti),d(s,ti)}
5: λ(s)← λ(ti)
6: while i < |T | and mincost > C(ti+1) do
7: tmp←max{C(ti+1),d(s,C(ti+ i)}
8: if tmp <mincost then
9: mincost← tmp

10: λ(s)← λ(ti+1)

11: i← i+ 1
return λ(S)

Then, randomly-chosen misclassi�ed nodes in evaluation set are exchanged with non-prototype

samples of the training set and the �tting process is executed again in this new set, producing a

new classi�er instance. The process of �tting-evaluating-replacing nodes is repeated until the

variation of the accuracy is lesser than a pre-speci�ed value or a maximum number of iterations

is reached. This procedure is meant to �nd the most informative samples in the universe set

for being used in the �nal classi�er. Algorithm 2.3 exposes the learning procedure.

The principle is that by including the misclassi�ed nodes in the training, we can get the

most informative nodes to form the classi�er, thus increasing accuracy. It is also important

to remark that the accuracy measurement must take into account the relative distribution

of the samples in the feature space. Unbalanced distributions, in which a class has a much

smaller number of samples, may increase the error rate, because the classi�er may assign most

frequent labels to such samples, possibly eliminating all its representatives. Then, the accuracy

is calculated using a per class procedure and the selection of samples for swapping must take

the classes distributions into account.

Let NE(i), i= 0,1,...,c, with c being the number of classes, be the number of samples of

each class in the evaluation set. We de�ne two error metrics:

ei,1 =
FP (i)

|E|−NE(i)
and ei,2 =

FN(i)

NE(i)
, (2.3)
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Algorithm 2.3 Leaning procedure for the OPF classifier. CalculateAccuracy is a function

that returns the accuracy of an OPF classified set. SwapErrors is a function that swaps

misclassified nodes in the evaluation set for non-prototype nodes in the training set.

Require: test set T , evaluation set E.

Auxiliary: δ: variation from previous to current accuracy, Λ: accuracy variation limit, iter:
current iteration, maxIter: maximum number of allowed iterations, if the procedure does

not converge, curAcc: accuracy of the current iteration, prevAcc: accuracy of the previous

iteration, function CalculateAccuracy, function SwapErrors.
Output: Classifier P .

1: function OPF_Learning(T,E)

2: iter← 0
3: prevAcc←−∞
4: while δ < Λ AND iter < maxIter do
5: C← OPF_Training(T )

6: OPF_Classify(C,E)

7: curAcc← CalculateAccuracy(E)

8: δ← |(curAcc−prevAcc)|
9: if curAcc > prevAcc then

10: prevAcc← curAcc
11: P ← C
12: SwapErrors(T,E)

13: iter← iter+ 1
return P

where FP (i) and FN(i) are, respectively, the number of false positives and false negatives of

each individual class. False positives are samples of a di�erent class that are classi�ed as being

of class i and false negatives are samples of class i that are classi�ed as not. These two errors

de�ne the main error as:

ε(i) = ei,1 + ei,2 (2.4)

The balanced accuracy A for an instance I of a candidate classi�er is then given by:

A(I) =

2c−
c∑
i=1

ε(i)

2c
(2.5)

With the conclusion of this chapter, all the algorithms needed to build a supervised OPF

classi�er are presented. Next chapter presents a practical application of such classi�er.
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Chapter 3

Implementation of an OPF-based

pedestrian detection system

“Apply yourself. Get all the education you can, but then... do something.
Don’t just stand there, make it happen.”

— Lee Iacocca

3.1 Introduction

Recently, a particular interest has grown in the industry for systems that help the task of

driving a vehicle. The main objective is helping to mitigate the risk of accidents. Figure 3.1

shows the mortality rate of tra�c accidents per 100,000 population in the world. Given this

alarming number of accidents, many of them caused by driver’s mistakes, a new class of systems

appeared to help mitigate this issues. These systems are collectively called Advanced Driver

Assistance Systems (ADAS).

ADAS can comprehend one or many sub-systems that may provide information to the

driver, thus increasing his awareness of the situation around him or actuating in the vehicle

sub-systems, like the brakes, to prevent a dangerous situation. One of such systems is the

Pedestrian Detection systems. Pedestrians represent a signi�cant amount of fatalities in tra�c

accidents. Table 3.1 shows the pedestrian mortality in USA in a 10 years timeframe. It can be

noticed that although the total number of accidents have decreased in the considered period,

the proportional number of pedestrian fatalities increased.

The pedestrian detection task is challenging, especially because of the large in-class

variation and complexity of poses that a human form can assume. Despite the di�culties, the

�eld has been attracting a considerable amount of research, due to the large bene�ts that can

be derived from it.
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Figure 3.1 – Road tra�ic mortality rate by country. Source: World Health Organization,

website. URL: <h�p://gamapserver.who.int/mapLibrary/Files/Maps/Global_RoadTra�ic_

Mortality_2013.png>, accessed 07/13/2016

Table 3.1 – Pedestrian mortality rates in USA, from 2004 to 20013.

Source: Fatality Analysis Reporting System (FARS) 2004-2012 Final File, 2013 Annual

Report File (ARF).

Year Total Fatalities Pedestrian Fatalities Percentage

2004 42836 4675 11%

2005 43510 4892 11%

2006 42708 4795 11%

2007 41259 4699 11%

2008 37423 4414 12%

2009 33883 4109 12%

2010 32999 4302 13%

2011 32479 4457 14%

2012 33782 4818 14%

2013 32719 4735 14%

Pedestrian detection systems work processing the data captured by a sensor (usually

an imaging sensor such a video camera or radar or yet a combination of both) to identify

people crossing the vehicle path, especially the ones not noticed by the driver. Once detected,

the information could be relayed to the driver by some kind of interface, or a higher level

monitoring system can, for example, decide to apply the breaks and stop the vehicle, if it judges

the situation harmful. The sensors may be night vision capable, increasing the safety even

http://gamapserver.who.int/mapLibrary/Files/Maps/Global_RoadTraffic_Mortality_2013.png
http://gamapserver.who.int/mapLibrary/Files/Maps/Global_RoadTraffic_Mortality_2013.png
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more.

This chapter introduces a proof of concept for the pedestrian detection problem, with

the objective of evaluating characteristics of the proposed classi�er and also its suitability for

implementation in the proposed framework for embedded systems.

3.2 Current approaches on Pedestrian Detection

Speci�cally, vision-based pedestrian detection is a variation of human detection that

focuses on �nding people in tra�c environments. The people in this environment are usually

visible and approximately in an upright position. A number of propositions have been done in

the last decade.

Recently, Dollar et al. (2012) published a sensible survey of state-of-the-art methods for

pedestrian detection, also publishing a uni�ed methodology for their evaluation that is the

current benchmark of the �eld. In their work, it is possible to perceive that the majority of the

systems use a sliding windows approach for object detection followed by binary classi�cation,

with candidate regions on the image encoded by dense features set. The Histogram of Oriented

Gradients (HOG) feature set introduced by Dalal & Triggs (2005) is the most used, alone or

alongside with other techniques that can improve its information. As for the classi�er, linear

SVMs have been common, with some applications using also Arti�cial Neural Network (ANN)

such as Multi-layer Perceptrons (MLPs), Random Forests and most recently Convolutional

Neural Networks (CNNs).

Considering this, the pedestrian detection system to be described in the following of

this thesis is based on sliding windows for coarse detection, HOG feature descriptors and new

proposition for the binary classi�cation part, using a supervised OPF classi�er. The performance

of OPF is compared in terms of classi�cation accuracy and processing speed with the same

datasets applied other classi�ers currently used for pedestrian detection.
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3.3 System overview

A vision-based pedestrian detection system executes the task of taking an image from a

camera pointed to the vehicle forward motion and then marking the positions of the persons that

appear in the camera �eld of view, especially those in the vehicle path. This spatial information

is then translated to the vehicle reference frame to be at disposal of other systems. For example,

an alert system can monitor the vehicle speed and attitude and then signal the driver of a

potentially dangerous situation or even actuate on the vehicle control system to prevent it.

Automatic braking and cruise control are some systems that can use this information.

Among the many propositions for pedestrian detection systems, the most common

structure is the one brie�y described bellow:

Image acquisition: The �rst task is to acquire the image that will be used to detect the

pedestrians. This function can be based on di�erent kinds of imaging devices, most commonly

a video camera. The image may be taken in color or gray-scale. Infrared is also a common

choice that enables the ability to track the pedestrians even in the lack of natural or arti�cial

illumination.

Coarse detection: The next step is to proceed with the detection of the objects in the image

frame that are potential pedestrians. The objective here is to provide an initial guess and also

eliminate obvious errors. One common approach is to apply a sliding window to the frame and

to extract features in these Region of Interests (ROIs), followed by non-maximal suppression

for eliminating repeated detections.

Feature extraction: The candidates selected in the previous process will be transformed

from image fragments to a numerical or categorical collection of values, organized sequentially

to form a feature vector. The resulting feature vector is then used to classify the candidate

object as a pedestrian or not.

Classi�cation: Finally, the information given by the feature vector can be classi�ed and made

available to be used by other systems or exhibition to the driver.

The implementation of an OPF-based pedestrian detection associated with HOG feature

descriptor is presented in the next sections, followed by an evaluation of its performance and a

comparison with linear SVM, MLP and Random Forests classi�ers, using the same descriptor.
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The training was done using a pre-processed dataset, also described in next sections.

Figure 3.2 displays a schematic representation of a possible solution for a pedestrian

detection system, showing each sub-task, its corresponding method and an example of generated

output.

Discussed in this chapter

Camera

Image

Acquisition

Sliding Windows +

Non-maximal

Supression

Coarse detection

HOG

Feature Extraction

OPF

Classification

Figure 3.2 – A proposition of a pedestrian detection system using an OPF classifier. The

highlited part is discussed in this chapter.

