4,384 research outputs found

    Visualizing urban microclimate and quantifying its impact on building energy use in San Francisco

    Get PDF
    Weather data at nearby airports are usually used in building energy simulation to estimate energy use in buildings or evaluate building design or retrofit options. However, due to urbanization and geography characteristics, local weather conditions can differ significantly from those at airports. This study presents the visualization of 10-year hourly weather data measured at 27 sites in San Francisco, aiming to provide insights into the urban microclimate and urban heat island effect in San Francisco and how they evolve during the recent decade. The 10-year weather data are used in building energy simulations to investigate its influence on energy use and electrical peak demand, which informs the city's policy making on building energy efficiency and resilience. The visualization feature is implemented in CityBES, an open web-based data and computing platform for urban building energy research

    Gas Discharge Visualization (Electrophotonic Imaging, Kirlianography). Theoretical and Applied Aspects, 189 s.

    Get PDF
    The monograph highlights the results of priority clinical-physiological studies of the relationships between gas discharge visualization (electrophotonic imaging, kirlianography) parameters, on the one hand, and electroencephalograms, heart rate variability, immunograms, phagocytosis, the content of the main adaptation hormones (cortisol, aldosterone, testosterone, triiodothyronine, calcitonin) in the blood as well as acupuncture points - on the other hand. It is shown that the GDV/EPI method reliably reflects the state of the body's neuro-endocrine-immune complex as well as others parameters and has the right to take its place in the arsenal of physiological/biophysical methods. For biophysicists, physiologists, psychophysiologists, endocrinologists, immunologists, medical rehabilitation specialists. INTRODUCTION Advances in biophysics, biology, functional genomics, neuroscience, psychology, psychoneuroimmunology, and other fields suggest the existence of a subtle system of “biofield” interactions that organize biological processes from the subatomic, atomic, molecular, cellular, and organismic to the interpersonal and cosmic levels. Biofield interactions may bring about regulation of biochemical, cellular, and neurological processes through means related to electromagnetism, quantum fields, and perhaps other means of modulating biological activity and information flow. The biofield paradigm, in contrast to a reductionist, chemistry-centered viewpoint, emphasizes the informational content of biological processes; biofield interactions are thought to operate in part via low-energy or “subtle” processes such as weak, nonthermal electromagnetic fields (EMFs) or processes potentially related to consciousness and nonlocality. Biofield interactions may also operate through or be reflected in more well-understood informational processes found in EEG and ECG data. Recent advances have led to the development of a wide variety of therapeutic and diagnostic biofield devices, defined as physical instruments best understood from the viewpoint of a biofield paradigm [Muehsam D et al, 2015]. Biofield devices comprise physical instruments that may be most clearly understood from the viewpoint of a biofield paradigm, and a large and diverse number of devices have been developed to measure or manipulate biofield interactions. These include both diagnostic devices (to measure biofield properties) and therapeutic devices (to manipulate biofield interactions). The study of biofield devices is at a nascent stage of development, and much further research is needed to determine clinical efficacy and elucidate the underlying mechanisms of action for many of the devices mentioned here. The biofield devices operate through a variety of modalities rather than a single mechanism. Some biofield devices function through well-understood mechanisms and are already widely used in clinical settings: for example, electroencephalography (EEG)- and electrocardiography (ECG)-based heart rate variability (HRV). Other devices appear to operate through mechanisms that are novel or incompletely understood. However, all of these devices share a common property: rather than functioning primarily in a reductionist, chemistry-centered manner, biofield devices function via the informational content of biological processes and can interact via low-energy or “subtle” processes, including those potentially related to consciousness and nonlocality [Muehsam D et al, 2015]. Here Muehsam D et al [2015] provide a brief overview of the broad categories of biofield devices, with the goal being to stimulate further discussion and research. Authors describe those devices for which thay deemed that sufficient evidence exists to warrant mention. They chose to focus upon devices for which peer-reviewed scientific reports suggesting efficacy are available rather than conference proceedings or manufacturers' white papers. However, in the few cases that specific devices with sufficient promise and relevance lacked a peer-reviewed basis, authors have presented whatever evidence was available. Here, devices are organized according to mode of operation and these modalities include electromagnetic field (EMF)-light, EMF-heat, EMF-nonthermal, electrical current, vibration and sound, physical and mechanical, intentionality and nonlocality, gas and plasma, and other (mode of operation not well understood). Muehsam D et al [2015] deemed that gas discharge visualization (GDV) is an important example of the use of plasma in biofield science. Back in 1880 Nikola Tesla demonstrated that when placing the man in the high-frequency field around the body there is a bright glow [cit. by Korotkov KG, 2001]. In 1892 Nardkevych-Yodko YO recorded glow human hands on photographic plate [cit. by Ciesielska I, 2009]. However, a well-known method of "high-frequency photography" was due to spouses Kirlian SD&VH who in 1939 independently discovered this phenomenon [Kirlian SD & Kirlian VKh, 1961], later called "Kirlian’s effect". This technique has been called corona discharge photography [Boyers DG & Tiller WA, 1973], electrophotography [Earle L, 1975], electrography [Konikiewicz LW, 1979], GDV [Bankovskii NG et al, 1986]. In 1996 Korotkov KG created a new scientific approach, based on the digital videotechnics, modern electronics and computer processing quantitative data, called as method gas discharge visualization (GDV bioelectrography). Parallel uses the terms Kirlianography and Electrophotonic imaging (EPI) [Korotkov KG, 2001; 2007; 2014; Korotkov KG et al, 2002; Wisneski LA & Anderson L, 2009; Jakovleva E & Korotkov K, 2013]. Method of GDV, essence of which consists in registration of photoelectronic emission of skin, induced by high-frequency electromagnetic impulses, allows to estimate integrated psycho-somatic state of organism. The first base parameter of GDV is Area of Gas Discharge Image (GDI) in Right, Frontal and Left projections registered both with and without polyethylene filter. The second base parameter is a coefficient of form/shape (ratio of square of length of external contour of GDI toward his area), which characterizes the measure of serration/fractality of external contour. The third base parameter of GDI is Entropy, id est measure of chaos. It is considered that GDI, taken off without filter, characterizes the functional changes of organism, and with a filter characterizes organic changes. Program estimates also Energy and Asymmetry of virtual Chakras [Korotkov KG, 2001; 2007; 2014]. Nearly 1000 papers have been published (mostly in Russian) on GDV research and a few hundred more in the West. These intriguing data suggest that informatics based upon biofield measurement devices such as the GDV may be useful for gaining deeper understanding of disease states and guiding practitioners and their patients towards states of greater wellness [Muehsam D et al, 2015]. Without regard to the wideuse enough of method in medicine, psychology, valeology and others like that, he yields to the just criticizing for an insufficient physiology ground. There fore we put before itself sweep to analyse relationships between the parameters of GDV - from one side, and by the row of neurodynamics, endocrine, immune. psychophysiological, and other parameters - on the other hand

