
Scalability Benchmarking of
Cloud-Native Applications
Applied to Event-Driven

Microservices

Sören Henning

Dissertation
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr.-Ing.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

eingereicht im Jahr 2023

Kiel Computer Science Series (KCSS) 2023/2 dated 2023-03-21

ISSN 2193-6781 (print version)
ISSN 2194-6639 (electronic version)

Electronic version, updates, errata available via https://www.informatik.uni-kiel.de/kcss

The author can be contacted via post@soeren-henning.de

Published by the Department of Computer Science, Kiel University

Software Engineering Group

Please cite as:

Sören Henning. Scalability Benchmarking of Cloud-Native Applications Applied to Event-Driven
Microservices. Number 2023/2 in Kiel Computer Science Series. Department of Computer
Science, 2023. Dissertation, Faculty of Engineering, Kiel University.

@book{Henning23,

author = {S{\"o}ren Henning},

title = {Scalability Benchmarking of Cloud-Native Applications

Applied to Event-Driven Microservices},

publisher = {Department of Computer Science,

Faculty of Engineering, Kiel University},

year = {2023},

number = {2023/2},

doi = {10.21941/kcss/2023/2}

series = {Kiel Computer Science Series},

note = {Dissertation, Faculty of Engineering,

Kiel University.}

}

© 2023 by Sören Henning

ii

https://www.informatik.uni-kiel.de/kcss
post@soeren-henning.de

About this Series

The Kiel Computer Science Series (KCSS) covers dissertations, habilita-
tion theses, lecture notes, textbooks, surveys, collections, handbooks, etc.
written at the Department of Computer Science at Kiel University. It was
initiated in 2011 to support authors in the dissemination of their work in
electronic and printed form, without restricting their rights to their work.
The series provides a unified appearance and aims at high-quality typog-
raphy. The KCSS is an open access series; all series titles are electronically
available free of charge at the department’s website. In addition, authors
are encouraged to make printed copies available at a reasonable price,
typically with a print-on-demand service.

Please visit http://www.informatik.uni-kiel.de/kcss for more information, for
instructions how to publish in the KCSS, and for access to all existing
publications.

iii

http://www.informatik.uni-kiel.de/kcss

1. Gutachter: Prof. Dr. Wilhelm Hasselbring
Christian-Albrechts-Universität zu Kiel

2. Gutachter: Univ.-Prof. Mag. Dr. Rick Rabiser
Johannes Kepler Universität Linz

3. Gutachter: Prof. Dr.-Ing. David Bermbach
Technische Universität Berlin

Datum der mündlichen Prüfung: 14. März 2023

iv

Zusammenfassung

Cloud-native Anwendungen stellen einen aktuellen Trend für den Entwurf
großer Software-Systeme dar. Trotz einer Vielzahl entsprechender Tools
und Muster, gibt es allerdings keine allgemein akzeptierte Methode, ihre
Skalierbarkeit empirisch zu benchmarken.

Diese Dissertation stellt unsere Benchmarkingmethode Theodolite vor.
Sie erlaubt es, empirische Skalierbarkeitsevaluationen von Cloud-nativen
Anwendungen, Frameworks und Betriebsvarianten durchzuführen. Unse-
re Benchmarkingmethode besteht aus Metriken, Messmethoden und einer
Architektur für ein entsprechendes Benchmarkingtool. Sie quantifiziert
Skalierbarkeit mittels isolierter Experimente, die für verschiedene Last-
und Ressourcenkombinationen bewerten, ob spezifizierte Service Level Ob-
jectives (SLOs) erfüllt werden. Um Benutzbarkeit und Reproduzierbarkeit
in Einklang zu bringen, kann der Kompromiss zwischen Ausführungszeit
und statistisch belastbaren Ergebnissen individuell konfiguriert werden.

Wir wenden unsere Benchmarkingmethode auf ereignisgesteuerte Mi-
croservices an, einem speziellen Typ von Cloud-nativen Anwendungen,
die verteilte Frameworks zur Datenstromverarbeitung einsetzen. Ange-
lehnt an reelle Anwendungsfällen zur Analyse industrieller Stromver-
brauchsdaten, entwerfen wir Skalierbarkeits-Benchmarks. Diese umfassen
Datenfluss-Architekturen zur Datenaggregation, konfigurierbare Last- und
Ressourcendimensionen sowie SLOs.

In umfangreichen experimentellen Evaluationen benchmarken und ver-
gleichen wir die Skalierbarkeit verschiedener Frameworks zur Datenstrom-
verarbeitung in unterschiedlichen Konfigurationen. Unsere Evaluationen
zeigen, dass statistisch belastbare Ergebnisse in angemessener Zeit erzielt
werden können. Wir führen unsere Experimente in verschiedenen Public-
und Private-Cloud-Umgebungen durch und vergleichen unsere Ergebnisse
mit denen von Function-as-a-Service. Des Weiteren setzen wir Theodolite
in drei Fallstudien ein und stellen fest, dass es auch die Skalierbarkeit
verschiedenster anderer Anwendungen benchmarken kann.

v

Abstract

Cloud-native applications constitute a recent trend for designing large-
scale software systems. However, even though several cloud-native tools
and patterns have emerged to support scalability, there is no commonly
accepted method to empirically benchmark their scalability.

This thesis introduces our Theodolite benchmarking method, allowing
researchers and practitioners to conduct empirical scalability evaluations
of cloud-native applications, frameworks, and deployment options. Our
benchmarking method consists of scalability metrics, measurement meth-
ods, and an architecture for a scalability benchmarking tool. Following
fundamental scalability definitions and established benchmarking best
practices, we propose to quantify scalability by performing isolated ex-
periments for different load and resource combinations, which assess
whether specified service level objectives (SLOs) are achieved. To balance
usability and reproducibility, our method provides configuration options,
controlling the trade-off between execution time and statistical grounding.

We apply our benchmarking method to event-driven microservices, a
specific type of cloud-native applications that employ distributed stream
processing frameworks to scale with massive data volumes. Based on
studying use cases for analyzing industrial power consumption data, we
propose a set of scalability benchmarks for such microservices. They com-
prise dataflow architectures for different types of sensor data aggregation,
configurable load and resource dimensions, as well as SLOs.

In extensive experimental evaluations, we benchmark and compare
the scalability of various stream processing frameworks under different
configurations and deployments. Our evaluations show that statistically
grounded results can be obtained in reasonable time. We run these experi-
ments in different public and private cloud environments and compare
their costs with those of Function-as-a-Service deployments. Furthermore,
we employ Theodolite in three case studies and find that it can be applied
to a wide range of applications beyond stream processing.

vii

Preface by
by Prof. Dr. Wilhelm Hasselbring

Scalability is a primary motivation for building cloud-native applications.
In empirical software engineering, benchmarks can be used for comparing
different methods, techniques and tools. A challenge, addressed by Sören
Henning with this thesis, is to empirically benchmark the scalability of
cloud-native applications.

In this thesis, Sören Henning, implements and evaluates the new,
innovative Theodolite benchmarking method, allowing researchers and
practitioners to conduct empirical scalability evaluations of cloud-native
applications, frameworks, and deployment options. The Theodolite bench-
marking method consists of scalability metrics, measurement methods,
and an architecture for the scalability benchmarking tool.

Besides the conceptual work, this thesis contains a significant experi-
mental part with an implementation and a multifaceted evaluation. Thus,
this engineering dissertation has been extensively evaluated with cloud
benchmarking experiments, including data from industrial systems.

Besides the publication of research papers with associated replication
packages, the Theodolite open-source software implementation has been
reviewed and accepted for the SPEC Research Group’s repository of peer-
reviewed tools for quantitative system evaluation and analysis. Similar to
the peer-reviewing process for scientific publications, submitted software
tools are thoroughly evaluated by at least three reviewers of the SPEC
Research Group.

If you are interested in benchmarking cloud-native applications, this is
a recommended reading for you.

Wilhelm Hasselbring
Kiel, March 2023

ix

Acknowledgments

This work would not have been possible without the support and advice
of many people. First of all, I would like to thank Willi Hasselbring for
supervising my doctoral studies and guiding my way into the world of
software engineering research. He gave me the freedom to explore my re-
search interests but also encouraged me to look beyond them, for example,
on topics such as benchmarking. Always a source of inspiration and moti-
vation, he especially advised me on how to balance practical and scientific
relevance and on how to effectively present research results. Moreover,
I would like to thank the second and third reviewers of this thesis, Rick
Rabiser and David Bermbach, as well as the remaining members of my
examining committee, Peer Kröger and Olaf Landsiedel, for their efforts.

Throughout the entire time working on this research, I was employed at
the Software Engineering Group at Kiel University. My sincere thanks go
to my colleagues Alexander Barbie, Sven Gundlach, Malte Hansen, Reiner
Jung, Alexander Krause-Glau, Christine Krüger, Arnd Plumhoff, Henning
Schnoor, Nelson Tavares de Sousa, Matthias Westphal, Christian Wulf,
and Christian Zirkelbach for the productive working atmosphere, fruitful
discussions, memorable conference travels, and great team experiences.

Moreover, I would like to thank the many students who assisted in
designing and implementing this research. Special mention should be
made of Lorenz Boguhn, Simon Ehrenstein, Björn Vonheiden, and Benedikt
Wetzel, whose large contributions become evident by only looking at the
Git history of our Theodolite tool and at this thesis’ evaluation chapters.

Large parts of this research have been conducted in collaboration with
industry partners. I would especially like to thank the people at b+m
Informatik AG, IBAK Helmut Hunger GmbH & Co. KG, Kieler Zeitung
GmbH & Co. Offsetdruck KG, and wobe-systems GmbH for giving me the
opportunity to work on “real-world problems”. I also wish to acknowledge
Tobias Pfandzelter and Trever Schirmer for the academic collaboration that
led to Chapter 15 of this thesis.

xi

I would like to thank my friends and family who supported me in
various ways throughout the years of my doctoral studies. I am deeply
grateful to my parents Gabi and Claus Henning for allowing me to receive
the education resulting in this work and for always having a sympathetic
ear for me. There is also a special thank you to Jette Henning for proof-
reading large parts of this work and her patience in pointing out the same
mistakes over and over again. Finally, I would like to express my deepest
gratitude to Kea Ille for her unwavering love and support, for encouraging
me to not always take the path of least resistance, but also for reminding
me of the truly important things in life.

xii

Contents

1 Introduction 1

1.1 Motivation and Context . 1
1.2 Problem Statement . 3

1.2.1 Lack of a Commonly Accepted Scalability Bench-
marking Method . 3

1.2.2 Lack of Scalability Benchmarks for Event-Driven Mi-
croservices . 4

1.3 Guiding Goals and Research Questions 5
1.3.1 A Method for Benchmarking the Scalability of Cloud-

Native Applications 5
1.3.2 A Benchmark to Assess and Compare the Scalability

of Event-Driven Microservice Architectures 5
1.4 Contributions and Evaluation Summary 6

1.4.1 The Theodolite Scalability Benchmarking Method . . 6
1.4.2 The Theodolite Scalability Benchmarks for Event-

Driven Microservices 7
1.4.3 Experimental Evaluations 7

1.5 Preliminary Work . 8
1.5.1 Peer-Reviewed Publications 8
1.5.2 Replication Packages 10
1.5.3 Non-Reviewed Publications 11
1.5.4 Co-Supervised Bachelor’s and Master’s Theses . . . 11

1.6 Document Structure . 12

I Foundations 15

2 Scalability of Software Systems 17

2.1 Scalability in Parallel and Distributed Systems 17
2.2 Scalability in Cloud Computing 19

xiii

Contents

2.3 Vertical and Horizontal Scalability 20
2.4 Scalability vs. Elasticity . 20

3 Benchmarking Software Systems 21

3.1 Definitions for Benchmarks 21
3.2 Benchmarking in Empirical Software Engineering Research 22
3.3 Components of Benchmarks 23
3.4 Quality Attributes of Benchmarks 25
3.5 Classification of Benchmarks 25

3.5.1 Provision of Benchmarks 26
3.5.2 Sizes and Scopes of Benchmarks 26

3.6 Benchmarking in Cloud Computing 27

4 Cloud-Native Applications and Event-Driven Microservices 29

4.1 Cloud-Native Applications 29
4.1.1 Cloud Computing . 29
4.1.2 A Definition for Cloud-Native 30
4.1.3 The Cloud-Native Ecosystem 31

4.2 The Microservice Architectural Pattern 32
4.2.1 Microservice Characteristics 33
4.2.2 Microservices for Enabling Scalability 33
4.2.3 Microservice Performance Testing and Benchmarking 36

4.3 Event-Driven Microservices 37
4.3.1 Log-Based Messaging Systems as Backbone 37
4.3.2 Event-Driven Microservice Architecture Patterns . . 37

4.4 Distributed Stream Processing 39
4.4.1 Stream Processing Models and Patterns 39
4.4.2 Modern Stream Processing Frameworks 40

II The Theodolite Benchmarking Method 45

5 Research Design and Methods 47

5.1 Deriving Design Rationales 48
5.2 Evaluation Overview . 49

xiv

Contents

6 Scalability Metrics 51

6.1 Design Rationale . 52
6.2 Formal Definition of Scalability Metrics 53

6.2.1 Resource Demand Metric 54
6.2.2 Load Capacity Metric 54

6.3 Discussion . 54
6.3.1 Relation of Our Metrics 55
6.3.2 Comparison of Our Metrics 56

6.4 Related Work . 57

7 Scalability Measurement Method 61

7.1 Design Rationale . 62
7.2 Fundamental Approach . 62
7.3 SLO Experiments . 63
7.4 Search Strategies . 64
7.5 Balancing Statistical Grounding and Time-Efficiency 66
7.6 Related Work . 67

8 Benchmarking Tool Architecture 71

8.1 Design Rationale . 72
8.1.1 Declarative Benchmarks and Executions 72
8.1.2 Integration with the Cloud-Native Ecosystem 73

8.2 Overview of the Benchmarking Process 74
8.3 Benchmarking Meta Model 75
8.4 Operator-Based Cloud-Native Architecture 77
8.5 The Theodolite Benchmarking Framework 79
8.6 Related Work . 79

III The Theodolite Benchmarks for Event-Driven Mi-
croservices 83

9 Research Design and Methods 85

9.1 Design Rationale . 86
9.2 Research Design Overview 86
9.3 Evaluation Overview . 88

xv

Contents

10 Industrial Internet of Things Analytics for the Case of Industrial

Power Consumption 89

10.1 Context . 90
10.2 Literature Review . 90

10.2.1 Goals for Analyzing Power Consumption Data . . . 90
10.2.2 Measures for Analyzing Power Consumption Data . 92
10.2.3 Implementation of Measures 94

10.3 Studied Pilot Cases . 95
10.4 Goals for Analyzing Power Consumption Data 96

10.4.1 Reporting . 97
10.4.2 Optimization . 98
10.4.3 Fault Detection . 99
10.4.4 Predictive Maintenance 100

10.5 Measures for Analyzing Power Consumption Data 101
10.5.1 Near Real-time Data Processing 101
10.5.2 Multi-Level Monitoring 103
10.5.3 Temporal Aggregation 103
10.5.4 Correlation . 104
10.5.5 Anomaly Detection . 105
10.5.6 Forecasting . 106
10.5.7 Visualization . 106
10.5.8 Alerting . 107

10.6 Pilot Implementation of the Measures 108
10.6.1 Near Real-Time Data Processing 109
10.6.2 Multi-Level Monitoring 110
10.6.3 Temporal Aggregation 111
10.6.4 Correlation . 112
10.6.5 Anomaly Detection . 113
10.6.6 Forecasting . 114
10.6.7 Visualization . 115
10.6.8 Alerting . 118

11 Scalability Benchmarks for Event-Driven Microservices 119

11.1 Dataflow Architectures . 119
11.1.1 Use Case UC1: Database Storage 120
11.1.2 Use Case UC2: Downsampling 121

xvi

Contents

11.1.3 Use Case UC3: Time-Attribute-Based Aggregation . 122
11.1.4 Use Case UC4: Hierarchical Aggregation 123

11.2 Load Types . 124
11.3 Resource Types . 125
11.4 Service Level Objectives . 125

11.4.1 Consumer Lag Trend SLO 126
11.4.2 Dropped Records SLO 127

11.5 Systems under Test and Load Generation 127
11.6 Related Work . 128

IV Experimental Evaluation 135

12 Evaluating Variability of Benchmark Results in the Cloud 137

12.1 Experimental Setup . 138
12.1.1 Benchmark Implementations and Configurations . . 139
12.1.2 Evaluated Cloud Platforms 140
12.1.3 Replication Package 141

12.2 Evaluation of Warm-up and SLO Experiment Duration . . . 141
12.2.1 Experiment Design . 141
12.2.2 Results and Discussion 144
12.2.3 Summary . 146

12.3 Evaluation of Repetition Count 148
12.3.1 Experiment Design . 148
12.3.2 Results and Discussion 149
12.3.3 Summary . 152

12.4 SLO Evaluation with Increasing Resources 152
12.4.1 Experiment Design . 152
12.4.2 Results and Discussion 154
12.4.3 Summary . 155

12.5 SLO Evaluation with Increasing Load 155
12.5.1 Experiment Design . 155
12.5.2 Results and Discussion 156
12.5.3 Summary . 158

12.6 Threats to Validity . 158

xvii

Contents

13 Evaluating Scalability of Stream Processing Frameworks 161

13.1 Experimental Setup . 162
13.1.1 Configuration of Frameworks 162
13.1.2 Configuration of Task Samples 163
13.1.3 Configuration of the Benchmarking Method 163

13.2 Baseline Experiments . 164
13.3 Apache Beam Configuration 167

13.3.1 Apache Flink . 168
13.3.2 Apache Samza . 169

13.4 Scaling the Window Aggregation Duration 171
13.5 Scaling on a Single Node . 172
13.6 Threats to Validity . 175

14 Evaluating Scalability of Sliding Window Aggregations 177

14.1 Methods for Sliding Window Aggregations 178
14.2 Experimental Setup . 179
14.3 Results and Discussion . 180

14.3.1 Theodolite’s UC3 Benchmark 181
14.3.2 OSPBench . 182

14.4 Threats to Validity . 182

15 Evaluating Cost Scalability of Stream Processing and Function-

as-a-Service 185

15.1 Experimental Setup and Methodology 186
15.2 Baseline: Stream Processing and FaaS 188

15.2.1 Implementation . 188
15.2.2 Results and Discussion 190
15.2.3 Takeaway for Platform Choice 192

15.3 Impact of Pub/Sub in FaaS and Streaming 193
15.3.1 Implementation and Setup 193
15.3.2 Results and Discussion 193
15.3.3 Takeaway for Transport Method Choice 195

15.4 Different FaaS Platforms . 195
15.4.1 Implementation and Setup 195
15.4.2 Results and Discussion 196
15.4.3 Takeaway for Cloud Provider Choice in FaaS 197

xviii

Contents

15.5 Different Kubernetes Engines 197
15.5.1 Implementation and Setup 197
15.5.2 Results and Discussion 197
15.5.3 Takeaway for Cloud Platform Choice in Streaming . 199

15.6 Different Programming Languages in FaaS 199
15.6.1 Implementation and Setup 199
15.6.2 Results and Discussion 200
15.6.3 Takeaway for Language Choice in FaaS 200

15.7 Different Streaming Frameworks 200
15.7.1 Implementation and Setup 200
15.7.2 Results and Discussion 201
15.7.3 Takeaway for Framework Choice 201

15.8 Serverless vs. Serverful Stream Processing 201
15.8.1 Implementation and Setup 202
15.8.2 Results and Discussion 202
15.8.3 Takeaway for Platform Choice 203

15.9 Serverless vs. Serverful Kubernetes 203
15.9.1 Implementation and Setup 203
15.9.2 Results and Discussion 204
15.9.3 Takeaway for Kubernetes Service Choice 204

15.10Threats to Validity . 204
15.11Summary of Results and Decision Guidelines 205

16 Case Studies 207

16.1 Scalability Benchmarking of a Promotional Loan System . . 207
16.1.1 Benchmark Design . 208
16.1.2 Benchmark Execution 209
16.1.3 Benchmark Results . 210

16.2 Scalability Benchmarking of ExplorViz 211
16.2.1 Benchmark Design . 211
16.2.2 Benchmark Execution 212
16.2.3 Benchmark Results . 213

16.3 Scalability Benchmarking of the TeaStore 214
16.3.1 Benchmark Design . 215
16.3.2 Benchmark Execution 216
16.3.3 Benchmark Results . 216

xix

Contents

V Conclusions and Future Work 219

17 Conclusions 221

17.1 The Theodolite Scalability Benchmarking Method 221
17.2 The Theodolite Scalability Benchmarks for Event-Driven

Microservices . 222
17.3 Experimental Evaluation Results 223

18 Future Work 225

18.1 Experimental Scalability Evaluations with Theodolite 225
18.2 Future Work on Scalability Benchmarking Methods 226
18.3 Future Work on Scalability Benchmarks 227
18.4 Outlook . 227

Bibliography 229

xx

Chapter 1

Introduction

Scalability is a driving requirement for many software systems, especially
for those that are designed as cloud-native applications and event-driven
microservices. Empirically evaluating and comparing the scalability of
such applications is therefore of great interest for software engineers,
architects, and researchers. This thesis presents and evaluates a scalability
benchmarking method for cloud-native applications along with specific
scalability benchmarks for event-driven microservices.

We start this thesis with this introductory chapter, by first motivating
and setting its context (Section 1.1). We continue with stating problems
found in the state-of-the-art (Section 1.2) and define the guiding goals
of the thesis along with research questions to be addressed (Section 1.3).
Afterward, we summarize the contributions of this thesis (Section 1.4).
Lastly, we give an overview of preliminary work included in this thesis
(Section 1.5) and outline the document structure (Section 1.6).

1.1 Motivation and Context

Over the last two decades, software engineering was tremendously driven
by scale [Gor22]. This includes drastically increased range of functions,
user bases, and data volumes of software systems. While in 2011, John
Ousterhout [Ous11] stated that “scale has been the single most important
force driving changes in system software over the last decade”, an end
to this growth does not yet appear to be in sight. The capability of a soft-
ware system to handle such growth is referred to as scalability [HKR13].
In the shade of the often reported hyper-scalable, Internet-facing sys-
tems [Gor17], scalability has also become a driving requirement for many

1

1. Introduction

software systems in other domains such as the Industrial Internet of Things
(IIoT) [SSH+18].

Since more than a decade now, cloud computing is both a solution and
a driver for building large-scale software systems [AFG+10]. Under the
impression of seemingly unlimited computing resources, cloud users can
expand the capacity of their software on demand and with pay-per-use
billing to handle ever-increasing amounts of users and data. On the other
hand, being able to store and analyze giant volumes of data allows for
formerly unimaginable services, leading to even larger systems.

Following the rise of cloud computing as preferred deployment infras-
tructure for many applications, we are now witnessing how large-scale
software systems are increasingly being designed as cloud-native applica-
tions [GBS17]. Under the umbrella term “cloud-native”, a wide range of
tools and patterns emerged for simplifying, accelerating, and securing the
development and operation of software systems in the cloud. Key concepts
are containers, service meshes, microservices, immutable infrastructure,
and declarative APIs to build resilient, manageable, observable, and, in
particular, scalable software systems [Clo18]. Cloud-native software sys-
tems and practices to guarantee their scalability are recognized as one of
the trending topics in software engineering research in 2022 [FBS22].

Microservices are an architectural pattern, particularly suited for build-
ing scalable, cloud-native software systems [Has16]. Supported by func-
tional decomposition, polyglot persistence, polyglot programming, and
often eventual consistency, loosely coupled microservices can be deployed
and scaled independently [Zim17; Has18]. Scalability is in fact often re-
ported as the main driver for adopting microservice and cloud-native
architectures in industry [KQ17; STV18; KH19].

More recently, a shift toward combining event-driven architectures
with microservices can be observed [LZS+21]. In such systems, individual
microservices communicate via asynchronous messages and events, which
are managed by messaging or queuing systems. Especially data-intensive
applications and big data analytics systems are increasingly designed as
event-driven microservices, leading to several frameworks for processing
continuous data streams in a scalable manner [DL20].

However, scalability does not come “out of the box” just by building
software systems as cloud-native and with an event-driven microservice

2

1.2. Problem Statement

architecture. Scalability might be affected by several decisions regarding a
software’s architecture, employed technologies, and services as well as var-
ious configuration and deployment options [Gor22]. Especially choosing
among the wide range of cloud deployment options [GKK+12; FFH13] and
configuration options of rapidly evolving big data stream processing sys-
tems [HCL20] is challenging. Benchmarking is a well-established method
in software engineering to assess and compare the quality of software
systems and services [Has21]. As such, it is used both in research and
engineering [KLvK20] to choose among competing software solutions, to
evaluate the quality of new ones, or to assure quality levels over time.
Whether by manual benchmark analysis or automated configuration tun-
ing, benchmark results are often used to optimize various aspects of a
software system. Hence, benchmarking can and should be used to evaluate
and compare the scalability of cloud-native applications. As detailed in
the following section, however, a corresponding scalability benchmarking
method is yet to be established.

1.2 Problem Statement

Scalability is widely considered an essential quality attribute of cloud-
native applications and, in particular, of event-driven microservices [KQ17;
STV18; KH19; LZS+21]. Nevertheless, research is lacking a commonly ac-
cepted benchmarking method to empirically assess their scalability. In the
following, we break this down to discuss the lack of a suitable scalability
benchmarking method and the lack of suitable benchmarks for distributed
stream processing frameworks used in event-driven microservices.

1.2.1 Lack of a Commonly Accepted Scalability Bench-
marking Method

Although precise definitions of scalability exist and were refined over
the last two decades [JW00; DRW07; WHG+14], we observe that no com-
monly accepted method exists for benchmarking scalability of cloud-native
applications. In particular, we notice the following shortcomings:

3

1. Introduction

– We found that several studies conducting scalability evaluations do not
describe their employed methodology with sufficient detail. A possible
reason is that such evaluations are often conducted as part of larger
(often engineering) works and, thus, are not considered to be the main
contributions of such works.

– Scalability benchmarking studies build upon different definitions of
scalability, which are not generally transferable to scalability of cloud-
native applications.

– Several employed methods to empirically evaluate scalability lack sta-
tistical soundness. Increasing statistical grounding would come at the
expense of reduced usability and, hence, also reproducibility.

– To the best of our knowledge, there are neither tools nor corresponding
architectural concepts available, aiming to increase usability of scalability
benchmarks.

Even though most studies from academia and industry share similar under-
standings of scalability, the lack of well-defined metrics and measurement
methods contradicts the fundamental principle of benchmarking.

1.2.2 Lack of Scalability Benchmarks for Event-Driven Mi-
croservices

Research on microservice architecture performance and benchmarking
primarily targets synchronous, request–response communication between
services. Although some studies also consider asynchronous communi-
cation via messaging queues, these studies focus on simple produce and
consume tasks. They do not consider complex data processing inside
services as enabled by modern stream processing frameworks.

On the other hand, benchmarks and performance evaluations for dis-
tributed stream processing frameworks are often designed as microbench-
marks instead of application benchmarks. Hence, they are designed ac-
cording to capabilities of stream processing frameworks and not based on
real use cases. Moreover, such benchmarks mainly focus on performance
attributes such as processing latency and throughput and are not explicitly

4

1.3. Guiding Goals and Research Questions

designed for evaluating scalability. We discuss existing stream processing
benchmarks in detail in Section 11.6.

1.3 Guiding Goals and Research Questions

With this thesis, we address the two previously raised problems by defining
two overarching goals. For each goal, we state research questions (RQ) to
be addressed in this thesis.

1.3.1 A Method for Benchmarking the Scalability of
Cloud-Native Applications

Our first goal is to engineer a scalability benchmarking method for cloud-
native applications. It addresses the problem stated in Section 1.2.1. As
we detail in Chapter 3, a benchmarking method usually defines metrics,
corresponding measurement methods, and is often accompanied by a tool
for running the benchmarks. We therefore state the following research
questions:

RQ 1.1 How can scalability of cloud-native applications be quantified?

RQ 1.2 How can scalability be measured in a metric-conformant way,
providing statistically grounded results in reasonable execution times?

RQ 1.3 How can a tool be designed that performs such a measurement
method in a way that provides a high degree of usability and repro-
ducibility?

1.3.2 A Benchmark to Assess and Compare the Scalability
of Event-Driven Microservice Architectures

Our second goal is to engineer a benchmark that allows assessing and
comparing the scalability of different stream processing frameworks, con-
figuration options, and deployment options for event-driven microservices.
It addresses the problem stated in Section 1.2.2. To approach this goal, we
formulate the following research questions:

5

1. Introduction

RQ 2.1 What are relevant use cases for event-driven microservices?

RQ 2.2 How do corresponding dataflow architectures look like that match
state-of-the-art stream processing dataflow models?

RQ 2.3 Along which dimensions should load on and provisioned resources
of event-driven microservices be considered?

RQ 2.4 How can the proper functioning of event-driven microservices be
assessed?

1.4 Contributions and Evaluation Summary

With this thesis, we contribute to the research fields of empirical perfor-
mance evaluation for cloud computing, microservice architectures, and
distributed stream processing. In the following, we summarize our contri-
butions, grouped into three categories.

1.4.1 The Theodolite Scalability Benchmarking Method

We present the Theodolite1 benchmarking method, allowing researchers
and practitioners to conduct empirical scalability evaluations of cloud-
native applications, frameworks, and deployment options. As summarized
in the following, our benchmarking method consists of scalability metrics,
measurement methods, and an architecture for a scalability benchmarking
tool, particularly suited for cloud-native applications. In particular, we
make the following contributions:

– two scalability metrics, namely the resource demand and the load ca-
pacity metric, which quantify scalability based on the notions of load,
resources, and service level objectives (SLOs),

1A theodolite is a precision optical instrument used in geodesy for measuring angles in
the horizontal and vertical planes. Inspired by its namesake, our Theodolite method as well
as our corresponding Theodolite benchmarking framework measures the horizontal and
vertical scalability of cloud-native applications.

6

1.4. Contributions and Evaluation Summary

– a scalability measurement method, quantifying our metrics by run-
ning isolated experiments for automatically selected load and resource
combinations, which assess whether specified SLOs are fulfilled, and

– an architecture for a scalability benchmarking framework as well as a
corresponding implementation, which implement the proposed method
as a Kubernetes operator, allowing for declarative descriptions of bench-
marks and their executions.

1.4.2 The Theodolite Scalability Benchmarks for Event-
Driven Microservices

Based on our benchmarking method, we present a set of benchmarks
to empirically assess the scalability of frameworks, configurations, and
deployment options for event-driven microservices. In particular, we make
the following contributions:

– a set of four task samples, derived from real use cases for IIoT analytics,
which serve as the basis for our scalability benchmarks,

– implementations of these task samples for several state-of-the-art stream
processing frameworks, particularly suited to build event-driven mi-
croservices, as well as a scalable load generator,

– multiple load types and resource types, regarding which our bench-
marks evaluate scalability, and

– two SLOs for stream processing frameworks, which can be efficiently
measured in cloud-native environments.

1.4.3 Experimental Evaluations

We perform extensive experimental evaluations of and with our bench-
marking method and provide experimental results for the scalability of
event-driven microservices. In particular, we make the following contribu-
tions:

7

1. Introduction

– evaluations of our method’s configuration options in different cloud
environments with multiple systems, suggesting that our method can
provide statistically grounded results in reasonable execution times,

– scalability evaluations of the stream processing frameworks Apache
Flink, Hazelcast Jet, Apache Kafka Streams, and Apache Beam (us-
ing the Apache Flink and the Apache Samza runner) with different
configuration and deployment options,

– scalability evaluations of different techniques for aggregations on con-
tinuous data streams over sliding time windows,

– evaluations of cost scalability for different types of stream processing
deployments and Function-as-a-Service (FaaS) deployments in the cloud,
and

– conceptual evaluations of our benchmarking method for other types of
cloud-native applications, namely a commercial software for the pro-
motional loan business, an open-source research software for software
visualization, and a microservice reference application, frequently used
in research.

1.5 Preliminary Work

This thesis builds upon 17 peer-reviewed journal and conference publica-
tions with 6 associated replication packages, a non-reviewed project report,
and 14 co-supervised student theses. We provide an overview of all these
works below.

1.5.1 Peer-Reviewed Publications

1. S. Henning and W. Hasselbring. “Benchmarking scalability of cloud-
native applications”. In: Software Engineering 2023. Bonn: Gesellschaft
für Informatik e.V., 2023

2. S. Henning and W. Hasselbring. “A configurable method for bench-
marking scalability of cloud-native applications”. In: Empirical Software
Engineering 27.6 (2022). doi: 10.1007/s10664-022-10162-1

8

https://doi.org/10.1007/s10664-022-10162-1

1.5. Preliminary Work

3. T. Pfandzelter, S. Henning, T. Schirmer, W. Hasselbring, and D. Berm-
bach. “Streaming vs. functions: a cost perspective on cloud event pro-
cessing”. In: 2022 IEEE International Conference on Cloud Engineering
(IC2E). 2022, pp. 67–78. doi: 10.1109/IC2E55432.2022.00015

4. S. Henning and W. Hasselbring. “Demo paper: benchmarking scalability
of cloud-native applications with Theodolite”. In: 2022 IEEE International
Conference on Cloud Engineering (IC2E). 2022, pp. 275–276. doi: 10.1109/

IC2E55432.2022.00037

5. S. Henning, B. Wetzel, and W. Hasselbring. “Cloud-native scalability
benchmarking with Theodolite: applied to the TeaStore benchmark”.
In: Softwaretechnik-Trends 43.1 (Feb. 2023). (Proceedings of the 13th
Symposium on Software Performance (SSP 2022)), pp. 23–25

6. S. Henning and W. Hasselbring. “How to measure scalability of dis-
tributed stream processing engines?” In: Companion of the ACM/SPEC
International Conference on Performance Engineering. ICPE ’21. New York,
NY, USA: Association for Computing Machinery, 2021, pp. 85–88. doi:
10.1145/3447545.3451190

7. S. Henning and W. Hasselbring. “Theodolite: scalability benchmarking
of distributed stream processing engines in microservice architectures”.
In: Big Data Research 25 (2021), p. 100209. doi: 10.1016/j.bdr.2021.100209

8. S. Henning, W. Hasselbring, H. Burmester, A. Möbius, and M. Woj-
cieszak. “Goals and measures for analyzing power consumption data
in manufacturing enterprises”. In: Journal of Data, Information and Man-
agement 3.1 (2021), pp. 65–82. doi: 10.1007/s42488-021-00043-5

9. S. Henning and W. Hasselbring. “The Titan Control Center for Industrial
DevOps analytics research”. In: Software Impacts 7 (2021). doi: 10.1016/j.

simpa.2020.100050

10. S. Henning, B. Wetzel, and W. Hasselbring. “Reproducible benchmark-
ing of cloud-native applications with the Kubernetes Operator Pat-
tern”. In: Symposium on Software Performance 2021. 2021. url: http://ceur-
ws.org/Vol-3043

9

https://doi.org/10.1109/IC2E55432.2022.00015
https://doi.org/10.1109/IC2E55432.2022.00037
https://doi.org/10.1109/IC2E55432.2022.00037
https://doi.org/10.1145/3447545.3451190
https://doi.org/10.1016/j.bdr.2021.100209
https://doi.org/10.1007/s42488-021-00043-5
https://doi.org/10.1016/j.simpa.2020.100050
https://doi.org/10.1016/j.simpa.2020.100050
http://ceur-ws.org/Vol-3043
http://ceur-ws.org/Vol-3043

1. Introduction

11. S. Henning and W. Hasselbring. “Scalable and reliable multi-dimension-
al sensor data aggregation in data-streaming architectures”. In: Data-
Enabled Discovery and Applications 4.1 (2020). doi: 10.1007/s41688-020-00041-3

12. S. Henning and W. Hasselbring. “Toward efficient scalability bench-
marking of event-driven microservice architectures at large scale”. In:
Softwaretechnik-Trends 40.3 (Nov. 2020). (Proceedings of the 11th Sympo-
sium on Software Performance (SSP 2020)), pp. 28–30

13. S. Henning and W. Hasselbring. “Scalable and reliable multi-dimension-
al aggregation of sensor data streams”. In: 2019 IEEE International
Conference on Big Data (Big Data). 2019, pp. 3512–3517. doi: 10 . 1109 /

BigData47090.2019.9006452

14. S. Henning, W. Hasselbring, and A. Möbius. “A scalable architecture for
power consumption monitoring in industrial production environments”.
In: 2019 IEEE International Conference on Fog Computing (ICFC). 2019,
pp. 124–133. doi: 10.1109/ICFC.2019.00024

15. W. Hasselbring, S. Henning, B. Latte, A. Möbius, T. Richter, S. Schalk,
and M. Wojcieszak. “Industrial DevOps”. In: 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C). 2019, pp. 123–
126. doi: 10.1109/ICSA-C.2019.00029

16. B. Latte, S. Henning, and M. Wojcieszak. “Clean code: on the use
of practices and tools to produce maintainable code for long-living
software”. In: Proceedings of the Workshops of the Software Engineering
Conference 2019. Vol. Vol-2308. Stuttgart, Germany: CEUR Workshop
Proceedings, Feb. 2019, pp. 96–99. url: http://ceur-ws.org/Vol-2308

17. S. Henning. “Monitoring electrical power consumption with Kieker”.
In: Softwaretechnik-Trends 39.3 (Nov. 2019). (Proceedings of the 9th Sym-
posium on Software Performance (SSP 2018)), pp. 31–33

1.5.2 Replication Packages

1. S. Henning and W. Hasselbring. Replication package for: benchmarking scal-
ability of stream processing frameworks deployed as event-driven microservices
in the cloud. Zenodo, 2022. doi: 10.5281/zenodo.7497281

10

https://doi.org/10.1007/s41688-020-00041-3
https://doi.org/10.1109/BigData47090.2019.9006452
https://doi.org/10.1109/BigData47090.2019.9006452
https://doi.org/10.1109/ICFC.2019.00024
https://doi.org/10.1109/ICSA-C.2019.00029
http://ceur-ws.org/Vol-2308
https://doi.org/10.5281/zenodo.7497281

1.5. Preliminary Work

2. T. Pfandzelter, S. Henning, T. Schirmer, W. Hasselbring, and D. Berm-
bach. Replication package for: streaming vs. functions: a cost perspective on
cloud event processing. Zenodo, 2022. doi: 10.5281/zenodo.7495024

3. S. Henning and W. Hasselbring. Replication package for: a configurable
method for benchmarking scalability of cloud-native applications. Zenodo,
2021. doi: 10.5281/zenodo.5596982

4. S. Henning and W. Hasselbring. Replication package for: Theodolite: scala-
bility benchmarking of distributed stream processing engines in microservice
architectures. Zenodo, 2021. doi: 10.5281/zenodo.4476083

5. S. Henning and W. Hasselbring. Replication package for: scalable and reliable
multi-dimensional sensor data aggregation in data-streaming architectures.
Zenodo, 2020. doi: 10.5281/zenodo.3736689

6. S. Henning and W. Hasselbring. Replication package for: scalable and
reliable multi-dimensional aggregation of sensor data streams. Zenodo, 2019.
doi: 10.5281/zenodo.3540895

1.5.3 Non-Reviewed Publications

1. W. Hasselbring, S. Henning, B. Latte, I. Stemmler, M. Wojcieszak, and U.
Glockmann. Abschlussbericht KMU-innovativ: Verbundprojekt Titan Indus-
trial DevOps Plattform für iterative Prozessintegration und Automatisierung.
Tech. rep. Kiel: Selbstverlag des Instituts für Informatik, Kiel, 2021

1.5.4 Co-Supervised Bachelor’s and Master’s Theses

1. L. A. Mertens. “Reengineering Theodolite with the Java Operator SDK”.
Bachelor’s Thesis. Kiel University, 2022

2. L. Boguhn. “Benchmarking the scalability of distributed stream pro-
cessing engines in case of load peaks”. Master’s Thesis. Kiel University,
2022

3. D. B. Wetzel. “Scalability benchmarking of a promotional loan system”.
Master’s Thesis. Kiel University, 2022

11

https://doi.org/10.5281/zenodo.7495024
https://doi.org/10.5281/zenodo.5596982
https://doi.org/10.5281/zenodo.4476083
https://doi.org/10.5281/zenodo.3736689
https://doi.org/10.5281/zenodo.3540895

1. Introduction

4. S. B. N. F. A. Ehrenstein. “Scalability evaluation of ExplorViz with the
Universal Scalability Law”. Master’s Thesis. Kiel University, 2022

5. B. Vonheiden. “Empirical scalability evaluation of window aggrega-
tion methods in distributed stream processing”. Master’s Thesis. Kiel
University, 2021

6. J. Grabitzky. “A showcase for the Titan Control Center”. Bachelor’s
Thesis. Kiel University, 2021

7. J. R. Bensien. “Scalability benchmarking of stream processing engines
with Apache Beam”. Bachelor’s Thesis. Kiel University, 2021

8. C. Tsatia Tsida. “Analyzing environmental data with the Titan platform”.
Master’s Thesis. Kiel University, 2020

9. N. A. Biernat. “Scalability benchmarking of Apache Flink”. Bachelor’s
Thesis. Kiel University, 2020

10. T. Koch. “Scalable and interactive real-time visualization of time series
data”. Bachelor’s Thesis. Kiel University, 2020

11. L. Boguhn. “Forecasting power consumption of manufacturing indus-
tries using neural networks”. Bachelor’s Thesis. Kiel University, 2020

12. S. B. N. F. A. Ehrenstein. “Distributed sensor management for an Indus-
trial DevOps monitoring platform”. Bachelor’s Thesis. Kiel University,
2019

13. D. B. Wetzel. “Entwicklung eines Dashboards für eine Industrial Dev-
Ops Monitoring Plattform”. Bachelor’s Thesis. Kiel University, 2019

14. A. Hansen. “Exploring an energy-status-data set from industrial pro-
duction”. Bachelor’s Thesis. Kiel University, 2019

1.6 Document Structure

This thesis is structured into 5 parts, containing 18 chapters including this
introductory chapter (Chapter 1).