3.4 Feature extraction

This work evaluates two propositions of feature extraction methods for using with

the OPF classi�er. Both of them make use of the HOG as the primary descriptor; the �rst

evaluates HOG alone and the second uses HOG in conjunction with a feature selection method,

speci�cally, the Principal Component Analysis (PCA).

3.4.1 Histogram of Oriented Gradients

The HOG feature descriptor was introduced for pedestrian detection in 2005 in the land-

mark work of Dalal & Triggs (2005), as already mentioned. It became the dominant descriptor
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in the �eld, being used in nearly all modern detectors (DOLLAR et al., 2012).

Essentially, HOG is based on evaluating well-normalized local histograms of image

gradient orientations in a dense grid. The idea is that the distribution of local intensity gradient

or edge orientations describes well the local object appearance and shape. In practice, it is done

by dividing a search window into small regions called cells. For each cell, it is accumulated

in a local one-dimensional histogram over several gradient directions or edge orientations

for each pixel in the cell. The representation is formed by the combination of the histograms.

Illumination and shadow variations can degrade the results, so a normalization of contrast is

applied to increase the method robustness. This is accomplished by accumulating a measure

of the histograms energy across a larger region comprised by a block of cells, and then using

this value to normalize all the cells in the respective block. The �nal feature vector is given by

distributing a dense, overlapping grid of blocks over the window and then concatenating the

resulting histograms. Figure 3.3 shows an example of a HOG descriptor.

HOG descriptors have a number of advantages, most notably its ability to capture local

shape from the gradient structure with a controllable degree of invariance to geometric or

photometric transformations. If rotations or translations are much smaller than the orientation

histogram bin size, they make little di�erence in the �nal representation. For pedestrian

detection, it translates as a certain freedom of movement, for example, limbs can move laterally

in big amounts without compromising the model, given that they maintain a more or less

upright position.

This works uses a HOG implementation provided by the Open Computer Vision (OpenCV)

library, using the following setup: The detection window is divided into a 8× 16 grid, with

each cell measuring 8× 8 non-overlapping pixels. Four neighboring cells form a block in a

2×2 con�guration. Blocks overlap by one cell in horizontal and vertical directions, resulting

in 7× 15 = 105 blocks per window. For each cell, the histogram is divided into 9 gradient

orientation bins. Each bin cumulates the gradient magnitude for a given pixel. Each block results

in 36 elements (4 cells × 9 bins) that are concatenated into a single vector. After concatenating

all blocks, the resulting HOG feature vector will have 105×36 = 3780 dimensions.
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Figure 3.3 – The HOG descriptor is formed by an overlapping grid of blocks containing a

number of cells, then calculating a cumulative histogram in di�erent gradient direction

for each pixel in the cell. The concatenation of the resulting histograms gives the feature

vector. Local contrast normalization at block level helps to increase the invariance to

changing illumination conditions.

Source: (DALAL; TRIGGS, 2005).

3.4.2 Principal Component Analysis

Although very precise, HOG descriptor feature vectors present high dimensionality (3780

dimensions in our con�guration). Therefore, it can be useful to apply a dimension reduction

method, like PCA, allowing faster classi�cation times than when using full-sized vectors. This

processing time reduction is a desirable e�ect for real-time applications.

PCA was created in 1901 by Karl Pearson (PEARSON, 1901) and developed later by

Hotelling (HOTELLING, 1933). It is a statistical process that transforms a set of possibly

correlated variables into a linearly uncorrelated set with equal or fewer dimensions, called

Principal Component. The transformation is de�ned in a way that the �rst component has the

largest possible variance and all the subsequent components have the next largest possible
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variance if they obey the constraint of being orthogonal to the precedent components. In

practical terms, PCA can be used for dimensionality reduction. Given a set with a given

number of elements, PCA searches for an orthogonal basis that can describe the data in a more

understandable way, mapping the data to a new coordnate system with a subset of components

found by the analysis, achieving a reduction of the data processing through analysis in the new

coordinate system.

PCA has many applications in �elds as diverse as Signal Processing to Psychology, mostly

applied as a tool for exploratory data analysis and predictive models. It is also used in ML for

dimensionality reduction. The transformation performed by the PCA maps the data vectors

from an original space with p variables to a new space with also p variables, now uncorrelated.

However, a truncated transformation is also possible, by de�ning a space that has only a part

of the vectors. The resulting space still maximizes the variance by minimizing the least squares

error of the reconstruction.

The dimensionality reduction property can be used to speed-up classi�cation times of

dense feature vectors like the ones generated by HOG. In this work, we compared the perfor-

mance of a reduced set of features obtained by applying PCA over feature vectors generated

by our HOG con�guration against the pure HOG ones. Both qualitative and quantitative tests

(classi�cation accuracy and processing time) are investigated. The PCA implementation used

was the one found in OpenCV library (BRADSKI, 2000).

3.5 Experimental results

3.5.1 Methods used for comparison

The methods used for comparison with the OPF approach used the following parameters:

SVM implementation is the one from libSVM library (CHANG; LIN, 2011). The kernel used was

the linear one, as this type of kernel is the common choice used in pedestrian detection (DALAL;

TRIGGS, 2005; KOBAYASHI et al., 2008). The type selected was nu-SVC, using default value for

the nu parameter. MLP and Random Forest implementation is the one from OpenCV library.
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MLP was set to use the Resilient Propagation (RPROP) training method (RIEDMILLER; BRAUN,

1993), with 3 layers in total, an input, a hidden and an output layer. The number of neurons

in the �rst layer was set as the number of features, the hidden layer had 1000 neurons and

the output layer, a single one. Random Forest was set to have a maximum number of 100

forests and a maximum depth of 25. The OpenCV version used was built with Intel™ Thread

Building Blocks library. As stated in OpenCV documentation, both MLP and Random Forest

implementations bene�t from the library parallelization. This has to be considered for the

processing times comparison, as the other methods implementations do not use any kind of

parallelism. Only the classi�er performance was evaluated, using a per-window approach, as

described by Dollar et al. (2012). The intention is to evaluate the suitability of the classi�er

to be applied to pedestrian detection applications. The �nal e�ciency of the classi�er part

is in�uenced by the detector part, however, evaluating the classi�er alone is also important,

as it gives us a basis to chose the more suitable classi�er for a speci�c design choice, let say,

focusing on classi�cation performance or processing speed.

3.5.2 Data set description

The classi�er training was done using a dataset composed of a combination of several pub-

licly available data sets for pedestrian detection: The INRIA Person 1 dataset, the TUD-Motion

Pairs2 dataset, the Caltech Pedestrian Detection3 dataset and the CVC-01 Pedestrian4 dataset.

The idea is to increase the classi�er generalization by combining the di�erent characteristic of

this datasets. The �nal dataset consisted of 6080 pedestrian and 6080 non-pedestrian images.

The images were kept on the original scale, with 128×64 pixels resolution, to match the HOG

detection window, in PNG format in gray-scale. Figure 3.4 shows a sample of each class. The

classi�ers were modeled to perform a binary classi�cation, considering the pedestrian images

as positive cases and the non-pedestrian as negative cases.

1Available at: http://pascal.inrialpes.fr/data/human/
2Available at: http://datasets.d2.mpi-inf.mpg.de/tud-brussels/tud-brussels-motionpairs.tar.gz
3Available at: http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
4Available at: http://www.cvc.uab.es/adas/site/?q=node/7
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(a) (b)

Figure 3.4 – Sample of images from the mixed dataset used in this work.

(a) A positive sample, showing a person in an arbitrary pose.

(b) A negative sample, with no person visible.

3.5.3 Results

The metrics used to evaluate the method performances were the ones based in the

Confusion Matrix (SOKOLOVA; LAPALME, 2009). The time spent in training and testing

phases have also been considered. They were measured using Repeated Random Sub-sampling

validation with strati�ed sampling, keeping 50%−50% ratio between positive and negative

samples in every partition. Each method was executed 100 times with a di�erent randomly

chosen set of training and test samples, keeping the same sets for each method in each round.

The �nal results are given by the arithmetic average of all rounds. The equipment used was the

same for all methods, a PC equipped with a Intel® Core™ i7-3720QM CPU at 2.600 GHz with

8 GB RAM DDR2 memory, running Ubuntu 14.04 “Trusty Tahr”.

All classi�ers were evaluated using the two approaches for feature extraction, HOG alone

and HOG+PCA. In order to evaluate the in�uence of the number of samples on classi�cation

stability, four con�gurations were used, with 10%, 25%, 50% and 75% of the dataset respectively.

An amount of 40% of the resulting set was used for training the classi�ers and other 40% used

as test set. The remaining 20% were used for the training of the OPF method, as it requires an

extra validation set.

The execution time for applying PCA and projecting the samples to the resulting subspace

was, in average, 32 minutes. We chose to keep 95% of the original covariance, reducing the

feature space from 3780 to 1271 dimensions.
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Figure 3.5 shows the results for HOG descriptors and Figure 3.6 shows the results for

HOG+PCA descriptors. For HOG only, SVM and Random Forests had practically the same

performance, with OPF and MLP being a little less accurate. With HOG+PCA, all methods

showed a drop in performance. We can notice that the OPF method was less a�ected, showing

to be stable and more accurate than the other methods in this con�guration. The MLP was

stable but signi�cantly less accurate and Random Forest completely degenerates.
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Figure 3.5 – Metrics for classifying HOG descriptors.

Figure 3.7 shows the resulting Receiver Operating Characteristic space using each de-

scriptor. As the OPF is a discrete classi�er, the resulting ROC curve is a single point. To be fair,

all the other methods were also set as discrete.