    An Experimental Investigation on the Micro Air Vehicle

    Get PDF
    An experimental investigation was conducted to study the flow characteristics of the flow around the flapping wings of a four-wing flapper as well as the lift and thrust coefficient of a four-wing flapper. In the present study, a clap-and-fling type of four-wing flapper was designed and manufactured by using several flexible materials, such as PET film, latex, and aluminized Mylar. Different cross-strut patterns and dimensions of wings were manufactured and tested to optimize the wing designs. In addition to taking the lift and thrust measurements using a highly sensitive force moment sensor unit, a high-resolution Particle Image Velocimetry (PIV) system was employed to achieve detailed flow field measurements to quantify the evolution of the unsteady vortex flow structure around the wings and in the downstream of the flapper. The force measurements were analyzed in correlation with the detailed flow measurements to elucidate the underlying physics to improve our understanding for an optimized flexible wing design and to achieve better performance for flapping wing micro air vehicles. A woofer loudspeaker was employed at the test section where the four-wing flapper was placed to generate sound distances. The effect of different frequencies and amplitudes of sound waves on the aerodynamic performance was investigated. A sensitive force moment sensor unit and PIV system were utilized to measure the lift and thrust and to take detailed flow field measurements to quantify the effect of sound waves on the flow and wing deformation. The force measurements were analyzed in correlation with the detailed flow measurements and qualitative wing deformation data to elucidate underlying the physics in to improve our understanding of the effect of acoustic disturbances on flexible wings and the overall aerodynamic performance of MAVs

    Scalability Benchmarking of Cloud-Native Applications Applied to Event-Driven Microservices