12

1.6. Document Structure

Part I discusses the foundations for this thesis. Chapter 2 provides
and discusses the definition of scalability our benchmarking method
builds upon. Chapter 3 introduces the general concept of benchmarking
as a research method. Chapter 4 discusses the concepts of cloud-native
applications, microservice architectures, and event-driven microservices in
particular.

Part II addresses the first goal of this thesis and presents our scalability
benchmarking method. Chapter 5 describes our research design and em-
ployed methods. Chapter 6 addresses RQ 1.1 and derives our scalability
metrics. Chapter 7 addresses RQ 1.2 and describes our method to mea-
sure scalability according to our metrics. Chapter 8 addresses RQ 1.3 and
presents our software architecture for a scalability benchmarking tool.

Part III addresses the second goal of this thesis and presents our scala-
bility benchmark for event-driven microservices. Chapter 9 describes our
research design and employed methods. Chapter 10 addresses RQ 2.1 and
identifies relevant use cases for event-driven microservices from studying
the domain of analyzing power consumption data within real industrial
settings. Chapter 11 addresses RQ 2.2–2.4 and presents our Theodolite
scalability benchmarks for event-driven microservices.

Part IV consists of 5 evaluation chapters. Chapter 12 evaluates the
effects of our benchmarking method’s configuration options on statistical
grounding and time-efficient execution using our benchmarks for event-
driven microservices. Chapter 13 evaluates the scalability of state-of-the-art
stream processing frameworks and different configuration and deploy-
ment options using these benchmarks. Chapter 14 evaluates the scalability
of different methods for time window aggregations in stream processing
using. Chapter 15 evaluates and compares cost scalability of stream pro-
cessing deployments in the cloud with FaaS offerings. Chapter 16 reports
on three case studies, which evaluate our scalability benchmarking method
for other cloud-native applications beyond our event-driven microservice
benchmarks.

In Part V, Chapter 17 concludes this thesis and Chapter 18 points out
future research directions based on the contributions of this thesis.

13

Part I

Foundations

Chapter 2

Scalability of Software Systems

Just because a software system works well for a particular load or task size,
it does not necessarily work well if load or task size increase. Even with
increased computing resources, desired quality of service [BHP+06] may
no longer be achieved. For example, response times increase or services
become unavailable. Intuitively, a software system can be considered
scalable if it is functioning in an adequate way, independently of the load
it is subject to.

This chapter introduces a precise definition of scalability, building the
foundation of the scalability benchmarking method presented in this thesis.
We start by looking at how scalability is defined in general parallel and
distributed systems in Section 2.1. Afterward in Section 2.2, we discuss
scalability for the special case of cloud computing including the scalability
definition used in this thesis. Section 2.3 shows how this definition covers
both vertical and horizontal scalability and Section 2.4 delimits the concept
of scalability from elasticity.

2.1 Scalability in Parallel and Distributed Sys-

tems

In traditional parallel computing research, scalability is often discussed
in the context of the speed-up [Hil90]. It describes how much faster n
processors can compute a task compared to a single processor. More
formally [EZL89], the speed-up S(n) is defined as the ratio of the time
required by a single processor T1 to the time required by n processors Tn,

S(n) =
T1

Tn
.

17

2. Scalability of Software Systems

In an ideal case, this ratio increases linearly and, in particular, is S(n) = n
for each number of processors n. As stated by Amdahl’s law [Amd67],
however, this is never the case in reality as every parallel program also has
a sequential component.

Scalability definitions based on the speed-up are still frequently used
in high-performance computing (HPC), where typically a certain problem
has to be solved as fast as possible. In this context, also the distinction
between strong and weak scalability is common [HB15]: Strong scalability
describes how the completion time evolves with increasing processors for
a fixed-size problem. Weak scalability describes how the completion time
evolves with increasing processors while also scaling the problem size
proportionally.

While there are several works transferring speed-up-based definitions
of scalability to distributed systems, Jogalekar and Woodside [JW00] argue
that scalability in distributed systems is more complex and should be
discussed differently. Besides several technical differences between parallel
and distributed systems, they state that distributed systems do not run a
single job, but instead process multiple jobs at a time arriving continuously.
Although we would argue that this property is not specific to distributed
systems, but rather a property of any continuously operating system
(e.g., web services or stream processing systems), their criticism remains
valid. Furthermore, Jogalekar and Woodside [JW00] argue that “scalability
means not just the ability to operate, but to operate efficiently and with
adequate quality of service, over the given range of configurations.” In a
closely related work, Bondi [Bon00] define load scalability as “the ability to
function gracefully at light, moderate, or heavy loads while making good
use of available resources.” A more precise definition is given by Smith
and Williams [SW02] stating that “scalability is the ability of a system to
continue its response time or throughput objectives as the demand for the
software functions increases.“ Duboc et al. [DRW07] generalize several
scalability definitions to also incorporate other quality of service objectives.
According to van Hoorn [vHoo14], scalability can thus be considered a
“meta-qualty” of other quality characteristic.

18

2.2. Scalability in Cloud Computing

2.2 Scalability in Cloud Computing

More recently, definitions such as the one from Duboc et al. [DRW07;
DLR13] have been specified to target the peculiarities of scalability in
cloud computing [HKR13; LEB15; BHI+17]. A definition of scalability in
cloud computing is, for example, given by Herbst et al. [HKR13], which
states that “scalability is the ability of [a] system to sustain increasing
workloads by making use of additional resources”. In a subsequent work,
Weber et al. [WHG+14] refine this definition and highlight that scalability
is characterized by the following three attributes:

Load intensity is the input variable to which a system is subjected. Scalabil-
ity is evaluated within a range of load intensities.

Service levels objectives (SLOs) are measurable quality criteria that have to
be fulfilled for every load intensity.

Provisioned resources can be increased to meet the SLOs if load intensities
increase.

A software system can be considered scalable within a certain load inten-
sity range if for all load intensities within that range it is able to meet its
service level objectives, potentially by using additional resources. Both
load intensity and provisioned resources can be evaluated with respect
to different dimensions. Typical load dimensions are, for example, the
number of concurrent users or number of requests, while resources are
often varied in the number of processing instances or equipment of the
individual instances. This understanding of scalability (albeit less formally)
is shared by textbooks addressed to practitioners [Kle17; Gor22].

A similar definition, albeit formulated inversely, is used in multiple
publications of the “CloudScale” project [LEB15; BHI+17; BMH+21]. They
define scalability as “a system’s ability to increase its capacity by con-
suming more resources” [BMH+21], where capacity describes the maxi-
mum load the system can handle while fulfilling all “quality thresholds”.
Here, the notion of quality thresholds corresponds to what Weber et al.
[WHG+14] and others term SLOs.

19

2. Scalability of Software Systems

2.3 Vertical and Horizontal Scalability

A distinction is often made between horizontal and vertical scalability
[MMS+07; LEB15]:

Horizontal scaling refers to adding computing nodes to cope with increas-
ing load intensities.

Vertical scaling means increasing the computing resources of a single node.
A special case of vertical scaling in cloud computing is migrating from
one VM type to another [WHG+14].

The scalability definition presented previously covers both horizontal and
vertical scalability as both refer to different types of provisioned resources
[WHG+14].

In cloud-native deployments, the underlying physical or virtualized
hardware is usually abstracted by containerization and orchestration tech-
niques. Nevertheless, different types of scaling resources also exist in
cloud-native applications. Orchestration tools such as Kubernetes allow
for limiting the CPU or memory resources of containers. Increasing these
resources can be considered a form of vertical scaling. On the hand, such
orchestration tools also allow increasing the number of container replicas,
representing a form of horizontal scaling.

2.4 Scalability vs. Elasticity

Another quality that is often used in cloud computing is elasticity [LEB15].
Scalability and elasticity are related, but elasticity takes temporal aspects
into account. It describes how fast and how precisely a system adapts its
provided resources to changing load intensities [HKR13; ILF+12]. Scalabil-
ity, on the other hand, is a time-free notion describing whether increasing
load intensities can be handled eventually. Scalability is a subquality of
adaptability, meaning that a system can be adapted to increasing loads,
while elasticity always requires some auto-scaling components, which
performs such adaptations. Scalability is a prerequisite for elasticity since
only a scalable system can be scaled by an auto-scaler.

20

Chapter 3

Benchmarking Software Systems

Benchmarking is a method used in software engineering to assess and
compare the quality of different methods, techniques, and tools. In contrast
to mathematical proofs or reasoning based on expert knowledge, bench-
marking is based on standardized experiments to evaluate the strengths
and weaknesses of different test subjects. In this thesis, we use bench-
marking to empirically evaluate cloud-native applications regarding their
scalability.

We start this chapter by providing a definition for the terms bench-
marks and benchmarking (Section 3.1). Afterward, we discuss why and
how benchmarking is used as an empirical method in software engineering
research (Section 3.2). In Section 3.3, we give an overview of the individual
components of a benchmark. In Section 3.4, we discuss quality attributes
of benchmarks often demanded in the literature, while Section 3.5 shows
different classes of benchmarks. Section 3.6 concludes this chapter by
discussing particularities for benchmarking in cloud computing.

3.1 Definitions for Benchmarks

A definition of a benchmark is formulated by Kounev et al. [KLvK20] and
states that a benchmark is a “standard tool coupled with a methodology
for the evaluation and comparison of systems or components according to
specific characteristics, such as performance, reliability, or security”. This
definition is built upon the perspectives of the Standard Performance Eval-
uation Corporation (SPEC) and the Transaction Processing Performance
Council (TCP), two industrial consortia, which also stress the competitive
aspects of benchmarks [vKAH+15]. The system or component from the
previous definition, which is to be evaluated, is commonly referred to as

21

3. Benchmarking Software Systems

system under test (SUT) [KLvK20]. An SUT can be any software system,
component, or service. In particular, SUTs can also be variations of the
same system, component, or service, for example, configured or deployed
in different ways.

While both Kounev et al. [KLvK20] and von Kistowski et al. [vKAH+15]
leave it open whether the tool must be an executable software, other
definitions are less strict so that the benchmark simply describes how
SUTs are evaluated and compared [SEH03]. In practice, we can observe
that benchmarks usually come with an executable tool, but applying a
benchmark to other SUTs often requires modifying or rebuilding that tool.

Benchmarking describes the process of systematically applying bench-
marks [BWT17], that is, stressing an SUT according to the benchmark’s
description or, more commonly, executing a benchmarking tool. This is
often done as part of a research study to compare different SUTs or con-
figurations of the same SUT in different environments or at different
times [BWT17].

3.2 Benchmarking as an Empirical Method in

Software Engineering Research

Over the last decades, the use of empirical methods in software engineering
research has tremendously increased [Bas13; MP19]. Often a distinction is
made between qualitative and quantitative research with controlled exper-
iments being a method frequently used in quantitative studies [WHH03].
Controlled experiments are conducted to compare different software engi-
neering techniques, methods, and tools. In controlled experiments, depen-
dent and independent variables are defined with the objective to determine
to what extent independent variables affect dependent variables while
keeping a high level of control over confounding factors.

Benchmarking can be seen as a form of experimentation [Tic14], in
which qualities (dependent variables) of methods, techniques, and tools
(independent variables) are studied while aiming for a high level of control
over all variables affecting the outcome [Has21]. However, benchmarking
shares also characteristics from case study research [SEH03]. A major
advantage of benchmarks is that, in contrast to several other research

22

3.3. Components of Benchmarks

methods, they do not require human subjects [Tic14]. Also, analysis and
interpretation of experiments can be automated to a great extent. This
significantly speeds up the research process as a wide range of subjects
can be tested at low costs and at early stages [Tic98; Tic14]. Automation
and precise specification of benchmarks also support repeatability of
research [SEH03; Tic14].

Sim et al. [SEH03] argue that benchmarks advance research as their
creation and adaption often come with rapid technical progress and com-
munity building. The existence of benchmarks therefore also indicates the
maturity of a research area [SEH03]. As noted by Tichy [Tic98], building a
benchmark is intense work on its own and should be shared by a research
community. While Sim et al. [SEH03] state that benchmarks even must be
constructed in a community effort, Waller [Wal14] argue that it suffices to
start building a benchmark with a small group of researchers as an offer
to a larger community.

The recently published ACM SIGSOFT Empirical Standards for Soft-
ware Engineering Research [RbAB+21] define expectations for empirical
software engineering research. There exist different standards for differ-
ent research methods with each standard defining essential, desirable,
and extraordinary attributes as well as examples, antipatterns, and in-
valid criticisms. There is one standard for benchmarking studies [Has21],
covering both defining benchmarks and executing them.1 The ACM SIG-
SOFT Empirical Standards are meant to serve as evaluation guidelines for
manuscripts in the scientific peer review process and to help researchers
conduct studies of higher quality.

3.3 Components of Benchmarks

The ACM SIGSOFT Empirical Standard for Benchmarking [RbAB+21;
Has21] names four essential components of a benchmark:

Quality The quality of a system that is benchmarked should be clearly
named. Typical qualities are performance, availability, security, or—as
in this thesis—scalability.

1
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Benchmarking

23

https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Benchmarking

3. Benchmarking Software Systems

Measurement

Method

Benchmarking

Tool
Metric

Quality

(Scalability)

quantifies measures implements

Workload/Usage Profile/Task Sample
SUT &

Load Generator
implements

is applied to

Benchmark Description Executable Software

runs

Figure 3.1. Components of a benchmark. A benchmark description defines the
quality to be benchmarked (scalability in this thesis), a metric quantifying the
quality, a corresponding measurement method, and workloads, usage profiles, or
task samples to which the benchmarking method can be applied. Additionally,
benchmarks usually come with an executable software, implementing the measure-
ment method as well as SUTs and load generators implementing the workload,
usage profiles, or task samples.

Metrics Metrics quantify the quality and, thus, allow comparing different
SUTs regarding that quality.

Measurement methods Measurement methods define how operational data
of SUTs is collected and analyzed. The results of applying the methods
must correspond to the benchmark’s metrics.

Workloads, usage profiles, and task samples They describe what the SUTs
are doing when the measurements are taken. Depending on the type
of SUT, this can be a description of the load an SUT is subject to,
a description of how an SUT is used, a task sample that the SUT
implements, or a combination.

In addition to these components, benchmarks usually come with a bench-
marking tool to automate the benchmarking process. Fig. 3.1 shows the
components of a benchmark and their relations.

A typical benchmarking tool architecture contains separate components
for load generation and the SUT [BWT17]. The SUT is either a ready-to-
use software (or service) or a software (or service) that implements a
task sample defined by the benchmark. The load generation component
stresses the SUT according to the workload or usage profile defined by the
benchmark. Additional components in a benchmarking architecture are

24

3.4. Quality Attributes of Benchmarks

responsible for experiment controlling, data collection, and data analysis
and, thus, implement the benchmark’s measurement method [BWT17].
Sometimes also a visualization component for passive observation is
included [BWT17].

3.4 Quality Attributes of Benchmarks

A set of five desired quality attributes for benchmarks is presented by
von Kistowski et al. [vKAH+15], which represents the perspectives of the
SPEC and TPC committees:

Relevance The benchmark’s behavior should closely correlate to behaviors
that are of interest to consumers of the results.

Reproducibility Benchmarks should consistently produce similar results
when they are run with the same test configuration.

Fairness The benchmark should allow different test configurations to com-
pete on their merits without artificial limitations.

Verifiability The benchmark’s results should provide confidence that they
are accurate.

Usability Obstacles for users to run the benchmark in their test environ-
ments should be avoided.

These and similar quality attributes can also be found by Gray [Gra93],
Sim et al. [SEH03], Huppler [Hup09], and Folkerts et al. [FAS+13] as well
as in textbooks on (cloud) benchmarking [BWT17; KLvK20].

3.5 Classification of Benchmarks

There are two common dimensions along which benchmarks can be classi-
fied. The first concerns the way how a benchmark is provided to its users
and the second one concerns the size and scope of a benchmark’s task
sample [KLvK20].

25

3. Benchmarking Software Systems

3.5.1 Provision of Benchmarks

Regarding the way how they are provided, benchmarks can be classified
into specification-based, kit-based, and hybrid benchmarks [vKAH+15].

Specification-based benchmarks describe a business problem to be
solved by an SUT along with input parameters and, hence, also the ex-
pected output. The actual implementation is left to the individual running
the benchmark and may vary among different SUTs. This allows different
SUTs to implement a task in a way best suited for them and without
being artificially constrained. Hence, specification-based benchmarks by
design provide a high level of fairness (see Section 3.4). On the other
hand, specification-based benchmarks require a higher implementation
effort and detailed knowledge about an SUT. Verifiability might thus be
impaired as verifying whether an implementation fulfills the benchmark’s
specification can be complex.

Kit-based benchmarks come with the actual implementation of a “spec-
ification”. This significantly eases using the benchmark and supports
verifiability (see Section 3.4), but may hamper innovation. SUTs imple-
menting a business function in a substantially different way may not be
honored with better benchmark results. Moreover, a kit-based benchmark
might eventually deviate from the state-of-the-art of solving a certain
problem, requiring permanent benchmark adaption.

Hybrid benchmarks are in between specification-based and kit-based
benchmarks. They provide the majority of the benchmark’s function as a
ready-to-use implementation, but allow certain parts to be implemented
in a way specifically tailored for the SUT.

3.5.2 Sizes and Scopes of Benchmarks

Regarding their size and scope, benchmarks are often classified into mi-
crobenchmarks and application benchmarks [BWT17; KLvK20; Wal14].
According to Waller [Wal14], other categories sometimes found in the
literature [Lil00] can be considered as subcategories of microbenchmarks
and application benchmarks.

Microbenchmarks test a specific part of a system independent of the
rest of the system. This can be a specific operation or (small) component.

26

3.6. Benchmarking in Cloud Computing

Due to their limited scope, microbenchmarks are usually designed as
white box tests, meaning based on the available source code of a soft-
ware [Wal14]. In general, microbenchmarks are simpler to implement and
execute than application benchmarks, not least because of the supporting
tools available. Hence, they often come as kit-based benchmarks. As they
also have shorter execution times, microbenchmarking is mostly done
with large numbers of repetition, providing a high internal validity of the
results. Care should be taken when interpreting the results of microbench-
marks. Due to their simplicity, they cannot assess complex interactions
between different qualities of a system. Hence, there is a risk of making
false conclusions regarding the SUT’s behavior in production and, thus,
optimizing SUTs for unrealistic use cases [Wal14].

Application benchmarks (also referred to as application-driven bench-
marks [BWT17] or macrobenchmarks [Wal14]) test entire systems, appli-
cations, or components at a larger scale (e.g., independently deployable
microservices as discussed in Section 4.2). Due to their size, application
benchmarks consider the SUT as black box and test it based on their specifi-
cation. Hence, application benchmarks are often designed as specification-
based benchmarks. As application benchmarks need to test the behavior
of entire applications, they are more laborious to implement. Given their
black-box-test nature, it is also more difficult to draw conclusions about
the root cause of observations. On the other hand, application benchmarks
are considered to capture the behavior of realistic applications [KLvK20],
hence being of high relevance.

3.6 Benchmarking in Cloud Computing

Benchmarking as a method for measuring the quality of software systems
becomes particularly important if those systems are running in the cloud
or if they are relying on cloud services [BWT17]. Cloud providers allow
only limited insight into the inner working of their services and offer only
limited quality guarantees, leaving benchmarking as the only option to
study their quality of services. In fact, there are several cases in which
specific behavior of cloud services could only be discovered by conducting
rigorous benchmarking [Ber17].

27

3. Benchmarking Software Systems

As cloud service benchmarkers usually have no chance to understand
the function of cloud services in detail, benchmarking is often done from
a client’s perspective [BWT17]. That means benchmarks, which particu-
larly evaluate a cloud service or consider interactions of an SUT with a
cloud service, are often designed as application benchmarks. However, of
cause also microbenchmarks can be executed in cloud environments, for
example, to study the impact of the cloud environment on the benchmarks
themselves [LSL19].

Performance experiments in computer science exhibit large variability
in their results for various reasons [MDJ+18]. For experiments in public
cloud environments, this variability is even larger due to effects of chang-
ing physical hardware or software of different customers running on the
same hardware [AB17]. To increase reproducibility, measurements should
therefore be repeated, potentially with different configurations, and the
confidence in the final results should be quantified [PVB+21]. Moreover,
careful description of the experiment design and availability of artifacts
allows repeating experiments and validating results of benchmarking stud-
ies [PVB+21]. When benchmarking containerized software, one should
be aware that results are not directly generalizable to non-containerized
deployments [GHP+19].

28

Chapter 4

Cloud-Native Applications and

Event-Driven Microservices

Cloud-native applications are a contemporary phenomenon of software
systems, explicitly designed and built to run in the cloud. Microservices are
an architectural pattern for building large-scale cloud-native applications.
Event-driven microservices are a special type of microservice architectures,
in which individual services primarily communicate asynchronously, usu-
ally via messaging systems. They enable a further level of scalability, as
required, for example, for big data online analytics.

We start this chapter by giving a brief introduction to the characteristics
of cloud-native applications in Section 4.1. Afterward, we describe the
microservice architectural pattern in more detail in Section 4.2, followed by
providing the foundations for a specific subtype, namely event-driven mi-
croservices (Section 4.3). Finally, we discuss the foundations of distributed
stream processing, a pattern increasingly used to design and implement
event-driven microservices (Section 4.4).

4.1 Cloud-Native Applications

In the following, we briefly outline the cloud computing paradigm, provide
a definition for cloud-native applications, and give an overview of the
cloud-native ecosystem.

4.1.1 Cloud Computing

With cloud computing, computing, storage, and network resources are pro-
vided “as a service” via the Internet [AFG+10; TBP+22]. Cloud customers

29

4. Cloud-Native Applications and Event-Driven Microservices

can acquire such resources dynamically on demand and at self-service,
while being billed on a per-use basis. Under the impression of infinite
resources available, cloud customers can thus scale their software systems
to react to ever-increasing, bursting, periodically fluctuating, or even un-
predictable loads, without having to provide the necessary resources in
advance [FLR+14]. Cloud computing is enabled by pooling the physical
resources for many customers in large clusters. Since not all customers
need resources to the same degree simultaneously, cloud providers can
allocate resources to customers on demand.

A frequently cited definition of cloud computing was provided by the
US National Institute of Standards and Technology (NIST) in 2011 [MG11].
In addition to the five essential cloud computing characteristics on-demand
self-service, broad network access, resource pooling, rapid elasticity, and
measured service, this definition also names the four deployment models
private cloud, community cloud, public cloud, and hybrid cloud—a classi-
fication which is still common today. The NIST definition also differentiates
between infrastructure as a service (IaaS), platform as a service (PaaS), and
software as a service (SaaS). However, it is argued that this differentiation
is outdated [Ber17] since the emergence of container technologies and
Function-as-a-Service (FaaS) offerings.

A central technology for enabling cloud computing is virtualization
[TBP+22]. Virtualization allows placing software and data of different
cloud users on the same computing or storage resources in isolation.1 In
contrast to physical resources, virtual ones can be created on demand,
enabling the rapid elasticity required for cloud computing. Infrastructure
as Code is a practice, assisting cloud users to acquire virtual resources.
There are different levels of virtualization such as virtual machines and
containerization, in practice often used together.

4.1.2 A Definition for Cloud-Native

A definition of the term “cloud-native” is provided by the Cloud Native
Computing Foundation (CNCF),2 a suborganization within the Linux

1Although co-located users should not be able to see each other’s data or processes, they
may still affect each other’s performance as discussed in Section 3.6.

2
https://www.cncf.io

30

https://www.cncf.io

4.1. Cloud-Native Applications

Foundation. It states that “cloud native technologies empower organiza-
tions to build and run scalable applications in modern, dynamic environ-
ments such as public, private, and hybrid clouds” [Clo18]. Examples are
containerization, service meshes, microservices, immutable infrastructure,
and declarative APIs. They enable loosely coupled systems that are re-
silient, manageable, and observable as well as frequent and predictable
changes when combined with robust automation.

An earlier yet similar definition can be found by Kratzke and Quint
[KQ17], which is based on reviewing the state of literature in 2017. Pahl
et al. [PJZ18] discuss architectural principles for cloud-native systems,
describing some of the aforementioned properties in more detail. Like the
CNCF’s definition, also Kratzke and Quint [KQ17] and Pahl et al. [PJZ18]
emphasize that cloud-native applications must be scalable.

4.1.3 The Cloud-Native Ecosystem

Supported by major cloud vendors, an entire ecosystem of tools has
emerged for simplifying, accelerating, and securing the development and
operation of software systems in the cloud. The natural home for many
such projects is the Cloud Native Computing Foundation. In the following,
we briefly introduce Kubernetes and Prometheus as examples of such
tools, which are also of particular relevance to this work. Additionally, we
introduce Kubernetes operators, a design pattern often used for cloud-
native tools.

Kubernetes Kubernetes [BGO+16] is the de-facto standard orchestration
tool for cloud-native applications [Clo22]. Users describe the desired state
of an application in a declarative way as Kubernetes objects. In a contin-
uous reconciliation loop, Kubernetes adopts the current system to reach
the desired state. A typical example of an object is a Deployment, which
describes an application component (e.g., a microservice) consisting of
container images, a desired number of replicas, volumes to be mounted,
and others. A common way for users to interact with Kubernetes is by
describing objects in YAML files (manifests) and applying these files to
Kubernetes by using the kubectl command-line tool.

31

4. Cloud-Native Applications and Event-Driven Microservices

Prometheus Prometheus [Pro22] is a tool for cloud-native observabil-
ity [Kra22], which is widely used in production [Clo22]. It continuously
requests metrics data from so-called exporters and stores them in a time
series database. Other tools can request these metrics via the PromQL
query language, for example, for visualization, alerting, or automatic SLO
assessment. Numerous exporters are available for various systems, includ-
ing web servers, databases, and messaging systems. Moreover, several
cloud-native tools and frameworks (e.g., Kubernetes) support Prometheus’
data format and API without requiring an additional exporter.

Operator Pattern The Kubernetes Operator pattern [HS19; IH19] is a
recent approach to integrating domain knowledge into Kubernetes’ or-
chestration process. Implementing this pattern involves two things: First,
custom resource definitions (CRDs) define new types of resources that
can be managed by the Kubernetes API. Second, a dedicated software
component, the operator, runs inside the Kubernetes cluster and manages
the entire life cycle of what is described by the CRDs. The operator inter-
acts with the Kubernetes API and reacts to the creation, modification, or
removal of custom resource objects.

Prominent examples of Kubernetes operators are the Prometheus Op-
erator and Strimzi.3 While the former allows registering monitoring end-
points for the Prometheus monitoring tool at the infrastructure level, the
latter allows maintaining Apache Kafka messaging topics along with other
software components.

4.2 The Microservice Architectural Pattern

Microservice architectures are a pattern, particularly suited for building
cloud-native applications [BHJ16a; GBS17; PJZ18].4 In the following, we
describe the core characteristic of microservice-based applications, discuss

3
https://prometheus-operator.dev, https://strimzi.io

4Although microservices are generally considered to be cloud-native, it should be noted
that there are good reasons for certain types of cloud-native technologies not to be imple-
mented as microservices [MBM+21].

32

https://prometheus-operator.dev
https://strimzi.io

4.2. The Microservice Architectural Pattern

how they enable scalability, and give an overview of the state-of-the-art in
microservice performance testing and benchmarking.

4.2.1 Microservice Characteristics

Microservices are an architectural style for the modularization of large-
scale software systems [Has18]. In microservice architectures, a single
application is composed of multiple small services that are built around
business capabilities [LF14]. Individual microservices run in their own
processes, may use different technology stacks, and communicate via
lightweight, fault-tolerant mechanisms over the network. This allows
services to be deployed and scaled individually. Microservices can be
considered an implementation of service-oriented architectures [Zim17].
Newman [New15] lists seven principles for designing microservices:

– Model around business concepts

– Adopt a culture of automation

– Hide internal implementation details

– Decentralize all the things

– Independently deployable

– Isolate failure

– Highly observable

Similar to these principles, Lewis and Fowler [LF14] list a set of nine
characteristics of microservices. While both principles and characteris-
tics have a lot of overlap [Zim17], Lewis and Fowler [LF14] also cover
aspects focusing more on organizing the development and operation of
microservices.

4.2.2 Microservices for Enabling Scalability

Microservice architectures promise to enable scalability for various rea-
sons [Has16]. In contrast to large monolithic software systems that can

33

4. Cloud-Native Applications and Event-Driven Microservices

only be scaled as a whole, microservices are loosely coupled, allowing
for scaling individual microservices independently. Since microservice
architectures should be designed such that they can tolerate the failure of
services at any time, also scaling them becomes more resilient. Supported
by containerization technologies and cloud computing, individual services
can easily be replicated under high loads. Moreover, as services are decom-
posed based on business functions, this replication can also be triggered
based on the demand for these functions.

The Different Dimensions of Scaling Microservices

A model often used to describe the different options to scale software
is the scale cube [AF09]. In essence, it describes that an application can
be scaled horizontally along the three dimensions of horizontal duplica-
tion, data partitioning, and function decomposition. A great benefit of
microservice architectures is that they support scaling software along all
these dimensions:

Horizontal duplication simply means running multiple replicas of the same
microservice or microservice container. Combined with some type of
load balancer, each instance handles only part of the load.

Data partitioning is also implemented by running multiple instances of
a microservice, yet with each instance being only responsible for a
subset of the data. This is typically implemented by partitioning the
overall data set of a service based on some attribute (e.g., the user ID)
and redirecting incoming requests or messages to the corresponding
instance.

Function decomposition is enabled by designing microservices around busi-
ness capabilities. Each service handles only load for a subset of the
application’s functions.

As noted by Newman [New21], there is also the option to scale mi-
croservices vertically, meaning to provide more computing resources. At
least to a certain degree, this is very easy with public cloud providers and
orchestration tools such as Kubernetes.

34

4.2. The Microservice Architectural Pattern

Scalability as a Main Driver for Microservice Adoption

Empirical research shows that scalability is considered a core quality at-
tribute of microservices and one of the main drivers for their adoption
from both academia and industry. In an early systematic mapping study
on microservices, Pahl and Jamshidi [PJ16] found that scalability is the
most frequently mentioned quality of microservice architectures. Similarly,
in a systematic literature review on quality attributes of microservice archi-
tectures, Li et al. [LZJ+21] reported that scalability is the most frequently
addressed attribute. Kratzke and Quint [KQ17] conducted an early sys-
tematic mapping study on cloud-native applications, which also showed
that scalability is perceived as a fundamental property of cloud-native
applications, especially in combination with microservice architectures.

In a qualitative study, Taibi et al. [TLP17] interviewed 21 practition-
ers who adopted microservice architectures at least two years before
their study. They report that scalability was one of the most frequently
mentioned motivation drivers for microservice migration. Furthermore,
scalability improvement was also named as a main benefit of the migra-
tion. Similarly, Fritzsch et al. [FBW+19] conducted an interview study
with 16 software professionals from 10 companies, which also showed
that scalability of the architecture was a main driver for migrating legacy
applications to microservices. More recently, interviews with practitioners
from 20 software companies in China also highlight scalability as a main
motivation for adopting microservices [ZLC+23]. In a larger, quantitative
study, Knoche and Hasselbring [KH19] surveyed 71 professionals from
Germany regarding drivers and barriers for microservice adoption. They
found that—almost independently of the industry domain—high scalabil-
ity and elasticity were mentioned most frequently as drivers for adopting
microservices. Improving scalability was also frequently mentioned as a
goal of modernization using microservices.

Soldani et al. [STV18] systematically reviewed industrial gray literature
(i.e., blog posts, whitepapers, and videos) on microservice adoption. They
report that scalability can be considered the most important benefit of
microservices from an operational point of view. In a large mixed-method
study, combining a systematic literature review on microservice adoption
in industry, analyzing open-source repositories, and an online survey with

35

4. Cloud-Native Applications and Event-Driven Microservices

practitioners and researchers, scalability was identified as major driver
for adopting microservices [LZS+21]. Experience reports from adopting
microservice architectures in industrial software systems for scalability
are reported by, for example, Balalaie et al. [BHJ16b], Hasselbring and
Steinacker [HS17], and Bucchiarone et al. [BDD+18].

4.2.3 Performance Testing and Benchmarking of Microser-
vice Architectures

Eismann et al. [EBS+20] report that microservice-based architectures have
some benefits for performance testing compared to large monolithic soft-
ware systems. This concerns in particular their self-containment and loose
coupling, which allows testing individual microeservices in isolation. Con-
tainerization helps with setting up a test environment and the ecosystem
of cloud-native monitoring tools provides an easier access to performance
metrics. Additionally, microservices allow integrating performance testing
in DevOps. However, regarding the last point there seems to be some
disagreement. While Bermbach [Ber17] also state that microservices foster
benchmarking as part of the build process, Heinrich et al. [HvHK+17]
argue that continuous performance testing becomes more difficult with
microservices being re-deployed frequently. Additional challenges for per-
formance testing of microservices were investigated in an experimental
study by Eismann et al. [EBS+20]. They found that the execution environ-
ments of microservices (i.e., cloud platforms) exhibit unstable behavior,
affecting reproducibility of performance evaluations. It particular, detect-
ing small performance differences is difficult (e.g., between two versions).

Aderaldo et al. [AMP+17] define a set of requirements for microservice
benchmarks. Their first requirement is that a microservice benchmark
should not only provide a description of all included microservices, but
should also explicitly define how services interact. Moreover, it should em-
ploy common patterns of microservice architectures and provide alternate
implementations for certain parts of the microservice. Other requirements
include the adaption of DevOps principles as part of the benchmarks devel-
opment process and relevance for the research community. Approaches to
reduce the benchmarking efforts are, for example, presented by Grambow
et al. [GMW+20] and Düllmann and van Hoorn [DvH17].

36

4.3. Event-Driven Microservices

4.3 Event-Driven Microservices

Event-driven microservice architecture are an approach combining event-
driven architectures (EDA) with microservices. In such architectures,
individual microservice communicate with each other primarily asyn-
chronously by issuing and consuming events [Bel20]. An important prop-
erty is that log-based messaging systems are often used to not only trans-
mit and queue events, but also to partition, replicate, and replay event
streams [KBS19]. Combined with distributed stream processing architec-
ture patterns and frameworks, this enables the scalability, fault tolerance,
and determinism often required by microservice applications [KF19].

At the time of writing this thesis, the topic of event-driven microservices
architectures is covered only superficially in scientific literature. While
there are a couple of case studies reporting on event-driven microservices,
research is still lacking a systematic evaluation of this new architectural
style. On the other hand, some textbooks for practitioners [Bel20; Sto18]
were recently published, which also serve as a reference for this section.
Despite the lack of systematic studies, event-driven microservices have
been named as an emerging trend [FCK+20; KÇC+21] and the need for
further research on this topic has been recognized [KF19; LZS+21].

4.3.1 Log-Based Messaging Systems as Backbone

Event-driven microservices employ log-based messaging systems for their
communication. To eventually reach consistency among individual event-
driven microservices, the log must be durable, append-only, fault-tolerant,
partitioned, and must support sequential reads [KBS19]. Probably the
most prominent messaging system fulfilling these properties is Apache
Kafka [KNR11; WKS+15], which is heavily used in industry.5

4.3.2 Event-Driven Microservice Architecture Patterns

In the following, we give a brief overview of architectural patterns for
designing event-driven microservices. Although in this thesis, we mainly

5
https://kafka.apache.org/powered-by

37

https://kafka.apache.org/powered-by

4. Cloud-Native Applications and Event-Driven Microservices

focus on microservices employing distributed stream processing tech-
niques, we also briefly introduce basic producer and consumer services
and Function-as-a-Service deployments.

Basic producer and consumer Initial publications on microservices al-
ready report on using lightweight messaging buses for asynchronous com-
munication between services [LF14; New15]. A common pattern is that mi-
croservices include basic producers and consumers [Bel20] to publish own
events or subscribe to the events of other services, respectively [KÇC+21].
For example, to provide quick responses to user requests, services might
hold copies of the state of other services, which is updated based on an
event stream of the other service [HS17].

Distributed stream processing Scaling microservices, which include ba-
sic event consumers but integrate data of all instances via a database, is
only feasible to a limited extent. As data volumes increase, such a database
quickly becomes the microservice’s bottleneck. Designing event-driven
microservices around the patterns and dataflow models of modern stream
processing frameworks can be an alternative for building highly scalable
systems [Bel20]. Core principle is to model the internal architecture of
microservices as dataflow graphs. All stateful operations within these
graphs are performed on partitioned data streams, allowing for state lo-
cality (see the data partitioning dimension of the scale cube described in
Section 4.2.2). In the following Section 4.4, we describe the fundamental
models and patterns for distributed stream processing as well as state-of-
the-art frameworks in more detail.