Table 3.2 and Table 3.3 show the processing times for training and testing stages. We

can notice a signi�cant reduction in testing time with HOG+PCA and an increase in training

time, except for OPF, whose training time decreased in all situations. Random Forest showed
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Figure 3.6 – Metrics for classifying HOG+PCA descriptors.

unmatched speed, being the faster with HOG descriptors, but given its poor performance with

HOG+PCA, the results for this feature extraction method must be disregarded. OPF and SVM

showed close speed results, with OPF being more accurate with HOG+PCA. When the number

of samples is increased, the advantage of the TBB library parallelization in OpenCV methods is

noticed; MLP and R. Forest became faster. It is also important to remark that the parameter

optimization performed by the libSVM with HOG+PCA had some di�culty to converge. This

can be an indicative that within HOG+PCA subspace, the linear kernel lost its generalization,

bringing the necessity of testing di�erent kernels or doing a deeper parameter optimization.

This remarks the advantage of the non-parametric characteristic of the OPF, alongside its

stability with dimension reduction by HOG+PCA.

Figure 3.8 shows the Accuracy histogram of each method for HOG+PCA descriptors. OPF

shows to be more stable and accurate. We have to disregard Random Forest result, as it is not

functional with this descriptor.
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Table 3.2 – Training and testing stages processing times using only HOG descriptors.

% of
samples Method Training

Time (s)
Testing
Time (s)

Time per
sample (ms)

MLP 115.0555 1.1091 2.277

OPF 2.9102 0.5653 1.160

R. Forest 10.5303 0.0102 0.020

10

SVM 0.8588 0.6133 1.259

MLP 134.0223 2.9527 2.428

OPF 19.4376 3.5941 2.955

R. Forest 40.4635 0.0398 0.032

25

SVM 5.4974 3.8070 3.130

MLP 394.9813 5.4359 2.235

OPF 79.2350 13.6569 5.615

R. Forest 91.5122 0.0992 0.040

50

SVM 20.3603 13.8870 5.710

MLP 791.7233 8.5056 2.331

OPF 182.0430 31.0965 8.524

R. Forest 1,546.5659 0.1643 0.045

75

SVM 47.6002 32.2706 8.846

Table 3.3 – Training and testing stages processing times for PCA+HOG descriptors.

% of
samples Method Training

Time (s)
Testing
Time (s)

Time per
sample (ms)

MLP 22.5206 0.1757 0.360

OPF 0.7282 0.1429 0.293

R. Forest 2.4151 0.0047 0.009

10

SVM 4.5394 0.1183 0.242

MLP 169.3280 0.6864 0.564

OPF 8.1560 1.4681 1.207

R. Forest 10.1993 0.0166 0.013

25

SVM 32.1660 1.0654 0.876

MLP 689.3629 1.6430 0.675

OPF 49.8310 7.1837 2.953

R. Forest 21.2510 0.0407 0.016

50

SVM 97.8980 4.7310 1.945

MLP 1168.1723 2.5782 0.706

OPF 111.8964 18.5842 5.094

R. Forest 39.1694 0.0679 0.018

75

SVM 164.8542 10.9190 2.993
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Figure 3.7 – Receiver Operating Characteristic space results for each descriptor. Best

viewed in color.

Although other metrics have shown good results, the false negative rate for OPF is a bit

higher than expected, with values around 20%. As false negative means that the presence of

a pedestrian was not detected, this metric, in particular, is important to improve the safety

and e�ciency of the system. One can say that this is the most important feature expected in a

pedestrian detection system.

3.6 Conclusion

A novel application of the OPF classi�er for pedestrian detection using HOG feature

extraction alone and with PCA dimension reduction is here presented and analyzed. Its perfor-

mance as compared with other methods usually applied for this task. It is important to notice

that the dimension reduction done by PCA signi�cantly in�uences all methods performances,

OPF showing to be less sensitive. Therefore, it is possible to take advantage of the reduction in

processing time without compromising too much of the classi�cation performance. Its simplic-
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Figure 3.8 – Accuracy histogram showing classification stability with 100 randomly

chosen training sets for each method using HOG+PCA descriptors. Random Forest

results was disregarded, as it is not functional.
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ity of implementation and absence of parameters in training routine and multi-class capability

make it a suitable candidate for its use in pedestrian detection applications. OPF algorithm

also shows great potential for parallelism, being suitable for implementation in specialized

hardware like GPUs or FPGAs, which will permit applications in real-time embedded systems.

Published work derived from this chapter:

DINIZ, W. F. S. et al. Evaluation of optimum path forest classi�er for pedestrian detection.

In: 2015 IEEE International Conference onRobotics and Biomimetics (ROBIO). Zhuhai:

IEEE, 2015. p. 899–904. ISBN 978-1-4673-9675-2. Disponível em: <doi://10.1109/ROBIO.2015.

7418885>.

doi://10.1109/ROBIO.2015.7418885
doi://10.1109/ROBIO.2015.7418885
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Chapter 4

Self-organizing Evolutionary

learning for supervised OPF training

“ ‘Ipsa scientia potestas est’. For also knowledge itself is power.”
— Francis Bacon

4.1 Introduction

Although supervised learning procedures are the most common used techniques to

prepare a classi�er, some cases may present challenges that render this technique less

e�cient. For example, some applications using Deep Learning need a huge amount of data from

which the network will infer its parameters. Image classi�cation, for example, has a relatively

easy source of material, since millions of images are already available in public databases. For

other applications, labeled data may not be available or very di�cult to produce, thus, the

training must rely on unsupervised methods such as clustering or data mining. Semi-supervised

learning is also an alternative for cases where partial knowledge is available. Also, during its

classi�cation phase, a sample belonging to an unknown class may be wrongly classi�ed as one

of the previously known ones, leading to errors and potentially dangerous consequences.

Regardless of the learning procedure nature (supervised, unsupervised of semi-

supervised), introducing new classes to a previously trained classi�er, without implying a

complete retraining, is a challenging task. Some methods were introduced to provide incre-

mental learning, i.e., the ability to learn new classes and rede�ning the decision function while

in classi�cation mode. A true incremental learning method acts by modifying the classi�er

whenever it founds a sample that it not recognizes, so this new knowledge is added, modifying

the previously trained data.



68

An autonomous robotic system, moving in real environments, needs to process the

perception signals, acquired from its sensors, turning the data into knowledge to be used to con-

tinuously increment its classi�cation machine. The diversity of stimuli from real environments

demands more sophisticated methods than what is usual in the traditional laboratory training

and testing. A generic approach for an autonomous robot learning from dynamic changing

scenarios is proposed by Keysermann & Vargas (2015), to cope with unknown elements in

order to create new classes, adopting clustering of data and associative incremental learning.

Nonetheless, in some cases, modifying the original classi�er is not possible. Hu et al.

(1997) proposed an approach for improve Electrocardiogram (ECG) classi�cation using a

technique called Mixture-Of-Experts (MOE). It consists of a Global Expert (GE) classi�er

response combined with a Local Expert (LE) classi�er to reach a consensus over the actual

classi�cation. The GE is a classi�er trained with available ECG data while the LE is produced

from an speci�c patient. The goal is to enable automatic adaptability to patient speci�c variations

in the ECG signal that may cause failure to identify an anomaly. The advantage of this approach

is that it does not modify the original classi�er data, allowing its use in situations in which it is

not possible to modify the actual classi�er.

Whatever is the adopted online con�guration, the system will begin with a regular

training whose parameters and classes are going to be updated later when in e�ective use.

Then an e�cient training method is necessary to face the real time restrictions. Both types

of incremental training must be performed online when the classi�er is already in use, so the

impact of this procedure may a�ect the whole system. Depending on the type of system, such

impact may cause undesirable situations, so it is desirable that the online training has a high

performance. FPGAs, with their recon�guration ability, may be the suitable devices to such

tasks. The new training procedure for an OPF classi�er proposed in this chapter is the �rst step

in a broader goal to achieve a highly adaptable and reliable classi�er framework for embedded

systems.

Recalling the classic algorithm for training a supervised OPF classi�er, it uses three sets

of samples divided from a universe of known labeled instances of the problem to be classi�ed.

Then, from one of these sets, the training set, a classi�er is formed by constructing a complete

graph using the samples as nodes and their dissimilarity as edges. The resulting classi�er graph

will have as many nodes as samples in the training set. The other two sets are used in a learning
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procedure to enhance the classi�cation performance. It is clear to conclude that the number

of nodes in the classi�er a�ects the classi�cation processing speed: More nodes means more

items to compare.

After publishing the original OPF algorithm (PAPA, 2008; PAPA et al., 2009), e�orts were

made to increase OPF processing speed. In the �rst one, as already presented, Papa et al. (2010)

used a theoretical property of OPF classi�cation. Introducing a step to construct the classi�er

as an ordered set by their associated costs, the comparison is done until the associated cost

of the next node is greater than the current minimum. Therefore, it increases the chances of

�nding the correct label without having to compare all nodes. The same author also proposed

a second enhancement (PAPA et al., 2012), a pruning algorithm that selects the most relevant

samples in the training set and cuts out irrelevant ones, thus decreasing the number of nodes

in the classi�er.

Evolutionary Computation is an AI sub�eld that mostly uses iterative progress on a

population of candidate solutions to �nd its goal. It can be understood as global optimization

methods with meta-heuristics or stochastic characteristics. Many methods are inspired by

biological evolution mechanisms, hence the name. It was introduced in the 50s and consoli-

dated in the next decades with works in the now called Evolutionary Computation dialects:

Evolutionary Programming (FOGEL et al., 1966), Genetic Algorithms (HOLLAND, 1975), and

Evolution Strategies (RECHENBERG, 1971; SCHWEFEL, 1977). In the 90s, a new dialect, Genetic

Programming was introduced, as well as nature-inspired algorithms started to play an important

role in the �eld.