    Get PDF
    Cloud-native applications constitute a recent trend for designing large-scale software systems. This thesis introduces the Theodolite benchmarking method, allowing researchers and practitioners to conduct empirical scalability evaluations of cloud-native applications, their frameworks, configurations, and deployments. The benchmarking method is applied to event-driven microservices, a specific type of cloud-native applications that employ distributed stream processing frameworks to scale with massive data volumes. Extensive experimental evaluations benchmark and compare the scalability of various stream processing frameworks under different configurations and deployments, including different public and private cloud environments. These experiments show that the presented benchmarking method provides statistically sound results in an adequate amount of time. In addition, three case studies demonstrate that the Theodolite benchmarking method can be applied to a wide range of applications beyond stream processing

    A study of the possible preventive effects of muscular exercises and intermittent venous occlusion on the cardiovascular deconditioning observed after 10 days bed recumbency - Experimental design

    Get PDF
    Experiment designed to study preventive effects of muscular exercises on intermittent venous occlusion on cardiovascular deconditioning observed after 10 days bed recumbenc

    Retrospective suspect and non-target screening combined with similarity measures to prioritize MDMA and amphetamine synthesis markers in wastewater

    Get PDF
    3,4-Methylenedioxymethamphetamine (MDMA) and amphetamine are commonly used psychoactive stimulants. Illegal manufacture of these substances, mainly located in the Netherlands and Belgium, generates large amounts of chemical waste which is disposed in the environment or released in sewer systems. Retrospective analysis of high-resolution mass spectrometry (HRMS) data was implemented to detect synthesis markers of MDMA and amphetamine production in wastewater samples. Specifically, suspect and non-target screening, combined with a prioritization approach based on similarity measures between detected features and mass loads of MDMA and amphetamine was implemented. Two hundred and thirty-five 24 h-composite wastewater samples collected from a treatment plant in the Netherlands between 2016 and 2018 were analyzed by liquid chromatography coupled to high-resolution mass spectrometry. Samples were initially separated into two groups (i.e., baseline consumption versus dumping) based on daily loads of MDMA and amphetamine. Significance testing and fold-changes were used to find differences between features in the two groups. Then, associations between peak areas of all features and MDMA or amphetamine loads were investigated across the whole time series using various measures (Euclidian distance, Pearson's correlation coefficient, Spearman's rank correlation coefficient, distance correlation and maximum information coefficient). This unsupervised and unbiased approach was used for prioritization of features and allowed the selection of 28 presumed markers of production of MDMA and amphetamine. These markers could potentially be used to detect dumps in sewer systems, help in determining the synthesis route and track down the waste in the environment

    The Introduction of Yoga Recovery on Physiological and Psychological Stress and Performance in NCAA Athletes

    Get PDF
    NCAA student athletes face unique physiological and psychological stressors daily, which may contribute to overtraining, burnout, and other physical and mental health issues. However, NCAA institutions often leave recovery up to the individual athlete due to time restriction and Countable Athletic Related Activities (CARA) hour limitations on team mandated activities. Attention to methods to promote recovery from these training loads is increasing in NCAA institutions. A mind-body activity such as yoga is proposed to have physiological and psychological benefits for student athletes. The goal of this review is to identify which aspects of yoga promote the most effective recovery in measures such as: performance, physical biomarkers of stress, muscle damage, heart rate variability, sleep quality, mood state, anxiety, and depression. A recovery yoga protocol is presented, based on the current literature on the topic, to suggest a time- and cost-effective mind-body recovery modality for NCAA student athletes. The recommendation of this review concludes that, among other approaches, NCAA athletes are ideal candidates to undertake the practice of a yoga-based relaxation technique. As such, initial incorporation of yoga is recommended for 20 minutes twice weekly, with a third 60- minute practice each week for a more integrated mind-body yoga experience. From the literature, there is a scientific rationale to understand and anticipate physiological effects such as decreased muscle soreness, heart rate variability, and oxidative stress and psychological effects of improved mood, decreased anxiety, and depression in terms of yoga efficacy. Based on this rationale, introduction of yoga-based recovery is likely to improve some aspects of academic and athletic performance, as well as overall greater wellbeing upon completion of the recommended intervention. However, well-founded conclusions are tentative because explicit mechanistic research is sparse. Accordingly, outcomes based research is needed to confirm the extent to which introduction of these recovery-based approaches will benefit yoga novices

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 129, June 1974

    Get PDF
    This special bibliography lists 280 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1974
    corecore