Function-as-a-Service (FaaS) In recent years, the FaaS programming
model has become increasingly popular [CIM+19; LWS+19; ESvE+21]. It
offers a serverless alternative for building event-driven microservices [Bel20;
BCK+21; Roh22] by composing applications of small, stateless functions,
which can also be chained to form more complex dataflow architectures.
There seems to be no consensus on whether a microservice is implemented
as a single function or is composed of multiple functions [ESvE+21]. FaaS
offerings of public cloud providers (e.g., AWS Lambda or Google Cloud

38

4.4. Distributed Stream Processing

Functions), allow engineers to deploy functions on managed infrastructure
that are billed per invocation and run duration. As hardware resources
are managed and scaled by the cloud provider, FaaS is often promoted for
its virtually limitless scalability. We conduct an experimental evaluation
to compare FaaS and stream processing implementations regarding their
cost scalability in Chapter 15 of this thesis.

4.4 Distributed Stream Processing

While research on software systems for processing continuous streams
of data dates back to the early 1990s, the advent of cloud computing
and MapReduce [DG08] led to a second generation of stream processing
systems [FCK+20; CFK+20]. Such “modern” systems are designed to run
in a distributed fashion on commodity hardware in order to scale with
massive amounts of data. Besides high throughput, these systems focus
on low latency, fault tolerance, and coping with out-of-order streams.

In the following, we give an overview of the underlying dataflow
models and processing patterns of modern stream processing frameworks,
before we introduce the frameworks further considered in this thesis.

4.4.1 Stream Processing Models and Patterns

Modern stream processing frameworks process data in jobs, where a job is
defined as a dataflow graph of processing operators. They can be started
with multiple instances (e.g., on different computing nodes, containers,
or with multiple threads). For each job, each instance processes only a
portion of the data. Whereas isolated processing of data records is not
affected by the assignment of data portions to instances, processing that
relies on previous data records (e.g., aggregations over time windows)
requires the management of state. Similar to the MapReduce programming
model, keys are assigned to records and the stream processing frameworks
guarantee that all records with the same key are processed by the same
instance. Hence, no state synchronization among instances is required. If
a processing operator changes the record key and a subsequent operator
performs a stateful operation, the stream processing framework splits the

39

4. Cloud-Native Applications and Event-Driven Microservices

dataflow graph into subgraphs, which can be processed independently
by different instances. We refer to the recent surveys of Fragkoulis et
al. [FCK+20] and Margara et al. [MCF+22] for detailed information on
state-of-the-art stream processing models and patterns.

4.4.2 Modern Stream Processing Frameworks

In the following, we give a brief overview of modern distributed stream
processing frameworks, particularly suited for implementing event-driven
microservices.6 For a detailed comparison, see the works of, for example,
Hesse and Lorenz [HL15], Fragkoulis et al. [FCK+20], and van Dongen
[vDon21].

In their textbook, Bellemare [Bel20] distinguishes between lightweight
and heavyweight stream processing frameworks for implementing event-
driven microservices. Lightweight frameworks are embedded as a pro-
gramming library into the source code of microservices. The stream pro-
cessing framework does not require any specific way to build or deploy the
microservice. This allows the service to also perform other tasks beyond
stream processing such as providing a REST API. Individual instances of
a service discover each other (e.g., via features of the messaging system
or Kubernetes) and perform the necessary coordination internally. Heavy-
weight frameworks on the contrary are provided as deployable software
systems, which can be configured by one or more stream processing jobs
to be executed. They are typically designed as a master–worker archi-
tecture. In this thesis, we mainly focus on lightweight frameworks. All
modern stream processing frameworks can be deployed containerized on
commodity hardware with Kubernetes.

Apache Flink Originating from a scientific research project [ABE+14],
Apache Flink [CKE+15] has been extensively used, evaluated, and extended
in research and became increasingly popular in industry. It offers one of
the most elaborated dataflow models, providing precise control of time
and state [CKE+15; CEF+17; ABC+21]. Moreover, Flink provides different

6The frameworks discussed in this section are often also referred to as stream processing
engines or stream processing systems. In this thesis, we use the term framework as we focus
on stream processing employed within microservices.

40

4.4. Distributed Stream Processing

abstraction layers and a rich feature set regarding the integration with
external systems. Flink clearly falls into the category of heavyweight frame-
works [Bel20]. Its deployment consists of one or—for fault-tolerance—more
coordinating JobManagers and a scalable amount of TaskManagers. Although
heavyweight, we consider Flink in this thesis due to its widespread adop-
tion and since we observe recent trends to more lightweight deployments
of Flink.

Apache Kafka Streams Kafka Streams [SWW+18; WCD+21] is a stream
processing framework built on top of Apache Kafka (see Section 4.3.1). It is
available as a Java library and, thus, aligns with the idea of incorporating
stream processing in standalone microservices. Compared to most other
stream processing frameworks, it has a restricted set of features, in partic-
ular, concerning the integration with external systems. Kafka Streams only
supports Kafka topics as data sources and sinks. According to the Kafka
project, however, this can be compensated by the Kafka Connect project,
which allows transferring data from external systems to Kafka topics and
vice versa.

Apache Samza Similar to Kafka Streams, Apache Samza [NPP+17] can
be embedded as a library in standalone applications. Individual instances
of the same application use Apache Zookeeper and Apache Kafka for
coordination, data transfer, and fault tolerance. Although still maintained,
Samza is sometimes considered a predecessor of Kafka Streams [KK15].
Note that in this thesis, we use Samza as a runner for Apache Beam
pipelines (see below), which allows implementing more complex use
cases [ZXW+20].

Hazelcast Jet Hazelcast Jet [GTĎ+21] is a stream processing framework
built on top of the Hazelcast IMDG distributed, in-memory object store.
It can be embedded into Java applications and does not have any de-
pendencies on an external system. Instead, individual instances discover
each other, form a cluster, and handle coordination and data replication
internally. Hazelcast Jet differs from other frameworks in its execution
model, which is based on a concept similar to coroutines and cooperative

41

4. Cloud-Native Applications and Event-Driven Microservices

threads [GTĎ+21]. With the release of Hazelcast 5.0 in 2021, Hazelcast Jet
has been merged with Hazelcast IMDG into one unified product.

Apache Beam Apache Beam is not a stream processing system by it-
self, but instead, an SDK to implement stream processing jobs in a uni-
form model, which can be executed by several modern stream processing
systems. Apache Beam implements Google’s Dataflow model [ABC+15],
which is also internally used by Google’s cloud service Google Cloud
Dataflow. A stream processing job implemented with Apache Beam is
executed by a so-called runner. Runners can be seen as adapters for the
actual stream processing systems. Besides a runner for Google Cloud
Dataflow, Apache Beam provides also runners for several other systems,
including the aforementioned Apache Flink, Apache Samza, and Hazelcast
Jet. Previous research found that using Apache Beam as an abstraction
layer comes with a significant negative impact on performance [HMG+19].

Other Stream Processing Frameworks Apache Spark [ZXW+16], Ap-
ache Storm [TTS+14], and the successor of the latter, Apache Heron
[KBF+15], are considered heavyweight frameworks and, thus, fit less into
the context of microservices [Bel20]. Spark differs from the frameworks dis-
cussed before in that it processes data streams in “micro-batches”. Storm
and Heron provide less sophisticated programming models and weaker
fault tolerance mechanisms [FCK+20]. Moreover, there are several cloud
services available for stream processing, with Google Cloud Dataflow
being an example that has received much attention in research [ABB+13;
ABC+15; ABC+21]. Although not the main focus of this work, our evalua-
tions in Part IV also include experiments with Apache Spark (Chapter 14)
and Google Cloud Dataflow (Chapter 15).

42

Part II

The Theodolite

Benchmarking Method

Chapter 5

Research Design and Methods

In the chapters of this second part of the thesis, we address our first
guiding goal, namely engineering a scalability benchmarking method for
cloud-native applications. In this chapter, we introduce our employed
research design and methods to address this goal.

We align our research design with the structuring of benchmarks into
components as described in Section 3.3. Since our first goal is to derive a
general scalability benchmarking method, we design a scalability metric
and a measurement method. Specific task samples are not included in
this goal as our benchmarking method should be applicable to different
task samples. As also discussed in Section 3.3, we include engineering
a scalability benchmarking tool architecture along with a corresponding
implementation. Fig. 5.1 illustrates the benchmarking method components,
covered by this part.

Measurement

Method

Benchmarking

Tool
Metric

Quality

(Scalability)

quantifies measures implements

Workload/Usage Profile/Task Sample
SUT &

Load Generator
implements

is applied to

Benchmark Description Executable Software

runs

Theodolite Scalability Benchmarking Method

Figure 5.1. Part II of this thesis covers engineering a scalability benchmarking
method for cloud-native applications, including scalability metrics, corresponding
measurement methods, and an architecture for a corresponding benchmarking
tool as highlighted by the red box.

47

5. Research Design and Methods

For each of the three benchmarking method’s components (the metric,
the measurement method, and the tool architecture), we apply engineering
research.1 Specifically, we discuss design rationales, our proposed solution,
and strength and weaknesses in the context of related work for each com-
ponent. An empirical evaluation of our benchmarking method as a whole
follows in Part IV. In the following, we describe how we derive design
rationales (Section 5.1) and provide an overview of our benchmarking
method’s evaluations (Section 5.2).

5.1 Deriving Design Rationales

In order to derive design rationales for each component, we build upon
the quality attributes of benchmarks described by von Kistowski et al.
[vKAH+15] (see Section 3.4). For each quality attribute, we identify the
benchmark components that can primarily contribute to implementing
the attribute. We derive a mapping shown in Table 5.1, which describes
the desired behavior of the individual benchmark components in order to
implement the respective quality attribute.

Relevance can mainly be addressed by designing realistic task samples
that cover interesting use cases of the SUTs and by a metric quantifying the
qualities of the SUT that are of interest to the benchmarker. Reproducibil-
ity requires statistically grounded results, which must be achieved at the
measurement method level. Additionally, a benchmarking tool simplify-
ing benchmark execution may also help to increase repeatability, which
is a prerequisite for reproducibility. Fairness can be obtained by neither
using metrics nor task samples that favor one SUT over another. Like
reproducibility, verifiability can be achieved by a statistically sound bench-
marking method. Usability is mainly addressed by benchmarking tools
that can easily be installed, require no or little user intervention when run-
ning the benchmark, and allow for adaption to different SUTs or execution
environments. In particular, for application benchmarks, usability requires
executing benchmarks in reasonable time, which has to be addressed by
the measurement method.

1
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=EngineeringResearch

48

https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=EngineeringResearch

5.2. Evaluation Overview

Table 5.1. Quality attributes of benchmarks (see Section 3.4) related to benchmark-
ing components (see Section 3.3) required to implement them.

Quality
Attribute Metric

Measurement
Method

Tool
Architecture Task Sample

Relevance quantifies what
the bench-
marker really
seeks to
measure

represents a
relevant use
case for the
SUTs to be
benchmarked

Reproducibility yields statistical-
ly grounded
results

supports
repeatability
through simpli-
fied benchmark
execution

Fairness provides an ob-
jective measure,
independent of
the SUT

is not tailored
to the strengths
and weaknesses
of certain SUTs

Verifiability yields statistical-
ly grounded
results

Usability allows execut-
ing benchmarks
in reasonable
time

simplifies the
execution of
(potentially
modified)
benchmarks

5.2 Evaluation Overview

As we detail in the following chapters, our proposed benchmarking
method defines two metrics and is configurable for different load types,
resources types, and SLOs. In Part IV of this thesis, we evaluate our scal-
ability benchmarking method with different benchmarks and different
configuration options.

Table 5.2 shows an overview of all evaluations conducted in this thesis.
Besides our Theodolite benchmarks for event-driven microservices (see
Chapter 11), we employ our method to different existing benchmarks or
construct new ones for real-world software systems. We perform evalua-

49

5. Research Design and Methods

Table 5.2. Overview of evaluations of our scalability benchmarking method, indi-
cating the employed benchmarks, metrics, load types, resource types, and SLOs.

Bench. Metric Load type Res. type SLO

Evaluation T
he

od
ol

it
e

O
th

er
s

D
em

an
d

C
ap

ac
it

y

M
es

sa
ge

s/
se

c

C
on

cu
rr

en
t

u
se

rs

D
om

ai
n-

sp
ec

ifi
c

P
od

re
p

lic
as

P
od

re
so

u
rc

es

C
lo

u
d

se
rv

ic
e

co
st

L
ag

tr
en

d

D
ro

p
p

ed
re

co
rd

s

H
T

T
P

la
te

nc
y

D
om

ai
n-

sp
ec

ifi
c

Chapter 12 ✓ ✓a ✓a ✓ ✓ ✓

Chapter 13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chapter 14 ✓ ✓ ✓ ✓ ✓ ✓

Chapter 15 ✓ ✓ ✓ ✓ ✓

Section 16.1 ✓ ✓ ✓ ✓ ✓ ✓

Section 16.2 ✓ ✓ ✓ ✓ ✓ ✓

Section 16.3 ✓ ✓ ✓ ✓ ✓ ✓

a We perform isolated experiments to evaluate the applicability of our scalability metric.

tions with both our metrics introduced in Chapter 6, the resource demand
and the load capacity metric. Selected load types are messages per sec-
ond for streaming-based benchmarks, concurrent users on a web applica-
tion, and domain-specific ones detailed as detailed in the corresponding
chapters. We evaluate scalability regarding the number of instances (i.e.,
Kubernetes Pods), the CPU and memory resources per instances, and
the costs of cloud services. For streaming-based benchmarks we use the
lag trend SLO and the dropped records SLO, introduced in Chapter 11. For
HTTP-based benchmarks, we define SLOs based on the latency of HTTP
requests. A domain-specific SLO based on application logs is used in Sec-
tion 16.1. Further evaluations of our benchmarking method can be found
by Mertens [Mer22], Boguhn [Bog22], Bensien [Ben21], Biernat [Bie20], and
in our previous publication [HH21e].

50

Chapter 6

Scalability Metrics

This chapter addresses research question RQ 1.1 of this thesis and pro-
poses our two Theodolite metrics for quantifying scalability of cloud-native
applications (see Fig. 6.1). Both metrics describe the results of running
scalability benchmarks according to our proposed Theodolite benchmark-
ing method. The demand metric describes how the required amount of
provisioned resources evolves with increasing load intensities. The capacity
metric indicates how the processible load intensity evolves with increasing
amounts of provisioned resources

This chapter builds upon our work previously published in the Empiri-
cal Software Engineering journal [HH22a] and presented at the ACM/SPEC
International Conference on Performance Engineering 2021 [HH21a]. It is or-
ganized as follows. After describing their design rationale in Section 6.1,
we introduce our proposed metrics by a formal definition in Section 6.2.
Section 6.3 provides a discussion on the strength and weaknesses of both

Measurement

Method

Benchmarking

Tool
Metric

Quality

(Scalability)

quantifies measures implements

Workload/Usage Profile/Task Sample
SUT &

Load Generator
implements

is applied to

Benchmark Description Executable Software

runs

Theodolite

Scalability Metrics

Figure 6.1. Chapter 6 of this thesis presents our Theodolite scalability metrics for
cloud-native applications as highlighted by the red box.

51

6. Scalability Metrics

metrics along with example benchmark results. Finally, Section 6.4 dis-
cusses our metrics in the context of related work.

6.1 Design Rationale

As described in Chapter 5, the major quality attributes of a benchmark’s
metric are relevance and fairness. To address relevance, a scalability metric
should quantify scalability in accordance with its definition. We, therefore,
require our metrics to take up the definition we introduced in Section 2.2,
which defines scalability based on the notions of load, resources, and
SLOs. To provide an objective, SUT-independent measure (i.e., fairness),
we require the metrics to support arbitrary load types, resource types, and
SLOs as detailed below.

Support for different load types Load on cloud-native applications can
increase in various dimensions. For example, in the context of web-based
systems, load is often considered as the number of requests arriving at a
web server within some period of time, while in event-driven architectures
it is often the number of messages written to a messaging system. Such
load types can be further broken down to distinguish, for example, be-
tween the number of concurrent users sending requests and the frequency
of users sending requests. Other typical load types are the size per message
or request or, in the case of request–response systems (e.g., databases), the
size of responses.

Support for different SLOs The notion of SLOs in scalability definitions
provides us with a measure to check, whether a system is able to handle a
certain load intensity. Typical SLOs are, for example, that no more than
a certain percentage of requests or messages may be processed with a
certain latency (e.g., maximum allowed latency at the 95th percentile) or
that no more than a certain amount of requests is discarded. The choice of
such SLOs always depends on the application domain and should not be
defined by the scalability metric. Additionally, a metric should support
multiple SLOs, which all have to be fulfilled.

52

6.2. Formal Definition of Scalability Metrics

Support for different resource types Depending on the desired deploy-
ment, the resources that can be added to sustain increasing workloads may
be of different types. According to the distinction between vertical and
horizontal scalability, this means upgrading the computing capabilities
of existing deployment components or increasing the replica count of
deployment components (see Section 2.3). In cloud-native applications,
this distinction can often be further broken down. For example, only a
subset of a system’s components can be scaled or individual components
can be scaled differently.

6.2 Formal Definition of Scalability Metrics

According to the previously presented design rationale, we start defin-
ing our scalability metrics by formalizing the three scalability attributes
load, resources, and SLOs. We define the load type as the set of possible
load intensities for that type, denoted as L. For example, when studying
scalability regarding the number of incoming messages per unit of time,
L would simply be the set of natural numbers. Similarly, we define the
resource type as the set of possible resources, denoted as R. While for
horizontal scalability, R is typically the set of possible instance numbers
(e.g., container or VM instances), for vertical scalability, R is the set of
possible CPU or memory configurations (e.g., for a container or VM).
We also require that there exists an ordering on both sets L and R. We
define the set of all SLOs as S and denote an SLO s P S as Boolean-valued
function

slos : L ˆ R Ñ {false, true}

with slos(l, r) = true if a system deployed with r resource amounts does
not violate SLO s when processing load intensity l.

Based on the previous characterization of scalability, we propose two
functions as metrics for scalability.

53

6. Scalability Metrics

6.2.1 Resource Demand Metric

The first function maps load intensities to the resources, which are at least
required for handling these loads. We denote the metric as demand: L Ñ R,
defined as:

@l P L : demand(l) = min{r P R | @s P S : slos(l, r) = true}

The demand metric shows how the resource demand evolves with
increasing load intensities. Ideally, the resource demand increases linearly.
However, in practice higher loads often require excessively more resources
or cannot be handled at all, independently of the provisioned resources.

6.2.2 Load Capacity Metric

Our second metric maps provisioned resource amounts to the maximum
load, these resources can handle. We denote this metric as capacity: R Ñ L,
defined as:

@r P R : capacity(r) = max{l P L | @s P S : slos(l, r) = true}

Analogously to the demand metric, the capacity metric shows at which
rate processing capabilities increase with increasing resources. It allows
easily determining whether a system only scales up to a maximum re-
source amount (e.g., when a maximum degree of parallelism is reached).
This is the case if increasing resources do not lead to higher load capacities.

6.3 Discussion

As required in Section 6.1, both our metrics do not make any assumption
on the type of load, resource, or SLO. This implies that these metrics allow
evaluating the same system with respect to different loads and resources
of varying dimensions. Typical load dimensions are, for example, the
number of concurrent users at a system, the number of parallel requests,
or the size of requests. Also, multi-dimensional load and resource types
(e.g., different VM configurations) could be evaluated, provided that there

54

6.3. Discussion

100k 200k 300k 400k
messages/second

0

2

4

6

8

10

12

14

16

18

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink

(a) Resource demand metric

2 4 6 8 10 12 14 16 18
number of instances

0k

50k

100k

150k

200k

250k

300k

350k

400k

m
es

sa
ge

s/
se

co
nd

Kafka Streams
Flink

(b) Load capacity metric

Figure 6.2. Visualizing the scalability of Kafka Streams and Flink with both our
scalability metrics for an example benchmark execution [HH21a].

is an ordering on the load or resource values to be tested. For cloud
configuration options, such an ordering usually exists in terms of the costs
per configuration [BHI+17].

Fig. 6.2 shows plots of both scalability metrics for an example bench-
mark execution with Kafka Streams and Flink. It uses discrete sets for
both the load intensities L and the provisioned resources R. L is defined
as the number of sent messages per second with values between 25 000
and 400 000 and R is defined as the number of instances of the respective
SUT with values between 1 and 18. A detailed description of the SLO used
in this example can be found in Section 11.4.

6.3.1 Relation of Our Metrics

Intuitively, both our proposed scalability metrics are in many cases inverses
of each other. More precisely, from their definitions, it follows that this is
the case if and only if both functions are strictly monotonously increasing.
In the example in Fig. 6.2, this is the case for Kafka Streams with loads
between 100 000 and 300 000 messages per second and 2 to 10 instances.

As we usually need to evaluate scalability for discrete subsets of L and
R (see Chapter 7), observing strictly monotonously functions is unlikely
in practice. However, even if both metric functions are only monotonously

55

6. Scalability Metrics

increasing, they can still be considered inverses in a less strict sense as only
the function’s domain and image do not match (i.e, ran demand ‰ R and
ran capacity ‰ L, following Z notation [Spi89]). In Fig. 6.2, this is exempli-
fied by Flink with loads between 25 000 and 200 000 messages/second and
1 to 5 instances.

However as Fig. 6.2 also shows, monotonicity is not always given
in practice. For example, Flink’s observed resource demand decreases
from 225 000 to 250 000 messages/second and the capacity of 6, 8, and 10
instances is considerably higher than for 7, 9, and 11 instances, respectively.
In such cases, both metrics provide different information as discussed in
the following.

6.3.2 Comparison of Our Metrics

The major advantage of the demand metric is that it is more strictly
aligned with the scalability definition in Section 2.2. It highlights that load
is the independent variable. In practice, the load intensity, which a system
has to sustain, emerges from external requirements (e.g., management,
customers, users, etc.) and is out of control of a system’s engineers. Hence,
when benchmarking scalability from a client perspective, benchmarkers
are interested in whether and how an SUT can handle increasing loads.
On the other hand, evaluating scalability in function of resources as done
with our capacity metric seems to be more common in the literature (see
Section 6.4). It might thus appear more familiar for benchmarkers.

Besides these rather subjective differences, there are also differences
concerning the informational value of the metrics. This particularly con-
cerns cases, where a system only scales up to a certain load (i.e., SLOs can-
not be fulfilled for higher loads, independent of the provisioned resources).
In such cases, the demand metric is only partially defined, meaning that
for loads larger than the scalability limit, no resource demand is provided.
Fig. 6.2 exemplifies this for processing 400 000 messages/second with
Kafka Streams. For the capacity metric, such a limit becomes more appar-
ent as it is the maximum of the function and higher resource values result
in a drop in capacity or at least no further increase (see Kafka Streams’
capacity for more than 16 instances).

56

6.4. Related Work

Moreover, the capacity metric is able to report if certain resource
configurations are more efficient than others. For example, we observed
in several experiments that some uneven instance numbers of Flink yield
lower throughput than similar even numbers as also shown in Fig. 6.2.
While this clearly appears by a zigzag pattern in the capacity function,
the demand function is rather linear and hides this in the function steps.
On the other hand, the demand metric reveals load intensities that can
be processed much more efficiently or less efficiently. In Fig. 6.2, this
is the case for 225 000 messages/second with Flink. For the situation of
distributed stream processing systems, however, it is less likely that there is
a fundamental reason for specific load intensities to be better processable.

6.4 Related Work

Both our proposed metrics are functions. Lehrig et al. [LSB+18] point out
that scalability should be quantified as a function since capacity (or re-
source demand) does not increase at a constant rate when adding resources
(or increasing the load).

As discussed in Section 2.1, traditional parallel and distributed systems
research often describes scalability as a function mapping processors or
computing nodes to the time they require to compute some problem. In
particular in high-performance computing (HPC), the distinction between
strong and weak scalability is common. Such metrics are not suitable
for cloud-native applications. Cloud-native applications are usually not
designed for solving a single, compute-intensive problem, but are subjected
to a permanent load, such as requests from their users. Hence, the goal of
scalability evaluations is to assess whether a cloud-native applications is
still functioning if the load increases. This is what Bondi [Bon00] defines
as load scalability.

Also originating from traditional parallel and distributed systems
research, the Universal Scalability Law [Gun07; GPT15] is a general per-
formance model for system scalability. Similar to our capacity metric, it
describes scalability as capacity in function of processors. The Universal
Scalability Law is based on the assumption that scalability of arbitrary
systems can be described using a non-linear rational function with two

57

6. Scalability Metrics

system-specific coefficients, representing contention and coherency. Quan-
tifying scalability by two coefficients has the significant advantage of allow-
ing easy ranking different SUTs. However, to the best of our knowledge,
there is no empirical study so far that evaluates how well these coefficients
can be derived from empirical measurements when considering capacity
as discrete values, as obtained with our proposed measurement method.
In Section 16.2 of this thesis, we conduct a prototypical evaluation using
the results of our capacity metric to fit an USL model.

In their seminal works on cloud benchmarking, Binnig et al. [BKK+09]
and Kossmann et al. [KKL10] measure scalability of different cloud services
by evaluating the number of successful requests while increasing the
number of parallel requests. Similar to our demand metric, they thus
consider the varying load as input variable. This allows detecting if an
increasing load cannot be handled anymore at some point. In contrast to
this work, the authors focus on cloud services, which are automatically
scaled by the cloud provider. With such services, customers are not directly
charged for the underlying hardware resources, but instead based on
application-level metrics (such as requests per hour). For orchestrated
cloud-native applications as studied in this thesis, resources are manually
scaled to achieve the desired SLOs. Hence, we assume that a metric for
such type of systems should quantify the resource demand.

Along with establishing precise definitions of scalability in cloud com-
puting, Lehrig et al. [LEB15] and Becker et al. [BLB15] use systematic
methods to derive scalability metrics. Lehrig et al. [LEB15] conduct a sys-
tematic literature review and found only one scalability metric evaluated
in a practical setting at the time of the study [THS11]. This metric requires
scaling to be quick, which contradicts most scalability definitions [LEB15].
Becker et al. [BLB15] use the goal question metric (GQM) method to derive
two scalability metrics. The first metric “scalability range” describes the
maximum load an SUT can handle without violating its SLOs. This metric
can also be derived directly from both our scalability metrics. The second
metric is called “scalability speed” and describes whether an SUT can
achieve its SLOs if the load increases by a certain rate (load per unit of
time). As highlighted in Section 2.4, using time for describing scalability is
uncommon. Both metrics from Becker et al. [BLB15] do not consider the
resource amounts needed to achieved its SLOs.

58

6.4. Related Work

Herbst et al. [HKW+15] and Brataas et al. [BHI+17] use metrics, which
are very similar to the ones presented in this chapter. Both studies build
upon the same scalability definition as adopted in this thesis, thus relating
load, resources, and SLOs. As part of their elasticity benchmarking method,
Herbst et al. [HKW+15] determine the resource demand of a system, which
corresponds to our demand metric. In contrast to this thesis, the authors do
not further discuss or formalize the metric. Brataas et al. [BHI+17] evaluate
scalability as function matching our capacity metric, although formalized
differently. In our previous work [HH21a], we compare the demand and
the capacity metric for the special case of stream processing systems.

Recently, Avritzer et al. [AFJ+20] presented the domain-based metric to
assess the scalability of microservice deployment options. It aims at mea-
suring scalability as a single value, quantifying how increasing workload
situations can be handled without violating SLOs. In contrast to our met-
ric, the domain-based metric does not allow for resources to be added in
order to satisfy SLO requirements. Instead, different resource amounts are
considered to be separate deployment options.

59

Chapter 7

Scalability Measurement Method

This chapter presents our Theodolite measurement method to assess scala-
bility of cloud-native applications according to the two metrics presented
in the previous chapter (see Fig. 7.1). It addresses research question RQ 1.2
of this thesis. Our scalability measurement method approximates our scal-
ability metrics by running isolated experiments for different combinations
of generated load intensity and provisioned resources. It provides sev-
eral configuration options to balance the overall runtime and statistically
grounding of its results.

This chapter builds upon our work previously published in the Empiri-
cal Software Engineering journal [HH22a]. It is organized as follows. After
describing its design rationale in Section 7.1, we outline the fundamental
approach of our measurement method in Section 7.2. It consists of two
main components: the execution of experiments to evaluate whether SLOs
are met is presented in Section 7.3 and search strategies, which deter-

Measurement

Method

Benchmarking

Tool
Metric

Quality

(Scalability)

quantifies measures implements

Workload/Usage Profile/Task Sample
SUT &

Load Generator
implements

is applied to

Benchmark Description Executable Software

runs

Theodolite Scalability

Measurement Method

Figure 7.1. Chapter 7 of this thesis presents our Theodolite measurement method
for benchmarking scalability of cloud-native applications as highlighted by the red
box.

61

7. Scalability Measurement Method

mine the SLO experiments to be executed, are presented in Section 7.4.
Afterward, we discuss how the requirements for statistical grounding and
time-efficient execution relate to each other in Section 7.5. We conclude
this chapter by discussing our method with respect to related work in
Section 7.6.

7.1 Design Rationale

From our mapping of benchmark quality attributes to benchmark compo-
nents in Chapter 5, we can derive that our measurement method should
provide statistically sound results (for repeatability and verifiability) and
time-efficient execution (for usability). Both requirements conflict with
each other as detailed in the following.

Robust statistical grounding As described in Section 3.6, performance
experiments in the cloud should be repeated and the confidence in the
final results should be quantified. Our scalability metrics are based on the
assessment of SLOs, which requires conducting performance experiments.
This means that experiments in scalability evaluations should be executed
for a sufficient amount of time as well as sufficiently often repeated.

Time-efficient execution Increasing the statistical grounding of perfor-
mance experiments as described above leads to longer execution times.
Hence, the requirement for reproducibility conflicts with the requirement
for usability and, thus, verifiability as with increasing execution time also
costs increase. For a usable measurement method, we therefore require
finding a balance between statistically grounded results and a time-efficient
execution.

7.2 Fundamental Approach

Our scalability measurement method approximates our scalability metrics
by running experiments with finite subsets of the considered load and
resource types, L1 Ď L and R1 Ď R. The sizes of the chosen subsets L1 and

62

7.3. SLO Experiments

R1 determine the resolution of the metrics, but also the overall runtime of
the method. The basic idea of our measurement method is to run isolated
experiments for various load l P L1 and resource r P R1 combinations,
which serve to evaluate whether specified SLOs are met. We decided to
run these experiments in isolation as scalability does not take temporal
aspects into account (e.g., how fast can an SUT react to a changing load, cf.
Section 2.4). Measuring the throughput for a fixed, high load or increasing
the load at runtime might cause wrong results [HH21a].

In the following, we describe the two main components of our proposed
measurement method: the execution of experiments to evaluate whether
SLOs are met and search strategies, which determine the SLO experiments
to be executed.

7.3 SLO Experiments

Formally, an SLO experiment determines whether for a given set of SLOs
S, an SUT deployed with r P R1 resources can handle a load l P L1 in a
sense that each @s P S : slos(l, r) = true (i.e., each SLO is fulfilled).

Our measurement method deploys the SUT with r resources and gen-
erates the constant load l over a configurable period of time. During this
time, the SUT is monitored and data is collected, which is relevant to eval-
uate the SLOs. For example, for an SLO that sets a limit on the maximal
latency of processed messages, monitoring would continuously measure
the processing latency. The duration for which SLO experiments are exe-
cuted should be chosen such that enough measuring data is available to
draw statistically rigorous conclusions. On the other hand, this duration
should not be unnecessarily long to achieve the required time-efficient
execution and, thus, increase usability. To meet the requirement for sta-
tistically grounded results, measured values of an initial time period are
discarded (warm-up period). Measurements during this time usually devi-
ate from those of the further execution as, for example, optimizations are
performed after start-up. Another measure to increase statistical rigor is to
repeat SLO experiments with the same load and resource combination. To
finally compute slos(l, r), the monitored data points of all repetitions are
aggregated in an SLO-specific way.

63

7. Scalability Measurement Method

Binary Search

Search Strategy

Linear SearchFull Search
Lower Bound

Restriction Search

1

Figure 7.2. UML class diagram of different search strategies [HH22a].

7.4 Search Strategies

Our proposed scalability measurement method is configurable by a search
strategy, which determines the SLO experiments that will be performed to
accurately approximate the scalability metrics. In the case of the demand
metric, the goal is to find the minimal required resources for each load
intensity l P L1. For the capacity metric, the maximal processible load
intensity for each resource configuration r P R1 should be found.

Fig. 7.2 gives an overview of selected search strategies, which we
describe in the following for the case of the demand metric. Nonetheless,
these strategies can easily be transferred to the capacity metric. Apart from
these examples, also more complex strategies are conceivable (see, for
example, the work of Ehrenstein [Ehr22]). Fig. 7.3 provides an illustrative
example of our measurement method for each strategy. A colored cell
corresponds to an SLO experiment for a certain load intensity and resource
configuration, which is executed by the respective search strategy. Green
cells represent that the corresponding SLO experiment determined that
the tested resources are sufficient to handle the tested load. Red cells
represent that the resources are not sufficient. Framed cells indicate the
lowest sufficient resources per load intensity. The resulting demand function
is plotted in Fig. 7.3a.

Full search The full search strategy (see Fig. 7.3a) performs SLO experi-
ments for each combination of resource configuration and load intensity.
Its advantage is that it allows for extensive evaluation after the benchmark
has been executed. This also includes that based on the same SLO experi-

64

7.4. Search Strategies

load

re
so

u
rc

es

(a) Full search

load

re
so

u
rc

es

(b) Linear search

load

re
so

u
rc

es

(c) Binary search

load

re
so

u
rc

es

(d) Restricted full search

load

re
so

u
rc

es

(e) Restricted linear search

load

re
so

u
rc

es

(f) Restricted binary search

Figure 7.3. Comparison of selected search strategies [HH22a].

ments, both the demand and the capacity metric can be evaluated. However,
this comes at the cost of significantly longer execution times.

Linear search The linear search strategy (see Fig. 7.3b) reduces the over-
all execution time by not running SLO experiments whose results are not
required by the metric. That is, as soon as a sufficient resource configura-
tion for a certain load intensity is found, no further resource configurations
are tested for that load.

Binary search The binary search strategy (see Fig. 7.3c) adopts the well-
known algorithm for sorted arrays. That is, the strategy starts by perform-
ing the SLO experiments for the middle resource configuration. Depend-
ing on whether this experiment was successful or not, it then continues
searching in the lower or upper half, respectively. The binary search is
particularly advantageous if the search space is very large (i.e, larger than

65

7. Scalability Measurement Method

in Fig. 7.3). However it is based on the assumption that with additional
resources for the same load, performance does not substantially decrease.
More formally, this strategy assumes:

@l P L1, r, r1 P R1 : r1 ą r ^ slos(l, r) = true ñ slos(l, r1) = true

We evaluate this assumption for the special case of event-driven microser-
vices in Section 12.4 and show that it does not hold in all cases.

Lower bound restriction The lower bound restriction (see Figs. 7.3d–f) is
an example for a search strategy that uses the results of already performed
SLO experiments to narrow the search space. It starts searching (with
another strategy) beginning from the minimal required resources of all
lower load intensities. Note that when combined with the binary search
strategy, the lower bound restriction may also cause different experiments
to be performed (see upper right of Fig. 7.3f). The lower bound restriction
is based on the assumption that with increasing load intensity, the resource
demand never decreases. More formally, this strategy assumes:

@l, l1 P L1 : l1 ą l ñ demand(l1) ě demand(l)

In Section 12.4, we show that for the special case of event-driven microser-
vices, we are safe to make this assumption.

7.5 Balancing Statistical Grounding and Time-

Efficiency

The runtime of a scalability benchmark execution depends on the number
of evaluated resource amounts |R1|, the amount of evaluated load intensi-
ties |L1|, the duration of an SLO experiment τe as well as the associated
warm-up period τw, the number of SLO experiment repetitions ρ, and the
applied search strategy δ. Likewise, these values also control the statistical
grounding of the results. Table 7.1 summarizes the effect of each configu-
ration option on statistical grounding, while the following formulas show
the runtime Φ for both the demand and the capacity metric:

66

7.6. Related Work

Table 7.1. Effect of configuration options on statistical grounding of results.

Symbol Configuration option Description

|R1| Resource amounts Higher amounts cause more fine-
grained approximation of the scalabil-
ity metric function.

|L1| Load intensities Higher amounts cause more fine-
grained approximation of the scalabil-
ity metric function.

τe Experiment duration Longer durations cause more stable re-
sults.

τw Warm-up period duration Higher values increase the certainty
that early measurements that are not
representative for the system under nor-
mal operation are excluded.

ρ Repetitions More repetitions rule out the effect of
outliers.

δ Search strategy Strategies may be based on assump-
tions that do not always hold.

φδ Runtime of strategy δ Depending on the metric, the runtime
of δ either depends on |R1| or on |L1|.

Φdemand = |L1| ˆ φδ(|R
1|) ˆ ρ ˆ (τe + τw)

Φcapacity = |R1| ˆ φδ(|L
1|) ˆ ρ ˆ (τe + τw)

7.6 Related Work

While several scalability evaluations describe scalability as functions of
resources, many of them do not conduct isolated experiments for different
load intensities [BBT+15; AA19; KYA17; NNG19; KRK+18]. Instead, they
continuously increase the load on a system and measure when SLOs can-
not be fulfilled anymore. In our previous work, we highlighted limitations
of this method for the case of stream processing [HH21a]. Sometimes

67

7. Scalability Measurement Method

also the provisioned resources are auto-scaled in the background [BBT+15;
AA19], which serves a different purpose than our scalability benchmark-
ing method. Different methods for scalability benchmarking of database
systems in the cloud are discussed by Kuhlenkamp et al. [KKR14], which,
however, do not include running isolated experiments for different load
resource combinations.

Scalability evaluations similar to our proposed measurement method
can be found for the case of Infrastructure-as-a-service (IaaS) clouds
[HKW+15; BHI+17; CMS17]. As Herbst et al. [HKW+15] and Brataas et al.
[BHI+17] use scalability metrics similar to ours, they also pursue similar
ideas for bounding the execution times of their experiments. Herbst et
al. [HKW+15] apply a binary search strategy to find the maximal load
processing capacity for a set of resources. In line with our linear search
strategy, Brataas et al. [BHI+17] stop testing higher load intensities once
they detect that a load intensity cannot be handled anymore by a cer-
tain resource level. However, both papers discusses this topic only briefly
and do not provide a systematic measurement method. As Brataas et al.
[BHI+17] analyze scalability only with respect to increasing resources, they
do not apply strategies such as our lower bound restriction. Although
without explicitly stating scalability metrics and measurement methods,
Cunha et al. [CMS17] employ a similar approach for evaluating horizontal
and vertical scalability for IaaS cloud environments. They conduct three
isolated experiments for different resource amounts and load intensities
and evaluate whether service level objectives are achieved. The authors do
not use any techniques to reduce the search space.