This chapter presents the Self-Organizing Evolutionary Learning (SOEL), a new proposi-

tion for building an OPF classi�er; instead of constructing a complete graph with the training

samples and then �nding the MST and �nally pruning nodes, we propose that the graph starts

with few nodes and then, using an evolutionary algorithm, grows while �tting to the decision

boundaries. The goal is to increase the processing speed in the classi�cation stage using a

classi�er with a smaller number of nodes. The growth is directed in a manner that keeps the

graph small enough to enhance its processing speed compared to the classical OPF without

compromising classi�cation performance. The inspiration comes from a known Evolutionary

Computation algorithm, the SOM. It is expected that the SOM capacity of revealing the struc-

ture of the feature space combined with the same ability of the MST structure used in OPF
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allows minimizing or even to prevent loss of accuracy in the smaller graph. In next sections, an

overview of SOM presents the characteristics that inspired SOEL development, followed by the

details of the new algorithm implementation and its analysis in comparison with the classical

OPF training algorithm.

4.2 Self-organizing maps

Self-organizing Maps or Self-organizing Feature Maps, were introduced as an alternative

method for building ANNs (KOHONEN, 1990). It uses an unsupervised competitive learning

procedure to produce a low-dimensional (usually two-dimensional) representation of the input

space called map. A SOM is composed of several elements called nodes or neurons. Each

node has an associated weight vector with the same dimensionality as the input space and is

represented by a point in the map space.

The evolutionary training procedure consists of presenting samples from the data space

and �nding the node whose weight vector is closest, i.e. have the smallest distance, to the

sample. This node is called Best Matching Unit (BMU). The weight vectors of the BMU and

neighboring nodes inside a region are adjusted towards the sample input vector. The intensity

of this adjustment depends on the iteration step and distance of the nodes in relation to the

BMU, decreasing over each iteration. The update formula for a weight vector ~w of a node with

index v is given by:

~wv(t+ 1) = ~wv(t) + θ(b,v,t) ·α(t) · (~us− ~wv(t)), (4.1)

where t is the iteration index, b is the BMU index in relation to the sample s, ~us is the sample

input vector, θ(b,v,t) is the neighborhood function that returns the intensity factor in relation

to the distance of b and v in the iteration t, and α(t), called Learning Rate, is a monotonically

decreasing coe�cient that restrains the amount of learning over time. According to the author,

the learning process is partially inspired by how the human brain organizes sensory information

in di�erent parts of the brain. In these structures, sensory information is almost directly mapped

to the neural network. The brain learning capacity is simulated by the neighborhood and

learning rate functions. At the beginning, there is no knowledge, thus the neighborhood is
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broad and the adjustments happen on a global basis. The learning rate is also big, then the

adjustment intensity is high. Over time, the neighborhood shrinks to have local in�uence over

the BMU itself and its closest nodes, while the learning rate is smaller and so the adjustment

magnitude. Figure 4.1 illustrates the learning procedure.

(a) (b) (c)

Figure 4.1 – The SOM’s training procedure is a competitive learning that modifies the

network’s shape as long as the training goes.

(a) An input vector, represented by the blue dot, is selected from data space and presented

to the network. The BMU, represented by the hollow yellow dot, is determined, as well

its neighborhood function, represented by the yellow shadow.

(b) The BMU and the nodes inside its neighborhood region are adjusted towards the

input vector, according to their distance and the learning rate.

(c) As the learning proceeds, the nodes assume a distribution close to the data space

shape.

Originally, (KOHONEN, 1990) used randomly generated weight vectors for the initial

placement of the nodes. Later, it was discovered that using evenly sampled vectors from

the subspace formed by the two largest principal component eigenvectors speeds up the

learning because it is a good approximation of the �nal weights, also making possible exact

reproducibility of results (CIAMPI; LECHEVALLIER, 2000). However, the advantages of principal

component initialization are not universal, comparisons with the stochastic method have shown

that for nonlinear datasets, the latter performs better while principal component initialization

is best suited for linear and quasilinear sets (AKINDUKO et al., 2016).

SOM classi�cation performance is highly in�uenced by the number of nodes in the

network. Growing Self-organizing Map (G-SOM) were proposed, aiming to solve the issue of

determining an optimal map size (ALAHAKOON et al., 2000; ALAHAKOON et al., 1998). In this

method, the network is started with a small number of nodes and, as the learning progresses,

the network grows over the boundaries according to a de�ned heuristic. A parameter called

Spread Factor is introduced, to control the network growth. The training is similar to SOM to a

certain degree. Input vectors are presented to the network, and then a BMU is found and the

weight vectors of the nodes within a neighborhood centered at the BMU are adjusted, including
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the BMU itself. The nodes have an error value that is increased every time a node is chosen as

BMU. This error is the L1 normalized di�erence between the input vector and BMU weight

vector. When this error surpasses a previously de�ned threshold value the last presented node

is added to the network, growing the network. The growing process is repeated until it reaches

a minimum value. The process is exempli�ed in Figure 4.2.

(a) (b) (c)

Figure 4.2 – The G-SOM learning procedure is also a competitive learning based-one,

but now the network is initialized with a small set of nodes, growing as necessary.

(a) A map is initialized with 5 nodes.

(b) As a input is presented, the BMU is determined and its weight vector and their

neighboors’ are adjusted. A error value is accumulated with the di�erence between the

input’s vector and BMU’s weight vector.

(c) If the error value surpasses a threshold, a new node is spawned to the network. The

amount of growing is controlled by a Spread Factor parameter.

The number of nodes that are spawned is controlled by the spreading factor and also

depends on the adopted topology for the network. G-SOM has been used in data mining,

classi�cation, and clusterization applications.

4.3 Method description

The main idea of the proposed SOEL learning algorithm is to get advantage of the OPF

ability to infer decision boundaries from data through the MST structure and combine it with

the clusterization capacities of SOM and G-SOM. Like the latter, it starts the classi�er with few

seed nodes, instead of a complete graph from the training set that classical OPF uses. Then,

applying an evolutionary learning process, it lets the graph growing, while �tting the graph to

the decision boundaries in feature space. This is the di�erence between the methods, there is

no mapping, the structure used is the embedded feature space within the graph.
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The algorithm is divided into four phases, each one covering an aspect of the evolutionary

process, as indicated in Figure 4.3. Algorithm 4.1 shows the complete algorithm pseudocode

for the evolutionary learning. The algorithm phases are brie�y introduced below:

Initialization

Find BMU

λ(t) =
λ(BMU)

Adjustment

Growth

Conclusion

Initialize

parameters

Initialize

seeds

Update

cumulative

error

Update

parameters

Move

nodes

Spawn

nodes

Include

nodes

Figure 4.3 – Overview of the SOEL algorithm structural hierarchy.

Initialization: Consists of the seeds determination, according to a de�ned policy. After the

seeds are determined, the training process starts applying to OPF �tting algorithm (Algo-

rithm 2.1) to initialize the classi�er graph, containing only the seeds at this point.

Adjustment: After initializing the seeds, the training procedure follows to the Adjustment

phase. Each sample in the training set will be presented and classi�ed using the OPF classi�-

cation algorithm. The node that wins the classi�cation is marked as the current BMU in the

iteration. The classi�er nodes of the same class of the BMU lying inside the neighborhood have

their feature vectors adjusted in function of the distance between the stimulus and the BMU as
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well considering the learning rate for the current iteration.

Growth: After the adjustment of the nodes, the current BMU accumulated error is veri�ed

against a previously de�ned threshold. The accumulated errors give a measure of the graph

responsiveness. If the threshold is exceeded the graph grows by spawning a new node according

to a set of rules. The new set of nodes is then �tted again with the OPF �tting function, before

proceeding to the next iteration.

Conclusion: After all training samples are presented to the classi�ers, one last �tting process

is performed to guarantee that any new node that was spawned in the last moments gets

correctly connected to a prototype.

The Initialization phase cover the lines 2 to 6 of Algorithm 4.1. It starts with the seed

determination which is important because it a�ects how many nodes the graph will have in its

�nal form. Once the seeds are determined, the remaining phases are the same for both policies.

Two di�erent policies are here proposed: Random Seeds Policy (RSP) and Prototypes as Seeds

Policy (PSP).

RSP consists of randomly picking samples from the training set until the classi�er graph

contains exactly one node for each class. The PSP variation consists of using the prototypes

found by a run of the OPF �tting algorithm over the training set as seeds. As the prototypes

are nodes close to the decision boundary, starting the network from them may lead to a more

precise classi�er in some particular cases, a behavior also shown by SOMs. Each variation has

their own characteristics that are discussed in Section 4.4.

Once seeds are determined, next phase starts by �tting them to obtain an initial classi�er

C . Now the algorithm is ready to present the training set to the classi�er and proceed with

the Adjustment phase. This phase comprises lines 9 to 21 in Algorithm 4.1. The �rst step is to

determine the BMU, which happens in the function Find_BMU. This function is a modi�ed

version of the OPF classi�cation function that returns the label λ(t) assigned to the sample and

also the index of the node that had won the competition process and consequently transmitted

its label. This is the BMU node.

Next, the sample true label is compared with the assigned one, to assess if the BMU

is of the same class, marking a correct classi�cation, or not. The algorithm branches at this

point. The positive case indicates that in the BMU region, the representativity is existent, just

needing an adjustment to register the new information. The adjustment is applied to all nodes
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Algorithm 4.1 The SOEL algorithm applies an evolutionary learning procedure inspired by

G-SOM algorithm. Di�erently of the traditional OPF training, the graph is started with a few

seed nodes, instead of a complete graph. Then, the nodes in the training set are presented to

the classifier as stimuli that will force the graph to grow and evolve over time, fi�ing the graph

to the decision boundaries in the process.

Require: Training set T , label map λ, cumulative error map E, seed determination policy,

neighborhood radius σ, learning rate φ, distance function d(.,.), error function ε(.,.), error

threshold ξ.

Output: Classifier C .

