25 research outputs found

    The development of a ground based polarimetric SAR interferometer (GB-POLInSAR)

    Get PDF
    Copyright © 2005 IEE

    Monitoring geotechnical structures by ground based radar interferometry

    Get PDF
    This paper describes two novel remote sensing techniques based on radar sensors, respectively the Synthetic Aperture Radar (SAR) and the Real Aperture Radar (RAR), and some applications to relevant geotechnical problems with the aim to demonstrate the outcomes these types of sensors can provide. The case studies here described show how the SAR technique can provide useful information to interpret landslides’ kinematics and how the RAR can be used to monitor dam displacements and tunnels’ convergences

    DEFORMATION MONITORING OF LARGE STRUCTURES BY GROUND-BASED SAR INTERFEROMETRY

    Get PDF
    In this paper, a ground-based SAR interferometry technology was used to monitor major engineering. This technology has been recognized as a powerful tool for terrain monitoring and structural change detecting. Deformation monitoring for large project has been a hot issue among them. According to GBSAR interferometry principle and characteristics of IBIS system, the authors analysis the error sources of deformation monitoring, and experimentally extract atmospheric phase which should removed based on permanent scattered analysis. Atmospheric disturbance effect analysis is discussed in this paper, and an atmospheric correction method is proposed to remove atmospheric effect, then the effective displacement can be retrieved. Results from this approach have been compared with that from traditional method in this campaign, GBInSAR technology can be exploited successfully in deformation monitoring for major projects with high accuracy

    Landslide monitoring by fixed-base terrestrial stereo-photogrammetry

    Get PDF
    Photogrammetry has been used since long to periodically control the evolution of landslides; however, true monitoring is reserved to robotic total stations and ground based InSAR systems, capable of high frequency, high accurate 24h/day response. This paper presents the first results of a fixed terrestrial stereo photogrammetric system developed to monitor shape changes of the scene. The system is made of two reflex cameras, each contained in a sealed box with a control computer that periodically acquires an image and send it to a host computer; once an image pair is received from the two cameras, the DSM of the scene is generated by image correlation and made available for archiving or analysis. The system has been installed and is being tested on the Mont de la Saxe landslide, where several monitoring system are active. Some instability of the camera attitude has been noticed and is corrected with an automated procedure. First comparisons with InSAR data show a good agreement

    Landslide monitoring by fixed-base terrestrial stereo-photogrammetry

    Get PDF
    Photogrammetry has been used since long to periodically control the evolution of landslides; however, true monitoring is reserved to robotic total stations and ground based InSAR systems, capable of high frequency, high accurate 24h/day response. This paper presents the first results of a fixed terrestrial stereo photogrammetric system developed to monitor shape changes of the scene. The system is made of two reflex cameras, each contained in a sealed box with a control computer that periodically acquires an image and send it to a host computer; once an image pair is received from the two cameras, the DSM of the scene is generated by image correlation and made available for archiving or analysis. The system has been installed and is being tested on the Mont de la Saxe landslide, where several monitoring system are active. Some instability of the camera attitude has been noticed and is corrected with an automated procedure. First comparisons with InSAR data show a good agreement

    Ground Based SAR Interferometry: a Novel Tool for Geoscience

    Get PDF

    Landslide monitoring techniques in the Geological Surveys of Europe

    Get PDF
    ABSTRACT: Landslide monitoring is a mandatory step in landslide risk assessment. It requires collecting data on landslide conditions (e.g., areal extent, landslide kinematics, surface topography, hydrogeometeorological parameters, and failure surfaces) from different time periods and at different scales, from site-specific to local, regional, and national, to assess landslide activity. In this analysis, we collected information on landslide monitoring techniques from 17 members of the Earth Observation and Geohazards Expert Group (from EuroGeoSurveys) deployed between 2005 and 2021. We examined the types of the 75 recorded landslides, the landslide techniques, spatial resolution, temporal resolution, status of the technique (operational, non-operational), time of using (before the event, during the event, after the event), and the applicability of the technique in early warning systems. The research does not indicate the accuracy of each technique but, rather, the extent to which Geological Surveys conduct landslide monitoring and the predominant techniques used. Among the types of landslides, earth slides predominate and are mostly monitored by geological and engineering geological mapping. The results showed that Geological Surveys mostly utilized more traditional monitoring techniques since they have a broad mandate to collect geological data. In addition, this paper provides new insights into the role of the Geological Surveys on landslide monitoring in Europe and contributes to landslide risk reduction initiatives and commitments (e.g., the Kyoto Landslide Commitment 2020).info:eu-repo/semantics/publishedVersio
    corecore