Related work quantifying the variability of short running performance
experiments in the cloud can, for example, be found by Iosup et al. [IYE11],
Leitner and Cito [LC16], Abedi and Brecht [AB17], Maricq et al. [MDJ+18],
or Laaber et al. [LSL19]. He et al. [HMS+19; HLL+21] and Bulej et al.
[BHT+20] propose methods for reducing the amount of experiment rep-
etitions while preserving a high measurement accuracy. These methods
differ from ours in that they aim to accurately measure the performance of
a system, while for benchmarking scalability, we only need to accurately
assess whether a system fulfills specified SLOs. (See our method’s evalu-
ations in Chapter 12 for further details.) Combining the methods of He
et al. [HMS+19; HLL+21] with ours is basically possible, but would lead

68

7.6. Related Work

to benchmark execution durations of several weeks, which we consider
impractical.

For measuring their domain-based metric, Avritzer et al. [AFJ+20] pro-
posed a novel approach for deriving SLOs based on a low workload.
Additionally, they use operational profiles for representative workloads,
which may be extracted from monitoring data.

69

Chapter 8

Benchmarking Tool Architecture

In this chapter, we addresses research question RQ 1.3 of this thesis and
propose the Theodolite architecture for a scalability benchmarking tool
for cloud-native applications. It implements our proposed measurement
method and, thus, measures our proposed scalability metrics (see Fig. 8.1).

This chapter builds upon our work previously published in the Empiri-
cal Software Engineering journal [HH22a]. It starts by describing our design
rationale in Section 8.1. Section 8.2 outlines our proposed benchmarking
process, which distinguishes the definition of benchmarks and their ex-
ecution. Section 8.3 presents a corresponding meta model for defining
these benchmarks and executions. Afterward, Section 8.4 describes how
benchmarks and executions defined with this model can be executed in
cloud-native environments. Section 8.5 presents our Theodolite bench-
marking framework, which implements the architecture proposed in this
chapter. Finally, Section 8.6 discusses related work.

Measurement

Method

Benchmarking

Tool
Metric

Quality

(Scalability)

quantifies measures implements

Workload/Usage Profile/Task Sample
SUT &

Load Generator
implements

is applied to

Benchmark Description Executable Software

runs

Theodolite Scalability

Benchmarking Tool Architecture

Figure 8.1. Chapter 8 of this thesis presents our Theodolite architecture for a
cloud-native scalability benchmarking tool as highlighted by the red box.

71

8. Benchmarking Tool Architecture

8.1 Design Rationale

According to our mapping of benchmark quality attributes to benchmark
components in Chapter 5, we found that a benchmarking tool should
primarily be designed for usability. According to von Kistowski et al.
[vKAH+15], good benchmarks avoid “roadblocks” for users to run the
benchmark. Simplifying benchmark execution also supports repeatability
of benchmarking studies, which is a prerequisite for reproducibility. As we
aim for engineering an architecture for a benchmarking tool that supports
executing different benchmarks, we extend the requirement from von
Kistowski et al. [vKAH+15]: not only executing benchmarks should be
simplified, but also defining them.

To provide high usability, we propose that a scalability benchmarking
tool should be built around two design principles. First, it should oper-
ate on declarative descriptions of benchmarks and their executions and,
second, it should integrate with the cloud-native ecosystem. We detail
advantages of both principles in the following.

8.1.1 Declarative Benchmarks and Executions

As we describe in Section 8.2, we suggest distinguishing between bench-
marks and their executions. Defining both in declarative files provides the
following advantages.

Distributing, sharing, and archiving Declarative files that define the
benchmark can easily be understood without requiring insights into, for
example, the SUT implementation or metrics calculation. Additionally,
declaring the benchmark execution in a file serves as documentation of
the experimental setup. The corresponding files can be stored in version
control systems or research data repositories providing trackability, au-
ditability, and reusability.

Automating benchmark execution Operating a distributed software sys-
tem in the cloud is a complex task, which explains the rise of powerful
orchestration tools such as Kubernetes. Typical situations that have to be
handled are, for example, unpredictable network connections, deviations

72

8.1. Design Rationale

in the underlying hardware or software infrastructure as well as com-
plex requirements on the order of starting many interacting components.
Orchestration tools address this by providing declarative APIs, which
are used to describe the desired state of the system. They continuously
compare the actual state to the desired state and perform the necessary
reconfigurations. Such situations must also be accounted for when running
benchmarks in orchestrated cloud platforms, where experiments should be
executed for several hours without user intervention. Thus, benchmarkers
should describe their desired experiments in a declarative way, while the
benchmarking tool handles the actual execution.

Benchmarking different configuration options Benchmarks are often
used to compare not only different systems or frameworks but also differ-
ent configurations or deployment options. Allowing for such configura-
tions in a declarative way without a new installation or even re-building
the benchmark’s implementation enhances usability.

8.1.2 Integration with the Cloud-Native Ecosystem

We propose to utilize existing tools and patterns of the cloud-native ecosys-
tem to a great extent. This provides the following advantages regarding
the deployment, operation, and observation of benchmarks.

Running existing benchmarks, SUT, and load generators There exists
a variety of reference implementations and benchmarks for different types
of cloud-native applications. Although often originally designed for eval-
uating other qualities, such applications can still serve as task samples
for scalability evaluations. Using a standardized way of describing an
SUT deployment (e.g., by Kubernetes resources) simplifies designing new
scalability benchmarks for those applications. The same applies also for
conducting scalability evaluations of real-world systems (i.e., in a non-
competitive manner). Likewise, relying on standardized deployment de-
scriptions allows using existing load generator tools with little effort. That
means the benchmarking tool does not have to provide a load generator,
but instead benchmark designers can use the one, which is best suited to
the benchmark.

73

8. Benchmarking Tool Architecture

Benchmark
Designer

Benchmarker

Benchmark

Execution
Research Data

Repository

Benchmark
Repository

creates

creates

deploys to

refers to

deploys to

publishes to

publishes to

retrieves from

retrieves from

Scalability

Benchmarking

Tool

Figure 8.2. Context diagram showing how actors interact with our proposed
benchmarking tool architecture [HH22a].

Utilizing existing performance metrics Cloud-native applications or
corresponding frameworks and middlewares often provide performance
and status metrics via established APIs and data formats (e.g., Prometheus).
Using these metrics in scalability benchmarks does not only simplify
defining benchmarks, it also fosters using similar metrics to those that are
used in production.

Out-of-the-box tooling support The cloud-native ecosystem provides a
plethora of tools for managing and observing various aspects of cloud-
native applications. As these tools are usually developed in large com-
munity projects and often supported by large cloud vendors, they can
generally be considered to be of high quality. Integrating a benchmarking
tool for cloud-native applications with such tools also helps to provide a
rich user experience.

8.2 Overview of the Benchmarking Process

Fig. 8.2 gives an overview of our proposed scalability benchmarking
process. In general, we can observe two actors involved in benchmarking:

74

8.3. Benchmarking Meta Model

Benchmark designer Benchmark designers are, for example, researchers,
engineers, or standardization committees, which are experts regarding a
specific type of application or software service. They are able to construct
representative and relevant task samples or workloads for that type of
software systems. Moreover, they know about relevant load intensity types,
resource types, and SLOs, regarding which scalability should be evaluated.
Benchmark designers bundle all of this in Benchmarks. Benchmarks can
be published as supplemental material to research papers, but ideally,
they are versioned and maintained in public repositories (e.g., at GitHub).
Benchmarks are stateless as they can be executed arbitrarily often.

Benchmarker Benchmarkers intend to compare and rank different exist-
ing SUTs, evaluate new methods or tools against a defined standard, or
repeat previous experiments. A detailed description of the benchmarker
actor can be found by Kounev et al. [KLvK20]. Benchmarkers retrieve
existing Benchmarks from their public repositories and execute them in
the desired cloud environment. For this purpose, they describe the ex-
perimental setup for running a single Benchmark in a so-called Execution.
Benchmarkers deploy both the Execution and the corresponding Benchmark

to the benchmarking tool, which applies our proposed scalability mea-
surement method. Executions are then assigned a state, which is typically
something like Pending, Running, Finished, or Failed if an error occurred.
Executions can be shared, for example, as part of a research study that
benchmarks the scalability of different SUTs. The same or other benchmark-
ers can then again retrieve and copy Executions, for example, to replicate
benchmarking studies.

8.3 Benchmarking Meta Model

Based on the previous distinction between benchmarks and their execu-
tions, we propose a meta model for defining them in a declarative way.
Fig. 8.3 visualizes the central elements of our meta model and their rela-
tions as UML class diagram. In the following, we describe this meta model
starting from the central entities Benchmark and Execution.

75

8. Benchmarking Tool Architecture

Execution

Duration

Load

Generator

SUT

Search Stategy

Load Type

Resource Type

Deployment

Artifact Patcher

Benchmark Execution

SLO

Repetition

Count

Deployment

Artifact

SLO

Configuration

Load

Resources

Deployment

Configuration

1

1..*

1

0..*

1..*

1

1..*

1..*

1

1..*

1

1

1

1

1..* 1

1

1..*

0..*1

1..*

1
1

{subset}

{subset}

{subset}

Figure 8.3. UML class diagram of our benchmarking meta model [HH22a].

Benchmark A Benchmark is a static representation of a SUT and an asso-
ciated Load Generator, where SUT and Load Generator are represented as sets
of Deployment Artifacts. Such Deployment Artifacts are, for example, objects
of Kubernetes resources such as Pods, Services, or ConfigMaps.1

According to our scalability metrics, benchmarks support different
SLOs, Load Types, and Resource Types. An SLO represents the computations
on gathered monitoring data, which are necessary to check an SLO. This
may include the queries to the monitoring system, statistical calculation
on the returned data, thresholds, or warm-up durations. Load Types and
Resource Types are both represented as sets of Deployment Artifact Patchers.
These patchers are associated with a Deployment Artifact and modify it in a
certain way when running an SLO experiment. For example, a Resource

Types for scaling the number of replicas can use a Deployment Artifact Patcher

that adjusts the number of replicas of a SUT’s Deployment Artifact.
Existing cloud-native benchmarks for other qualities can be utilized to

define scalability benchmarks by aggregating their deployment artifacts
and specifying load types, resource types, and SLOs. Benchmarks do not
have a life cycle and can be executed arbitrarily often by Executions.

1We decided to use the more general term Deployment Artifact to avoid confusion with the
term resources from our scalability definitions.

76

8.4. Operator-Based Cloud-Native Architecture

Execution An Execution represents a one-time execution of a benchmark
with a specific configuration. It evaluates a subset of the SLOs provided by
the Benchmark, which can additionally be configured by an SLO Configura-

tion. SLO Configurations adjust SLO parameters such as warm-up duration
or thresholds. As specified by our measurement method, scalability is
benchmarked for a finite set of load intensities of a certain load type and
a finite set of resource amounts of a certain resource type. In our meta
model, these sets are represented as Loads and Resources. Since the Bench-
mark declares its supported Load Types and Resource Types, the specified
Loads and Resources refer to the corresponding Load Type and Resource Type,
respectively (thus the subset constraints).

Furthermore, an Execution can configure the SUT and the Load Generator

by Deployment Configurations. Such Deployment Configurations consist of a
Deployment Artifact Patcher and a fixed value, which the corresponding
deployment is patched with. This allows, for example, to evaluate different
configurations of the same SUT, for example, via environment variables.
An Execution supports the configuration options of our measurement
method discussed in Chapter 7, namely a Search Strategy as well as a
Repetition Count and an Experiment Duration for the SLO experiments. Warm-
up period durations are SLO-specific and, thus, specified as part of SLO
Configurations.

In contrast to Benchmarks, Executions have a life cycle. They can be
planned, executed, or aborted. Each execution of a benchmark is repre-
sented by an individual entity. This supports repeatability as executions
can be archived and shared.

8.4 Operator-Based Cloud-Native Architecture

We propose a benchmarking tool architecture based on the Operator pat-
tern (see Section 4.1.3). Fig. 8.4 shows our proposed architecture for a
cloud-native scalability benchmarking tool. We envisage Custom Resource
Definitions (CRDs) for the Benchmark and Execution entities of our bench-
marking meta model such that benchmarkers can deploy Benchmarks and
Executions to the orchestration API. Whenever new Executions are created,
the scalability benchmarking operator is notified and, if no other bench-

77

8. Benchmarking Tool Architecture

Benchmarker

starts/

stops

monitors

installs

retrieves

observes

issues installation

deploys

Benchmarks/Executions

updates states

notifies

stores

queries

queries

registers CRD

Package

Manager

Orchestration

API
Benchmarking

Operator

Monitoring

Load

Generator

System

under Test

Results

Visualization

Figure 8.4. Proposed benchmarking tool architecture based on the operator pat-
tern [HH22a].

mark is currently executed, it starts executing a benchmark according
to the specified Execution. This means, it alters the Deployment Artifacts

of the SUT and the load generator according the provided Deployment

Configuration, applies the configured search strategy to decide which SLO
experiments should be performed, and also adjusts the Deployment Artifacts

according to the selected load and resources. It then deploys all (potentially
adjusted) Deployment Artifacts for the specified duration and repeats this
procedure multiple times according to the defined Execution.

During this time, a monitoring system [RSE+19] collects performance
data of the SUT, which is then used by the operator to evaluate the
specified SLOs. The operator stores all (raw) results persistently to allow
for offline analysis, archiving, and sharing. Additionally, a cloud-native
visualization tool might be used to let benchmarkers observe the execution
of benchmarks (see Section 3.3).

This architecture causes a significant effort for the installation of the
entire benchmarking infrastructure. To implement the requirement for
a simple implementation, we propose to employ a cloud-native pack-
age management tool, which installs the operator, the CRDs as well as
dependent systems such as the monitoring and the visualization tool.

78

8.5. The Theodolite Benchmarking Framework

8.5 The Theodolite Benchmarking Framework

Theodolite2 is our framework for benchmarking the scalability of cloud-
native applications. It implements the architecture proposed in this section
and, thus, the benchmarking method proposed in this thesis. Theodo-
lite is free and open-source research software [HCH+20], distributed via
GitHub.3 We provide documentation and starting guides via our tool’s
website and in two demonstration papers [HH22b; HWH23].

Theodolite has been peer reviewed and successfully evaluated by mul-
tiple independent experts of the SPEC Research Group, a sub-organization
within the Standard Performance Evaluation Corporation (SPEC). Review
criteria are important quality factors such as maturity, availability, and
usability to ensure high quality and relevance to the community. Theodo-
lite is now listed in the SPEC RG repository of peer-reviewed tools for
quantitative system evaluation and analysis.4

Referring to our proposed architecture (see Fig. 8.4), we employ the
following technologies in our Theodolite framework: Kubernetes as orches-
tration tool, Prometheus for monitoring the SUT, Grafana [Gra22] for the
visualization, and Helm [Hel22] as package manager. These technologies
are generally understood as part of the cloud-native landscape.5 Theodo-
lite stores all raw measurements used for the SLO assessment in CSV
files. These can be used for an in-depth analysis with provided Jupyter
notebooks [KRP+16; GP21].

8.6 Related Work

Many studies, which benchmark scalability in the cloud, do not provide a
benchmarking tool or a corresponding architecture [AA19; KRK+18]. Gen-
eral architectures for cloud benchmarking tools are presented, for example,
by Bermbach et al. [BWT17] and Iosup et al. [IPE14]. Our architecture
builds upon such architectures but is particularly suited for cloud-native

2
https://www.theodolite.rocks

3
https://github.com/cau-se/theodolite

4
https://research.spec.org/tools/overview/

5
https://landscape.cncf.io

79

https://www.theodolite.rocks
https://github.com/cau-se/theodolite
https://research.spec.org/tools/overview/
https://landscape.cncf.io

8. Benchmarking Tool Architecture

environments by relying on established cloud-native tools and patterns.
Additionally, we allow for defining benchmarks declaratively.

Declarative benchmark description is also suggested by Cunha et al.
[CMS17], but without distinguishing between benchmarks and executions.
We expect the separation of benchmark and its execution to particularly
foster reproducibility. More generally, advantages of declarative bench-
marking and performance are highlighted by Walter et al. [WvHK+16]
and Ferme and Pautasso [FP18]. Similar to our approach, Bermbach et al.
[BKD+17] present a benchmarking framework providing a generic interface
to execute arbitrary application benchmarks for cloud storage services.

Recently, Avritzer et al. [ACJ+21] presented an architecture for measur-
ing their domain-based metric [AFJ+20]. In contrast to this study, the authors
do not aim for executing independently provided benchmarks, but instead,
perform scalability tests as part of a software’s quality assurance. For
this reason, and because scalability is studied with respect to a different
metric, they do not provide a meta model, which is comparable to the
one we presented in this study. Similar to our proposed architecture, the
authors utilize cloud-native technologies for monitoring and visualization.
However, they do not integrate their architecture in the underlying or-
chestration tool (Docker swarm in their case) as we do by adopting the
operator pattern.

In a previous publication [HH21e], we presented a first prototypical
architecture for an initial version of our scalability benchmarking method.
The presented architecture did already rely on cloud-native technolo-
gies but was tailored to run specific benchmarks for stream processing
frameworks. We later extend the experiment control component of that
architecture substantially to increase usability [HH22a]. Specifically, we
proposed to apply the operator pattern along with a flexible meta model
for defining benchmarks and their executions in a declarative manner.

To the best of our knowledge, we presented the first scientific ap-
proach for applying the operator pattern to benchmark cloud-native ap-
plications [HWH21; HH22a]. Similar to ours, Merenstein et al. [MTA+20;
MTA+21] proposed an architecture based on the operator pattern for
benchmarking cloud-native storage infrastructure. In line with our argu-
mentation, the authors highlight that such an architecture can improve
usability, which is particularly important in complex cloud-native environ-

80

8.6. Related Work

ments. Nikolaidis et al. [NCM+21b] present Frisbee, a Kubernetes operator
for declaratively testing cloud-native applications. While first being pro-
moted as benchmarking tool for comparing the recovery behavior of highly
available systems [NCM+21a], it now aims for arbitrary end-to-end testing
of containerized applications. Most similar to our proposed architecture is
AutoDECK, an operator-based performance evaluation tool recently pre-
sented by IBM Research [CCT+22]. It integrates different types of perfor-
mance benchmarks. Like our Theodolite tool, also Frisbee and AutoDECK
provide interoperability with Prometheus and Grafana. Additionally, some
benchmark operators emerged in the cloud-native community for bench-
marking the performance of Kubernetes installations.6 In contrast to our
architecture, all of these operators do not distinguish between CRDs for
benchmarks and their executions, which we expect to be a key feature for
enabling reproducibility.

6
https://github.com/xridge/kubestone, https://github.com/cloud-bulldozer/benchmark-operator

81

https://github.com/xridge/kubestone
https://github.com/cloud-bulldozer/benchmark-operator

Part III

The Theodolite Benchmarks

for Event-Driven

Microservices

Chapter 9

Research Design and Methods

In the chapters of this thesis’ third part, we address our second guiding
goal, namely designing scalability benchmarks for event-driven microser-
vices. We present our Theodolite benchmarks, which allow software engi-
neers to evaluate and compare different stream processing frameworks,
different configurations of these frameworks, alternative algorithms, and
different deployment options regarding their scalability. In this chapter,
we introduce our employed research design and methods to address this
goal.

We build our proposed benchmarks on top of the scalability bench-
marking method presented in Part II. With respect to the structuring of
benchmarks into components as described in Section 3.3, this means we
have to design the task sample components, whereas we can use the
scalability metric and measurement presented in Chapter 6 and Chap-
ter 7, respectively (see Fig. 9.1). We complement our task samples with

Measurement

Method

Benchmarking

Tool
Metric

Quality

(Scalability)

quantifies measures implements

Workload/Usage Profile/Task Sample
SUT &

Load Generator
implements

is applied to runs

Theodolite Scalability Benchmark Task Samples for Event-Driven Microservices

Benchmark Description Executable Software

Figure 9.1. Part III of this thesis covers designing task samples for scalability
benchmarks for event-driven microservices along with corresponding SUT and
load generator implementations as highlighted by the red box.

85

9. Research Design and Methods

specific implementations for different SUTs and load generators. These
are bundled as specific benchmarks according to the meta model of our
benchmarking tool architecture described in Chapter 8.

9.1 Design Rationale

As discussed in Chapter 5, the task sample component of a benchmark
primarily has to address relevance and fairness. In the following, we pro-
pose three principles for designing task samples, which support relevance
and fairness.

Based on real requirements Benchmarks designed according to real-
world requirements are more likely to behave like the corresponding
real-world systems. Hence, they can also be considered more relevant.

Use case oriented We propose to design scalability benchmarks accord-
ing to typical use cases for stream processing within microservices as
opposed to benchmarks modeled around capabilities of stream processing
frameworks. This supports fairness and relevance of the benchmarks.

Described as abstract dataflow architectures As we introduced in Sec-
tion 4.4, most modern stream processing frameworks employ similar
dataflow models. However, specific implementations and default configu-
rations differ significantly in some cases. Task samples should be described
in abstract dataflow architectures not tailored to specific frameworks to
ensure a fair comparison between frameworks.

9.2 Research Design Overview

We design our Theodolite benchmarks for use cases of event-driven mi-
croservices in the domain of Industrial Internet of Things (IIoT) analytics.
In particular, we focus on the special case of analyzing electrical power
consumption data in manufacturing enterprises. However, we expect that

86

9.2. Research Design Overview

Goals for

Analyzing

Industrial Power

Consumption Data

Pilot

Implementation

of an Event-Driven

Analytics Platform

Benchmarks for

Stream Processing

Frameworks in Event-

Driven Microservices

Measures for

Analyzing

Industrial Power

Consumption Data

Literature

Review

Domain

Experts

Figure 9.2. Research design for designing relevant benchmarks for event-driven-
microservices. The first three activities are discussed in Chapter 10, while the last
activity is discussed in Chapter 11.

the presented use cases also apply to other types of IIoT data stream
analytics.

Fig. 9.2 outlines our employed research design. Based on a litera-
ture review and knowledge from domain experts, we identify goals for
analyzing industrial power consumption data and derive a set of software-
based measures to tackle these goals. In a pilot implementation of an
IIoT analytics platform, we show how our proposed measures can be
implemented with an event-driven microservice architecture. From this
architecture, we select a set of service functions, representing the use cases
for our proposed benchmarks. For each identified use case, we present
a corresponding dataflow architecture to be implemented with stream
processing frameworks. In total, we present four dataflow architectures
and provide corresponding implementations for four stream processing
frameworks. We complement their benchmark definition by different load
types, resource types and SLOs.

In the two remaining chapters of this part, Chapter 10 presents the
identified goals and measures as well as our pilot implementation, while
Chapter 11 presents the derived benchmarks.

87

9. Research Design and Methods

Table 9.1. Overview of all scalability evaluations with our Theodolite benchmarks
conducted in this thesis.

Task sample Framework Cloud

Evaluation U
C

1

U
C

2

U
C

3

U
C

4

Fl
in

k

B
ea

m
/

Fl
in

k

B
ea

m
/

Sa
m

za

K
af

ka
St

re
am

s

H
az

el
ca

st
Je

t

O
th

er
s

C
on

fi
gu

ra
ti

on
s

A
lg

or
it

hm
s

P
ri

va
te

O
ra

cl
e

(O
C

I)

G
oo

gl
e

(G
C

P
)

A
m

az
on

(A
W

S)

Chapter 12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chapter 13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chapter 14 ✓ ✓ ✓ ✓a ✓ ✓

Chapter 15 ✓ ✓ ✓ ✓ ✓ ✓ ✓

a We use implementations of OSPBench [vDvdP20] to construct a Theodolite benchmark
for Apache Spark.

9.3 Evaluation Overview

Our Theodolite benchmarks are designed to evaluate different frameworks
for event-driven microservices regarding their scalability. Moreover, they
should allow evaluating different configuration options, deployment op-
tions and alternative algorithms. In Part IV of this thesis, we employ our
benchmarks to perform various of such evaluations. Table 9.1 provides an
overview of these evaluations, indicating the employed benchmarks, the
evaluated stream processing frameworks, whether different configurations
or algorithms are evaluated, and the used cloud provider. It shows that this
thesis includes evaluations of all presented task samples (named UC1–UC4)
and framework implementations as well as of different framework configu-
rations, alternative algorithms, and cloud environments. As already shown
in Section 5.2, we evaluate our Theodolite benchmarks with different load
types, different resource types, and different SLOs. Further evaluations
of our Theodolite benchmarks can be found by Boguhn [Bog22], Bensien
[Ben21], Biernat [Bie20], and in our previous publication [HH21e].

88

Chapter 10

Industrial Internet of Things

Analytics for the Case of

Industrial Power Consumption

This chapter addresses research question RQ 2.1 of this thesis and iden-
tifies relevant use cases for event-driven microservices. As shown in our
research design presented in the previous chapter, we focus on the domain
of analyzing industrial power consumption. In two industrial pilot cases,
we discuss how analyzing power consumption data can serve the goals
reporting, optimization, fault detection, and predictive maintenance. Ac-
companied by a literature review, we propose to implement the measures
real-time data processing, multi-level monitoring, temporal aggregation,
correlation, anomaly detection, forecasting, visualization, and alerting
in software to tackle these goals. In a pilot implementation of a power
consumption analytics platform, we show how our proposed measures
can be implemented with an event-driven microservice architecture.

This chapter summarizes our work previously published in the Journal
of Data, Information and Management [HHB+21] and the Software Impacts
journal [HH21d]. It is structured as follows. Section 10.1 presents the
context of this study. Section 10.2 summarizes the results of our literature
review. Section 10.3 briefly describes the current state of energy monitoring
in our studied pilot cases. Section 10.4 presents the goals for analyzing
power consumption data identified in our pilot cases, followed by our
proposed measures for tackling these goals in Section 10.5. Section 10.6
shows how our proposed measures can be implemented in an analytics
platform.

89

10. Industrial Power Consumption Analytics

10.1 Context

The immense electrical power consumption of the manufacturing industry
[Int19] is a considerable cost factor for manufacturing enterprises and a
serious problem for environment and society. Corporate values, public
relations, energy-related costs, and legal requirements are therefore leading
to an increasing energy awareness in enterprises [SGO17]. At the same
time, trends toward the Industrial Internet of Things, Industry 4.0, smart
manufacturing, and cyber-physical production systems [SSH+18] allow for
collecting energy data in real time and at machine level, from smart meters
or machine-integrated sensors [SOM14; MAL19]. Furthermore, research
on big data provides methods and technologies to analyze data of huge
volume and high velocity, as it is the case with power consumption data
[SCG+14; ZMY+18]. However, even though research suggests a variety
of goals and measures for analyzing power consumption data, the full
potential of available data is rarely exploited [SM15; BVS+11; CS19].

In our Industrial DevOps [HHL+19] research project Titan [HHL+21],
we work on methods and tools for integrating and analyzing big data from
Internet of Thing devices in industrial manufacturing. Analyzing power
consumption data in two enterprises of the manufacturing industry serves
as a case study. Both enterprises are project partners of wobe-systems and
Kiel University in the Titan project.

10.2 Literature Review

Analyzing industrial energy data is an emerging field of research. In this
section, we highlight the findings of our literature review regarding goals
and measures for analyzing power consumption data as well as related
work on implementing such measures.

10.2.1 Goals for Analyzing Power Consumption Data

A lot of research exists, in particular, on how energy data analysis can
contribute to reducing the energy usage in manufacturing. For example,
Vikhorev et al. [VGB13] point out that making energy data available for

90

10.2. Literature Review

production operators promotes energy awareness. Cagno et al. [CWT+13]
show that a lack of energy consumption information prevents implementa-
tion of energy-saving measures. Detailed information is especially required
at process and machine level for optimizing energy consumption, as high-
lighted by Thollander et al. [TPC+15]. For systematic monitoring and
optimizing energy consumption, enterprises are moving toward establish-
ing an energy management [CS19]. Implementing an energy management
requires revealing all energy consumptions within the enterprise [FM12].
Schulze et al. [SNO+16] identify organizational measures for implementing
an energy management in industry.

Increasing availability of smart meters and Internet of Things (IoT)
adoption in the manufacturing industry (Industry 4.0) enable enterprises
to collect energy data in great detail [SM15; MS13; MAL19]. This includes
commercial metering systems as well as prototypical low-cost systems as
proposed by Jadhav et al. [JKP21]. Shrouf and Miragliotta [SM15] highlight
several benefits of IoT adoption for energy data obtained from review-
ing literature and information published by European manufacturing
enterprises. Tesch da Silva et al. [TdCP+20] present a systematic literature
review on energy management in Industry 4.0.

Implementing an energy management and analyzing monitored energy
data assist an enterprise in understanding its energy consumption [MS13;
VGB13; SGO17]. It provides insights into which devices, machines, and
enterprise departments use how much power and during which times this
power is consumed. Combined with information about the production
processes, reports can thus be used to identify which processes consume
how much power [HT09]. In this way, measures for optimizing energy
consumption can be evaluated and saving potentials identified [BVS+11].

The literature focuses particularly on optimizing power consumption
for economical and ecological reasons [BVS+11; MS13; SOG+14; SNO+16;
SGO17]. Mohamed et al. [MAL19] report on opportunities provided by IoT
energy data for improving energy efficiency and reducing energy costs.
Shrouf and Miragliotta [SM15] focus on optimizing energy usage to reduce
costs and improve reputation, for example, by reducing energy wastage
and improving production scheduling. In their systematic literature review
on energy management in Industry 4.0, Tesch da Silva et al. [TdCP+20]

91

10. Industrial Power Consumption Analytics

outline methods for improving energy efficiency and point out current
limitations for their implementation.

To optimize the overall power consumption, it can be expedient to op-
timize the operation of machines in production individually. For example,
Vijayaraghavan and Dornfeld [VD10] optimize the power consumption of
machine tools to reduce the power consumption of an entire manufactur-
ing system. Shrouf et al. [SOG+14] optimize the production scheduling of
a single machine for minimizing overall energy consumption costs.

A special optimization aspect is the reduction of peak loads [HT09;
VGB13; SM15]. In addition to the basic price, which is fixed per month,
and the price per kilowatt hour, large-scale power consumers such as
manufacturing enterprises often have to pay a demand rate. The demand
rate depends on the maximum demand that occurs within a billing period.
In this way, grid operators expect to have a load as uniformly as possible in
the electricity grid [AE08]. Demand peaks are therefore disproportionately
more expensive for the customer. Thus, an optimization should aim to
achieve a power consumption as constant as possible, i.e., to distribute
the demand evenly over time (peak shaving). In order to achieve this, it
is necessary to identify periods during which relatively much power is
demanded. Likewise, it is important to discover which consumers are
responsible for the demand and to what extent [HT09].

Other goals besides reporting and optimization can only rarely be
found in the literature. Quiroz et al. [QMM+18] report how power con-
sumption, which deviates from its normal behavior, can be an indicator
for a fault such as a mechanical defect or faulty operation. Analyzing the
power consumption of machines can therefore be used to automatically
detect such faults and to react accordingly [VD10; MAL19]. Further, ana-
lyzing power consumption data may allow prediction of future faults so
that necessary maintenance actions can be taken [SOM14; MAL19].

10.2.2 Measures for Analyzing Power Consumption Data

Many studies consider near real-time processing of energy data to be neces-
sary [VD10; VGB13; SCG+14; HHM+18; LN18]. Proposed implementations,
therefore, often use stream processing techniques and tools (see also the
following Section 10.2.3). Several studies point out that many types of

92

10.2. Literature Review

power consumption analysis require consumption data at different levels
[VGB13; SM15; KJJ+20]. Whereas, for example, the effect of overall power
consumption optimizations can be evaluated with data of the overall
power consumption, detecting defects in machines requires acquiring data
at machine level. Moreover, different stakeholders are often interested in
power consumption reports of different granularity [SGO17]. In addition
to aggregating the power consumption of multiple consumers to larger
groups, it is often required to aggregate multiple measurements of the
same consumer over time [SM15]. Analyzing energy data often yields
significantly better results if, in addition to recorded power consumption,
further information is included such as operational and planning data
from the production as well as business data [VD10; SGO17].

Most approaches for energy analytics platforms and energy man-
agement systems include data visualizations [FM12; VGB13; SCG+14;
ZMY+18]. Visualizations are often realized as information dashboards,
which contain multiple components providing different types of visual-
ization. Individual components show, for example, the current status of
power consumption as numeric values or gauges [RM19; VGB13], the
evolution of consumption over time in line charts [VGB13; SCG+14; FM12],
the distribution among subconsumers and categories (also in the course
of time) [VGB13; MLB+15], correlations of individual power consumers
[SCG+14; MBL+17], particularly important values such as the peak load
[VGB13], detected anomalies [CTC+17], or forecasted power consumption
[SY18].

Research also exists on forecasting power consumption or detecting
anomalies in power consumption data. Both practices are closely related.
Methods for forecasting and anomaly detection create models of the past
power consumption, explicitly or implicitly, and project them into the
future (forecasting [MTA+15]) or compare them to the the actual power
consumption (anomaly detection [CT14; LN18]). Common approaches
use statistical methods such as ARIMA [CKK13] or kernel density estima-
tion [AT16], machine learning methods such as artificial neural networks
[DM17; ZXZ+17], or a combination of both [CT14]. Whereas much fore-
casting and anomaly detection research exists on energy consumption
of households [CKK13; LN18], buildings [AT16; CT14], and electricity
grids [DM17; ZXZ+17], approaches regarding power consumption of in-

93

10. Industrial Power Consumption Analytics

dustrial production environments are rare due to their irregular nature
[BTV+18]. Liu and Nielsen [LN18] show how alerts could be triggered
when anomalies are detected.

10.2.3 Implementation of Measures

Software systems for implementing such measures are presented, for
example, by Sequeira et al. [SCG+14] and Rackow et al. [RJD+15]. Yang
et al. [YCL+20] propose such a system for assessing power consumption
at a university campus. However, these systems only focus on a subset of
measures proposed in this chapter.

A couple of software architectures for implementing energy data analy-
sis are suggested. Several architectures [SCG+14; SGO17; HHM+18; LN18]
follow the Lambda architecture pattern [MW15]. Such architectures deploy
a speed layer for fast online processing and a batch layer for accurate
offline processing of data. In our pilot implementation (see Section 10.6),
we pursue a more recent architectural style of processing data exclusively
online (also referred to as Kappa architecture) [Kre14] by utilizing Apache
Kafka’s capabilities for reprocessing distributed, replicated logs [WKS+15].
Additionally, we combine this with the microservice architecture pattern
and design dedicated, encapsulated microservices per analytics task. Ben-
efits of using microservices and, in particular, the associated concept of
polyglot persistence for analyzing industrial energy usage are highlighted
by Herman et al. [HHM+18] and in our previous publication [HHM19].

Big data analytics of energy consumption heavily relies on cloud
computing [SOM14; HHM+18; SCG+14; MAL18; YCL+20]. Sequeira et
al. [SCG+14] propose cloud connector software components for integrating
data from energy meters. Recent studies suggest applying fog computing
for integrating production data in general [QT19] and energy consump-
tion data in particular [MAL19]. Our pilot implementation follows the
suggestions of Pfandzelter and Bermbach [PB19] to deploy data analytics
using stream processing in the cloud and data preprocessing and event
processing in the fog. Szydlo et al. [SBS+17] present how data transfor-
mation at fog computing nodes can be implemented using flow-based
programming [Mor10] and graphical dataflow modeling. Hasselbring et al.

94

10.3. Studied Pilot Cases

[HWD21] present how we apply flow-based programming [Mor10] and
graphical dataflow modeling in our Titan project.

10.3 Studied Pilot Cases

In this section, we give a brief overview of our two studied pilot cases.
Both pilot cases are enterprises of the manufacturing industry.

The first studied enterprise is a newspaper printing company. It is
characterized by high requirements on production speed and the fact that
production downtimes are extremely critical. The company has to print and
deliver daily newspapers for the next day within only a few hours during
the night. If newspapers were printed too late, they would not be up to date
anymore and could no longer be sold. Production failures would therefore
be associated with significant economic loss. The characteristic production
times, with peaks in the nights before working days, are reflected, for
example, in the power consumption of the air compressors as depicted
in Fig. 10.1. In addition to daily newspaper printing, the company prints
advertising supplements, weekly newspapers, and customer magazines to
utilize production capacity.

2018-07-07 2018-07-09 2018-07-11 2018-07-13 2018-07-15 2018-07-17 2018-07-19 2018-07-21 2018-07-23

20

30

40

50

60

70

80

90

ac
tiv

e
po

we
r c

on
su

m
pt

io
n

in
 k

W

Figure 10.1. Power consumed for generating compressed air in the newspaper
printing company over a period of 2.5 weeks [HHB+21]. The curve shows a weekly
pattern and reflects the company’s operating hours with constant low consumption
at the weekend and peak loads at night.

95

10. Industrial Power Consumption Analytics

The second studied enterprise is a manufacturer of optical inspection
systems for non-man-size pipelines and wells. This enterprise is charac-
terized by a high vertical range of manufacturing. Thus, its production
environment operates a wide range of machines, some of which are largely
automated, others are primarily user-controlled. Furthermore, the man-
ufacturer operates a rather large data center which runs software for its
administration, development, and production. In this work, we focus on
power consumption of the production processes and not on the power
consumption of inspection systems themselves.

Both enterprises already have the necessary physical infrastructure to
record electrical power consumption in production and query it during
operation. Electricity meters capture the required data at machine level
and with high frequency. We therefore do not include approaches and
techniques for acquiring power consumption data in this study. However,
both companies do not yet exploit the full potential of the recorded and
stored data. Currently, they analyze the data mainly by hand and only
at certain times. Much of the information hidden in power consumption
data is therefore not revealed yet. The reasons for this cannot be found in
missing interest, but in a lack of applicable technologies. Currently, the
production operators use software provided by metering device manufac-
tures, for example, to visualize the stored data. However, this software
does not meet all requirements. For example, the amount of visualized
data is too large, making it hard to extract the crucial information. Another
issue is the integration of different types of electricity meters. Although
standardized protocols exist, many metering devices and systems do not
apply them.

10.4 Goals for Analyzing Power Consumption

Data

In this section, we identify motivations for analyzing power consumption
data in our studied pilot cases. We classify these motivations into the four
goal categories reporting, optimization, fault detection, and predictive
maintenance. Our literature review (see Section 10.2) suggests that these
goals also occur in other manufacturing enterprises as similar motivations

96

10.4. Goals for Analyzing Power Consumption Data

can be found in related studies. In the following, we describe each goal
category in detail.

10.4.1 Reporting

In both studied enterprises, comprehensive reporting is particularly re-
quired for an ISO 50001 [Int18] certification. The ISO 50001 standard
specifies requirements for organizations and businesses for establishing,
implementing, and improving an energy management system. It describes
a systematic approach to support organizations in continuously improving
their energy efficiency. In order to be certified to use an energy manage-
ment system in compliance with ISO 50001, enterprises commission ac-
credited certification bodies to perform regular independent audits [JF16].
These certifications are usually not required by law, but serve as evidence
that a company is making efforts to save energy.

Both companies consider sustainability as an important pillar of their
corporate philosophy. ISO 50001 certification allows them to demonstrate
their efforts in saving energy to customers and other stakeholders. More-
over, in Germany, where both enterprises are located, ISO 50001 certi-
fication enables cost savings as such a certification is a prerequisite for
manufacturing enterprises with high power consumption to reduce reg-
ulatory charges (e.g., reducing the EEG surcharge [Bun20]). Certification
is even essential for the manufacturer of optical inspection systems. Its
customers are mainly public authorities, which often require ISO 50001
certification in their calls for tender.