Auxiliary: Counter i.
1: function SOE_Learning(T )

2: Determine Seeds set (S) according to the policy

3: Initialize C from S
4: Initialize φ0
5: Initialize σ0
6: Initialize E with all values equal to 0
7: i← 0
8: for all t ∈ T do
9: i← i+ 1

10: OPF_Fi�ing(C)

11: BMU ← Find_BMU(t,C)

12: if λ(t) = λ(BMU) then
13: E(BMU)← E(BMU) + ε(t,BMU)
14: Update φi
15: Update σi
16: for all c ∈ C do
17: if λ(c) = λ(BMU) then
18: β = d(c,BMU)
19: if β < σi then
20: α← d(t,BMU)
21: Calculate ψ using α and σi
22: Adjust c, using φi and ψ

23: if E(BMU)> ξ then
24: E(BMU) = 0
25: Spawn a new node in C

26: else
27: Insert t in C
28: OPF_Fi�ing(C) return C
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of the same class of the BMU that are inside the current iteration neighborhood radius σi.

The neighborhood radius is centered on the BMU and all nodes inside this region, BMU itself

included, have their feature vectors adjusted, re�ecting that they move in the stimulus direction.

The adjustment intensity is controlled by two components, φ and ψ that are, respectively, the

learning rate and the distance decay factor. The adjustment process is illustrated in Figure 4.4.

(a)

BMU

α

(b)

BMU

α

(c) (d)

Figure 4.4 – The node adjustment propagates the knowledge acquired by a stimulus to

the nodes of the same class of the BMU that lie inside a neighborhood.

(a) A stimulus is presented to the graph.

(b) The BMU node is determined and the stimulus strength α is calculated.

(c) The nodes of the same class of the BMU inside the neighborhood radius move

towards the stimulus.

(d) The new graph with the adjusted positions.

The classi�cation error ε is represented by the di�erence between the L1 norm of the

sample and BMU feature vectors di�erence:

ε(~v,~w) =
N∑
i=1

|~vi− ~wi|, (4.2)
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where~v and ~w are the respectiveN -dimensional feature vectors. The nodes have an accumulated

error value that is updated whenever they are selected as BMU. This express the fact that it

is desirable to keep the classi�cation error low, that is, have a minimal quantity of nodes in

the classi�er graph that is able to connect to unknown samples in an optimal way. Therefore,

whenever a node is selected as BMU the error is accumulated. If during a classi�cation the

accumulated error exceeds a previously de�ned threshold, ξ in the algorithm, it means that

the region needs new nodes to increase its representativity. When this happens, a new node is

added to the classi�er. In the next iteration, the classi�er is �tted again, thus ensuring that the

trees are always optimum-path ones. Notice that in this process, a node that was a prototype

in the previous iteration may lose this status, when a new node being spawned closer to the

decision boundary. Remember that the de�nition of prototypes in OPF is nodes closer to the

boundary. Also, notice that the determination of ξ value a�ects how much the graph grows.

Smaller values lead to more nodes being spawned. This concludes the positive case of the

branch. The node spawning process is illustrated in Figure 4.5.

(a) (b)

(c)

Figure 4.5 – New nodes are spawned as the error threshold is exceeded.

(a) The node selected as BMU has already accumulated errors (the small bucket besides

the node). Nonetheless, it is selected as BMU one more time.

(b) A�er the adjustment phase, the cumulative error now exceeds the threshold (the

bucket overflows). A new node is to be spawned in the region near the node so they can

share the representativity thus decreasing the classification errors in the next iterations.

(c) The new node is closer to the decision boundary, so in the next iteration, it gains

prototype status while the previous BMU loses it. Its cumulative error is also reset to 0.

Notice that all nodes in the classifier have an associated cumulative error. They were

not shown in the figure for simplification.

The negative case, when the selected BMU is not of the same class of the sample, means

that there is a boundary between the stimulus and the BMU that was not discovered yet. The
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procedure is simply to include the sample in the network because this stimulus is closer to

the true boundary than the current BMU. This step together with the new node spawning

discussed before comprises the algorithm Growth phase.

Finally, the Conclusion phase applies the last �tting after all samples have been presented

to the classi�er. If this phase is not performed, any node that was included or spawned in the

last iteration will be incorrectly linked or left alone. With the end of the Conclusion phase, the

classi�er is ready to identify new samples. Next sections will detail the parameters that a�ect

the graph evolution.

4.3.1 Node adjustment determination

The adjustment intensity takes into consideration the strength of the stimulus, represented

by the distance between the sample and the BMU. The further they are, more adjustment is

necessary, so it is directly proportional to the distance magnitude. The distance of the node to

the BMU also is taken into consideration, but now inversely proportional, meaning that the

nodes closer to the stimulus move more than the further ones.

The adjustment of a node with a feature vector ~v in relation to an stimulating sample

with feature vector ~w, in a given iteration, is given by the following equation:

~vt+1 = ~vt+ψ ·φ · ( ~wt− ~vt), (4.3)

where ψ is the adjustment factor in relation to stimulus strength and neighborhood radius and

φ is the learning rate value in the current iteration.

Neighborhood radius determination

The neighborhood radius is used to �nd which nodes must be adjusted. Whenever an

adjustment is made, only the nodes inside this radius, centered on the BMU, are adjusted. The
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initial value of the radius is determined at the Initialization phase and progresses as an ordinary

exponential decay of the form:

σi = σ0 · exp(− i
τ

), (4.4)

where τ is the decay mean lifetime de�ned as:

τ =N · ln(σ0) (4.5)

Figure 4.6 shows how the functions σ and τ behave in a given con�guration. The decaying

of the neighborhood radius over time simulates the learning progress. At the beginning, the

graph does not have any knowledge, so any stimulus in�uences a high number of neighboring

nodes to the BMU. As the learning progresses, prior acquired knowledge represented by

stimulus in a region already trained in�uences less and less nodes, until full saturation when

just the BMU itself is adjusted.

0 1 2 3 4 5

i (iteration)

2.5

3.0

3.5

4.0

4.5

5.0

σ

Neigborhood radius for σ0 = 5, N = 5, and τ = 8.047190.2

Figure 4.6 – The neighborhood radius function σ is an exponential decay tied to the

time constant τ .

Once the neighborhood radius is determined, the adjustment intensity ψ to be applied to

nodes within BMU neighborhood radius is given by a Gaussian function in the form below:
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ψ = exp(
−d2

2 ·σ2
), (4.6)

where d is the Euclidean distance of the node to be adjusted to the BMU. Figure 4.7 shows how

the adjustment value changes in function of σ and distance.

0 1 2 3 4 5

d(~b,~w)

0.0

0.2

0.4

0.6

0.8

1.0

ψ

ψ values for σ0 = 5 and N = 5

σ(0) = 5.00

σ(1) = 4.42

σ(2) = 3.90

σ(3) = 3.44

σ(4) = 3.04

Figure 4.7 – The node adjustment factor is given by a gaussian function clipped at the

σ value. It depends on the iteration as well as the corresponding σ for that iteration

and the distance between the node and the BMU.

Learning Rate determination

The learning rate also decreases exponentially as the learning progresses. This re�ects

the fact that in later stages of the training process, the amount of adjustment will be smaller, as

the network has already acquired knowledge in the previous stages. Therefore, the learning

capacity decreases in time. The learning rate is de�ned, like the neighborhood radius, as:

φi = φ0 · exp(− i

N
) (4.7)

The initial value is arbitrarily de�ned at the beginning, as a small positive real number. It

controls the amount of adjustment that a graph will face as the learning progresses. Figure 4.8

shows an example of learning rate variation.



81

0 1 2 3 4 5

i (iteration)

0.10

0.15

0.20

0.25

0.30

φ
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Figure 4.8 – The learning rate controls the amount of adjustment over an entire learning

process. It is arbitrarily defined at the begining and decays exponentially. This behavior

is intended to mimic the brains ability to learn more of a given subject at the begining

stages.

4.4 Experimental results

4.4.1 Metrics and performance indicators

The experimental validation was done using both qualitative and quantitative metrics

based on Confusion Matrix, for multi-class classi�cation Sokolova & Lapalme (2009). For

statistical signi�cance, each method was evaluated using Repeated Random Sub-sampling,

using 100 instances, randomly choosing samples for training, test and evaluation sets, using the

same set for each method in the same instance. The distribution used was 40% of the samples

for the training set, 40% for the test set and 20% for the evaluation set with strati�ed sampling,

i.e., keeping the classes with the same distribution as the universe set, to prevent bias in cases

of highly unbalanced class distributions.

The comparisons were made using two learning methods provided by the libOPF library

for the classical training algorithm and the two initialization policies for the SOEL algorithm.

The focus is to achieve processing time reduction in classi�cation phase, thus, the processing

time was measured to provide the quantitative data. The qualitative data is given by the com-

parison of the performance metrics, to observe if and how much compromise in classi�cation
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performance the new algorithm imposes. The number of nodes for the reduced graphs was also

compared. A PC equipped with an Intel® Core™ i3-550 at 3.200 GHz CPU, 4 GB RAM DDR2

running Ubuntu 16.04 “Xenial Xerus” was the con�guration used to evaluate the new algorithm.

4.4.2 Datasets description

The system was tested by running the classi�cation in �ve di�erent datasets. The �rst

�ve were picked from the publicly available Machine Learning repository of University of

California Irvine (LICHMAN, 2013). The data sets D1, D3, and D5 are originally from Computer

Vision (CV) applications, with di�erent descriptors used to generate the feature vectors. Using

these data sets will permit to analyze the performance of the OPF training algorithms in diverse

CV scenarios. Table 4.1 compiles each dataset characteristics. Datasets with a di�erent number

of classes and attributes are used to assess how this variation a�ects both the software and

hardware versions.

Table 4.1 – Dataset descriptions

Id Name # a�r. # classes # samples

D1 Brest Cancer Winsc. (Diag.) 9 2 569

D2 Glass Identification 9 6 214

D3 Image Segmentation 19 7 2310

D4 Iris 4 3 150

D5 Parkinsons 22 2 197

4.4.3 Results

Table 4.2 shows the compilation of results of the four methods, showing the achieved

accuracy, the training, the testing time and the number of nodes in the classi�er.