Reports for ISO 50001 certification are required to justify irregular or
increasing power consumption. This is in particular challenging for the
newspaper printing company, where power consumption highly depends
on the production utilization and external influences. Hence, this com-
pany requires complex analyses for their reports, such as correlations
with external data from the production and the environment. Moreover,
the ISO 50001 standard requires that reports on the enterprise’s energy
consumption are available to customers, stakeholders, employees, and
management.

97

10. Industrial Power Consumption Analytics

10.4.2 Optimization

The ecological and economical motivations for optimizing energy con-
sumption presented in our literature review (see Section 10.2) also apply
to both our pilot cases. We identify the following types of optimizing
power consumption in the enterprises studied.

Optimization of Overall Consumption A first step for optimizing the
overall power consumption is identifying energy-inefficient machines and
devices. This knowledge can then be used to replace them with more
energy-efficient ones or retrofitting them accordingly. Furthermore, time
periods should be detected in which devices consume energy, although it
would not be necessary. Typical examples of unnecessary energy consump-
tion are keeping machines in standby mode or lighting workplaces outside
of working hours, but also less apparent saving potential is expected to be
discovered.

Optimization of Peak Loads Being large-scale power consumers, both
studied pilot cases have to pay a demand rate based on the maximum
demand within a billing period. Since demand peaks are disproportion-
ately more expensive, they aim for distributing the demand more evenly.
As illustrated in Section 10.2.1, this requires identifying time periods and
consumers with high power consumption This includes, on the one hand,
the identification of large consumers in general but, on the other hand,
also demand fluctuations of individual devices. Based on this information,
production processes can be modified such that, for instance, multiple
machines with a high inrush current are not started at the same time. Re-
ducing the overall energy consumption is highly related to reducing peak
loads. If measures are taken to replace devices, this has an effect on both
optimization goals. For example, if devices that are unnecessarily operated
standby during load peaks are turned off during these periods, not only
demand peaks are reduced, but also the enterprise’s power consumption
in total.

Optimization at Machine Level Similar to what we present in Sec-
tion 10.2, it is reasonable to optimize the operation of machines or produc-

98

10.4. Goals for Analyzing Power Consumption Data

tion processes to optimize the overall power consumption or peak loads. A
potential power saving measure in the newspaper printing company exists
in the printing process. The number of newspapers produced per unit
of time depends directly on the operating speed of the printing presses.
To determine an optimal printing speed, several other factors are also
taken into account, such as reliability, which decreases when increasing
the production speed. With monitoring and analyzing the printing presses’
power consumption, the company can also include energy-related costs
when determining the production speed.

10.4.3 Fault Detection

The studied enterprises report that a power consumption of machines,
deviating from their normal behavior can be an indicator for a fault such as
a mechanical defect or faulty operation. Analyzing the power consumption
can therefore be used to automatically detect such faults and to react
accordingly. A typical case of anomalous power consumption is a strong
increase, for example, when a defect occurs suddenly. A decrease of power
consumption can also be such an indicator as parts of a machine may no
longer be operated due to a defect. Less noticeable is a slight deviation over
a longer period of time, for example, if several minor defects occur over
time. Detecting deviations or a long-term trend in regularly fluctuating
power consumption is even more challenging.

The central compressed air supply in the newspaper printing company
is an example for fault detection using power consumption data. An exten-
sive pipe network supplies various areas of the production environment
and finally individual machines with compressed air. The compressed air
distribution network leaks regularly, causing air to escape. These leaks do
not necessarily become apparent directly, but should still be repaired. As
leaks result in higher power consumption of the air compressors, power
consumption data can provide an instrument for leak detection. However,
since power consumption of the air compressors is subject to strong, irreg-
ular fluctuations (see Fig. 10.1), an increase in power consumption does
not immediately become apparent. This may be solved by considering the
power consumption only in idle times, for example, during the weekend.
An increase in power consumption over several weekends may thus be

99

10. Industrial Power Consumption Analytics

2017-01 2017-04 2017-07 2017-10 2018-01 2018-04 2018-07 2018-10 2019-01

22

24

26

28

30

32

ac
tiv

e
po

we
r c

on
su

m
pt

io
n

in
 k

W

Figure 10.2. Stand-by power consumption for generating compressed air in the
newspaper printing company at weekends over a period of two years [HHB+21].

an indication of a leak. Fig. 10.2 shows the average power consumption
between Saturday 12:00 and Sunday 12:00 for each weekend in 2017 and
2018. The course shows a steady increase in 2017 due to leaks in the
compressed air supply. In early 2018, the company repaired several leaks,
causing a tangible reduction in power consumption.

10.4.4 Predictive Maintenance

With regular, time-based maintenance intervals, machines and devices
are often maintained even though there is no actual need for it. This
means that components and operating materials are replaced since their
expected operating time expires, although they are still functioning and
could actually continue operating. Predictive maintenance is an approach
that aims for performing maintenance actions only if it would otherwise
result in defects or limitations in performance or quality [YML+17]. The
difficulty is therefore to decide when maintenance is really necessary.
For this purpose, sensor data of the machine and its environment are
collected and automatically analyzed [YML+17]. Our literature review (see
Section 10.2) suggests that power consumption can be such data.

We distinguish between predictive maintenance and fault detection
as while fault detection aims to detect errors after they occurred, pre-
dictive maintenance refers to the detection of errors before they occur.

100

10.5. Measures for Analyzing Power Consumption Data

Nevertheless, predictive maintenance is closely related to fault detection
as occurring faults often cause further faults. Early fault detection may
allow detecting future faults and taking appropriate preventive measures.

An example for predictive maintenance using power consumption data
are cooling circuits as used in the studied enterprises. Such circulation
systems typically include a filter through which coolant is pumped to
remove impurities. These filters need to be replaced regularly. The electri-
cal power consumption of the pump indicates the resistance within the
circulation system and, thus, how polluted the filter is. Increased power
consumption can therefore serve for detecting an upcoming filter change.
Lower power consumption can also provide information. It may indicate
that not enough coolant is in the circuit (referred to as dry run) and, thus,
coolant needs to be refilled.

10.5 Measures for Analyzing Power Consump-

tion Data

In this section, we discuss software-based measures for analyzing power
consumption data that support in achieving the goals defined in the previ-
ous section. Based on our literature review in Section 10.2 and knowledge
from domain experts within our studied pilot cases, we suggest the follow-
ing measures: real-time data processing, multi-level monitoring, temporal
aggregation, correlation, anomaly detection, forecasting, visualization, and
alerting. Different use cases gauge goals differently and measures vary in
their importance for the individual goals. We therefore rate the impact of
each measure on each goal and visualize these impacts on radar charts
shown in Fig. 10.3. In the following, we briefly describe each measure and
characterize how each measure affects each goal.

10.5.1 Near Real-time Data Processing

Near real-time (also referred to as online) data processing describes ap-
proaches, where data are immediately processed after their recording. It
contrasts batch (also referred to as offline) processing, which first collects
recorded data and then processes all the collected data only at certain

101

10. Industrial Power Consumption Analytics

Real-Time
Processing

Multi-Level
Monitoring

Temporal
Aggregation

Correlation

Anomaly
Detection

Forecasting

Visual-
ization

Alerting

(a) Reporting

Real-Time
Processing

Multi-Level
Monitoring

Temporal
Aggregation

Correlation

Anomaly
Detection

Forecasting

Visual-
ization

Alerting

(b) Optimization

Real-Time
Processing

Multi-Level
Monitoring

Temporal
Aggregation

Correlation

Anomaly
Detection

Forecasting

Visual-
ization

Alerting

(c) Fault Detection

Real-Time
Processing

Multi-Level
Monitoring

Temporal
Aggregation

Correlation

Anomaly
Detection

Forecasting

Visual-
ization

Alerting

(d) Predictive Maintenance

Figure 10.3. Impact rating of the proposed measures for the four goals presented
in Section 10.4 [HHB+21]. The larger its distance from the radar chart’s center is,
the higher a measure’s impact was weighted on the corresponding goal.

times. Whereas near real-time data processing is usually more difficult to
design and implement than batch processing, it yields immediate results
and, thus, allows reacting immediately on these results.

Data processing in near real-time primarily supports the goals opti-
mization (see Fig. 10.3b), fault detection (see Fig. 10.3c), and predictive
maintenance (see Fig. 10.3d) [VD10; SM15]. Power consumption can be effi-
ciently optimized if the effectiveness of energy-saving actions are evaluated
immediately. The sooner a fault is detected and reported, the faster it can
be reacted to and, therefore, the more valuable its detection is. Predictive

102

10.5. Measures for Analyzing Power Consumption Data

maintenance requires processing monitoring data in real time as otherwise
the time for maintenance may be determined after the maintenance should
have already been performed [SBA20]. Although a real-time overview of
the enterprise’s energy usage at any time is not required for ISO 50001
audits, it assists in reporting (see Fig. 10.3a) the power consumption, for
example, to the management [MS13].

10.5.2 Multi-Level Monitoring

We suggest organizing power consumers in a hierarchical model, where
groups of devices and machines are further grouped into larger groups
[HH20b]. Multiple such models have to be maintained in parallel. For
example, it is reasonable to organize devices by their type (e.g., all air
compressors), but also to organize them by their physical location (e.g., a
certain shop floor).

Besides monitoring groups of consumers, for example, via sub-distri-
bution units, data for groups can also be obtained by aggregating the
consumption of all its partial consumers. In particular, this is necessary
for devices which, for reasons of redundancy, have more than one power
supply. Here, the overall machine’s power consumption is usually more
important than the power consumption of the individual power supplies.
Comparing the power consumption monitored by sub-distribution units
with aggregated data of all known sub-consumers may reveal consump-
tions that were unknown so far.

Hierarchical models of power consumers particularly support report-
ing (see Fig. 10.3a) as they offer insights at which times which consumers
or groups consume how much power. Power consumption can be opti-
mized (see Fig. 10.3b) at machine level as well as on aggregated data (see
Section 10.2). Furthermore, our literature review shows that fault detection
(see Fig. 10.3c) and predictive maintenance (see Fig. 10.3d) may also be
performed on different levels.

10.5.3 Temporal Aggregation

Temporal aggregation refers to summarizing multiple measurements of the
same consumer over time to one data point. It serves for: (1) reducing the

103

10. Industrial Power Consumption Analytics

number of data points for storage and (2) simplifying data analysis by pro-
viding a more abstract view on the data. Therefore, temporal aggregation
supports humans in comprehending the monitored power consumption
data and, thus, reporting (see Fig. 10.3a) as well as manually identifying
optimization potentials. Also automatic data processing for optimization
(see Fig. 10.3b), fault detection (see Fig. 10.3c), and predictive maintenance
(see Fig. 10.3d) may benefit from aggregated data. We distinguish two
different kinds of temporal aggregation as described in the following.

Downsampling The first kind is to collect and aggregate all measure-
ments in consecutive, non-overlapping, fixed-sized time windows (called
downsampling). An appropriate size for such windows is, for example,
5 minutes so that every 5 minutes a new aggregation result is computed
representing the average, minimal, and maximal power consumption over
the previous 5 minutes. The number of data points can thus be massively
reduced, which is required for several forms of storing, analyzing, and
visualizing data. We suggest performing multiple such aggregations (e.g.,
for time windows of size 1 minute, 5 minutes, and 1 hour) and store their
aggregation results for different durations. This allows storing more recent
(and more interesting) data with more detail than data from the previous
months or years.

Aggregating Temporal Attributes The second kind of temporal aggre-
gation is to aggregate all data points having the same temporal attribute
such as day of week or hour of day. The set of aggregated data points
allows modeling or identifying seasonality. For example, aggregating all
measurements recorded at the same day of week allows showing the aver-
age power consumption course over a week. Likewise, aggregating based
on the hour of the day allows obtaining the average course of a day.

10.5.4 Correlation

Our literature review (see Section 10.2) shows how operational and plan-
ning data from the production as well as business data can be included
in different types of power consumption analysis. Furthermore, it is rea-
sonable to correlate the power consumption of different consumers as

104

10.5. Measures for Analyzing Power Consumption Data

their power consumption may depend on each other if their production
processes are dependent [BTV+18].

Correlating power consumption data with production data supports
reporting (see Fig. 10.3a) as it allows for better understanding the power
consumption. Management levels might be interested in a correlation
with business data as this allows reporting about, for example, the energy
costs per produced unit. In particular, correlation can serve as trigger for
optimization (see Fig. 10.3b), fault detection (see Fig. 10.3c), and predictive
maintenance (see Fig. 10.3d). If, for example, the power consumption of a
machine increases rapidly while also the production speed increases, the
increasing power consumption was most likely not caused by a fault. If,
however, the production speed remains constant and no other production
data justifies the increase, a fault detection could be triggered. Correlations
of power consumption of different consumers are interesting for reporting,
but also for optimizations, in particular for reducing load peaks.

10.5.5 Anomaly Detection

We suggest employing anomaly detection techniques to discover time
periods, during which power consumption is unexpectedly high or low,
like it is done for energy consumption of buildings or households in related
work (see Section 10.2). This includes continuously computing anomaly
scores for observed power consumption and comparing these anomaly
scores with previously defined thresholds. We suggest applying anomaly
detection both on monitored and aggregated data (see Section 10.5.2).

Primarily, anomaly detection serves as a measure for the goal of fault
detection (see Fig. 10.3c). Faults in devices, machines, or production pro-
cesses are deviations from the desired behavior and, thus, anomalous
behavior of power consumption may indicate an occurring fault. Detecting
anomalies in power consumption exclusively in relation to time is often
not sufficient. The consumption of many devices is subject to external
influences such as temperature [LN18] and, especially in production envi-
ronments, the operating times of machines do not follow daily or weekly
patterns [BTV+18]. Correlating power consumption with environmental,
operational, and planning data (see Section 10.5.4) therefore assists in
detecting anomalies.

105

10. Industrial Power Consumption Analytics

Furthermore, anomaly detection allows identifying potential appli-
cations of optimization (see Fig. 10.3b) and predictive maintenance (see
Fig. 10.3d). It also supports in explaining power consumption behavior in
reporting (see Fig. 10.3a).

10.5.6 Forecasting

As highlighted in our literature review (see Section 10.2), analyzing power
consumption data allows making predictions about the future power con-
sumption. Similar to anomaly detection, predicting power consumption in
industrial production poses additional challenges in contrast to predicting
power consumption of households, buildings, or electricity grids. To cope
with the irregular nature of industrial power consumption, correlation
with environmental, operational, and planning data (see Section 10.5.4)
promises to create more accurate models.

Forecasting the power consumption of machines in addition to the
overall production environment supports optimization (see Fig. 10.3b) as
it allows detecting load peaks before they actually occur. Thus, produc-
tion operators may take appropriate countermeasures such as replanning
production processes. Making predictions about the future status of the
production environment is required for predictive maintenance. Thus, fore-
casting power consumption enables predictive maintenance (see Fig. 10.3d)
based on power consumption data. Fault detection (see Fig. 10.3c) based
on anomaly detection often relies on forecasts by comparing the actual
consumption with the expected (i.e., forecasted) one. Furthermore, fore-
casting can be used in reporting (see Fig. 10.3a) as it supports planning
and decision making for business and production operation.

10.5.7 Visualization

According to our literature review in Section 10.2, we propose to visualize
analyzed power consumption data in information dashboards. This way,
visualizations integrate individual measures proposed in this chapter and
serve as a link between data analysis and the users. Dashboards should
be dynamic and interactive in the sense that they are updating their
visualized data continuously and let users interact with them [RM19].

106

10.5. Measures for Analyzing Power Consumption Data

For example, dashboards may start with a rough outline of the overall
production’s power consumption but allow users to zoom in and show
specific machines and time periods in detail.

As state-of-the-art libraries and frameworks for data visualization are
largely based on web technologies [BOH11; LMS+18], it is reasonable
to implement dashboards as web applications. This has the additional
advantage that the visualization is user-friendly accessible since it does
not have further requirements on software or hardware infrastructure than
a web browser.

First and foremost, dashboards enable reporting (see Fig. 10.3a) on
power consumption. Appropriate visualization allows for understanding
how power consumption is composed, observing changes in power con-
sumption over time, and comparing the power consumption of different
machines and production processes. Enterprises may provide different
dashboards for different stakeholders to only show the information rele-
vant for the corresponding target audience [SM15]. Visualizations assist
in optimization (see Fig. 10.3b) as they allow identifying optimization
potentials and enable operators to check whether optimization actions
are effective. Furthermore, interactive visualizations can motivate, trigger,
and enable energy saving actions [RM19]. A dashboard may also show
information concerning fault detection (see Fig. 10.3c) and predictive main-
tenance (see Fig. 10.3d) and provide means to verify whether faults and
maintenance actions are detected successfully [SM15].

10.5.8 Alerting

Since industrial production becomes increasingly automated [SSH+18;
FMR+22], production operators should automatically be notified when
faults are detected or maintenance actions have to be taken (see Fig. 10.3c
and Fig. 10.3d). Depending on their frequency and severity, such noti-
fications and alerts may be sent via email or communication tools. For
reporting (see Fig. 10.3a) purposes, such notifications may additionally be
displayed in a dashboard. Furthermore, operators may be notified if opti-
mization potential is detected (see Fig. 10.3b), for example, by generating
an alert if a load peak is about to occur.

107

10. Industrial Power Consumption Analytics

10.6 Pilot Implementation of the Measures

In this section, we show how the measures proposed in Section 10.5 can
be implemented with an event-driven software architecture. In our Titan
project on Industrial DevOps [HHL+19; HHL+21], we develop methods
and techniques for integrating Industrial Internet of Things data. A major
emphasis of the project is to make produced data available to various
stakeholders in order to facilitate a continuous improvement process. The
Titan Control Center1 is our open-source pilot application for integrating,
analyzing, and visualizing industrial big data from various sources within
industrial production [HH21d].

Fig. 10.4 shows the Titan Control Center architecture. It is composed of
event-driven microservices as introduced in Section 4.3 with the microser-
vices Aggregation, History, Statistics, Anomaly Detection, Forecasting, and Sensor

Management. Microservices communicate with each other asynchronously
via Apache Kafka. The Titan Control Center features two single-page
applications that visualize analyzed data and allows for configuring the
analyses. In a previous publication [HHM19], we show how these architec-
ture decisions facilitate scalability, extensibility, and fault tolerance of the
Titan Control Center.

The Titan Control Center is deployed following the concepts of edge
and fog computing [GME+15; BMZ+12]. In particular suited for Inter-
net of Things (IoT) data streams, edge and fog computing architectures
preprocess data at the edges of the network (i.e., physically close to the
IoT devices), whereas complex data analytics are performed in the cloud
[PB19]. In order to facilitate scalability and fault tolerance, the Titan Con-
trol Center microservices for data analysis and storage are deployed in a
cloud environment. This can be a public, private, or hybrid cloud, which
allows elastic increasing and decreasing of computing resources. On the
other hand, software components for integrating power consumption data
into the Titan Control Center are deployed within the production. This
includes querying or subscribing to electricity meters, format and unit
conversions, filtering, but also aggregations to reduce the amount of data
points. We employ the Titan Flow Engine [HHL+19; HWD21] for this
purpose. It allows graphical modeling of data flows in industrial produc-

1
https://github.com/cau-se/titan-ccp

108

https://github.com/cau-se/titan-ccp

10.6. Pilot Implementation of the Measures

<<microservice>>

Sensor
Management

Control Center

<<microservice>>

Forecasting
<<microservice>>

Anomaly

Detection

<<microservice>>

Statistics
<<microservice>>

History
<<microservice>>

Aggregation
<<edge component>>

Integration

Dashboard

REST

Figure 10.4. Microservice-based pilot architecture of the Titan Control Center for
analyzing electrical power consumption [HHB+21].

tion according to flow-based programming [Mor10]. With the Titan Flow
Engine, individual processing steps are implemented in so-called bricks,
which are connected via a graphical user interface to flows. This enables
production operators to reconfigure power consumption data flows, for
example, to integrate new electricity meters, without requiring advanced
programming skills.

In the following, we present how each measure proposed in Section 10.5
can be implemented using the Titan Control Center.

10.6.1 Near Real-Time Data Processing

Power consumption data is processed in near real time at all architectural
levels of the Titan Control Center. This starts by the ingestion of monitor-
ing data and immediate filter, convert, and aggregate operations in the
Titan Flow Engine at the edge. The final integration step is sending the
monitoring data to the messaging system. Following the publish–subscribe
pattern, microservices subscribe to this data stream and are notified as

109

10. Industrial Power Consumption Analytics

soon as new data arrive. In the same way, individual microservices commu-
nicate with each other asynchronously. Within microservices, we process
data using stream processing techniques. This implies that microservices
continuously compute and publish new results as new data arrive. For
implementing stream processing architectures in most of the microser-
vices, we use Kafka Streams. As all computations are performed in near
real time, the visualizations can also be updated continuously. Hence, the
visualization applications (see Section 10.6.7) periodically request new
data from the individual services.

10.6.2 Multi-Level Monitoring

The Aggregation microservice [HH19b] of the Titan Control Center com-
putes the power consumption for groups of machines by aggregating the
power consumption of the individual subconsumers. This microservice
subscribes to the stream of power consumption measurements coming
from sensors, aggregates these measurement continuously according to
configured groups, and publishes the aggregation results via the messag-
ing system as if they were real sensor measurements. In addition to sensor
measurements, however, these data are enriched by summary statistics of
the aggregation.

As proposed in Section 10.5.2, the Aggregation microservice supports
aggregating sensor data in arbitrarily nested groups and multiple such
nested group structures in parallel. In one of our studied enterprises, we
integrate power consumption data of different kinds of sensors, which
provide data in different frequencies. An important requirement for the
Aggregation service was therefore to support different sampling frequencies.
Furthermore, besides the focus on scalability throughout the entire Control
Center architecture, an important requirement for this microservice is
to reliably handle downtimes and measurements arriving out-of-order.
Therefore, it allows configuring the required trade-off between accuracy,
aggregation latency, and performance [HH20b].

The Sensor Management microservice of the Titan Control Center al-
lows assigning names to sensors and arranging these sensors in nested
groups. For this purpose, the Titan Control Center’s visualization com-
ponent provides a corresponding user interface. The Sensor Management

110

10.6. Pilot Implementation of the Measures

service stores these configurations in a MongoDB [Mon22] database. It
publishes changes of group configurations via the messaging system so
that the Aggregation service (and potentially other services) are notified
about these reconfigurations. The Aggregation service is designed in a way
that, when receiving reconfigurations, it immediately starts aggregating
measurements according to the new group structure. Further, as aggrega-
tions are performed on measurement time and not on processing time, it
supports reprocessing historical data.

10.6.3 Temporal Aggregation

Both types of temporal aggregation discussed in Section 10.5.3 are sup-
ported by the Titan Control Center. As both types serve different purposes,
they are implemented in individual microservices. Both services subscribe
to input streams, which provide monitored power consumption from
sensors as well as aggregated power consumption for groups of machines.

Downsampling The History microservice receives incoming power con-
sumption measurements and continuously aggregates all data items within
consecutive, non-overlapping, fixed-sized windows (often referred to as
tumbling windows in stream processing frameworks [CKH19]). The results
of these aggregations are stored to an Apache Cassandra [LM10] database
as well as published for other services. The History service supports ag-
gregations for multiple different window sizes in parallel, allowing to
generate time series with different resolutions. To prevent the amount of
stored data from becoming too large, time series of different resolutions
are assigned different times to live. Thus, the Titan Control Center allows,
for example, storing raw measurements captured with high frequency
for only one day, but aggregated values in minute resolution for years.
Window sizes and times to live can be individually configured according
to requirements for trackability and availability of storage infrastructure.

Aggregating Temporal Attributes The Statistics microservice aggregates
power consumption measurements by a temporal attribute (e.g., day of
week) to determine an average course of power consumption, for example,
per week or per day. These statistics are continuously recomputed, stored

111

10. Industrial Power Consumption Analytics

in a Cassandra database, and published for other services, whenever new
input data arrives. In our studied pilot cases we found out that in particular
the average consumptions over the day, the week, and the entire year allow
detecting patterns in the consumption. Furthermore, aggregating temporal
attributes such as the month of the year over one year allows observing
how monthly peak loads evolve over time.

10.6.4 Correlation

The Titan Control Center provides different features for correlating power
consumption data. One of these features is graphical correlation of power
consumption of different machines or machine groups. Our visualization
component (see Section 10.6.7) provides a tool, which allows a user to
compare the power consumption of multiple consumers in time series
plots (see Fig. 10.5). It displays multiple time series plots below each other,
each containing multiple time series. The user can zoom into the plots and
shift the displayed time interval. All charts are synchronized by the time
domain, thus zooming or shifting one plot also effects the others [JFD+16].
This tool allows operators to analyze interesting points in time (such as
outages or load peaks) in more detail.

Together with the newspaper printing company, we implemented a first
proof of concept for correlating real-time production data with power con-
sumption data. We correlated the printing machines’ power consumption
with their printing speed. For this purpose, we integrated the production
management system using the Titan Flow Engine and visualized both
types of data in our visualization component. Even though we were able
to show the feasibility of such a real-time correlation, we identified that
for in-depth analyses, power consumption data with higher accuracy is
required. Similarly, we prototypically correlated the power consumption
of air conditioning systems with weather data. We identified a high impact
of the outside temperature on the power consumed for cooling and, thus,
use weather data as a feature for our forecasting implementations (see
Section 10.6.6).

112

10.6. Pilot Implementation of the Measures

Figure 10.5. Screenshot showing the graphical correlation of power consumption
using the Titan Control Center [HHB+21].

10.6.5 Anomaly Detection

The Titan Control Center envisages individual microservices for indepen-
dent anomaly detection tasks and, hence, allows choosing an appropriate
technique for each task. This includes individual techniques for different
production environments and even for different machines.

With our pilot implementation, we already provide an Anomaly Detection

microservice, which detects anomalies based on summary statistics of the
previous power consumption. These statistics (e.g., per hour of week) are
continuously recomputed by the Stats microservice (see Section 10.6.3) for
each machine and machine group and published via the Control Center’s
messaging system. Our Anomaly Detection microservice subscribes to this
statistics data stream and joins it with the stream of measurements (from
real machines or aggregated groups of machines). Ultimately, this means
each incoming measurement is compared to the most recent summary
statistics of the corresponding point in time and machine. If the measured
power consumption deviates too much from the average consumption of

113

10. Industrial Power Consumption Analytics

the respective hour and weekday, it is considered as anomaly. Instead of
joining the measurements stream with the statistics stream, it can also
be joined with the data stream published by the forecasting service (see
Section 10.6.6). Using forecast data requires more complex model training,
but might yield more accurate results.

All detected anomalies are again published to a dedicated data stream
via the messaging system, allowing other microservices to access detected
anomalies. Moreover, the microservice stores all detected anomalies in a
Cassandra database.

10.6.6 Forecasting

Similar to anomaly detection, we envisage individual Forecasting microser-
vices for different types of forecasts, for example, used for different power
consumers. Forecasting benefits notably from the microservice pattern
since technologies used for forecasting often differ significantly from the
ones used for implementing web systems. The Titan Control Center sup-
ports arbitrary Forecasting microservices, each using its own technology
stack. The only requirement for a Forecasting service is that it is able to
communicate with other services via the messaging system.

Our pilot implementation already features a microservice that performs
forecasts using an artificial neural network with TensorFlow [ABC+16].
This neural network is trained offline using historical data and mounted
into the microservice at start-up. During operation, the Forecasting mi-
croservice subscribes to the stream of measurements (again monitored
or aggregated) and feeds each incoming measurement into the neural
network. The forecast results are stored in an OpenTSDB [Ope22] time
series database [GJK+14] and published to a dedicated stream via the
messaging system.

In a first proof of concept, we built and trained such neural networks
together with the newspaper printing company. We selected a set of
machines in the company with different power consumption patterns and
trained individual networks per machine. These neural networks use not
only the historical power consumption of their machines as input, but also
the power consumption of other machines as well as environmental data,
such as the outside temperature. We deploy individual instances of our

114

10.6. Pilot Implementation of the Measures

Forecasting microservice for each neural network, allowing for individual
forecasts of each machine.

10.6.7 Visualization

As suggested in Section 10.5.7, the Titan Control Center features web appli-
cations for visualizing power consumption data. Since visualization serves
as a measure to integrate the results of other measures, we also regard
the visualization software components as integration of the individual
analysis microservices. The Titan Control Center provides two single-page
applications for visualization: a graphical user interface, tailored to the
specific functions of the Titan Control Center, and a dashboard for simple,
yet highly adjustable data visualizations. In the following, we describe
both applications and their corresponding use cases.

Control Center The Titan Control Center user interface serves to provide
a consistent access to all functionalities of the Titan Control Center. This
includes visualizing the analysis results of microservices, but also control
functions for configuring microservices. The user interface is implemented
with Vue.js [You22] and D3 [BOH11].

Fig. 10.6 shows a screenshot of the Titan Control Center’s summary
view. It consists of several components which collect and show the in-
dividual analysis results for the entire production. A time series chart
displays the power consumption in course of time. This chart is interactive,
allowing zooming and shifting the displayed time interval. Colored arrows
indicate how the power consumption evolved within the last hour, the last
24 hours, and the last 7 days. A histogram shows a frequency distribution
of metered values serving to detect potential for load peak reduction. A pie
chart breaks down the total power consumption into subconsumers. Line
charts display the average course of power consumption over the week
or the day, as provided by the Statistics microservice (see Section 10.6.3).
The visualizations are periodically updated with new data. This causes,
for example, the time series diagram to shift forward continuously and
the arrows to change color and direction.

Apart from this summary view, our pilot implementation also provides
the described types of visualization for individual machines and groups

115

10. Industrial Power Consumption Analytics

Figure 10.6. Screenshot of the Titan Control Center [HHB+21].

of machines. Starting from an overview of the total power consumption, a
user can thus navigate through the hierarchy of all consumers. Further-
more, the single-page application allows graphically correlating data (see
Section 10.6.4) and configuring machines and machine groups maintained
by the Sensor Management service.

Dashboard The second application is a pure visualization dashboard
implemented with Grafana [Gra22] (see Fig. 10.7). It provides a set of

116

10.6. Pilot Implementation of the Measures

Figure 10.7. Screenshot of the Titan dashboard implemented with Grafana [Wet19].

common visualizations such as line charts, bar charts, and gauges. As
presented in Fig. 10.7, we mainly display time series charts as bar or
line charts. The dashboard is highly adjustable, meaning that users can
add, modify, and rearrange chart components. Such adjustments can be
performed graphically and only require usage of provided interfaces.
Thus, especially IT savvy production operators can customize dashboards.
Moreover, they can create own dashboards and share them among users.

117

10. Industrial Power Consumption Analytics

In this way individual dashboards, for example, for management and
production operators can be implemented.

In contrast to the Control Center, this dashboard does not provide
any control functions (e.g., for sensor configuration) and no complex
interactive visualizations (e.g., the comparison tool). Thus, it only serves
as an extension to the Control Center, allowing for visual data analysis
and reporting. In particular, this dashboard covers use cases, where power
consumption data should be integrated in existing dashboards (as it is the
case in one studied enterprise) or if dashboards should be customized by
production operators.

10.6.8 Alerting

Alerting in the Titan Control Center is implemented using the Titan Flow
Engine in the Integration component. All messages that are published to
the messaging system can again be consumed by the Titan Flow Engine
and processed in flows. This way, production operators can create and
adjust alerting flows directly within the production environment. Our pilot
implementation already provides a flow that sends an email whenever
an anomaly in power consumption is reported. In dedicated bricks, the
operator can filter the types of anomaly an alert should be generated for
and configure how the email should be sent (e.g., message and receiver).
The Flow Engine allows modeling flows that perform arbitrary actions
in the production environment when alerts are received. This includes
communications with machines again, for example, to show alerts on
machine monitors.

118

Chapter 11

Scalability Benchmarks for

Event-Driven Microservices

This chapter presents our Theodolite scalability benchmarks for event-
driven microservices. It builds upon our work previously published in
the Big Data Research journal [HH21e] and presented at the ACM/SPEC
International Conference on Performance Engineering 2021 [HH21a].

With this chapter, we address research questions RQ 2.2–2.4 of this
thesis. Section 11.1 addresses research question RQ 2.2 and presents four
dataflow architectures derived from typical use cases for event-driven mi-
croservices based on Chapter 10. Section 11.2 discusses relevant load types
and Section 11.3 discusses relevant resource types. Thus, they address
research question RQ 2.3. Section 11.4 presents SLOs for distributed stream
processing and, hence, addresses research question RQ 2.4. Afterward,
Section 11.5 gives an overview of our benchmark implementations for
state-of-the-art stream processing frameworks and Section 11.6 discusses
related work on stream processing benchmarks.

11.1 Dataflow Architectures

In this section, we identify four use cases of different complexity for event-
driven microservices. Our use cases are derived from the Titan Control
Center as presented in Section 10.6. Although addressed to analyzing
industrial power consumption data, we suppose that these use cases also
occur in other application domains. For each use case, we present a cor-
responding dataflow architecture (often referred to as operator graph or
topology). Our presented architectures do not follow a specific dataflow

119

11. Scalability Benchmarks for Event-Driven Microservices

Table 11.1. Overview of dataflow characteristics observed in use cases.

Dataflow characteristics UC1 UC2 UC3 UC4

Stateless operations ✓ ✓ ✓ ✓

Tumbling window aggregations ✗ ✓ ✗ ✓a

Sliding window aggregations ✗ ✗ ✓ ✓a

Joins of different streams ✗ ✗ ✗ ✓

Feedback loops ✗ ✗ ✗ ✓

a Use case UC4 can be configured either to use tumbling windows or
sliding windows.

model as different stream processing frameworks use different models
[ABC+15; SWW+18]. However, most of these models are similar, allowing
the described architectures to be implemented in most modern frame-
works.

All our use cases share that they receive all data from a messaging
system and publish all processing results back to that messaging system.
We assume all input messages to be measurements from IIoT sensors
consisting of the corresponding sensor identifier, a timestamp and the
actual measurement. All messages are keyed by the sensor identifier. The
dataflow architectures presented below focus only on required processing
steps. In practice, microservices fulfilling these use cases are likely to
contain additional processing steps, for example, for filtering and trans-
forming intermediate data. Table 11.1 lists typical dataflow characteristics
in stream processing and shows in which use cases these characteristics
apply.

11.1.1 Use Case UC1: Database Storage

A simple, but common use case in event-driven architectures is that events
or messages should be stored permanently, for example, in a NoSQL
database. Using this database, an application can provide its data via an
API as it is the case in Lambda and Kappa architectures [Lin17]. In the Titan
Control Center, for example, the Statistics and the History microservices
store processed data this way (see Section 10.6).

120

11.1. Dataflow Architectures

map
store

forEach

input

stream

Figure 11.1. Dataflow architecture for UC1: Database Storage [HH21e].

A dataflow architecture for this use case is depicted in Fig. 11.1. The
first step is to read data records from a messaging system. Then, these
records are converted into another data format in order to match the often
different formats required by the database. Finally, the converted records
are written to an external database. Depending on the required processing
guarantees, this is done either synchronously or asynchronously. Unless
the interaction between database and stream processing framework should
be benchmarked, we suggest not including a real database in implementa-
tions of these benchmarks. Otherwise, due to the simple, stateless stream
processing topology, the benchmark would primarily test the database’s
write capabilities. See Chapter 15 for a benchmarking study with database
writes.

11.1.2 Use Case UC2: Downsampling

A very common use case for stream processing architectures is downsam-
pling, meaning to aggregate multiple messages within consecutive, non-
overlapping time windows (called tumbling windows [CKH19]). Typical
aggregations compute the average, minimum, or maximum of measure-
ments within a time window or count the occurrence of same events. Such
reduced amounts of data are required, for example, to save computing
resources or to provide a better user experience (e.g., for data visualiza-
tions). With such window aggregations, the (potentially varying) message
frequency of an input stream is reduced to a constant value. This is re-
quired for applying many machine learning methods, which require data
of a fixed frequency. In the Titan Control Center, the History microservice
continuously downsamples IIoT monitoring data and provides these data
for other microservices (see Section 10.6).

A dataflow architecture for this use case is presented in Fig. 11.2. It
first reads measurement data from an input stream and then assigns each
measurement to a time window of fixed, but statically configurable size.

121

11. Scalability Benchmarks for Event-Driven Microservices

windowBy
tumbling win.

aggregate
input

stream

output

stream

Figure 11.2. Dataflow architecture for UC2: Downsampling [HH21e].

Afterward, an aggregation operator computes the summary statistics sum,
count, minimum, maximum, average, and population variance for a time
window. Finally, the aggregation result containing all summary statistics
is written to an output stream.

11.1.3 Use Case UC3: Time-Attribute-Based Aggregation

A second type of temporal aggregation is aggregating messages that have
the same time attribute. Such a time attribute is, for example, the hour of
day, day of week, or day in the year. This type of aggregation can be used
to compute, for example, an average course over the day, the week, or the
year. It allows demonstrating or discovering seasonal patterns in the data.
The Statistics microservice of the Titan Control Center implements this use
case (see Section 10.6).

This use case differs from UC2 in that the time attribute has to be ex-
tracted from the record’s timestamp, whereas in UC2 the timestamp needs
no further interpretation. Moreover, in this use case, multiple aggregations
have to be performed in parallel (e.g., maintaining intermediate results
for all 7 days of the week). Thus, the amount of different output keys
increases by the factor of possible different time attributes. For example,
when computing aggregations based on the day of week for a data stream
with n different keys, the result stream contains data of 7n different keys.

In practice, not all messages that have ever been recorded should be
considered in the aggregation, but usually only those of a certain past
time period. For example, in industrial facilities, operators are interested
in the average course of energy consumption over the day within the last
4 weeks. They do probably not want to include older data as the average
course might change over time, for example, due to changing process
planning and varying load over the year. Therefore, the aggregation based
on time attributes is performed on a sliding window [CKH19], which
only considers data of a fixed time period. In contrast to the tumbling

122

11.1. Dataflow Architectures

selectKey
windowBy
sliding win.

input

stream

output

stream
aggregate

Figure 11.3. Dataflow architecture for UC3: Aggregation based on time attributes
[HH21e].

window aggregation in UC2, this use case additionally requires computing
results for multiple overlapping time windows, which further increases
the amount of output data.

Fig. 11.3 depicts a dataflow architecture for this use case. The first step
is to read measurement data from the input stream. Then, a new key is
set for each message, which consists of the original key (i.e., the identifier
of a sensor) and the selected time attribute (e.g., day of week) extracted
from the record’s timestamp. In the next step, the message is duplicated
for each sliding window it is contained in. Then, all measurements of the
same sensor and the same time attribute are aggregated for each sliding
time window by computing the summary statistics sum, count, minimum,
maximum, average, and population variance. The aggregation results per
identifier, time attribute, and window are written to an output stream.
Optionally, this dataflow architecture can be configured to also periodically
emit intermediate results.

11.1.4 Use Case UC4: Hierarchical Aggregation

For analyzing sensor data, often not only the individual measurements
of sensors are of interest, but also aggregated data for groups of sensors.
When monitoring energy consumption in industrial facilities, for example,
comparing the total consumption of machine types often provides bet-
ter insights than comparing the consumption of all individual machines.
Additionally, it may be necessary to combine groups further into larger
groups and adjust these group hierarchies at runtime. A detailed descrip-
tion of these requirements, supplemented with examples, is provided in
our previous publications [HH19b; HH20b]. In the Titan Control Center,
the Aggregation microservice hierarchically aggregates IIoT data this way
(see Section 10.6).

123

11. Scalability Benchmarks for Event-Driven Microservices

join

aggregate

duplicate

as flatMap

merge

aggregation

results
sensor data

sensor

groups

groupBy

windowBy
tumbling win.

Figure 11.4. Dataflow architecture for UC4: Hierarchical Aggregation [HH21e].

Fig. 11.4 depicts a dataflow architecture for the use case of hierarchically
aggregating data streams. The dataflow architecture requires two input
data streams: a stream of sensor measurements and a stream tracking
changes to the hierarchies of sensor groups. In the consecutive steps,
both streams are joined, measurements are duplicated for each relevant
group, assigned to time windows, and the measurements for all sensors
in a group per window are aggregated. Finally, the aggregation results
are exposed via a new data stream. Additionally, the output stream is
fed back as an input stream in order to compute aggregations for groups
containing subgroups. See our previous publication [HH20b] for a detailed
architecture description. To also support unknown record frequencies, this
dataflow architecture can be configured to use sliding windows instead of
tumbling windows [HH20b].

11.2 Load Types

Load on a stream processing application implementing the previously
presented dataflow architectures can be scaled in various dimensions. The
most important load type is scaling with the number of distinct simulated
sensors. All our proposed benchmarks use the sensor identifier as key
on the input topic and keep it as part of the key within all dataflow
architectures. Thus, within all architectures, processing is parallelized on
the key. For use case UC4, the number of sensors is implicitly defined
by the structure of the sensor hierarchy. Assuming a uniformly shaped
hierarchy tree, scalability could be evaluated regarding the number of
sensors within a group and the depth of nesting groups in groups. Due

124

11.3. Resource Types

to our proposed benchmarking method and our associated Theodolite
framework, supported load types do not have to be configured as part
of the benchmark’s implementation. Instead, every scalable property of
a benchmark deployment can serve as load type. Other load types are,
for example, the frequency of simulated sensors sending messages or
the payload of messages. Scalability can also be examined regarding the
complexity of operations within a dataflow architecture. For example, in
use case UC3 one could scale with the size of windows while keeping the
volume of input messages constant.1

11.3 Resource Types

All modern stream processing frameworks as discussed in Section 4.4
use parallelization as the primary method to scale with increasing load.
To exploit parallelization, either the number of instances or the number
of CPUs and memory provided per instance can be scaled. For the lat-
ter, many stream processing frameworks also require scaling the size of
thread pools and similar configurations accordingly. Thus, the number
of instances and the resources per instance are also the most relevant
resource dimensions for benchmarking scalability. However, thanks to
our proposed benchmarking method, other resource dimensions can be
evaluated as well.

11.4 Service Level Objectives

We propose two SLOs for evaluating streaming processing frameworks.
The primary SLO is the consumer lag trend SLO, indicating whether the
number of unprocessed and queued messages increases over time. In the
case of dataflow architectures containing window aggregation, we propose
to complement it with an SLO, capping the amount of discarded records
per second.

1This expands our benchmarking method to consider workload instead of load as input
variable. Workload is often defined as the product of load and work with work being the
amount of operations that are performed for each incoming message [BLB15; BSL16].

125

11. Scalability Benchmarks for Event-Driven Microservices

0 200 400 600
seconds since start

0

1 M

2 M

3 M

qu
eu

ed
 m

es
sa

ge
s

observed
trend

(a) 6 SUT instances

0 200 400 600
seconds since start

0

1 M

2 M

3 M

qu
eu

ed
 m

es
sa

ge
s observed

trend

(b) 7 SUT instances

0 200 400 600
seconds since start

0

1 M

2 M

3 M

qu
eu

ed
 m

es
sa

ge
s observed

trend

(c) 8 SUT instances

Figure 11.5. Illustration of the consumer lag trend metric for an exemplary bench-
mark execution (Theodolite’s UC3 benchmark implemented with Kafka Streams
and 50 000 messages/second) with different numbers of SUT instances. Inde-
pendent of the number of instances, we can observe a variable lag. However,
computing a trend line (without considering the measurements from an initial
warmup period), reveals that for 6 instances, the number of queued messages will
steadily increase over time. Providing 7 instances leads to a decrease in queued
messages after the warmup period, while 8 instances yields an almost constant
trend line.

11.4.1 Consumer Lag Trend SLO

The consumer lag of a stream processing job describes how many messages
are queued in the messaging system, which have not been processed yet.
Our consumer lag trend metric describes the average increase (or decrease)
of the lag per second. It can be measured by monitoring the lag and
computing a trend line using linear regression. The slope of this line is the
lag trend. Fig. 11.5 illustrates the concept of the lag trend.

We use the lag trend metric to define an SLO, whose function valuates
to true if the lag trend does not exceed a certain threshold. Ideally, this
threshold should be 0 as a non-positive lag trend means that messages can
be processed as fast as they arrive. However, it could make sense to allow
for a small increase since even when observing an almost constant lag, a
slightly rising or falling trend line will be computed due to outliers.

We observed that in most cases, checking the lag trend alone suffices as
an SLO. The architectures of modern stream processing frameworks make
it unlikely that SLOs such as a maximum tolerable processing latency
can be fulfilled by increasing the degree of parallelism. An advantage of

126

11.5. Systems under Test and Load Generation

defining an SLO based on the lag is that it can be collected very efficiently
from the messaging system brokers. It does require data from the stream
processing frameworks, which might not reliably update their metrics
anymore under high load, leading to incorrect SLO results.

11.4.2 Dropped Records SLO

In certain cases, we observed that under high load the consumer lag does
not substantially increase, but records were discarded due to lateness. In
most stream processing frameworks, operations on time windows still
accept out-of-order records for a configurable amount of time. If this time
has elapsed, records are discarded and not further processed. Thus, records
are still consumed from the messaging system, not causing a consumer
lag increase, but results become incorrect. We observed this particularly
for implementations of use case UC4 containing multiple repartitionings
and a feedback loop.

To consider these cases when evaluating an SUT for a certain load and
resource combination, we propose to include a second SLO, which sets a
maximum allowed number of discarded records per second. In line with
the corresponding metrics provided by stream processing frameworks, we
refer to this SLO as dropped records SLO. As the metrics are provided by
the stream processing framework, which might be incorrect under high
load, it is important to only use this SLO in addition to the lag trend SLO.

11.5 Systems under Test and Load Generation

Along with our Theodolite benchmarking framework (see Section 8.5),
we provide open-source implementations of the dataflow architectures
presented in this section with Apache Flink, Hazelcast Jet, Apache Kafka
Streams, and Apache Beam.2 The implementations of the latter are avail-
able with the Apache Flink and the Apache Samza runners. Using other
Beam runners as we do in Chapter 15 with Google Cloud Dataflow, re-
quires only little effort.

2
https://www.theodolite.rocks/theodolite-benchmarks/

127

https://www.theodolite.rocks/theodolite-benchmarks/

11. Scalability Benchmarks for Event-Driven Microservices

In addition to the implementations of the dataflow architectures, we
also provide a corresponding load generator for each use case. It is config-
urable by the number of simulated sensors and with the frequency each
simulated sensor sends records. Multiple instances of the load genera-
tor can be started, which automatically form a cluster, perform a leader
election, and divide the amount of data to be generated among themselves.

All our task sample implementations and the load generators are
configured to use Apache Kafka as messaging system to read and write
data from. Simulated sensor measurements are defined and encoded with
the Apache Avro serialization format. For some implementations, we also
integrate alternative transport mechanism as shown in Chapter 15. As
required by Aderaldo et al. [AMP+17] (see Section 4.2.3), both task sample
implementations and the load generators are continuously tested and built,
as well as packaged and published as container images. We also provide
Kubernetes manifests to deploy our implementations to a Kubernetes
cluster.

For each task sample implementation, we provide a corresponding
benchmark for our Theodolite benchmarking framework (see Section 8.5).
These benchmarks consist of the Kubernetes manifests for the task sample
implementation (SUT) and the load generator, configurations of Kafka
topics, a load type defining the number of simulated sensors, two resource
types defining the number of instances and the number resources per
instances, and Theodolite definitions of our proposed SLOs.

11.6 Related Work

Over the last few years, a couple of benchmarks for stream processing
frameworks have been proposed. In the following, we give an overview
of such benchmarks and relate them to our Theodolite benchmark for
event-driven microservices. Table 11.2 summarizes characteristics of the
discussed benchmarks.

StreamBench [LWX+14] is one of the earliest benchmarks for modern
stream processing frameworks. While originally only implemented for
Spark and Storm, it has later been used to benchmark Apache Apex, Beam,
Flink, and Samza as well [HMG+19; QWH+16]. As its name suggests,

128

11.6. Related Work
T

a
b

le
1

1
.2

.
O

ve
rv

ie
w

of
th

e
ch

ar
ac

te
ri

st
ic

s
an

d
im

p
le

m
en

ta
ti

on
s

of
st

re
am

p
ro

ce
ss

in
g

be
nc

hm
ar

ks
.

M
es

sa
gi

ng
St

re
am

p
ro

ce
ss

in
g

fr
am

ew
or

k
C

lo
u

d
-n

at
iv

e

B
en

ch
m

ar
k

Tasksamples

Opensource

Kafka

Others

None

Flink

Spark

Storm

Samza

KafkaStreams

HazelcastJet

Others

Database

Containers

Kubernetes

Others

T
he

od
ol

it
e

(t
hi

s
th

es
is

)
4

✓
✓

✓
✓

b
✓

✓
✓

b
a

✓
✓

B
ea

m
N

ex
m

ar
k

[A
p

a2
2]

13
✓

✓
✓

✓
b

✓
b

?
b

?
b

✓
b

E
SP

B
en

ch
[H

M
P

+
21

]
5

✓
✓

✓
b

✓
b

?
b

✓
b

?
b

✓

O
SP

B
en

ch
[v

D
vd

P
20

]
5

✓
✓

✓
✓

✓
✓

✓

D
SP

B
en

ch
[B

G
M

+
20

]
5

✓
✓

✓
✓

✓

Sh
ah

ve
rd

ie
t

al
.[

SA
S1

9]
1

✓
✓

✓
✓

✓
✓

✓
✓

K
ar

im
ov

et
al

.[
K

R
K

+
18

]
2

✓
✓

✓
✓

R
Io

T
B

en
ch

[S
C

S1
7]

4c
✓

✓
✓

✓

Y
SB

[C
D

E
+

16
]

1
✓

✓
✓

✓
✓

✓

Sp
ar

kB
en

ch
[L

T
W

+
15

]
10

✓
✓

✓

St
re

am
B

en
ch

[L
W

X
+

14
]

7
✓

✓
✓

L
in

ea
r

R
oa

d
[A

C
G

+
04

]
5

✓
✓

a
op

ti
on

al
b

u
si

ng
A

p
ac

he
B

ea
m

c
R

Io
T

B
en

ch
’s

4
ap

p
lic

at
io

n
be

nc
hm

ar
ks

ar
e

co
m

p
os

ed
of

27
m

ic
ro

be
nc

hm
ar

ks

129

11. Scalability Benchmarks for Event-Driven Microservices

SparkBench [LTW+15] is a benchmark tailored to Apache Spark. The Yahoo
Streaming Benchmark (YSB) [CDE+16] is frequently used and adapted in
research [YJH+17; KYA17; NNG19; ZMK+19; CYH20; vDvdP20]. Worth
highlighting is the work of Shahverdi et al. [SAS19], who extend YSB
with implementations for the frameworks Kafka Streams and Hazelcast
Jet. As discussed in Section 4.4, these frameworks are particularly suited
for building event-driven microservices. RIoTBench [SCS17] provides four
application benchmarks for Storm composed of 27 small task samples.
Nasiri et al. [NNG19] adopt RIoTBench for Flink and Spark. Karimov et al.
[KRK+18] present a benchmark with two task samples, derived from a real
industrial context, yet without providing open-source implementations.

More recently, DSPBench [BGM+20], OSPBench [vDvdP20; vDon21],
and ESPBench [HMP+21; Hes22] have been proposed. DSPBench contains
15 benchmarks, which resample typical stream processing applications,
derived from reviewing the literature. OSPBench provides benchmarks for
analyzing traffic sensor data. Besides evaluations of latency, throughput,
and resource usage, van Dongen and van den Poel used OSPBench to also
evaluate scalability [vDvdP21b] and fault recovery [vDvdP21a]. In contrast
to most other benchmarks, OSPBench provides implementations for the
rather new framework Kafka Streams, which is also intensively studied
in this thesis. The Enterprise Stream Processing Benchmark (ESPBench)
builds upon the Senska benchmark [HRM+18]. It is special in the sense
that it integrates a relational database management system. In contrast to
most other benchmarks, ESPBench’s task samples are implemented with
Apache Beam. While Hesse et al. [HMP+21] only perform evaluations with
Spark, Flink, and Hazelcast Jet, we expect that also other Beam runners
can be used to run the benchmark.

The Nexmark benchmark [TTP+10] has originally been proposed as
the Niagara Extension to the XMark benchmark addressed to first-generation
stream processing systems (see Section 4.4). The Apache Beam commu-
nity adapted and extended Nexmark with implementations for Beam to
benchmark the performance of different runners [Apa22]. Documentation
and benchmark results are provided for the direct runner as well as for
the Flink, the Spark, and the Google Cloud Dataflow runners. However,
running the benchmark with other runners should be possible as well.
Recently, there seems to be an effort to implement the Nexmark task sam-

130

11.6. Related Work

ples with other frameworks in an open-source project.3 However, currently
this project only provides implementations for Apache Flink. Moreover,
Gencer et al. [GTĎ+21] implemented the Nexmark benchmark for their
performance evaluation of Hazelcast Jet.

Worth mentioning is also the Linear Road benchmark presented by
Arasu et al. [ACG+04]. Although published years before all modern stream
processing frameworks considered in this thesis (see Section 4.4) were re-
leased, it is still used in research [ZHD+17; ZMK+19; Sax20] and compared
to newer benchmarks [BGM+20; HMP+21]. Pagliari et al. [PHU20] and
Garcia et al. [GGS+22a; GGS+22b] present approaches to generate bench-
marks.

Table 11.2 focuses on publications presenting new benchmarks. The
differentiation between benchmarks and benchmarking or experimental
studies is sometimes blurry. Many publications that present benchmarks
perform also an experimental study with them. On the other hand, many
experimental studies utilize existing benchmarks, but modify them. From
Table 11.2, we can see that a lot of open-source benchmarks have been
proposed. Apart from our Theodolite benchmarks, none of these bench-
marks is particularly addressed to scalability. Often originating in data
management research, many benchmarks are defined as “queries” over
data streams [TTP+10; KRK+18; HMP+21]. Most benchmarks include a
messaging system as a middleware component between workload gen-
eration and stream processing framework. In the vast majority of cases,
this is Apache Kafka. Karimov et al. [KRK+18] exclude such a system
to not let it become the benchmark’s bottleneck. Our Theodolite bench-
marks purposely include Kafka to represent more realistic event-driven
microservice deployments. Flink, Spark, and Storm are by far the most
supported frameworks. Only a few benchmarks exist for Samza, Kafka
Streams, and Hazelcast Jet, which are frameworks particularly suited for
implementing event-driven microservice. Our Theodolite benchmarks are
the only ones providing implementations for all of them. While some
benchmarks include an interaction with a database in their setup, others
do not. With our benchmarks, a database can optionally be used as we
do in Chapter 15. Besides our Theodolite benchmarks, there is only one

3
https://github.com/nexmark/nexmark

131

https://github.com/nexmark/nexmark

11. Scalability Benchmarks for Event-Driven Microservices

other benchmark (OSPBench) that is provided as container images to be
used in a cloud-native setting. No other benchmark provides Kubernetes
manifests.

Karimov et al. [KRK+18] highlight shortcomings of several experimen-
tal performance evaluations of stream processing frameworks. They define
the sustainable throughput metric, which is the highest load that a system
can handle without continuously increasing latency. Imai et al. [IPV17]
defined this metric in a similar form. Venugopal and Theobald [VT20],
Chu et al. [CYH20], and van Dongen and van den Poel [vDvdP20] perform
experimental evaluations with it. Sustainable throughput can be seen as a
specific form of our load capacity metric with the lag trend SLO.

132

Part IV

Experimental Evaluation

Chapter 12

Evaluating Variability of

Benchmark Results in the Cloud

In this chapter, we perform an experimental evaluation of our proposed
scalability benchmarking method. Specifically, we empirically evaluate the
effect of our benchmarking method’s configuration options (see Section 7.5)
on the statistically grounding of its results. The overarching goal of this
evaluation is to find configuration parameters such that the results are
reproducible, while the overall execution time is kept as short as possible.
Hence, we state the following evaluation questions:

EQ 1 For how long should SLO experiments be executed?

EQ 2 How many repetitions of such SLO experiments should be per-
formed?

EQ 3 How does the assessment of SLOs evolve with increasing resource
amounts?

EQ 4 How does the assessment of SLOs evolve with increasing load inten-
sities?

We conduct our experiments for multiple SUTs, which implement dif-
ferent benchmarks, employ different software frameworks, and run in dif-
ferent cloud environments. This way, we also seek to find out whether the
choice of configuration parameters should depend on the cloud provider,
implementation, or benchmark. In this evaluation, we focus on our Theodo-
lite benchmarks for event-driven microservices. However, our evaluation
method is also intended to serve as a blueprint to repeat our evaluation
for other SUTs.

137

12. Evaluating Variability of Benchmark Results in the Cloud

This chapter builds upon our work previously published in the Empiri-
cal Software Engineering journal [HH22a]. After a detailed description of our
experimental setup in Section 12.1, we conduct the following evaluations:

– In Section 12.2, we address EQ 1 and study the duration SLO experi-
ments are executed for as well as their warm-up period duration. We
evaluate how both durations should be chosen such that we can decide
with sufficiently high confidence whether evaluated SLOs are achieved.

– In Section 12.3, we address EQ 2 and evaluate how many repetitions
of an SLO experiment should be performed to decide with sufficiently
high confidence whether evaluated SLOs are achieved.

– In Section 12.4, we address EQ 3 and evaluate how the assessment of
SLOs evolves with increasing resource amounts. This evaluation helps
in determining whether the binary search strategy can be applied with
our demand metric and whether the lower bound restriction strategy can
be applied with our capacity metric.

– In Section 12.5, we perform a similar evaluation to address EQ 4 and
evaluate how the assessment of SLOs evolves with increasing load
intensities. This evaluation helps in determining whether the binary
search strategy can be applied with our capacity metric and whether the
lower bound restriction strategy can be applied with our demand metric.

In all four sections, we first describe the employed experiment design,
before we present and discuss the experiment results. Finally, we discuss
threats to validity in Section 12.6.

12.1 Experimental Setup

In the following, we present the general experimental setup for the fol-
lowing evaluations. For all experiments, we use our Theodolite scalability
benchmarking framework (see Section 8.5) with our Theodolite bench-
marks for event-driven-microservices (see Chapter 11). We consider 4
benchmarks, which are implemented by 2 stream processing frameworks
and executed in 3 cloud environments. This results in 24 SUTs as summa-
rized in Table 12.1.

138

12.1. Experimental Setup

Table 12.1. Overview of SUTs studied in our evaluation

SUT component Evaluated options Σ

Benchmarks
Task samples Theodolite’s UC1, UC2, UC3, UC4 4
Load type Messages with distinct keys per second 1
Resource type Number of instances (Kubernetes pods) 1
SLO Consumer lag trend 1

Frameworks Kafka Streams, Flink 2
Cloud providers Google (GCP), Oracle (OCI), private cloud (SPEL) 3

Total number of SUTs 24

12.1.1 Benchmark Implementations and Configurations

We evaluate implementations of our Theodolite benchmarks with the
stream processing frameworks Apache Flink and Apache Kafka Streams.
Specific configurations of our dataflow architectures and the stream pro-
cessing frameworks are aligned with our pilot evaluations of a previous
publication [HH21e]. For benchmark UC1, UC2, and UC3, the load type
corresponds to the number of keys, where for each key, we generate one
message per second.

For benchmark UC4, the load type is the number nested groups n,
which results in 4n keys, generating one message per second. For reasons
of conciseness, we present the generated load also as these 4n messages
per second in the results tables of our evaluation.

The resource type used in our evaluations is the number of instances of
services. For Kafka Streams, this is simply the amount of pods, containing
the same Kafka Streams application. All necessary coordination among
instances to distribute tasks and data is then handled by the Kafka Streams
framework. For Flink, the resource type is the amount of TaskManager
pods. Additionally, an environment variable has to be set, which notifies
the Flink instances about the desired parallelism, which in our case corre-
sponds to the amount of TaskManager pods. Since we do not benchmark
for fault tolerance, Flink’s coordinating JobManager pod is not scaled.

139

12. Evaluating Variability of Benchmark Results in the Cloud

Table 12.2. Configuration of Kubernetes clusters used for our evaluation, running
at Google Cloud Platform (GCP), Oracle Cloud Infrastructure (OCI), and a private
cloud (SPEL).

GCP OCI SPEL

Nodes 3 3 5
CPU cores 4 4 2 ˆ 16
RAM 16 GB 16 GB 384 GB
Machine type e2-standard-4 VM.Standard.E2.4 Intel Xeon Gold 6130
Kubernetes 1.19.9-gke.1900 1.19.7 1.18.6
Kafka brokers 3 3 10

As discussed in Section 11.4, the consumer lag trend is the most impor-
tant SLO. Hence, we focus on this SLO in the evaluations of this chapter.

12.1.2 Evaluated Cloud Platforms

The experimental evaluations presented in this section are performed at
two public and one private cloud platforms. The two public cloud ven-
dors are Google Cloud Platform (GCP) and Oracle Cloud Infrastructure
(OCI), where we rely on the managed Kubernetes services with virtual
machine nodes. We chose Google Cloud Platform as it is one of the largest
cloud providers, whose Kubernetes offering can be regarded as most ma-
tured since Google significantly leads the Kubernetes development. Oracle
Cloud Infrastructure is representative of a niche cloud provider, which
provides a less sophisticated managed Kubernetes service. As private
cloud infrastructure, we chose the Software Performance Engineering Lab
(SPEL) at Kiel University.1 In contrast to the public clouds, its Kubernetes
cluster runs on 5 bare metal nodes with considerably more powerful hard-
ware. Besides also representing a realistic deployment platform used in
many industries, the private cloud serves as a reference, ruling our the
influence of public cloud performance peculiarities. Table 12.2 summarizes
the configuration of the Kubernetes clusters, we use in our evaluation.

1
https://www.se.informatik.uni-kiel.de/en/research/software-performance-engineering-lab-spel

140

https://www.se.informatik.uni-kiel.de/en/research/software-performance-engineering-lab-spel

12.2. Evaluation of Warm-up and SLO Experiment Duration

12.1.3 Replication Package

We provide a replication package and the collected data of our experiments
as supplemental material [HH21b], allowing other researchers to repeat
and extend our work. Our replication package includes the Theodolite Exe-

cutions (see Section 8.3) used in our experiments and interactive notebooks
used for analyzing our experiment results.

12.2 Evaluation of Warm-up and SLO Experi-

ment Duration

Our scalability measurement method and, thus, our proposed benchmark-
ing tool architecture is configurable by the duration, SLO experiments are
executed for, and by the duration that is considered as warm-up period.
We address EQ 1 and evaluate how the choice of warm-up period and du-
ration influences the result of the SLO experiments. Goal of this evaluation
is to minimize the experiment duration, without substantially scarifying
the quality of the results.

12.2.1 Experiment Design

With this evaluation, we perform SLO experiments for all 24 SUTs depicted
in Table 12.1. For each SUT, we aim to select SLO experiments, in which the
resource amounts approximately correspond to the resource demand of the
load. Those are probably the most difficult to assess, while combinations
of high load and few resources or vice versa are likely to require less time
to be evaluated.

We performed preliminary experiments to find reasonable combina-
tions of load and resources to evaluate. For each SUT, we determine an
approximation of the load that can be handled by 4–5 instances. We found
those instance counts to be reliably working in all cloud platforms. To
find suitable load-resource combinations, we run single, explorative ex-
periments for a short time and manually observe the lag via Theodolite’s
dashboard [HH21e]. These results are not statistically grounded and do
not necessarily represent the real resource demand. Instead, they represent

141

12. Evaluating Variability of Benchmark Results in the Cloud

a deployment, in which the provisioned resources approximately match
the resource demand to bootstrap the following experimental evaluations.
In addition to the resource amounts that approximately match the de-
mand of a load, we perform experiments for one instance more and less,
representing a slight over or underprovisioning. In our private cloud en-
vironment, we additionally perform these experiments with loads twice
as high. For this case we find approximately matching instance counts
as well, but due to higher instance numbers, we use two instances more
and less to represent over or underprovisioning. Table 12.3 shows the load
intensities and resource amounts that we use for the following evaluation.

To obtain an approximation of the true, long-term lag trend, we per-
form the SLO experiments in this evaluation over a period of one hour.
According to our measurement method and the lag trend SLO, we let
Theodolite monitor the lag during this time. For each experiment, we
compute the lag trend over the entire experiment duration with different
warm-up periods. The computed lag trends serve as reference values, used
in the following approach to reduce the experiment duration.

For each experiment and evaluated warm-up period, we now evaluate
how much shorter the experiment duration can be chosen such that the
result of the SLO evaluation does not deviate from the reference value.
For this purpose, we retroactively reduce the experiment duration by
discarding the latest measurements. We evaluate two options as decision
criterion for when no further measurements should be discarded:

1. We reduce the duration as long as the computed trend slope does not
deviate by more than a certain error from the reference value.

2. We reduce the duration as long as the binary result of the SLO evalua-
tion does not change. More specifically, we first determine whether the
reference values exceeds a threshold t. Then, we reduce the duration as
long as the lag trend does not rises above t or falls below t.

Our replication package [HH21b] allows evaluating our experiment re-
sults according to the described method for different warm-up durations,
allowed errors, and lag trend thresholds.

142

12.2. Evaluation of Warm-up and SLO Experiment Duration

Table 12.3. Chosen load intensities and resource amounts for the SUTs, used
for the evaluation of experiment duration and repetition count. The load type
corresponds to messages per second. Resource amounts are numbers of instances,
representing underproviding (inst_), overprovisioning (inst^), and resources that
approximately match the demand (inst«).

SUT load resource amounts

cloud framework bench. mes./s inst_ inst« inst^

GCP Flink UC1 200 000 4 5 6
UC2 150 000 3 4 5
UC3 60 000 5 6 7
UC4 65 536 1 2 3

Kafka Streams UC1 300 000 4 5 6
UC2 150 000 5 6 7
UC3 20 000 4 5 6
UC4 65 536 4 5 6

OCI Flink UC1 200 000 4 5 6
UC2 150 000 3 4 5
UC3 60 000 4 5 6
UC4 65 536 1 2 3

Kafka Streams UC1 300 000 5 6 7
UC2 150 000 4 5 6
UC3 30 000 5 6 7
UC4 65 536 4 5 6

SPEL Flink UC1 300 000 3 4 5
600 000 8 10 12

UC2 150 000 3 4 5
300 000 6 8 10

UC3 60 000 2 3 4
240 000 8 10 12

UC4 65 536 1 2 3
Kafka Streams UC1 300 000 4 5 6

600 000 5 7 9
UC2 150 000 3 4 5

300 000 7 9 11
UC3 30 000 4 5 6

60 000 8 10 12
UC4 65 536 3 4 5

143

12. Evaluating Variability of Benchmark Results in the Cloud

12.2.2 Results and Discussion

Our results show that when using a maximum allowed error as decision
criterion, the time required to reach a stable value decreases with increas-
ing allowed error. Fig. 12.1 illustrates this for errors of 1%, 10%, and 20%
with a warm-up duration of 120 s. However, we observe the same trend
also for other errors and warm-up durations. We cannot identify a signif-
icant impact of the cloud provider or the stream processing framework
on the required execution time. Our results suggest that more complex
stream processing benchmarks require shorter execution times, but this
would need further experiments.

When using a maximum allowed error as decision criterion, we ob-
serve that even with an allowed error of 20%, the required execution time
remains excessively high: For example with the data presented in Fig. 12.1,
more than 50% of the experiments, require more than half an hour execu-
tion time for a single SLO experiment. Referring to the runtime formula of
our method (see Section 7.5), this would quickly lead to a total runtime
of several days. On the other hand, the time required to decide whether
the lag trend exceeds a threshold is significantly lower, independently of
the cloud provider, stream processing framework, and benchmark. While
Fig. 12.1 illustrates this observation for a threshold of t = 2000 with a
warm-up duration of 120 s, the results for other thresholds t ą 0 and
warm-up durations are quite similar. Thresholds close to t = 0 require
longer experiment durations, but as described in Section 11.4 allowing for
a small lag trend increase is sensible. As for our scalability metric we are
ultimately only interested in whether the SLO is met, we only look at the
executing times required to decide if the lag trend does not exceed the
threshold.

Fig. 12.2 summarizes the required execution times with a threshold of
t = 2000 for different warm-up durations between 30 s and 480 s (multiples
of the sampling interval) and all evaluated SUTs as box plots. We observe
that in the vast majority of cases, warm-up periods of 60 s and 120 s result
in required execution times of less than 5 minutes. Summarized over all
SUTs, longer warm-up durations lead to less variability in the required
execution duration, but also cause longer durations in most of the cases.
We make similar observations independently of the chosen threshold.

144

12.2. Evaluation of Warm-up and SLO Experiment Duration

1% Error 10% Error 20% Error Threshold
decision criterion

0

500

1000

1500

2000

2500

3000

3500

re
qu

ire
d

du
ra

tio
n

in
 s

(a) among all SUTs

1% Error 10% Error 20% Error Threshold
decision criterion

0

500

1000

1500

2000

2500

3000

3500

re
qu

ire
d

du
ra

tio
n

in
 s SPEL

GCP
OCI

(b) separated by cloud platform

1% Error 10% Error 20% Error Threshold
decision criterion

0

500

1000

1500

2000

2500

3000

3500

re
qu

ire
d

du
ra

tio
n

in
 s KStreams

Flink

(c) separated by stream processing framework

1% Error 10% Error 20% Error Threshold
decision criterion

0

500

1000

1500

2000

2500

3000

3500

re
qu

ire
d

du
ra

tio
n

in
 s UC1

UC2
UC3
UC4

(d) separated by benchmark

Figure 12.1. Box plots showing the required execution duration among all SUTs
and cloud providers for different decision criterion. Whiskers are restricted to
1.5ˆIQR (interquartile range) and outliers lying below or above the whiskers are
omitted for readability [HH22a].

From our experiment results, we consider a warm-up duration of 120 s
to be a good trade-off. In contrast to 60 s warm-up, 120 s result in longer
median execution times, but minimize the execution duration for the vast
majority of experiments (see the upper whisker). When only looking at
the private cloud or benchmark UC3, also significant shorter warm-up
durations of 30 s could be chosen.

Table 12.4 shows the execution times for all evaluated SUTs for a warm-
up duration of 120 s and a threshold of t = 2000. In line with Fig. 12.2,
we see that certain resource-load combinations require significant longer

145

12. Evaluating Variability of Benchmark Results in the Cloud

30s 60s 120s 240s 480s
warm-up duration in s

100

200

300

400

500

ex
ec

ut
io

n
du

ra
tio

n
in

 s

(a) among all SUTs

30s 60s 120s 240s 480s
warm-up duration in s

100

200

300

400

500

600

ex
ec

ut
io

n
du

ra
tio

n
in

 s SPEL
GCP
OCI

(b) separated by cloud platform

30s 60s 120s 240s 480s
warm-up duration in s

100

200

300

400

500

600

ex
ec

ut
io

n
du

ra
tio

n
in

 s KStreams
Flink

(c) separated by stream processing framework

30s 60s 120s 240s 480s
warm-up duration in s

100

200

300

400

500

600

ex
ec

ut
io

n
du

ra
tio

n
in

 s

UC1
UC2
UC3
UC4

(d) separated by benchmark

Figure 12.2. Box plots showing the required execution duration among all SUTs
and cloud providers for different warm-up durations. Whiskers are restricted
to 1.5ˆIQR and outliers laying below or above the whiskers are omitted for
readability [HH22a].

execution times. However, we can observe that in these cases, testing the
same load with slightly less or slightly more instances only requires a
fraction of the time. Hence, with a significantly shorter execution time, we
can get a good approximation of the resource demand.

12.2.3 Summary

Running experiments until we obtain a stable performance measurement
result is impractical due to the immense time required for such evalu-
ations. However, simply determining whether a SLO is met or not can

146

12.2. Evaluation of Warm-up and SLO Experiment Duration

Table 12.4. Required experiment duration of SLO experiments for different SUTs,
load intensities (mes./s), and resource amounts (inst_, inst«, and inst^) with a
warm-up duration of 120 s.

SUT load execution time in s

cloud framework bench. mes./s inst_ inst« inst^

GCP Flink UC1 200 000 3085 225 140
UC2 150 000 130 280 155
UC3 60 000 265 150 125
UC4 65 536 140 125 840

Kafka Streams UC1 300 000 140 125 145
UC2 150 000 125 305 145
UC3 20 000 140 130 140
UC4 65 536 145 145 140

OCI Flink UC1 200 000 140 125 135
UC2 150 000 130 215 205
UC3 60 000 140 125 125
UC4 65 536 140 125 1710

Kafka Streams UC1 300 000 155 220 125
UC2 150 000 140 125 1560
UC3 30 000 140 125 125
UC4 65 536 140 350 460

SPEL Flink UC1 300 000 140 165 125
UC2 150 000 185 125 180
UC3 60 000 140 180 125
UC4 65 536 155 170 415

Kafka Streams UC1 300 000 125 125 125
600 000 140 140 125

UC2 150 000 140 125 155
300 000 140 140 125

UC3 30 000 140 125 125
60 000 2220 125 2185

UC4 65 536 140 125 125

147

12. Evaluating Variability of Benchmark Results in the Cloud

be done within 5 minutes in most cases, when using warm-up durations
of 60 s to 120 s. Although certain resource-load combinations are more
difficult to assess, execution times of up to 5 minutes provide still a good
approximation of the resource demand and the load capacity.

12.3 Evaluation of Repetition Count

Our scalability measurement method and, thus, our proposed benchmark-
ing tool architecture support repeating SLO experiments multiple times to
increase the confidence in their results. In this section, we address EQ 2
and evaluate how many repetitions are required to decide with sufficiently
high confidence whether SLOs are met.

12.3.1 Experiment Design

As in the previous evaluation, we perform SLO experiments for all 24 SUTs
depicted in Table 12.1 with the same amounts of resources and load
intensities (see Table 12.3). According to our results from the evaluation
of warm-up and experiment duration, we run each SLO experiment for
5 minutes with the first 2 minutes considered as warm-up period. We
perform 30 repetitions of each experiment as suggested, for example, by
Kounev et al. [KLvK20] to apply the Central Limit Theorem.

For the majority of SUTs, we observe a normal distribution on the
computed lag trend slopes. Deriving mean x and standard deviation s
(with N ´ 1 degrees of freedom) of the lag trend slopes for an SUT, we
can now approximate how many repetitions are required to obtain a
certain confidence interval for the true mean [KLvK20]. However, similar
to the previous evaluation, we are ultimately only interested in whether
the lag trend slope is above or below a threshold t. Thus, we do not
need to approximate the number of repetitions to obtain a two-sided
confidence interval with a certain error around the mean, but instead only
consider a one-sided confidence interval of (´8, t) or (t, 8), respectively.
We can approximate the required number of repetitions n for such a 95%
confidence interval with:

148

12.3. Evaluation of Repetition Count

n =

(

z0.05s

t ´ x

)2

12.3.2 Results and Discussion

Fig. 12.3 summarizes the approximated number of repetitions for different
thresholds t as box plots. Our replication package [HH21b] allows obtain-
ing these values also for other thresholds. We observe that, independent
of the chosen threshold, the required number of repetitions for most SUTs
is very low: 50% of all SUTs only require 1–2 repetitions. Furthermore,
the observed variability decreases with higher thresholds. While in most
cases for t = 0 up to 12 repetitions are necessary, this value decreases to
6 repetitions for t = 1000 and 5 repetition for t = 2000. For t = 10000 even
in the vast majority of cases only one repetition is necessary. However,
a threshold of t = 10000 means that an increase of 10 000 messages per
second is tolerable, which in some evaluated configurations already corre-
sponds to half the generated load. This raises the chance of considering
resource amounts as sufficient which in fact are not. A dependency on the
threshold can be observed independently of the cloud platform, stream
processing framework, and the benchmark. Generally, when looking at
thresholds t ě 1000, slightly more repetitions are required in the pub-
lic clouds (with more repetitions in the Google cloud than in the Oracle
cloud). A possible explanation is that performance in public clouds is often
influenced by co-located tenants (“noisy neighbor”) and, thus, is less stable
[LC16]. In the private cloud, on the other hand, we exclusively control
the entire hardware. However, the observed deviation between public and
private cloud is rather low. Another explanation, thus, could simply be that
considerably more computing resources are available in our private cloud,
resulting in a lower hardware utilization. It is also noticeable that Flink
requires more repetitions than Kafka Streams. We cannot identify a clear
pattern suggesting that particular benchmarks require more repetitions
than others.

Table 12.5 shows the approximated number of repetitions of all evalu-
ated SUTs and load intensities for different numbers of instances and a
threshold of t = 2000. In addition to the box plots presented in Fig. 12.3,
we can see that in certain cases very high numbers of repetitions (high-

149

12. Evaluating Variability of Benchmark Results in the Cloud

Table 12.5. Required number of repetitions of SLO experiments for different SUTs,
load intensities (mes./s), and resource amounts (inst_, inst«, and inst^). The
threshold for the lag trend is t = 2000.