We can observe a drastic increase in training time, what is expected as the SOEL algo-

rithm is more complex, and a drastic decrease in testing time. The performance loss due to

using reduced graphs was very small, rarely surpassing a variation of 2%, except for dataset

D5, in which performance dropped by approximately 5%. Dataset D1 showed actually better
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Table 4.2 – OPF learning algorithms comparison

Dataset Method Accuracy
avg (max)

Training time
(ms)

Testing Time
(ms) # of nodes

Classical OPF 0.949 (0.974) 13.79 1.24 272.00

Aggl. Learning OPF 0.950 (0.978) 10.12 1.32 280.82

SOEL Random Seeds 0.955 (0.989) 91.49 0.20 31.20

D1

SOEL Proto. Seeds 0.961 (0.985) 83.20 0.30 48.72

Classical OPF 0.893 (0.919) 1.51 0.26 83.00

Aggl. Learning OPF 0.895 (0.923) 2.05 0.30 98.18

SOEL Random Seeds 0.876 (0.919) 7.38 0.14 54.00

D2

SOEL Proto. Seeds 0.884 (0.912) 20.36 0.28 86.83

Classical OPF 0.984 (0.990) 238.64 24.02 924.00

Aggl. Learning OPF 0.984 (0.989) 180.65 24.54 955.95

SOEL Random Seeds 0.976 (0.982) 6144.15 12.76 425.76

D3

SOEL Proto. Seeds 0.979 (0.984) 8517.56 17.66 549.07

Classical OPF 0.962 (0.988) 0.62 0.07 60.00

Aggl. Learning OPF 0.962 (1.0) 0.43 0.07 61.95

SOEL Random Seeds 0.958 (1.0) 2.98 0.03 29.84

D4

SOEL Proto. Seeds 0.966 (0.988) 2.97 0.04 34.23

Classical OPF 0.823 (0.925) 1.81 0.24 77.00

Aggl. Learning OPF 0.824 (0.925) 1.39 0.25 85.14

SOEL Random Seeds 0.758 (0.875) 1.80 0.05 14.14

D5

SOEL Proto. Seeds 0.794 (0.887) 8.44 0.182 49.55

performance with the new algorithm. These results show that the primary objective of reducing

processing time in classi�cation without signi�cant performance degradation was achieved.

Regarding the number of nodes in the classi�ers graphs, the reduction varied, from a minimum

of 42% to a maximum of 88%. Given the random characteristics of the SOEL algorithm, inherent

to evolutionary methods, this variation is also expected.

Regarding the initialization policies, PSP generated bigger networks and showed slightly

greater classi�cation performance than RSP again in the 2% range, except for D5, where the

di�erence where near 3.6%.

4.5 Conclusions

This chapter presented a new learning algorithm for an supervised OPF classi�er, inspired

by evolutionary methods such as SOMs and G-SOMs. The main objective was to reduce the

classi�cation time by generating smaller networks than the ones generated by the classical
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OPF learning algorithms.

The reduction achieved in the number of nodes in the �nal classi�er was up to 88%, which

re�ected in classi�cation proportionally smaller. The degradation in performance was very

small, in order of 2% except for on dataset, with another dataset showing an improvement in

performance.
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Chapter 5

FPGA based framework for

classification with OPF

“Educating the mind without educating the heart is no education at all.”
— Aristotle

5.1 Introduction

Advances in integrated circuits technology has lead to miniaturization and consequently,

an increase in the number of transistors in a single chip, as stated in Moore’s law.

However, as the size of the elements progressively gets smaller, the law limits seem to be near

reached. The energy consumption is another consideration that can limit the advancement

in the performance of microprocessors and other integrated circuits. Pipeline enhancements

and clever memory access design also helped but the main �repower currently relies on

multiple cores for parallelism. Microprocessors are now built with several computational cores,

giving them the ability to process many tasks in parallel. Even GPUs started to be used to

perform general computation, pushing hardware parallelism limits even more, increasing the

computational power/energy consumption ratio.

As FPGAs are composed of several logic blocks linked by a series of recon�gurable inter-

connection, they possess remarkable parallelism potential. They are also a class of integrated

circuits whose main feature is the possibility of being recon�gured by the user to perform

speci�c tasks in a customized hardware logic. All these characteristics make them interesting

candidates to act as performance accelerators, especially for embedded systems.

FPGAs have some unique advantages over general-purpose CPUs. Firstly, instead of a �xed

architecture interpreting commands from a programming language, they are recon�gurable
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hardware logic. Therefore, when an algorithm is transcripted to an FPGA description, it will be

e�ectively a custom circuit uniquely designed for that speci�c task, thus, if well designed, able

to perform better than a software running on a generic CPU. The newest FPGA models o�er

computational power that can even rival those provided by GPUs, with a fraction of energy

consumption. The newest model from Altera™ now Intel® , the Stratix® 10, for example, is

able to achieve up to 10 Tera Floating-point Operations per Second (TFLOPS) of computing

performance, with a peak consumption of 48 W (PARKER, 2014; Altera Corporation, 2015),

while the newest NVIDIA® GPU of comparable computational power has a TDP of 300 W

(NVIDIA, 2016).

The recent adoption of OpenCL for FPGA development brought a new perspective for

algorithm development, introducing a change of paradigm in which the focus is over the

algorithm design rather than digital circuit design, allowing a more straightforward transition

from code to device. As a side e�ect, a number of existing code bases can bene�t from FPGA

acceleration.

With these motivations in mind, this chapter describes an implementation of a framework

for classi�cation aimed to primarily help to build signi�cant embedded vision systems, but

with enough �exibility to adapt it to any embedded classi�cation need. The acceleration at

low power consumption of the FPGA is explored and evaluated, as well as the suitability

and characteristics of implementing the system with a new high-level approach by using the

respective OpenCL work�ow.

5.2 High level system design

The proposed architecture was conceived to use a SIMD-based auxiliary Parallel Pro-

cessor (PP) associated with a Host Processor (HP), with a high-performance bridge allowing

communication between them processors, as well as a double-access global memory module

accessible from both processors, using a shared region. Figure 5.1 shows an overview of the

main system. In the adopted con�guration, the host processor controls the main application

execution �ow, managing the data access, and dispatching commands to the parallel processor

through an interconnection bridge. HP processed data written on the Global Memory (GM)
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is distributed by the PP to be processed in parallel by the several processors that are inside

the Elementary Processors Arrays (EPAs). Each EPA is further divided in several Elementary

Processors (EPs), that are the most re�ned processing units, which e�ectively carry on the

SIMD processing.

B
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g

e

CPU

Host Processor

Control

Logic Module

Parallel Processor

EPA #0 EPA #N
...

...

Global Memory

Figure 5.1 – Proposed architecture general overview. The two processing elements

communicate through a bridge that also grants memory access. The parallel processor

can receive parameters and data directly from the host processor through a bridge DMA

channel.

5.2.1 Host Processor

In every parallel application, there are pieces of code that do not require running in

specialized parallel hardware. Tasks like data preparation, data �ow control, interaction with

the user, and commanding the parallel hardware can be performed by a general purpose

coordinator processor. In the proposed architecture, this coordinating entity is the HP. It can be

based on any kind of all-purpose device. It is usually programmed using a high-level language,

like C/C++, interacting with the parallel hardware through dedicated interfaces. This adds

�exibility to designing or choosing a hardware platform to implement the architecture. External

communication is managed by the HP, whose routines are more readily established using the

platform facilities.
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5.2.2 Parallel Processor

The auxiliary parallel processor is designed to execute the computationally intensive

application tasks. It consists of a Control Logic Module (CLM) and one or more EPAs. Com-

munication with HP is done via the interconnected bridge, which also grants access to GM,

which is the main interface for data exchange between the processors. The bridge implements

a shared access policy, which contributes to reducing data access latency, and a Direct Memory

Access (DMA) channel (not shown in Figure 5.1) grants the parallel processor the ability to

read and write data directly from and to GM, making better use of the available bandwidth.

The host processor controls the DMA channels, avoiding racing conditions that could corrupt

data through an arbiter, which orders access requests to the shared regions and prevents wrong

access to reserved areas. This policy also allows the parallel processor to run asynchronously,

leaving the host processor free to run other tasks in the meantime.

The CLM provides an interface with the host processor for receiving commands and the

memory addresses to read and write back. It also distributes the data among EPAs, controls

their execution and coordinates memory access for writing back the results.

Elementary Processors Array

Inside the PP, there is a de�ned number of units that take data to be processed in

parallel, controlling the distribution of this data among the elementary processing units. As

already mentioned, they are called Elementary Processors Array or EPA. Figure 5.2 details their

con�guration. Each EPA is composed of a number of EPs, internal memories, and a control

module.

Each EPA has its own Local Shared Memory (LSM) with an associated Memory Man-

agement (MM) module. This memory is used for fast data exchanging between EPs. The MM

module implements the same protection policy to avoid memory corruption found in the host

processor. It is also responsible for coordinating the access to the global memory for EPs. There

is also a Local Private Memory (LPM) module for each EP exclusive use. The LPM access is
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...

Local
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Local
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Memory

Local

Private
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Figure 5.2 – Elementary Processors Array block diagram. Each EPA has a Memory

Management module that controls access to external global memory and local shared

memory. Each Elementary Processor can access these memories through the MM.

Individual local private memory blocks are accessed and controlled by their respective

EPs. A Control Logic Module manages the application flow through parameters received

by the external controller.

managed by the EP itself, which uses it to store intermediary data.

Elementary Processor

The EPs provide the core functionality of the application. They are responsible to ef-

fectively execute the computationally intensive task to be accelerated by parallelization. All

EPs are identical, executing the same operation in di�erent blocks of data, complying with a

hardwired SIMD architecture. Notice that the proposed architecture corresponds to a SIMD

implementation, however the instruction here has a more abstract concept, meaning that it

represents the full funcionality of the EP, executed concurrently as it is indeed a hardware

circuit. Figure 5.3 shows how it is organized.

The EPs were designed to implement the OPF classi�cation algorithm shown in Al-
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Figure 5.3 – Elementary Processor block showing the hardwired OPF algorithm. The

control block receives the parameters from the external controller to command the data

flow between the processing components. The Euclidean Distance (ED) block perform

the calculation using floating point hardware in the FPGA device. The comparisons are

them processed in combinational logic, with the controller generating a synchronization

signal to update the registers and then writing the result back to the previously assigned

memory address.

gorithm 2.2. The dissimilarity function is the most computationally expensive step in the

algorithm, therefore a speci�c hardware module implements the respective process. Alongside

the natural speed gain by implementing the function in a dedicated hardware, the architecture

explores parallelism, enabling several data chunks to be distributed to the several EPs in each

EPA to be processed simultaneously. Additionally, the parallel architecture was designed to be

�exible enough to be adapted to di�erent algorithms simply by redesigning the EP, as long as

they comply with the �ne-grain parallelism model adopted in this framework.
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5.3 System realization

5.3.1 Host Processor code organization

This section details the HP design transcription for implementation on the board. The

ARM processor at the SoC board represents the HP and as such it executes the host code, which

is written in C/C++. The code is organized into sub-tasks: Input �le reading, data preparation,

bu�er preparation, kernel con�guration, kernel launching, presentation of results and resources

deallocation. Figure 5.4 presents the execution �ow of each sub-task, which is explained in the

following:

Input

File

Data

Reading

Fill

Bu�ers

Config

Kernel

Launch

Kernel

Wait

Kernel

Data

Writing

Output

File

END

Input

Data

Read

Input

Execute

Process

Write

Output

Output

Data

Storage Host Code Shared Memory Device Code

Figure 5.4 – Host code sub-task execution flow, showing the interactions between the

processing elements through the shared memory space.

Input �le reading: The data sets are organized as two input �les, one containing the classi�er

itself and another with the test data to be classi�ed. Both the �les are in the OPF binary format

provided by the library.

Bu�er preparation: The OpenCL API uses a speci�c data structure as bu�ers to communicate
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data between Host and Device memory spaces. Therefore, it is necessary to prepare these bu�ers

before moving data around them. As the adopted board uses a shared memory space between

the ARM processor and the FPGA fabric, there is no need to make an explicit call to write

and read functions. The shared memory control was implemented using an internal controller

present in the hard processor system of the chosen device, that takes care of protecting the

memory regions to avoid data corruption. Once the bu�ers are de�ned, both the Host and

Device can access them. The host writes the input data into the corresponding bu�ers and the

device will be responsible for writing its processing results into the output bu�ers.

Kernel con�guration: Once all the bu�ers are correctly set, the kernel interface is read and

con�gured to run. During the compilation process, the kernel code is stored into a binary

�le that holds the image to be con�gured into the FPGA fabric and its interface description.

Each bu�er is associated with its corresponding argument in the kernel interface. These steps

prepare the kernel to execute.

Kernel launching: At this point, the execution is transferred from the host code running

on the ARM processor to the device synthesized in the FPGA fabric. The FPGA execution is

asynchronous, that is, the host code will continue to run independently of the parallel hardware.

It is possible, in the case of very complex parallel code, that the host �nishes its execution

before the kernel �nishes. The API provides barrier function calls to prevent this behavior.

Once the kernel completes its execution, the results are written into the output bu�ers and are

ready to be accessed by the host.

Presentation of results: The host code can �nally present the results in the manner the user

chooses to do so.

Resources deallocation: Once the application �nishes, the bu�ers must be freed to let the

device ready for a new task, if it is the case.

The e�ciency of the classi�er was evaluated using o�ine-trained OPF data stored in

libOPF format (PAPA et al., 2014). The �nal system is �exible enough to permit the use of

di�erent datasets, with diverse feature vector dimensions and multiple classes. Therefore, it

can be adapted for di�erent classi�cation tasks just changing the data acquisition and feature

extraction methods to a more suitable one to the application in question.
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5.3.2 Parallel Processor code organization

Algorithm 2.2 is implemented as a hardwired SIMD architecture in the EP, as shown in

Figure 5.3. The algorithm classi�es each sample executing two loops. The outer loop iterates

over the set of samples to be classi�ed and the inner loop iterates over the classi�er nodes to

identify the correspondent tree o�ering the minimum path-cost to its prototype, taking into

account the euclidean distance between the sample and the associated cost of each node of the

forest. Each EP corresponds to an OpenCL work-item and the EPAs correspond to work-groups.

The EPs hardwired SIMD code is implemented in an OpenCL kernel. Following these directives,

the kernel is organized such that each EP/work-item loads one sample from the test set and

perform the inner loop over the classi�er nodes. Notice that the number of samples to be

classi�ed in parallel is equal to the total number of EPs considering all EPAs. The currently

available compiler does not support more than one kernel instance, nor to call a kernel inside

another kernel, thus restricting the inner loop to run sequentially inside each EP/work-item.

Figure 5.5 shows how the kernel is organized. The classi�er data is shared among the

EPs/work-items that belong to the same EPA/work-group, while the input data is divided among

all EPs/work-items. The most computationally expensive operation in the OPF classi�cation

algorithm is the Euclidean distance calculation. The compiler optimization capabilities are able

to build the internal con�guration of EPs/work-items as a pipelined structure, �nely tuned

with the memory access timing, which contributes to increasing the system throughput by a

better employment of the memory bandwidth.

The resulting architecture was synthesized containing two groups of computing units,

corresponding to EPAs, which will run in parallel but sharing the memory interface. Because

of this sharing, the memory bandwidth is also divided between the units. The number of EPAs

to synthesize is an important design decision because it may cause a throughput drop due to

serialized memory access; even if there are enough FPGA resources to synthesize several EPAs,

doing so may not be the optimal solution. In this work, two units con�guration showed to not

impact the memory bandwidth signi�cantly and it also is the maximum number possible to

synthesize, given the available resources on the adopted FPGA model, so it was done this way.

Each EPA was con�gured to have a maximum of 512 SIMD units/EPs, but the actual number

depends on the available resources of the FPGA platform.
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Figure 5.5 – Data distribution for execution by the OpenCL kernel converted in parallel

hardware. Input elements are distributed among the EPs while classifier data is shared

for all. Then, an output element is wri�en on the memory a�er processing. Each EPA

processes a number of elements equal to the number of EPs it possesses at same time.

Then it cycles to the next batch until finished.

5.3.3 Hardware platform speci�cations

In the last years, FPGA makers have introduced SoC/FPGA devices. They o�er in a single

encapsulation, a discrete embedded processor associated to the FPGA fabric and dedicated

Input/Output (IO) banks for communication between them. This devices introduce a new

layer of �exibility to implement e�cient and powerful embedded systems, exploring FPGA

acceleration capabilities. SoC/FPGA systems like these comply exactly with the proposed HP/PP

framework, therefore, adopting a SoC/FPGA-equipped board conducts to a natural function

distribution between the embedded microprocessor and the FPGA chip.

Keeping these characteristics in mind led to adopting the Arrow SoCKit, shown in

Figure5.6, as the development platform. It is built around a Cyclone V SoC/FPGA chip featuring,

in a single encapsulation, a dual-core A9-Cortex ARM processor, an FPGA device and an

internal high-speed bridge connecting the processor to the FPGA fabric, as well as a second

low-speed bridge to complement the �rst. The ARM processor enables the implementation of

stand-alone embedded systems, eliminating the need for an external host computer.
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Figure 5.6 – The Arrow SoCKit development board features a Cyclone
®

V SoC with a

117k elements FPGA and a dual core ARM Cortex-A9 microprocessor. SoCs have the

advantage of not requiring an aditional processor chip, simplifying board design.

5.4 Experimental results

5.4.1 Hardware and software speci�cations

The development board host processor was set up to run at 800 MHz. The operational

system used was the image provided by the manufacturer, consisting of a Linux distribution

based on the Yocto Project. The distribution was installed to the board with the addition of

the OpenCL runtimes libraries that expose the FPGA side interfaces to the Linux Hardware

Abstraction Layer. A micro-SD card hosts the operational system and acts as mass storage

device.

The o�ine training of the di�erent datasets used a PC equipped with an Intel® Core™ 2

Quad Q8400 CPU 2 GHz with 8GB DDR2 RAM memory running Ubuntu 14.04 Trusty Tahr

operating system. The resulting classi�ers were saved in a �le and then transferred to the

development board micro-SD card.
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The comparison was made with the software-only classi�cation running in the ARM-

based processor and its accelerated implementation on the FPGA. The OPF implementation

came from version 2.1 of libOPF.

5.4.2 Metrics and performance indicators

The comparison focus is the processing speed gain obtained by measuring the acceleration

provided by the FPGA parallel hardware against its software-only counterpart. The execution

times for classifying the whole dataset was measured and the average duration to classify an

individual sample was calculated.

The chosen performance metric for evaluating the quality of the classi�cation was the

Average Accuracy. As the classi�er function used for the software and hardware versions are

the same, there is no reason to perform a complete qualitative analysis of the results. This metric

gives us a general idea of the classi�cation quality and can be used to assess the divergence (if

any) in the results of the two versions caused by design decisions.

As de�ned in (SOKOLOVA; LAPALME, 2009), the Average Accuracy measures the average

per class e�ectiveness of a multi-class classi�er and is calculated as:

Acc=

∑l
i=1

tpi+tni
tpi+fni+fpi+tni

l
, (5.1)

where l is the number of di�erent classes of the problem and tp, fp, tn and fn stand for,

respectively, true positives, false positives, true negatives and false negatives for the i-th

sample in the testing set.