SUT load required repetitions

cloud framework bench. mes./s inst_ inst« inst^

GCP Flink UC1 200 000 5 15 4
UC2 150 000 1 3 1
UC3 60 000 1 1 2
UC4 65 536 1 11 3

Kafka Streams UC1 300 000 4 1 1
UC2 150 000 8827 7 1
UC3 20 000 2 1 1
UC4 65 536 1 1 1

OCI Flink UC1 200 000 2 5 1
UC2 150 000 19 2 1
UC3 60 000 1 1 1
UC4 65 536 1 115 1

Kafka Streams UC1 300 000 130 1 1
UC2 150 000 1 1 9
UC3 30 000 1 1 1
UC4 65 536 10 1 1

SPEL Flink UC1 300 000 1 1 1
600 000 5 7 1

UC2 150 000 1 3 1
300 000 3 4 1

UC3 60 000 1 1 1
240 000 1 1 1

UC4 65 536 1 2 799
Kafka Streams UC1 300 000 1 1 1

600 000 1 1 1
UC2 150 000 1 1 2

300 000 2 1 1
UC3 30 000 1 1 1

60 000 1 24 3
UC4 65 536 1 1 1

150

12.3. Evaluation of Repetition Count

t=0 t=1000 t=2000 t=10000
lag trend threshold

2

4

6

8

10

12

re
q.

 n
um

be
r o

f r
ep

et
iti

on
s

(a) among all SUTs

t=0 t=1000 t=2000 t=10000
lag trend threshold

2

4

6

8

10

12

re
q.

 n
um

be
r o

f r
ep

et
iti

on
s

GCP
OCI
SPEL

(b) separated by cloud platform

t=0 t=1000 t=2000 t=10000
lag trend threshold

2

4

6

8

10

12

re
q.

 n
um

be
r o

f r
ep

et
iti

on
s

Flink
KStreams

(c) separated by stream processing framework

t=0 t=1000 t=2000 t=10000
lag trend threshold

2

4

6

8

10

12

re
q.

 n
um

be
r o

f r
ep

et
iti

on
s

UC1
UC2
UC3
UC4

(d) separated by benchmark

Figure 12.3. Box-plots showing the required number of repetitions of SLO exper-
iments for different thresholds. Whiskers are restricted to 1.5ˆIQR and outliers
laying below or above the whiskers are omitted for readability [HH22a].

lighted in red) would be required in order to tell with sufficiently high
confidence whether the lag trend slope is above or below the threshold.
However, in almost all of these cases, we would only need a few repetitions
when evaluating the same SUT with slightly more or fewer instances. We
also observed this when choosing a different threshold. Transferred to our
scalability measurement method, this means that only a few repetitions
are required to obtain a good approximation of the resource demand.
Therefore, only a few repetitions are required to determine the demand
and capacity functions when accepting a small error in the function.

151

12. Evaluating Variability of Benchmark Results in the Cloud

12.3.3 Summary

In most cases, only very little repetitions are required to assess whether an
SLO is met or not. While determining the exact resource demand might
require hundreds or thousands of repetitions, up to 3 or 5 repetitions are
sufficient to determine a close approximation of the resource demand and
the load capacity.

12.4 SLO Evaluation with Increasing Resources

In this section, we evaluate how the computed lag trend evolves with
increasing the provisioned resource amounts, while keeping the generated
load constant. The goal of this evaluation is to analyze whether SLOs might
be violated for higher resource amounts when they have been fulfilled
before for lower resource amounts.

12.4.1 Experiment Design

In this evaluation, we address EQ 3 and evaluate selected SUTs in more
detail. From our previous evaluation, we observed that the results for
both public clouds do not differ significantly. The same applies for the
benchmarks. Hence, we focus on the two benchmarks UC2 and UC3 and
restrict our experiments to the private cloud and the Google cloud. This
results in 8 SUTs (see Table 12.6).

For each SUT, we conduct a set of isolated SLO experiments, in which
we generate a constant load, equal to the loads of Table 12.3, and different
resource amounts. We repeat each SLO experiment 5 times with 5 minutes
of experiment duration including 2 minutes of warm-up. Table 12.6 sum-
marizes the experiment set-up. For each SLO experiment, we compute the
lag trend allowing us to analyze how the lag trend evolves with increasing
resource amounts. In Google Cloud Platform, we additionally performed
SLO experiments in a Kubernetes cluster with 6 instead of 3 nodes as
explained in the following section.

152

12.4. SLO Evaluation with Increasing Resources

2 4 6 8 10 12 14
instances

0k

100k

200k

la
g

tre
nd

(a) SPEL, Kafka Streams, UC2

3 6 9 12 15 18
instances

0k

20k

40k

la
g

tre
nd

(b) SPEL, Kafka Streams, UC3

3 6 9 12 15 18
instances

0k

100k

200k

la
g

tre
nd

(c) SPEL, Flink, UC2

0 3 6 9 12 15 18 21 24
instances

0k

50k

100k

150k

200k
la

g
tre

nd

(d) SPEL, Flink, UC3

1 2 3 4 5 6 7 8 9 10
instances

0k

50k

100k

la
g

tre
nd

(e) GCP, Kafka Streams, UC2

1 2 3 4 5 6 7 8 9 10
instances

0k

5k

10k

15k

la
g

tre
nd

(f) GCP, Kafka Streams, UC3

1 2 3 4 5 6 7 8 9 10
instances

0k

50k

100k

la
g

tre
nd

(g) GCP, Flink, UC2

1 2 3 4 5 6 7 8 9 10
instances

0k

10k

20k

30k

40k

la
g

tre
nd

(h) GCP, Flink, UC3

Figure 12.4. Lag trend with increasing resource amounts for different SUTs
[HH22a]. In the Google cloud, the red line represents the lag trend for a 3 node
cluster, while the blue line represents the 6 node cluster.

153

12. Evaluating Variability of Benchmark Results in the Cloud

12.4.2 Results and Discussion

Fig. 12.4 shows for each evaluated SUT how the median lag trend evolves
with increasing resource amounts. Additionally, a horizontal line at a lag
trend of 2000 is drawn to visualize a possible threshold for the lag trend
metric.

In general, we can observe that in the private cloud the lag trend
decreases with increasing amounts of instances, until it reaches a value of
approximately 0 and, thus, falls below the defined threshold. This marks
the resource demand of the tested load intensity according to our demand
metric. After that, the lag trend fluctuates considerably for 3 out of 4 SUTs,
before it stabilizes at around 0. These fluctuations occur more strongly
with Flink than with Kafka Streams and more strongly with UC3 than
with UC2. In particular, we can observe that 10 instances seem to perform
better than 9 and 11 instances. One possible reason for this may be found
in the fact that we use 40 Kafka topic partitions and the stream processing
frameworks might work particularly efficiently if the partition count is a
multiple of the instance count.

For the experiments in the public cloud, these effects cannot clearly be
observed. However, we observe that with a cluster size of 3 nodes, the lag
trend increases again after some point when further instances are added.
As we expect this to be due to exhausted node resources, we repeat the
same experiments in a Kubernetes cluster with twice the number of nodes.
From this, we can see that the same instance numbers result in lower

Table 12.6. SUT configuration for evaluations of the SLO with increasing resources.

SPEL GCP

KStreams Flink KStreams Flink

UC2 UC3 UC2 UC3 UC2 UC3 UC2 UC3

mes./s 300 000 60 000 300 000 240 000 150 000 20 000 150 000 60 000
instances ď 15 ď 20 ď 20 ď 25 ď 10 ď 10 ď 10 ď 10
duration 5 minutes, including 2 minutes warm-up
repetitions 5

154

12.5. SLO Evaluation with Increasing Load

lag trends and, especially, the lag trend remains below the threshold for
higher instance numbers. Thus, we see our assumption confirmed that the
increase for higher loads is caused by a high utilization of the cluster.

Regardless of the actual reasons for both observations, we can conclude
that the lag trend is not always decreasing with higher resource amounts.
Therefore, our proposed binary search strategy must be used with caution
for the demand metric. For our capacity metric, this means that increasing
resources might also lead to violations of SLOs such that the lower bound
restriction cannot always be applied.

12.4.3 Summary

In general, the lag trend decreases with increasing resources. However,
there are clearly certain resource configurations which perform better than
others. This means, the binary search cannot necessarily be used with
the demand metric, while the lower bound restriction cannot necessarily
be used with the capacity metric. Additionally, benchmarkers should be
aware of the underlying resource limits. Reaching these limits breaks
monotonicity, making these search strategies not applicable.

12.5 SLO Evaluation with Increasing Load

In this section, we now address EQ 4 and evaluate how the lag trend
slope evolves with increasing loads, while fixing the number of processing
instances. The goal is to analyze whether SLOs might be violated for lower
load intensities while they are achieved for higher loads.

12.5.1 Experiment Design

Similar to the previous evaluation, we now fix the amount of instances
and perform a set of SLO experiments for increasing load intensities. The
remaining setup corresponds to that of Section 12.4 and is summarized in
Table 12.7.

155

12. Evaluating Variability of Benchmark Results in the Cloud

Table 12.7. SUT configuration for evaluations of SLO with increasing load.

SPEL GCP

Kafka Streams Flink Kafka Streams Flink

UC2 UC3 UC2 UC3 UC2 UC3 UC2 UC3

mes./s ď 500k ď 100k ď 500k ď 400k ď 250k ď 50k ď 250k ď 100k

instances 10 13 11 20 6 5 5 6
duration 5 minutes, including 2 minutes warm-up
repetitions 5

12.5.2 Results and Discussion

Fig. 12.5 shows for each evaluated SUT how the median lag trend evolves
with increasing load intensities. Again, a horizontal line at a lag trend of
2000 visualizes a possible threshold for the lag trend metric.

For 7 out of 8 evaluated SUTs, we observe that for low load intensities
the lag trend stays reasonably constant and fluctuates only slightly around
0, until a certain load intensities is reached. In all of these cases, it does
not exceed 2000, which suggests that t = 2000 is a reasonable order of
magnitude for the threshold. For the Kafka Streams implementation of
UC3 in Google Cloud Platform, the lag trend is always greater than the
threshold since our evaluated load intensities are too high. For all other
SUTs, we can first observe a slight drop in the lag trend once a certain
load intensity is exceeded, which is followed by monotonically increase.
This marks the capacity of the evaluated resource configuration according
to our capacity metric, i.e., the maximal load it can process. The drop can
be explained by the fact that the load is already high enough such that
messages are massively queuing up while the SUT starts up. Once the SUT
reaches its normal throughput, messages have already been accumulated
and are then continuously processed, leading to a decrease in the lag. The
drop of Flink deployments is stronger compared to Kafka Streams since
Flink has a longer start-up time as we investigated manually. Again, the
Kafka Streams implementation of UC3 in Google Cloud Platform is the
only SUT, for which the the lag trend is not monotonically increasing.

156

12.5. SLO Evaluation with Increasing Load

100k 200k 300k 400k 500k
messages/second

0k

50k

100k

150k

200k

la
g

tre
nd

(a) SPEL, Kafka Streams, UC2

20k 40k 60k 80k 100k
messages/second

0k

10k

20k

la
g

tre
nd

(b) SPEL, Kafka Streams, UC3

100k 200k 300k 400k 500k
messages/second

0k

25k

50k

75k

la
g

tre
nd

(c) SPEL, Flink, UC2

50k 100k 150k 200k 250k 300k 350k 400k
messages/second

0k

2k

5k

8k
la

g
tre

nd

(d) SPEL, Flink, UC3

50k 100k 150k 200k 250k
messages/second

0k

50k

100k

150k

la
g

tre
nd

(e) GCP, Kafka Streams, UC2

10k 20k 30k 40k 50k
messages/second

10k

20k

30k

40k

la
g

tre
nd

(f) GCP, Kafka Streams, UC3

50k 100k 150k 200k 250k
messages/second

0k

25k

50k

75k

la
g

tre
nd

(g) GCP, Flink, UC2

20k 40k 60k 80k 100k
messages/second

0k

5k

10k

la
g

tre
nd

(h) GCP, Flink, UC3

Figure 12.5. Lag trend with increasing load for different SUTs [HH22a].

157

12. Evaluating Variability of Benchmark Results in the Cloud

More specifically, for load intensities of 20 000 and 40 000 messages per
second, the lag decreases. Since, however, we cannot make this observation
on other than the median data, we expect this to be outliers.

In summary, we conclude that the binary search strategy can be used
to evaluate large sets of load intensities with the capacity metric, at least
when benchmarking event-driven microservices with an SLO based on the
lag trend metric. As furthermore the computed lag trend is monotonically
increasing after exceeding the defined threshold, we expect also the lower
bound restriction to be applicable for the demand metric.

12.5.3 Summary

When increasing the load, the lag trend remains below a threshold slightly
higher than 0 up to a certain load intensity. For higher load intensities,
the lag trend is monotonically increasing. This means, the preconditions
for using the binary search with the capacity metric and the lower bound
restriction with the demand metric are fulfilled.

12.6 Threats to Validity

The goal of this experimental evaluation is to assess how configuration
options of our scalability benchmarking method influence their results. In
the following, we report on the threats and limitations to the validity of
our evaluation.

Threats to Internal Validity Cloud platforms in general allow only mak-
ing little assumptions regarding the underlying hardware or software
infrastructure [BWT17]. Due to techniques such as containerization, cloud-
native applications abstract this even further. Hence, we only have little
influence on the execution environment and cannot control possible in-
fluences on our result. Major part of this evaluation is to investigate the
variability of results and hence the underlying processing capabilities of
stream processing frameworks. Nevertheless, we reuse the same clusters
among all our experiments such that we cannot rule out that a recreation
of the cluster on potential other hardware or with other co-located VMs

158

12.6. Threats to Validity

will cause different results. Furthermore, we only perform our experiments
in a relatively short time frame. We perform experiments of the same type
mostly in a sequence such that we cannot rule out that general perfor-
mance variations over several hours bias our results. While early works
on cloud benchmarking found that performance exhibits clear seasonal
patterns [IYE11], more recent research were not able to confirm this [LC16].
Our cluster configuration of the private cloud and the public clouds is
very different, which may make it difficult to compare them.

Threats to External Validity We only evaluate one type of cloud-native
applications, namely event-driven microservice that use distributed stream
processing frameworks. Our results regarding the required experiment
duration and required number of repetitions should therefore not be
generalized to other types of cloud-native applications, which potentially
use other SLOs. Furthermore, we only consider two stream processing
frameworks and focus on single types of load and resources. Similar
limitations apply to the evaluated cloud environments. In the public
clouds, we only evaluate virtual machines, while in the private cloud, we
only evaluate bare metal servers. Furthermore, the nodes in the VM are of
medium size resulting in an overall small cluster, while the powerful nodes
in private cloud provide much more computing capacity. To increase the
external validity of our results, it might be advisable to perform additional
evaluations with other cluster sizes.

159

Chapter 13

Evaluating Scalability of

Distributed Stream Processing

Frameworks

In this chapter, we employ our Theodolite benchmarking method and our
benchmarks for event-driven microservices to assess and compare the scal-
ability of different stream processing frameworks and their configurations.
Specifically, we state the following evaluation questions:

EQ 1 How do different stream processing frameworks compete regarding
their scalability?

EQ 2 Are the previously discovered performance limitations of Apache
Beam’s abstraction layer [HMG+19] still present with more recent
framework versions?

EQ 3 How do stream processing frameworks scale with increasing compu-
tational work?

EQ 4 Can vertical scaling be a viable alternative to horizontal scaling?

This chapter starts by describing our experimental setup in Section 13.1.
Section 13.2 starts addressing EQ 1 by running baseline experiments for
each benchmark and framework. This section also provides first results
regarding EQ 2, which is further investigated in Section 13.3. Section 13.4
addresses EQ 3 and evaluates how different stream processing frameworks
scale when increasing the duration of window aggregations. Section 13.5
addresses EQ 4 by evaluating how stream processing frameworks scale on
a single node. Finally, Section 13.6 discusses threats to validity. We provide

161

13. Evaluating Scalability of Stream Processing Frameworks

a preprint of a publication building upon this chapter, which is currently
under peer review [HH23b].

13.1 Experimental Setup

For the evaluations in this chapter, we use the SPEL private cloud envi-
ronment described in Section 12.1, yet with the newer Kubernetes version
1.23.7. Unless stated differently, we run 5 Kafka brokers, one on each
node, with Kafka version 3.2. Each Kafka topic is configured to consist
of 100 partitions. In the following, we summarize the configuration of
the benchmarked stream processing framework, the selected benchmark
task samples, and the benchmarking method. We provide a replication
package and the collected data of all experiments as supplemental material
[HH22c], allowing other researchers to repeat and extend our work.

13.1.1 Configuration of Frameworks

We benchmark the stream processing frameworks Apache Beam with the
Flink and the Samza runner, Apache Flink, Hazelcast Jet, and Apache
Kafka Streams. For a fair comparison, we evaluate all frameworks with
mostly their default configuration. We enable committing read offsets
to Kafka in all frameworks. This allows us to monitor the consumer
lag via Kafka metrics, which is required to evaluate our lag trend SLO.
Enabling offset committing is also often done in production deployments
to increase observability. We set the commit interval to 5 seconds for all
frameworks, which is the default configuration of Kafka consumers once
offset committing is enabled. Kafka Streams has a default commit interval
of 30 seconds as in Kafka Streams, the commit interval also controls fault
tolerance (comparable to the checkpointing interval in other frameworks).
For our experiments with Apache Beam and the Flink runner, we enable
the FasterCopy option as we further discuss and evaluate in Section 13.3.
Per default, we configure 1 CPU and 4 GB of memory for each pod, which
is a common ratio of CPU and memory of cloud VMs.

162

13.1. Experimental Setup

13.1.2 Configuration of Task Samples

Unless otherwise stated, we use the following configuration of our bench-
mark dataflow architectures.

– Benchmark UC1 is configured to write each incoming message as a log
statement to the standard output stream to simulate a database write
operation (i.e., simulating a side effect in the dataflow architecture).

– Benchmark UC2 aggregates incoming messages over tumbling windows
of one minute. Any out-of-order records arriving after the window has
been closed are discarded.

– Benchmark UC3 aggregates records by their hour of day attribute over
a time window of three days with a slide period of one day. That
means each incoming record belongs to three time windows. Early
results (i.e., before the end of the time window has passed) are emitted
every 5 seconds. For Kafka Streams, such emission cannot explicitly be
configured. However, Kafka Streams continuously forwards aggregation
results based on the configured commit interval (which is also 5 seconds).

– We benchmark a simplified version of benchmark UC4, which omits
the feedback loop. This allows for better predictability of the message
volume and, hence, more comparable results.

13.1.3 Configuration of the Benchmarking Method

According to our experimental evaluation in Section 12.2, we run our
experiments with benchmark UC1–UC3 for a duration of 5 minutes while
considering the first 2 minutes as warm-up period. As benchmark UC4
shows a higher variability in the results, we run its experiments for 10 min-
utes including a 4 minutes warm-up period. We quantify scalability with
our resource demand metric and use the linear search strategy in combina-
tion with the lower bound restriction. If not stated differently, we evaluate
scalability in regards to increasing the number of simulated sensors as
load type. In benchmark UC4, this is indirectly controlled by increasing
the number of nested groups, with each group containing 4 sub-groups or

163

13. Evaluating Scalability of Stream Processing Frameworks

sensors. This means for n nested groups, we simulate 4n sensors. Each sim-
ulated sensor generates one measurement per second. Unless otherwise
stated, we use the number of instances as resource type. In all benchmark
executions, we use the lag trend SLO with a threshold of 1% of the gener-
ated message volume. Additionally, for benchmarks UC2 and UC4 (which
aggregate data in short windows), we configure the dropped records SLO
with again a threshold of 1% of the generated message volume. For the
Apache Beam implementation with the Samza runner, no metrics con-
cerning the number of dropped records are provided. With Beam’s Flink
runner, these metrics are only unreliably available.1 This means that for
these two SUTs, we cannot definitely be sure whether the determined
resource demand for UC2 and UC4 is sufficient to process all records
successfully, yet indicating a lower bound.

13.2 Baseline Experiments

We benchmark load intensities between 100 000 and 1 000 000 simulated
sensors (and, thus, generated messages per second) for benchmark UC1
and UC2, 10 000 and 100 000 simulated sensors for UC3, and 5 to 9 nested
groups (1 024–262 144 generated messages per second) for benchmark UC4.

Fig. 13.1 shows the resource demand results for all evaluated frame-
works and benchmarks. The results for benchmark UC4 (in the following
figures as well) are visualized with an exponential scale with base 4 at
the horizontal axis since the number of generated messages grows expo-
nentially with a linear increase in the number of nested groups. We can
observe that in almost all experiments, Flink, Hazelcast Jet, and Kafka
Streams, have a considerably lower resource demand than the Beam de-
ployments. Only Hazelcast Jet in UC4 and the Beam Flink runner for
low loads in UC1 are exceptions to this. As in some cases, the generated
load intensities were too high for the Beam deployments, we repeat the
corresponding experiments with lower load intensities (see Fig. 13.2 and
Fig. 13.5).

1We asked a corresponding question regarding the metrics of both runners at Beam’s
mailing list, but did not receive an answer.

164

13.2. Baseline Experiments

0 200k 400k 600k 800k 1000k
simulated sensors

0

3

6

9

12

15

18

nu
m

be
r o

f i
ns

ta
nc

es

Beam/Flink
Beam/Samza
Flink
Hazelcast Jet
Kafka Streams

(a) UC1

0 200k 400k 600k 800k 1000k
simulated sensors

0

3

6

9

12

15

18

21

24

27

nu
m

be
r o

f i
ns

ta
nc

es

Beam/Flink
Beam/Samza
Flink
Hazelcast Jet
Kafka Streams

(b) UC2

0 20000 40000 60000 80000 100000
simulated sensors

0

2

4

6

8

10

12

14

16

nu
m

be
r o

f i
ns

ta
nc

es

Beam/Flink
Beam/Samza
Flink
Hazelcast Jet
Kafka Streams

(c) UC3

6 7 8 9
nested groups

0

3

6

9

12

15

18

nu
m

be
r o

f i
ns

ta
nc

es

Beam/Flink
Beam/Samza
Flink
Hazelcast Jet
Kafka Streams

(d) UC4

Figure 13.1. Scalability benchmark results according to our resource demand
metric for the stream processing frameworks Apache Beam (with the Flink and
Samza runners), Apache Flink, Hazelcast Jet, and Apache Kafka Streams.

Despite some outliers (see Beam/Flink in UC1 and Flink in UC2), all
frameworks show linear scalability according to our resource demand
metric, yet with different rates. Whereas both SUTs based on Beam show
the steepest increase in required resources, the results of Flink, Kafka
Streams, and Hazelcast Jet vary depending on the benchmark. In UC1
(see Fig. 13.1a), all frameworks behave similarly, with resource demands
increasing slightly steeper for Hazelcast Jet compared to Kafka Streams
and for Kafka Streams compared to Flink. For UC2 (see Fig. 13.1b), we see

165

13. Evaluating Scalability of Stream Processing Frameworks

0 2500 5000 7500 10000 12500 15000 17500 20000
simulated sensors

0

4

8

12

16

20

24

28

nu
m

be
r o

f i
ns

ta
nc

es

Beam/Flink
Beam/Samza

(a) UC3

4 5 6 7
nested groups

0

3

6

9

12

15

18

nu
m

be
r o

f i
ns

ta
nc

es

Beam/Flink
Beam/Samza

(b) UC4

Figure 13.2. Repetition of scalability experiments shown in Figs. 13.1c–d with
lower load intensities for Apache Beam with the Flink and the Samza runners.

a clear ranking with Hazelcast Jet showing the best results, followed by
Kafka Streams and Flink. For UC3 (see Fig. 13.1c), Hazelcast Jet appears to
be even more superior. A single Jet instance is sufficient for all evaluated
load intensities. On the other hand, Flink requires up to 10 TaskManagers
and Kafka Streams up to 16 instances. Overall, Kafka Streams’ resource
demand for UC3 increases at a steeper rate compared to Flink. To further
inspect the scalability of Hazelcast Jet for UC3, we repeat these experiments
with an aggregation duration of 30 days in contrast to 3 days as used in the
other experiments. Fig. 13.3a shows that Hazelcast Jet also scales linearly
in this case. With UC4 (see Fig. 13.1d), we observe a slightly flatter increase
in resource demand for Kafka Streams compared to Flink. In contrast to
the other benchmarks, Hazelcast Jet shows a significantly higher resource
demand. Up to 30 instances are not able to handle load from more than 7
nested sensor groups.

For the frameworks used with Apache Beam, we observe a significantly
steeper increase in resource demand of Samza compared to Flink in UC1
(cf. Fig. 13.1a and Fig. 13.5a) and UC2 (cf. Fig. 13.1b and Fig. 13.5b). For
benchmark UC3 (see Fig. 13.2a), both frameworks scale at similar rates
with Samza requiring slightly fewer instances. For benchmark UC4 (see
Fig. 13.2b), it appears that the resource demand of Flink increases at a
steeper rate. However, since we do not find a resource demand for loads

166

13.3. Apache Beam Configuration

0 20000 40000 60000 80000 100000
simulated sensors

0

1

2

3

4

5

6

7

8

nu
m

be
r o

f i
ns

ta
nc

es

Hazelcast Jet

(a) 30 days aggregation period

0 5 10 15 20 25 30
window aggregation duration in days

0

2

4

6

8

10

nu
m

be
r o

f i
ns

ta
nc

es

Hazelcast Jet

(b) 100 000 simulated sensors

Figure 13.3. Repetition of scalability experiments with Hazelcast Jet and benchmark
UC3. (a) evaluates scalability regarding the number of simulated sensors with
a 30 days aggregation period in contrast to the 3 days period in Fig. 13.1c. (b)
evaluates scalability regarding the aggregation period with a constant load of
100 000 simulated sensors in contrast to 10 000 simulated sensors in Fig. 13.6a.

of more than 7 nested groups, we cannot safely conclude whether this is a
clear trend. For lower load intensities (less than 6 nested groups), Flink
requires fewer instances than Samza.

Worth mentioning is also the significant difference between native
Apache Flink and the Flink runner of Apache Beam. In almost all experi-
ments, the resource demand of Apache Beam with Flink is at least twice
as high. For the more compute-intensive benchmarks UC3 and UC4, it is
tremendously higher. The performance overhead of using Apache Beam as
an abstraction layer has also been observed in related research [HMG+19].

13.3 Apache Beam Configuration

As we have seen in Section 13.2, Apache Flink and Apache Samza in com-
bination with Apache Beam have a significantly higher resource demand
compared to the other evaluated frameworks. In this section, we take a
closer look at the scalability of the Apache Beam SUTs and evaluate how
scalability is affected by different configuration options. In the following,

167

13. Evaluating Scalability of Stream Processing Frameworks

we first look at the Apache Flink runner and, afterward, at the Apache
Samza runner.

13.3.1 Apache Flink

In their master’s thesis, Spæren [Spæ21] investigates possible reasons
for the performance overhead of the Flink runner found by Hesse et al.
[HMG+19]. They discovered unnecessary serialization and deserialization
between operators and introduced the FasterCopy option, which disables
these copy operations. This option is integrated in Beam since version 2.26.
While the stream processing application must fulfill some requirements to
run with the FasterCopy option, Bensien [Ben21] found that the Theodolite
benchmarks fulfill these requirements. As additionally this option might
become the default in future releases, we decided to turn on this option in
our benchmark implementations by default. In this section, we evaluate
how enabling and disabling FasterCopy affects scalability.

Additionally, we observed that Beam’s Kafka consumers generate
a lot of log messages if not configured differently. This contrasts with
the other frameworks. As extensive logging can actually have an impact
on performance (see the following Section 13.5), we evaluate whether
disabling all logging results in lower resource demand.

Fig. 13.4 shows our results of running the scalability benchmarks with
the FasterCopy option disabled and logging disabled compared to the
experiments from Section 13.2. We can see that enabling FasterCopy results
in significantly lower resource demands for UC1–UC3 (see Figs. 13.4a–c).
This is in line with the performance improvements reported by Spæren
[Spæ21]. For benchmark UC4 (see Fig. 13.4d), enabling FasterCopy seems
to not have a great effect on resource demand. Whereas with 5 nested
groups the determined required number of instances is slightly higher, it
is slightly lower with 6 nested groups. A possible explanation is that the
dataflow architecture of UC4 involves more data transfer among instances
and, hence, actually requires serialization and deserialization between
operators.

We can observe that disabling all logging has only a small impact
on the resource demand of benchmark UC2–UC4 (see Figs. 13.4b–d),
but significantly reduces the resource demand of benchmark UC1 (see

168

13.3. Apache Beam Configuration

0 200k 400k 600k 800k 1000k
simulated sensors

0

3

6

9

12

15

18

21

24

27

nu
m

be
r o

f i
ns

ta
nc

es

Default
Faster copy disabled
Logs disabled

(a) UC1

0 100k 200k 300k 400k 500k 600k 700k 800k
simulated sensors

0

4

8

12

16

20

24

28

nu
m

be
r o

f i
ns

ta
nc

es

Default
Faster copy disabled
Logs disabled

(b) UC2

0 2500 5000 7500 10000 12500 15000 17500 20000
simulated sensors

0

4

8

12

16

20

24

28

nu
m

be
r o

f i
ns

ta
nc

es

Default
Faster copy disabled
Logs disabled

(c) UC3

3 4 5 6
nested groups

0

2

4

6

8

10

12

14

16

nu
m

be
r o

f i
ns

ta
nc

es

Default
Faster copy disabled
Logs disabled

(d) UC4

Figure 13.4. Scalability benchmark results according to our resource demand
metric for different configurations of Apache Beam with the Apache Flink runner.

Fig. 13.4a). The latter is expected since benchmark UC1 logs each incoming
message to simulate side effects such as writing records to a database.
We can conclude that the extensive logging of Beam’s Kafka consumer
contributes very little to the overhead introduced by Apache Beam.

13.3.2 Apache Samza

In a blog post, software engineers at LinkedIn [ZXW+20] report how they
tremendously improved the performance of Beam’s Samza runner. Primar-

169

13. Evaluating Scalability of Stream Processing Frameworks

0 20000 40000 60000 80000 100000
simulated sensors

0

2

4

6

8

10

12

nu
m

be
r o

f i
ns

ta
nc

es

Metrics enabled
Metrics disabled

(a) UC1

0 20000 40000 60000 80000 100000
simulated sensors

0

3

6

9

12

15

18

nu
m

be
r o

f i
ns

ta
nc

es

Metrics enabled
Metrics disabled

(b) UC2

0 2500 5000 7500 10000 12500 15000 17500 20000
simulated sensors

0

4

8

12

16

20

24

28

nu
m

be
r o

f i
ns

ta
nc

es

Metrics enabled
Metrics disabled

(c) UC3

4 5 6 7
nested groups

0

3

6

9

12

15

18

21
nu

m
be

r o
f i

ns
ta

nc
es

Metrics enabled
Metrics disabled

(d) UC4

Figure 13.5. Scalability benchmark results according to our resource demand
metric for different configurations of Apache Beam with the Apache Samza runner.

ily, this was achieved by exporting Beam metrics more efficiently. Moreover,
the authors observed that performance could further be improved when
disabling the Beam metrics entirely. Although this might not be an option
in production [ZXW+20], we are still interested in how much performance
could be further improved when disabling all Beam metrics.

Fig. 13.5 shows our results for benchmarking scalability with Beam
metrics enabled and disabled. We can observe that independent of the
benchmark, disabling metrics results in a similar linear increase in resource
demand, yet at a lower level. However, also with metrics disabled, the

170

13.4. Scaling the Window Aggregation Duration

resource demand of Apache Beam with the Samza runner is considerable
higher compared to most other frameworks (with metrics not disabled).

Worth mentioning is also the bachelor’s thesis of Bensien [Ben21],
who benchmarked Beam with the Samza runner in version 2.22 using
Theodolite’s UC1 benchmark. This Beam version did not include the
performance improvements by Zhang et al. [ZXW+20] (released in Beam
version 2.27). Bensien observed a resource demand more than twice as
high with metrics enabled, compared to disabling them.

13.4 Scaling the Window Aggregation Duration

In Section 13.2, we configure benchmark UC3 with a window duration
of 3 days to compute an average daily course. This is a trade-off to still
benchmark generated data volume of reasonable size. However, it is likely
that in practice, larger time windows are required to obtain more reason-
able results. Therefore, in this section, we evaluate, how different stream
processing frameworks scale with increasing benchmark UC3’s window
duration. We increase the window duration from 3 days to 30 days, while
keeping the number of simulated sensors and, thus, the incoming message
rate constant. This evaluation is an example of benchmarking scalability
with respect to the work performed for each incoming message in contrast
to scaling the load at the framework and, thus, addresses EQ 3.

Fig. 13.6 shows the results of these experiments. According to our
previous results in Section 13.2, we simulate 10 000 sensors for our ex-
periments with Flink, Hazelcast Jet, and Kafka Streams (see Fig. 13.6a)
and 2 000 sensors for the Beam SUTs (see Fig. 13.6b). We can observe that
again all frameworks scale approximately linearly. Remarkable is again
the performance of Hazelcast Jet, which only requires a single instance,
independently of the window size. We repeat these experiments with a
higher load of 100 000 sensors. As shown in Fig. 13.3b, Hazelcast Jet also
scales approximately linearly in this case. In contrast to scaling with the
number of sensors (see Fig. 13.1c), Kafka Streams and Flink scale now
with about the same rate of resource demand increase. Compared to the
results shown Fig. 13.2a, Samza’s resource demand increases less steeply
compared to Beam’s Flink runner.

171

13. Evaluating Scalability of Stream Processing Frameworks

0 5 10 15 20 25 30
window aggregation duration in days

0

2

4

6

8

10

12

14

nu
m

be
r o

f i
ns

ta
nc

es

Flink
Hazelcast Jet
Kafka Streams

(a) 10 000 simulated sensors

0 5 10 15 20 25 30
window aggregation duration in days

0

3

6

9

12

15

18

21

24

27

nu
m

be
r o

f i
ns

ta
nc

es

Beam/Flink
Beam/Samza

(b) 2 000 simulated sensors

Figure 13.6. Scalability benchmark results of all stream processing frameworks
according to our resource demand metric when increasing the duration of aggre-
gation windows and, thus the number of windows maintained simultaneously.

13.5 Scaling on a Single Node

In this section, we address EQ 4 and evaluate whether vertical scaling
can be a viable alternative to horizontal scaling for stream processing
frameworks. We, therefore, scale our SUTs on a single node with both the
number of instances and the amount of resources provided for a single
SUT pod.

For the experiments of this section, we slightly modify our experimental
setup. We only deploy 3 Kafka brokers, which run on different Kubernetes
nodes. Of the other two nodes, we dedicate one to run the load generators
and one to run the SUT instances. Although we run only 3 Kafka brokers
and all load generator instances on the same node, we can confirm that
the configured load is still successfully generated.

To not fully utilize the SUT node, which also runs some infrastructure
and monitoring components, we deploy up to 20 instances with one CPU
core each or up to 20 CPU cores for a single instance. For scaling with the
number of instances, we keep the same configuration as in the previous
experiments. For scaling with the resources per pod, we only refer to the
number of CPU cores, but scale memory proportionally. (However, in all
our experiments we never observed fully utilized pod memory.) In order

172

13.5. Scaling on a Single Node

to utilize multiple CPU cores, most stream processing frameworks have to
be configured accordingly. For Flink, we scale the number of task slots of
the TaskManager equally to the number of CPU cores. In Kafka Streams,
we scale the number of threads equally to the number of CPU cores. For
Samza, the documentation is inconsistent regarding scaling a standalone
application on a single node. We decided to scale the container thread pool
size equally to the number of CPU cores. Hazelcast Jet does not require
additional configuration as an instance configures its cooperative thread
pool automatically according to the number of CPU cores provided.

For most experiments, we generate the same load intensities as in the
first experiment. However, we use the smaller load intensities from Sec-
tion 13.3 for the Beam experiments and the 30 days window for Hazelcast
Jet with benchmark UC3 as introduced in Section 13.4.

Fig. 13.7 shows the results of our experiments with a single node for
benchmark UC1–UC3. Experimental results for benchmark UC4 can be
found in our replication package [HH22c]. Almost all frameworks show
approximately linear scalability when scaling the number of instances. We
observe that Beam with the Samza runner does not scale with increasing
the CPU resources per pod. Hence, we assume that scaling the container
thread pool is not the right option to increase capacity on a single node.
Whether other configuration options exist remains unclear. Further, we
can observe that no framework is able to process load intensities higher
than 200 000 messages per second with a single instance for benchmark
UC1. The reason for this is that we simulate database writes by printing all
incoming record to the standard output stream. Running a single instance
of the frameworks causes all threads to write to the same stream, which is
synchronized and becomes the bottleneck of our evaluation.

Kafka Streams seems to be more efficient when scaling with the number
of instances, compared to scaling with the number of cores. For Flink and
Hazelcast Jet, scaling with the number of cores is more efficient for the
more complex dataflow in UC3, while with benchmark UC2 both types of
scaling yield similar results. Remarkable are the results for scaling with
the number of cores with Beam and the Flink runner. In contrast to native
Flink, Beam with the Flink runner seems not to be scalable with respect
to the number of cores. Moreover, the Kafka Streams implementation of
benchmark UC3 scales neither with increasing the number of instances nor

173

13. Evaluating Scalability of Stream Processing Frameworks

0 200k 400k 600k 800k 1000k
simulated sensors

0
3
6
9

12
15
18

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(a) Beam/Flink UC1

0 100k 200k 300k 400k 500k
simulated sensors

0
3
6
9

12
15
18

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(b) Beam/Flink UC2

0 2000 4000 6000 8000 10000 12000
simulated sensors

0
3
6
9

12
15
18

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(c) Beam/Flink UC3

0 20000 40000 60000 80000 100000
simulated sensors

0
3
6
9

12
15
18

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(d) Beam/Samza UC1

0 20000 40000 60000 80000
simulated sensors

0
2
4
6
8

10
12
14
16
18

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(e) Beam/Samza UC2

0 2000 4000 6000 8000
simulated sensors

0

2

4

6

8

10

12

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(f) Beam/Samza UC3

0 200k 400k 600k 800k 1000k
simulated sensors

0
1
2
3
4
5
6
7
8

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(g) Flink UC1

0 200k 400k 600k 800k 1000k
simulated sensors

0
3
6
9

12
15
18

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(h) Flink UC2

0 20000 40000 60000 80000 100000
simulated sensors

0
2
4
6
8

10
12
14
16
18

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(i) Flink UC3

0 200k 400k 600k 800k 1000k
simulated sensors

0

2

4

6

8

10

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(j) Hazelcast Jet UC1

0 200k 400k 600k 800k 1000k
simulated sensors

0

1

2

3

4

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(k) Hazelcast Jet UC2

0 20000 40000 60000 80000 100000
simulated sensors

0
1
2
3
4
5
6
7
8

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(l) Hazelcast Jet UC3

0 200k 400k 600k 800k 1000k
simulated sensors

0

2

4

6

8

10

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(m) Kafka Streams UC1

0 200k 400k 600k 800k 1000k
simulated sensors

0
2
4
6
8

10
12
14
16
18

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(n) Kafka Streams UC2

0 5000 10000 15000 20000 25000 30000
simulated sensors

0

1

2

3

4

5

6

pr
ov

isi
on

ed
 re

so
ur

ce
s

Instances
CPU Cores

(o) Kafka Streams UC3

Figure 13.7. Scalability (resource demand metric) of frameworks on a single node.

174

13.6. Threats to Validity

with increasing the number of cores. As it scales linearly when running
on multiple nodes (see Fig. 13.2a), our results suggest that underlying
hardware resources become exhausted. However, from manually observing
system-level metrics, we cannot observe anything conspicuous.

13.6 Threats to Validity

Despite careful research design, there exist threats and limitations to the
validity of our evaluation, which we report below. In addition, the threats
discussed in Section 12.6 largely apply to these evaluations as well.

Threats to Internal Validity To obtain statistically grounded benchmark-
ing results, we build these evaluations upon our results of Chapter 12. Nev-
ertheless, we only found that the selected configuration options provide
good estimates. Hence, resource demands obtained in these evaluations
should only be considered estimates. Repeating SLO experiments more
often and for longer time periods as well as using our full search strategy
is likely to produce very similar, but not necessarily identical results. More-
over, we evaluate a larger set of SUTs, load types, resource types, SLOs,
and benchmarks in this section compared to the evaluation in Chapter 12.
We address this limitation by carefully observing the benchmark execution
but do not conduct as extensive experiments as in Chapter 12.