5.4.3 Dataset descriptions

For uniformity, the datasets used for the architecture experimental evaluation is the same

ones used in Chapter 4, described in Table 4.1, reproduced here for convenience.
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Table 5.1 – Dataset descriptions

Id Name # a�r. # classes # samples

D1 Brest Cancer Winsc. (Diag.) 9 2 569

D2 Glass Identification 9 6 214

D3 Image Segmentation 19 7 2310

D4 Iris 4 3 150

D5 Parkinsons 22 2 197

D6 Pedestrian 3780 2 12160

The �rst �ve datasets are from the publicly available Machine Learning repository of

University of California Irvine (LICHMAN, 2013). The last one is composed of HOG descriptors

taken from a compilation of several popular pedestrian detection datasets generated from the

work described in Chapter 3 (DINIZ et al., 2015).

The classi�ers were generated by Repeated Random Sub-sampling, choosing the best

instance of 100 di�erent randomly generated collections of training/evaluation/testing sets.

The training set used 40% of the total samples, and the evaluation set 20%. The remaining 40%

constitutes the testing set.

5.4.4 Performance analysis

Table 5.2 presents the accuracy observed for every data set running on each version of the

classi�er. Also, the number of samples in the test set, the total time spent in the classi�cation

in milliseconds, the average classi�cation time per sample and the speed-up obtained by using

the hardware implementation against its corresponding software version.

It is important to remark that the �nal PP clock frequency achieved by the synthesis was

101.9 MHz. Even with the HP running at 800 MHz, we can still observe from the results in

Table 5.2 that, for the same datasets, the hardware execution times were in average, 2.5 to 10

times faster than the pure software counterpart. This variation is expected, given the nature of

the OPF classi�cation algorithm.

When combined with the new SOEL learning, the results are even better, as shown in

Table 5.3.
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Table 5.2 – Accuracy and classification times for so�ware (S) and hardware (H) versions

of the OPF classifier

Id/Version # of
samples Accuracy Total time

(ms)

Avg. time
per sample

(ms)
Speed-up

D1/S 276 0.902 5.537 0.020 -

D1/H 276 0.902 0.638 0.002 10.0

D2/S 91 0.882 3.996 0.044 -

D2/H 91 0.882 0.625 0.007 6.285

D3/S 924 0.927 220.817 0.239 -

D3/H 924 0.927 39.408 0.042 5.690

D4/S 60 0.955 0.346 0.005 -

D4/H 60 0.955 0.129 0.002 2.5

D5/S 80 0.812 4.416 0.055 -

D5/H 80 0.812 0.812 0.010 5.5

D6/S 4864 0.801 1,531,090 314.780 -

D6/H 4864 0.801 367,112 75.475 4.170

Table 5.3 – Processing time reduction with combined SOEL+hardware acceleration

Dataset Test time
SW Original (ms)

Test time
SOE+HW (ms) Speed Up

D1 9.917 0.453 21.891

D2 2.050 0.548 3.740

D3 215.867 26.371 8.185

D4 0.570 0.104 5.480

D5 1.831 0.607 3.016

D6 616,433 104,306 5.909

Table 5.4 shows the peak power consumption for the architecture implementation for

the chosen FPGA model for the assumed clock con�guration. The values are calculated using

tools provided by the manufacturer.

Table 5.4 – Final peak power consumption for the implemented architecture. As the FPGA

ocupation was near 100%, the peak consumption was near the theoretical maximum of

the FPGA model used

Unit Max Thermal
Power (mW)

FPGA 1,663.45

HPS 1,392.92

Total 3,056.37
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5.5 Conclusions

This chapter proposed an architecture for embedded systems parallel processing com-

prising a host processor and a parallel multiprocessor array. Its implementation applied to

a classi�cation application algorithm in a SoC/FPGA board using the OpenCL language and

work�ow is also presented. Adopting OpenCL brings, in general, a shorter time development,

considering that it implies the use of higher level abstraction and veri�ed IPs, and consequently

less programming error correction e�ort.

A software version running on the dual-core ARM host processor is used to assess the

acceleration provided by the hardware implementation. The comparison shows that the hard-

ware implementation was able to execute 2.5 to 10 times faster than the software version. Also,

by combining the parallel hardware architecture with the new training algorithm presented in

Chapter 4 we are able to increase the acceleration, making the creation of real-time compliant

applications possible.

Published works derived from this chapter:

. FPGA accelerated Optimum-Path Forest classi�er framework for embedded systems.

Microprocessors and Microsystems, 2017. Under review.
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Chapter 6

General conclusion

“The best way to predict the future is to invent it.”
— Alan Kay

6.1 Key contributions

This thesis presented a study of classi�cation applied to embedded systems, aiming per-

formance acceleration using FPGA-based architecture. An example application using a

supervised OPF classi�er was proposed and the system implemented and tested in a develop-

ment board. The main contributions can be summarized as follows:

Evaluation of OPF classi�cation applied to pedestrian detection: A new application

for OPF supervised classi�cation was implemented and evaluated, comparing its performance

with commonly used classi�ers applied in pedestrian detection. A dimension reduction tech-

nique using PCA, aiming to reduce processing time in classi�cation stage, was also evaluated.

OPF showed to be less sensible to the loss of accuracy imposed by PCA, recommending its

choice when a fast classi�cation is the main goal. Its accuracy is close to classical methods but

still behind them, for this speci�c scenario.

Proposition of a new training algorithm for OPF supervised classi�cation: A new

training algorithm, the Self-Organizing Evolutionary Learning was proposed. The objective is

to increase the classi�cation speed by reducing the number of nodes necessary to form the

classi�ers graph. The proposed method relies on an evolutionary learning approach to adapt a

growing self-organizing graph to �nd a suitable graph representation for the classi�er. Two

strategies for graph initialization were proposed, one stochastic based and other using an

initial guess from the OPF prototypes. The resulting acceleration was of approximately 50%,

with a reduction in the number of nodes in the classi�er ranging from 42% to 88% in relation
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to the classical OPF approaches. The degradation of accuracy was negligible, around 2%, even

being higher in some cases.

Proposal and realization of an FPGA-based architecture for classi�cation: An FPGA-

based architecture classi�cation performance acceleration for embedded systems, was designed,

implemented and tested. The proof of concept was done with OPF-based supervised classi�er,

using both the classical training algorithm and the new one proposed in this thesis. The archi-

tecture proposes a multiprocessor con�guration with one main host processor and an auxiliary

parallel processor, applying an SIMD strategy to process data in parallel. This con�guration

takes advantage of �ne-grain parallelism which FPGAs excels. The architecture was imple-

mented on a board equipped with an SoC/FPGA. The architecture was able to accelerate the

classi�cation 2.5 to 10 times. Further acceleration was obtained combining a classi�er generated

by the new training algorithm and the hardware-accelerated classi�er, reaching 3 to 20 times

the original performance.

6.2 Future perspectives

The methods and implementations proposed in this thesis were validated on a thor-

ough experimental framework that allowed to identify several points that can inspire further

development. The main ones are described bellow.

Concerning OPF-based classi�cation, future extensions of this work may consider ap-

plying a feature selection method alongside PCA, to improve accuracy and false-negative

rate. Furthermore, investigating other dimension reductions techniques may also be a valid

option to improve the classi�er performance for pedestrian detection. As the performance

of candidate objects detection in the �rst phase a�ects the classi�cation results in the last, a

further extension can consider re-evaluating the OPF classi�er within a complete system, thus

permitting per frame evaluation, a more recent benchmarking methodology for pedestrian

detection systems, which also permits the use of standard datasets.

On OPF classi�er itself, the new SOEL training algorithm showed promising prospectives,

being capable of improving classi�cation times without big compromises in accuracy. One

future extension could be to extend it for unsupervised applications as well. To accomplish this
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extension, studies of common techniques for clusterization and label propagation are required.

The techniques can be derived from the current ones used in the classical OPF unsupervised

variation itself and also the ones used from SOMs. On the algorithm itself, current works are

applying a smoothing stage at the end of the growing phase, as used in G-SOMs, which can

generate better decision boundaries. Further development can also be made on investigating

new node adjustment strategies. Finally, the new algorithm introduced new parameters that

can in�uence the classi�er performance and so, a strategy for their optimization is necessary.

Using K-fold validation may be a solution. Considering the possibility to expand the number of

recognized classes using operational data, using an incremental learning approach, an online

training associated to classi�er parameters update is necessary to be developed. This new

incremental method can adopt the learning technique proposed here, which is expected to �t

real-time constraints.

Regarding the embedded FPGA architecture, one consideration could be testing the substi-

tution of the �oating point operations by �xed point ones, which generally grants performance

improvement against a compromise in precision. For many applications, this precision reduc-

tion does not represent a signi�cant loss, considering that the achieved acceleration can be

very attractive, or even the viable solution for a hard real-time constrained embedded system.

Yet, the overall good performance of modern FPGA devices equipped with hard �oating-point

multipliers is able to meet the requirements of applications in which precision is prevalent

over speed. Additionally, new classi�cation methods can be adapted to the architecture, provid-

ing a complete framework with �exibility to be applied in a bigger selection of applications.

Furthermore, online recon�guration capabilities presented by some FPGA devices can help to

implement the incremental learning method commented before, contributing to meet real-time

constraints.

The ensemble of the technologies and techniques presented in this thesis provides an

interesting perspective for future applications. As an example, the lower energy consumption

in comparison with GPUs, even the embedded ones, might be applied to Unmanned Aerial

Vehicles (UAVs) helping them to acquire the needed computational power and, as a consequence,

improving time of �ight. Autonomous and semi-autonomous vehicles would also pro�t, in

fact, some initiatives are currently in course, as examples presented in this thesis testify. The

natural following of this work would be to improve the framework with the addition of new

techniques, aiming to develop new signi�cant applications using FPGA-based technology.
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