Threats to External Validity We conduct all experiments in this eval-
uation with our Theodolite benchmark task samples. As discussed in
Chapter 9, these benchmarks represent relevant use cases. However, we
cannot directly generalize our findings to arbitrary other applications,
where other frameworks, configuration options, or deployment options
might perform better than in our experiments. We conduct all experiments
in this evaluation in a private cloud environment. In particular, we use
comparatively large bare metal nodes. While this increases the internal
validity (see Chapter 12) of our results, we cannot necessarily conclude that
we would obtain the same results in public cloud environments. However,
we expect that cloud-native abstraction layers such as containerization and
resource limits mitigate these differences.

175

Chapter 14

Evaluating Scalability of Sliding

Window Aggregation Methods

Aggregations over sliding time windows are a common task of stream
processing systems. An example is Theodolite’s UC3 benchmark (see
Section 11.1.3), which computes statistics over a sliding window of several
days. Other use cases of sliding window aggregations can be found in
other benchmarks [KRK+18; BGM+20; vDvdP20]. Most state-of-the-art
stream processing frameworks provide high-level APIs to define such
aggregations, designed for scalability, fault-tolerance, and deterministic
handling of out-of-order data. Additionally, performing sliding window
aggregations more efficiently is a large field of research [CKH19; VGT+23].

In this chapter, we benchmark different methods for sliding window
aggregations regarding their scalability. In particular, these are the native
methods provided by the stream processing frameworks Apache Flink,
Apache Kafka Streams, and Apache Spark. We complement this by an
alternative method provided by Kafka Streams (see following the section)
and Scotty [TGC+21], an extension for more efficient window aggrega-
tions, which is available for most stream processing frameworks. For
this purpose, we employ our Theodolite benchmarking method with two
task samples. First, we use our Theodolite UC3 benchmark introduced in
Section 11.1.3. Second, we use the OSPBench benchmark [vDvdP20] as
introduced in Section 11.6. With the latter, we also show how our scala-
bility benchmarking method can be used with other stream processing
benchmarks.

This chapter is structured as follows. Section 14.1 provides a brief
overview of methods for sliding window aggregations. Section 14.2 de-
scribes our experimental setup. Section 14.3 presents and discusses the

177

14. Evaluating Scalability of Sliding Window Aggregations

Table 14.1. Naming of fixed-size window types in state-of-the-art stream processing
frameworks.

Framework Consecutive,
fixed-size windows

Fixed window size
with sliding period

Fixed window size,
continuously sliding

Beam Fixed time window Sliding window —
Flink Tumbling window Sliding window —
Hazelcast Jet Tumbling window Sliding window —
Kafka Streams Tumbling window Hopping window Sliding window

results of our experiments. Section 14.4 concludes this chapter with a short
discussion on threats to validity.

14.1 Methods for Sliding Window Aggregations

In most frameworks, sliding time windows are defined based on a window
size and a sliding period [CKH19]. The window size defines a duration of
a time period for which records are aggregated. The sliding period defines
after which time a new window starts. For example a window size of
5 minutes and a sliding period of one minute means that every processed
record is contained in 5 windows. Thus, strictly speaking, these windows
do not actually “slide” continuously, but rather “hop” by a specified time
period. For this reason, these windows are named hopping windows in
Kafka Streams, with sliding windows having different semantics as shown
in Table 14.1. For consistency with the literature and most frameworks, we
use the term sliding windows for fixed window size with a sliding period.

Most modern stream processing frameworks aggregate records in time
windows by creating a copy of each record for each window it belongs to.
This copy is then keyed by the original key and the time window, allowing
the stream processing framework to process all records to be aggregated
by the same instance. The actual aggregation logic is performed in a
user-defined way. Aggregation functions can be classified as distributive,
algebraic, and holistic [GBL+96; TGC+21], having different implications on
the state size.

178

14.2. Experimental Setup

The previously described method for sliding window aggregations has
the disadvantage that often unnecessary or redundant computations are
performed. Kafka Streams’ sliding windows provide an alternative aggre-
gation method [Ble20]. They do not have a defined sliding period. Instead,
they provide semantics similar to sliding windows in other frameworks
with the smallest possible sliding period (i.e., one millisecond for Kafka
Streams). In contrast to those window types, however, Kafka Streams cre-
ates only up to two windows for each processed record, which can reduce
the amount of computations significantly. To the best of our knowledge,
this window aggregation method is unique to Kafka Streams.

Moreover, several approaches for more efficient sliding window ag-
gregations have been proposed in research [CKH19; VGT+23]. The Scotty
window processor [TGC+21] is such an approach, which applies the stream
slicing technique. It divides the data stream into non-overlapping sections,
called slices, aggregates data within slices, and further aggregates all slices
belonging to the same window. Scotty is available as an open-source ex-
tension to several modern stream processing frameworks. A single-node
performance evaluation of Scotty can be found by Traub et al. [TGC+21].

14.2 Experimental Setup

For the evaluations in this chapter, we use the SPEL private cloud environ-
ment described in Section 12.1. We deploy 10 Kafka brokers and configure
40 partitions per topic. In the following, we give a brief overview of our
used benchmarks. A more detailed description can be found in the work of
Vonheiden [Von21a] and the corresponding replication package [Von21b].

Theodolite’s UC3 Benchmark We use extended Flink and Kafka Streams
implementations of Theodolite’s UC3 benchmark, which are configurable
with the desired aggregation method. Our Flink implementation can op-
tionally use the Scotty window operator instead of the default sliding
window aggregation. Our Kafka Streams implementation can be config-
ured to use Scotty, Kafka Streams’ sliding windows, or the default hopping
windows. In contrast to the experiments in Chapter 13, we use an earlier
version of our implementations and configure no early emission of aggre-

179

14. Evaluating Scalability of Sliding Window Aggregations

gation results. This is more aligned with our preliminary results [HH21e],
but makes the results of Kafka Streams and Flink less comparable.

OSPBench We selected an alternative stream processing benchmark
based on the following criteria. It should be available as open source,
it should support Kafka as data source so we can use our lag trend
SLO, it should provide implementations for multiple frameworks, and
it should contain a sliding window aggregation, which is implemented
with the native aggregation methods of the frameworks.1 Furthermore,
implementations should be available for multiple stream processing frame-
works. Availability of container images is another plus, allowing to use our
Theodolite framework without further adjustments of the benchmark itself.
From our overview of benchmarks for stream processing frameworks (see
Section 11.6), only OSPBench [vDvdP20] satisfies these criteria.

OSPBench provides open-source implementations for Apache Flink,
Apache Kafka Streams, and Apache Spark, the latter with both the Spark
Streaming API and the newer Structured Streaming API.2 We select Flink,
Kafka Streams and Spark Streaming as SUTs in this evaluation. We exclude
Spark Structured Streaming since it does allow us to compute the lag trend
via Kafka metrics [Von21a]. Within OSPBench, we select one of its aggre-
gation pipelines [vDvdP21b] for our evaluation and create corresponding
Theodolite benchmarks. These benchmarks use the number of generated
messages per second as load type, the number of instances as resource
type, and employ our lag trend SLO. As discussed by Vonheiden [Von21a],
we made some adjustments to the OSPBench implementations as well as
fixed errors with its load generators.

14.3 Results and Discussion

In the following we summarize our results of benchmarking the scala-
bility of different methods for sliding window aggregations. For further
discussion of the results, we refer to the work of Vonheiden [Von21a].

1The Yahoo Streaming Benchmark [CDE+16] uses a custom implementation for window
aggregations.

2
https://github.com/Klarrio/open-stream-processing-benchmark

180

https://github.com/Klarrio/open-stream-processing-benchmark

14.3. Results and Discussion

0k 100k 200k 300k 400k 500k
messages/second

0

2

4

6

8

10

12

14

16

18

nu
m

be
r o

f i
ns

ta
nc

es

KStreams
KStreams + Scotty
KStreams + Sliding
Flink
Flink + Scotty

(a) Window size of 30 days and a sliding pe-
riod of 1 day (i.e., 30 overlapping windows)

0k 20k 40k 60k 80k 100k
messages/second

0

2

4

6

8

10

12

14

16

nu
m

be
r o

f i
ns

ta
nc

es

KStreams
KStreams + Scotty
KStreams + Sliding
Flink
Flink + Scotty

(b) Window size of 30 seconds and a slid-
ing period of 1 second (i.e., 30 overlapping
windows)

0k 100k 200k 300k 400k 500k
messages/second

0

3

6

9

12

15

18

nu
m

be
r o

f i
ns

ta
nc

es

KStreams
KStreams + Scotty
KStreams + Sliding
Flink
Flink + Scotty

(c) Window size of 5 minutes and a sliding
period of 1 minute (i.e., 5 overlapping win-
dows)

Figure 14.1. Scalability benchmark results of different sliding window aggregation
methods with Theodolite’s UC3 benchmark according to our resource demand
metric [Von21a].

14.3.1 Theodolite’s UC3 Benchmark

Fig. 14.1 shows the experimental results for our experiments with Theodo-
lite’s UC3 benchmark. In all experiments, we cannot observe any scalability
limits and all configurations scale approximately linear with increasing
load. As already noticed in other experiments (e.g., Section 12.4), we again
observe that Flink provides better performance for specific instance counts
(e.g., 10 or 20 instances with 40 Kafka partitions).

181

14. Evaluating Scalability of Sliding Window Aggregations

The implementations with Scotty have a considerably lower resource
demand compared to all native aggregation methods of the stream pro-
cessing framework. For short windows, where the rate of incoming mes-
sages corresponds approximately to the slide period (see Fig. 14.1b), Kafka
Streams’ sliding window aggregation requires fewer instances compared to
hopping window aggregation. For all other window sizes, the resource de-
mand with Kafka Streams’ sliding window increases significantly steeper.

Note that in these experiments the scalability of Kafka Streams’ and
Flink’s default window aggregation methods cannot directly be compared
as we use different configurations of the frameworks. Comparing both
frameworks is addressed in the next section.

14.3.2 OSPBench

We compare sliding window aggregations of Kafka Streams, Flink, and
Spark Streaming using our Theodolite benchmarks built on top of OSP-
Bench. Fig. 14.2 shows the results of our benchmark execution. Indepen-
dent of the window size and the sliding period, we can observe that
Spark’s resource demand increases the slowest, followed by Flink and
Kafka Streams. The superior performance of Spark is presumably due to
Spark’s processing mode. In contrast to Flink and Kafka Streams, Spark
uses micro-batching, resulting in significantly higher throughput but also
increased latency [vDvdP20].

14.4 Threats to Validity

The threats to validity discussed in Section 12.6 and Section 13.6 largely
apply to the evaluations of this chapter as well. In the following, we briefly
report on additional threats and limitations to the validity of this chapter’s
evaluation.

Threats to Internal Validity It should be noted that the benchmarked
frameworks are based on different stream processing semantics and use
different default configurations. This also applies to the different semantics
of hopping and sliding windows in Kafka Streams. Moreover, Scotty

182

14.4. Threats to Validity

0k 200k 400k 600k 800k 1000k
messages/second

0

2

4

6

8

10

12

14

16

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink
Spark Streaming

(a) Window size of 2.5 minutes and a slid-
ing period of 0.5 minutes (i.e., 5 overlapping
windows)

0k 200k 400k 600k 800k 1000k
messages/second

0

2

4

6

8

10

12

14

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink
Spark Streaming

(b) Window size of 5 minutes and a sliding
period of 1 minute (i.e., 5 overlapping win-
dows)

0k 200k 400k 600k 800k 1000k
messages/second

0

2

4

6

8

10

12

14

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink
Spark Streaming

(c) Window size of 10 minutes and a slid-
ing period of 2 minutes (i.e., 5 overlapping
windows)

0k 200k 400k 600k 800k 1000k
messages/second

0

3

6

9

12

15

18

21

24

27

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink
Spark Streaming

(d) Window size of 5 minutes and a sliding
period of 0.25 minutes (i.e., 20 overlapping
windows)

Figure 14.2. Scalability benchmark results of different stream processing frame-
works for a sliding window aggregation with OSPBench according to our resource
demand metric [Von21a].

appears to rather align with Flink’s dataflow model than with Kafka
Streams. In our evaluations, we focus on using default configurations or
configurations comparable to our previous evaluations [HH21e].

Threats to External Validity The OSPBench task sample uses a distribu-
tive aggregation and Theodolite’s UC3 benchmark uses an algebraic ag-
gregation. As we benchmarked no task sample with a holistic window
aggregation, our results cannot be generalized to this type of aggregations.

183

Chapter 15

Evaluating Cost Scalability of

Stream Processing and

Function-as-a-Service

As described in Section 4.3.2, Function-as-a-Service (FaaS) is an alternative
approach to implement event-driven microservices. In this chapter, we
compare the scalability of distributed stream processing with FaaS. We
use our scalability benchmarking method presented in this thesis along
with our benchmarks for event-driven microservices.

Due to their fundamentally different deployment model, comparing
FaaS and stream processing frameworks regarding their computing re-
source usage is neither practical nor desirable. From a cloud customer’s
perspective, underlying hardware resources are hidden and automatically
scaled, meaning that cloud customers have no insights into how resource
demands evolve. Moreover, the key advantage of serverless deployments
is that cloud customers do not have to care about the actual resource usage
of their deployments as they are billed per processed data volume and
execution time. Instead, customers are rather interested in evaluating how
costs evolve with increasing load on their system. This is also referred to
as cost scalability [BHI+17].

This chapter builds upon our work previously presented at the IEEE
International Conference on Cloud Engineering 2022 [PHS+22b]. We start with
an overview of our evaluation setup and methodology (Section 15.1). After
an initial comparison of stream processing and FaaS (Section 15.2), we
explore the space of implementation and deployment options. Specifi-
cally, we evaluate the impact of chosen transport method (Section 15.3),
cloud service provider (Sections 15.4 and 15.5), FaaS runtime environ-

185

15. Evaluating Cost Scalability of Stream Processing and FaaS

ment (Section 15.6), stream processing framework choice (Section 15.7), a
serverless stream processing offering (Section 15.8), and a managed Ku-
bernetes service (Section 15.9). Afterward, we discuss threats to validity in
Section 15.10. Finally, we summarize our results and derive decision guide-
lines for choosing among stream processing and FaaS for implementing
event-driven microservices (Section 15.11).

15.1 Experimental Setup and Methodology

For the evaluations of this chapter, we conduct an exploratory experi-
ment design. We start with our baseline experiments comparing stream
processing and FaaS. Afterward, we modify different properties of our
benchmark implementation and deployment and compare the results with
our baseline experiments. The respective setup and relevant modifications
are described in the following sections. An overview of our experiment
setups for stream processing and FaaS is given in Tables 15.1 and 15.2,
respectively.

From our Theodolite benchmarks, we select task sample UC1 as an
example for a stateless use case and UC3 as an example for a stateful
one. In contrast to the previous evaluations, our Theodolite load generator
sends generated messages via HTTP in an open workload model [BWT17]
or via a serverless cloud messaging service. We configure benchmark
UC1 to write all incoming messages to a real serverless cloud database.
Similar to one of the evaluations in Chapter 14, we use a simplified version
of our benchmark UC3 with 30 second windows as discussed in the
following section. For our stream processing experiments, we use the
Apache Beam implementations, already evaluated in Chapter 13. For the
FaaS experiments, we implement the benchmarks accordingly.

We evaluate scalability regarding the number of simulated sensors and,
thus, messages per second. As already introduces, the resource dimension
of these evaluations is an hourly cost estimate. To yield such an estimate,
we can leverage different kinds of information provided by cloud platforms
or measurements. For experiments on FaaS platforms with pay-per-request
pricing models, cost estimates can be derived by extrapolating from small-
scale environments, as the cost can be expected to scale linearly with the

186

15.1. Experimental Setup and Methodology

T
a

b
le

1
5

.1
.

O
ve

rv
ie

w
of

st
re

am
p

ro
ce

ss
in

g
d

ep
lo

ym
en

ts
co

ns
id

er
ed

(c
ha

ng
es

ov
er

th
e

ba
se

lin
e

m
ar

ke
d

in
b

o
ld

)

G
C

P
(B

as
el

in
e)

G
C

P
P

u
b/

Su
b

A
W

S
G

C
P

Sa
m

za
G

C
P

D
at

afl
ow

G
C

P
A

u
to

p
ilo

t

C
lo

u
d

G
C

P
G

C
P

A
W

S
G

C
P

G
C

P
G

C
P

K
u

be
rn

et
es

G
K

E
G

K
E

E
K

S
G

K
E

—
G

K
E

A
u

to
p

.

V
M

Ty
p

e
e
2
-
s
t
a
n
d
a
r
d
-
4

e
2
-
s
t
a
n
d
a
r
d
-
4

m
5
.
x
l
a
r
g
e

e
2
-
s
t
a
n
d
a
r
d
-
4

e
2
-
s
t
a
n
d
a
r
d
-
4

—
Fr

am
ew

or
k

A
p

ac
he

Fl
in

k
A

p
ac

he
Fl

in
k

A
p

ac
he

Fl
in

k
A

p
a

ch
e

S
a

m
z

a
D

a
ta

fl
o

w
A

p
ac

he
Fl

in
k

Tr
an

sp
or

t
H

T
T

P
&

K
af

ka
P

u
b

/S
u

b
H

T
T

P
&

K
af

ka
H

T
T

P
&

K
af

ka
P

u
b

/S
u

b
H

T
T

P
&

K
af

ka
D

at
ab

as
e

C
lo

u
d

Fi
re

st
or

e
C

lo
u

d
Fi

re
st

or
e

D
y

n
a

m
o

D
B

C
lo

u
d

Fi
re

st
or

e
C

lo
u

d
Fi

re
st

or
e

C
lo

u
d

Fi
re

st
or

e

T
a

b
le

1
5

.2
.

O
ve

rv
ie

w
of

Fa
aS

d
ep

lo
ym

en
ts

co
ns

id
er

ed
(c

ha
ng

es
ov

er
th

e
ba

se
lin

e
m

ar
ke

d
in

b
o

ld
)

G
C

P
(B

as
el

in
e)

G
C

P
P

u
b/

Su
b

A
W

S
G

C
P

G
o

G
C

P
N

od
eJ

S

C
lo

u
d

G
C

P
G

C
P

A
W

S
G

C
P

G
C

P
Fa

aS
E

ng
in

e
C

lo
u

d
Fu

nc
ti

on
s

C
lo

u
d

Fu
nc

ti
on

s
A

W
S

L
a

m
b

d
a

C
lo

u
d

Fu
nc

ti
on

s
C

lo
u

d
Fu

nc
ti

on
s

M
em

or
y

25
6

M
B

25
6

M
B

25
6

M
B

25
6

M
B

25
6

M
B

L
an

gu
ag

e
Ja

va
Ja

va
Ja

va
G

o
N

o
d

e
JS

Tr
an

sp
or

t
H

T
T

P
C

lo
u

d
P

u
b

/S
u

b
H

T
T

P
H

T
T

P
H

T
T

P
D

at
ab

as
e

C
lo

u
d

Fi
re

st
or

e
C

lo
u

d
Fi

re
st

or
e

D
y

n
a

m
o

D
B

C
lo

u
d

Fi
re

st
or

e
C

lo
u

d
Fi

re
st

or
e

187

15. Evaluating Cost Scalability of Stream Processing and FaaS

number of requests for current cloud pricing models. Additionally, any
costs for database reads and writes can be derived by tracking database
access and calculating the resulting cost based on the per-request cost
of the database system used. To achieve a cost estimate for a stream
processing deployment, we use our Theodolite scalability benchmarking
method and run multiple experiments for different Kubernetes cluster
sizes. For each generated load intensity, we determine the cluster size with
the lowest cost, which is still able to process the generated load without
violating specified SLOs. As in our previous experiments with benchmark
UC3, we focus on the lag trend SLO.

We provide a replication package containing all implementations as
well as the collected data of our experiments as supplemental material
[PHS+22a], allowing other researchers to repeat and extend our work.

15.2 Baseline: Stream Processing and FaaS

As our baseline, we compare Google Cloud Functions and Apache Flink,
running Apache Beam pipelines on Google Kubernetes Engine (GKE).

15.2.1 Implementation

In the stateless storage use case (UC1), client events are sent over HTTP
and stored in Google Cloud Firestore (see Fig. 15.1a). We choose Firestore
for its pay-as-you-go model that fits the serverless pricing model. As
necessary for Apache Flink, HTTP events are enqueued in Apache Kafka
by a middleware prior to processing (see Fig. 15.1b). Cloud Functions, on
the other hand, can directly expose an HTTP endpoint.

The stateful window aggregation application (UC3) also receives events
over HTTP, but results are emitted to the output log of the respective
platform. In a real application, a further stateless operation such as UC1
might be performed afterward, yet our goal here is to study the stateful
operator in isolation. For our implementation with Flink, we use the built-
in window aggregation mechanisms with RocksDB as state backend (see
Fig. 15.1d). To support stateful window aggregation on stateless functions,
we store intermediate window state in a Google Cloud Firestore collection

188

15.2. Baseline: Stream Processing and FaaS

Load
Generator

FaaS Firestore

(a) UC1 as FaaS implementation

Load
Generator

Firestore

Kubernetes

Kafka Flink
HTTP
Bridge

(b) UC1 as streaming implementation

Load
Generator

FaaS
Standard
Output

Firestore

(c) UC3 as FaaS implementation

Load
Generator

Standard
Output

Kubernetes

FlinkHTTP
Bridge Kafka

(d) UC3 as streaming implementation

Figure 15.1. Implementations in our baseline benchmarks [PHS+22b]: To aggregate
data across multiple events, the FaaS implementation is connected to a Firestore
database to persist state. As Apache Beam running on top of Apache Flink cannot
process HTTP requests directly, we add an HTTP bridge and Apache Kafka.

for each window (see Fig. 15.1c). Both implementations are configured to
aggregate data over windows of 30 seconds, with a new window starting
every 3 seconds. This results in 10 windows per emulated sensor that are
maintained in parallel.

As Apache Flink and its operators are implemented in Java, we also use
the Java 11 runtime for our cloud functions to account for effects caused
by programming language or runtime. We set the function memory to
256 MB, which is the smallest amount that can support a function execution
without running into memory errors. This also limits our per-function
compute resources to 0.1667 vCPU.

189

15. Evaluating Cost Scalability of Stream Processing and FaaS

For our streaming implementation, we deploy Flink in a GKE cluster
with different numbers of e2-standard-4 virtual machines. The overall de-
ployment consists of one coordinating Flink JobManager, varying numbers
of Flink TaskManagers, a three-broker Apache Kafka cluster, a component
redirecting incoming HTTP requests to Kafka as well as some additional
components for monitoring and cluster management. To ensure a rea-
sonable degree of fault tolerance, Flink is configured with a 30-second
checkpointing interval and each Kafka partition is replicated across three
brokers.

All experiments are conducted in the europe-west-3 (Frankfurt) Google
Cloud region, with the load generators deployed on e2-highcpu-4 virtual
machines on Google Compute Engine in the same region.

15.2.2 Results and Discussion

We show the results of our baseline evaluation in Fig. 15.2. For the ap-
plication that we consider, costs scale linearly with request loads, yet at
different rates. This is expected for functions, which are billed by request
and where requests can be processed independently. In essence, FaaS is
variable cost only. In stream processing, we instead observe a pattern of
steps, which can be seen in Fig. 15.2a (and more pronounced at a larger
scale in Fig. 15.5b). This is a result of a more coarsely grained allocation of
resources, i.e., servers that need to be added to the cluster. Additionally,
there is a minimum cost of running the cluster, which is the cost of a single
server, a fixed rate for managing the Kubernetes cluster, and cost for the
necessary load balancer. Overall, this means that stream processing costs
here are a combination of fixed cost, variable cost per request, and variable
cost which need to be added in batches, as shown in Fig. 15.3. This leads
to the intersection of function and cluster costs at a specific request level
(200 req/s for UC1 and 5 req/s for UC3): At a request rate below this
level, the fixed cost of running a single-server cluster is higher than paying
per request for FaaS functions. Beyond this request rate, the overhead of
operating full servers in a cluster is negligible compared to the premium
of serverless functions.

Interestingly, the break-even point is at a higher load rate for the
stateless UC1 than for the stateful aggregation in UC3. For the cloud

190

15.2. Baseline: Stream Processing and FaaS

0 100 200 300 400 500 600
Load (req/s)

0

1

2

3

4

C
os

t
pe

r
H

ou
r

($
)

Platform
Google Cloud Functions
Apache Flink

(a) UC1 Costs

0 20 40 60 80 100
Load (req/s)

0

1

2

3

4

C
os

t
pe

r
H

ou
r

($
)

Platform
Google Cloud Functions
Apache Flink

(b) UC3 Costs

Figure 15.2. The cost benchmark results of our baseline comparison of Apache
Flink and Google Cloud Functions show how application costs scale with request
load [PHS+22b]. The overhead of operating a Kubernetes cluster for Apache
Flink leads to higher costs compared to Cloud Functions at lower request loads.
The request rate at which Cloud Functions become less economical than stream
processing with Flink depends on the type of function: 200 req/s for UC1 and
5 req/s for UC3.

191

15. Evaluating Cost Scalability of Stream Processing and FaaS

0 200 400 600 800 1000 1200
Load (req/s)

0

1

2

3

4

5

6

C
os

t
pe

r
H

ou
r

($
)

Cost Type
Transport
Instances
DB Write
Cluster

Figure 15.3. The cost breakdown of our baseline evaluation of UC1 with Apache
Flink shows that total costs are composed of fixed costs (Kubernetes cluster and
HTTP load balancer), costs per request (database writes), and costs increasing in
batches (Kubernetes cluster nodes) [PHS+22b].

function implementation of UC3, the largest share of costs per request
are caused by writes (62.2%) and reads (20.8%) to Cloud Firestore, as
shown in Fig. 15.4. This database access is required to store intermediate
state—in our implementation, each window is stored as a database entry,
leading to ten read and write requests for each function invocation. In the
streaming implementation, on the other hand, there is no such database
access required since all state is maintained inside the Flink TaskManagers.

15.2.3 Takeaway for Platform Choice

Our baseline experiments show that FaaS is an economical choice over
stream processing for stateless applications with low to medium event
arrival rates, in our case from 0 to 200 requests per second. For stateful
applications, where functions need to store intermediate state in a database,
the cost of database access makes FaaS infeasible for anything but low-rate
event processing.

192

15.3. Impact of Pub/Sub in FaaS and Streaming

15.3 Impact of Pub/Sub in FaaS and Streaming

While we use HTTP transport mechanism for simulated sensor data in our
baseline evaluation, this does not necessarily reflect all IoT environments,
where data distribution paradigms such as publish–subscribe are more
common (see Chapter 10). We thus further quantify the impact of the
communication pattern on stream processing and FaaS costs.

15.3.1 Implementation and Setup

We extend our baseline implementation with support for Google Cloud
Pub/Sub1. For our function implementation, this requires adding an
event trigger and application logic for event parsing. In our Apache Flink
setup, we replace the previous HTTP middleware and the Apache Kafka
deployment with a direct connection to Google Cloud Pub/Sub, using the
PubSubIO connectors provided by Apache Beam. Instead of sending JSON
objects as done with our HTTP implementation, we send binary encoded
Apache Avro2 records via Pub/Sub.

15.3.2 Results and Discussion

As shown in Fig. 15.4, using Cloud Pub/Sub has a noticeable effect on
the execution duration of our FaaS implementations, especially in UC1,
where processing costs increase by 154.6%. This effect is less pronounced
for UC3, where duration increases by 8.6%. One possible explanation for
this effect is an increased overhead caused by message parsing compared
to HTTP, where request data is passed to our function directly as JSON
rather than encoded. However, due to the relatively high costs of database
access, this has only a small impact on total costs (12.9% increase for UC1
and 1.4% increase for UC3). At less than $0.04 per 1,000,000 messages, the
cost per Cloud Pub/Sub message is two orders of magnitude smaller than
costs incurred by message processing.

Figure 15.5 shows how costs increase with increasing load when using
Cloud Pub/Sub in our Apache Flink implementation. Pub/Sub introduces

1
https://cloud.google.com/pubsub/

2
https://avro.apache.org/

193

https://cloud.google.com/pubsub/
https://avro.apache.org/

15. Evaluating Cost Scalability of Stream Processing and FaaS

GCP GCP
Pub/Sub

AWS GCP
Go

GCP
NodeJS

Platform

0.0

0.5

1.0

1.5

2.0

A
vg

. C
os

t
pe

r
R
eq

ue
st

 (
$)

1e-6

Cost Type
Transport
Duration
DB Read
DB Write
Invocation

(a) UC1

GCP GCP
Pub/Sub

AWS GCP
Go

GCP
NodeJS

Platform

0.0

0.5

1.0

1.5

2.0

A
vg

. C
os

t
pe

r
R
eq

ue
st

 (
$)

1e-5

Cost Type
Transport
Duration
DB Read
DB Write
Invocation

(b) UC3

Figure 15.4. FaaS cost per request by type [PHS+22b]. Breaking down the costs
per requests of our cloud function implementations of the two applications in
our benchmarks, we see that database access is the major cost factor. While this
does not impact UC1, where both the FaaS and stream processing implementation
write to Cloud Firestore and thus incur identical database access costs, storing
intermediate state in UC3 accounts for 83.0% of the total cost of operating the
FaaS implementation. Neither the choice of Cloud Platform, of programming
language, nor of endpoint change this result significantly: AWS Lambda is 6.4%
more expensive than our baseline as a result of increased DynamoDB access cost,
while the choice of language runtime only changes function duration costs, which
are marginal compared to Firestore access costs.

194

15.4. Different FaaS Platforms

an additional cost factor to the overall deployment. These costs increase at
a steeper rate than the costs for the Kubernetes cluster: While the share
of Pub/Sub costs in total costs is 1.5% for UC1 and 2.9% for UC3 at a
load intensity of 100 req/s, it grows to 2.6% and 17.5%, respectively, at a
load of 1,000 req/s. On the other hand, these additional costs are compen-
sated by the slightly higher loads which Flink can process with Pub/Sub
before requiring an additional virtual machine. Figure 15.6 shows that,
averaged over all evaluated load profiles, costs for processing messages
from Pub/Sub are similar to redirecting HTTP requests via Kafka.

15.3.3 Takeaway for Transport Method Choice

Our experiments show that there is no clear difference in costs when
choosing Pub/Sub or HTTP, neither in stream processing nor in FaaS.
However, small savings are possible when using a transport method that
simplifies processing. Hence, it does not seem to be reasonable to add a
dedicated message transform layer just to save costs.

15.4 Different FaaS Platforms

In our baseline FaaS evaluation, we use Google Cloud Functions, yet
other cloud providers offer their own serverless platforms that may have
different runtime behavior and pricing, impacting the cost results of our
experiments. In this experiment, we thus compare our Google Cloud
Function implementation with an implementation on AWS Lambda.

15.4.1 Implementation and Setup

We implement our benchmark for AWS Lambda with an AWS DynamoDB
serverless database. To ensure comparability, we use the Java 11 runtime
and conduct our experiments in the eu-central-1 (Frankfurt) region. We
again set the memory limit to 256 MB. Our load generator for this imple-
mentation runs in the same region on an m5.xlarge EC2 instance.

195

15. Evaluating Cost Scalability of Stream Processing and FaaS

0 200 400 600 800 1000 1200
Load (req/s)

0

1

2

3

4

5

6

C
os

t
pe

r
H

ou
r

($
)

Platform
GCP
GCP Pub/Sub
AWS
GCP Samza
GCP Dataflow
GCP Autop.

(a) UC1 Costs

0 200 400 600 800 1000 1200
Load (req/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
pe

r
H

ou
r

($
)

(b) UC3 Costs

Figure 15.5. Costs increase approximately linearly for all evaluated streaming
deployments [PHS+22b]. However, Google Cloud Dataflow has considerably lower
costs than the other streaming frameworks.

15.4.2 Results and Discussion

As we expect the costs for function execution to scale linearly with event
arrival rate, we consider the average cost for individual function execution
which we show in Fig. 15.4. The average cost per function execution is
6.4% higher on AWS Lambda than on Google Cloud Functions for both
applications, which is caused mainly by the more expensive database
access in DynamoDB over Cloud Firestore.

196

15.5. Different Kubernetes Engines

15.4.3 Takeaway for Cloud Provider Choice in FaaS

In our experiments, the choice of FaaS provider had only a limited im-
pact on the total cost of execution, yet we see that the cost difference can
depend on the type of application as applications using other cloud plat-
form services may encounter significant costs (which may vary between
providers).

15.5 Different Kubernetes Engines

Similar to our evaluation of different FaaS Platforms, we also compare
GKE and AWS Elastic Kubernetes Service (EKS).

15.5.1 Implementation and Setup

Deployment descriptions for Kubernetes are largely platform independent,
allowing us to almost use the same deployment with EKS as with GKE.
As in our evaluation of different FaaS Platforms, we write incoming events
in our UC1 implementation to an AWS DynamoDB serverless database.
Both our EKS cluster and the load generator for this implementation use
m5.xlarge EC2 instances, running in the eu-central-1 (Frankfurt) region.

15.5.2 Results and Discussion

As shown in Fig. 15.5a, the costs for our UC1 deployment on EKS increase
at a steeper rate than in the GKE deployment. Averaged over all evaluated
load profiles, EKS has 24.3% higher costs than GKE as shown in Fig. 15.6a.
Interestingly, EKS has higher costs although the EKS deployment requires
significantly less Flink TaskManager instances: Loads up to 1,100 req/s can
be processed by a single TaskManager, compared to 8 instances required
in the GKE deployment. However, higher costs per VM instance and espe-
cially higher costs per database write outweigh this superior performance.
As we do not see such a difference in resource usage for UC3, we conclude
that either DynamoDB provides faster writes than Firestore or Beam’s
DynamoDB writer is more resource efficient than the Firestore writer.

197

15. Evaluating Cost Scalability of Stream Processing and FaaS

GCP GCP
Pub/Sub

AWS GCP
Samza

GCP
Dataflow

GCP
Autop.

Platform

0.0

0.5

1.0

1.5

2.0

A
vg

. C
os

t
pe

r
R
eq

ue
st

 (
$)

1e-6

Cost Type
Transport
Instances
DB Write
Cluster

(a) UC1

GCP GCP
Pub/Sub

AWS GCP
Samza

GCP
Dataflow

GCP
Autop.

Platform

0

1

2

3

4

5

A
vg

. C
os

t
pe

r
R
eq

ue
st

 (
$)

1e-7

Cost Type
Transport
Instances
DB Write
Cluster

(b) UC3

Figure 15.6. Stream processing cost per request by type [PHS+22b]. Averaging
the cost per request over all evaluated load profiles, we see that, similar to FaaS,
writing to a database is the largest cost factor for UC1 on all deployments. For
UC3, costs are similar independent of the cloud provider, endpoint, and streaming
framework, but instance costs are considerably lower for Dataflow and higher for
GKE Autopilot.

198

15.6. Different Programming Languages in FaaS

In our implementation of the stateful application, we use only native
Apache Beam functionality. As shown in Fig. 15.5b, costs increase in EKS
at a similar rate as in GKE. Depending on the load intensity, at which VMs
have to be added to the cluster, either GKE or EKS is cheaper. Averaged
over all evaluated load profiles, EKS has 8.8% higher costs than GKE (see
Fig. 15.6b). This is in accordance with the slightly higher costs per VM
instance in AWS.

15.5.3 Takeaway for Cloud Platform Choice in Streaming

Similar to our findings from evaluating different FaaS platforms, the choice
of cloud infrastructure for running a stream processing framework has a
small but noteworthy impact on the total costs. The discrepancy results
mainly from different costs for cloud resources, which even outweigh
significant performance gaps.

15.6 Different Programming Languages in FaaS

In our baseline FaaS evaluation, we use the Java 11 runtime in order to
account for effects of programming language or runtime performance
when comparing to Apache Flink. Most modern FaaS platforms support a
wider variety of runtimes, and the choice of language may have an indirect
impact on execution cost when an implementation requires more resources
or function executions take more time.

15.6.1 Implementation and Setup

To quantify the effect of runtime choice, we implement our benchmark
in Node.js and Go. Node.js is one of the most popular choices for cloud
functions, while Go is the only programming language supported by
Google Cloud Functions that is compiled directly to machine code and
may thus have the smallest performance overhead [CYH+20].

199

15. Evaluating Cost Scalability of Stream Processing and FaaS

15.6.2 Results and Discussion

As shown in Fig. 15.4, the choice of programming language has only a
small effect on the cost of function execution, with overall costs changing
by -1.9% and -7.5% (Go) and 0.4% and -1.9% (Node.js) for UC1 and UC3,
respectively. Although the duration of a function execution changes by
-22.7% and -50.8% for UC1 and UC3 with Go, the effect on costs is in-
significant compared to costs for database access. Surprisingly, the Node.js
implementation is as efficient as our Java implementation. This might be
caused by a more mature and optimized execution environment in Google
Cloud Functions, as Node.js is one of the most popular languages for FaaS
functions.

15.6.3 Takeaway for Language Choice in FaaS

As the majority of costs for the execution of a function are incurred by
database access and not function duration, the choice of programming
language has no considerable effect on the cost of our application. For
stateless applications without database access, and especially for more
complex functions where the largest share of costs is incurred by execu-
tion duration rather than function invocation, comparing implementation
runtimes may nevertheless be beneficial.

15.7 Different Streaming Frameworks

We use Apache Flink for our baseline evaluation, which is a stream pro-
cessing framework originating in academia and extensively studied in
research. In this experiment, we compare this to Apache Samza, an open
source stream processing framework developed in industry at LinkedIn
(see Section 4.4). Samza is built around similar concepts as Flink and can
also be used to run Apache Beam pipelines.

15.7.1 Implementation and Setup

Thanks to Apache Beam, we can use exactly the same implementation for
Samza as we use for Flink. In contrast to Flink, Samza does not need a

200

15.8. Serverless vs. Serverful Stream Processing

dedicated coordinator, but instead uses our existing Kafka/ZooKeeper
deployments for coordination among instances.

15.7.2 Results and Discussion

In case of the stateless application, we found that Samza has a significantly
higher resource demand than Flink, causing higher costs as shown in
Fig. 15.5a. As processing 300 requests per second already requires 14 Samza
instances, we extrapolated the costs for higher loads. We assume that this
huge discrepancy is because we did not enable bundling, a Beam feature,
which is used in Beam’s FirestoreIO to write multiple records as batch.
Bundling is disabled per default and its usage is not documented for
Samza.

With the stateful application, Samza performs similar to Flink. As,
however, Samza scales in smaller steps, the rather small load profiles
studied here result in slightly lower costs for Samza as shown in Fig. 15.5b.

15.7.3 Takeaway for Framework Choice

In general, different stream processing framework can be operated at simi-
lar costs. However, different feature sets and inappropriate configuration
options might cause cost pitfalls, particularly when interacting with other
cloud services.

15.8 Serverless vs. Serverful Stream Processing

In our baseline evaluation, we compare serverless FaaS implementations
with streaming implementations running in Kubernetes. Major cloud
vendors also provide managed streaming offerings, which run streaming
pipelines on top of hosted stream processing engines. While requiring the
same development skills than with other stream processing frameworks,
serverless stream processing services can be considered an in-between of
self-operated application with a stream processing framework and FaaS in
terms of operational complexity.

201

15. Evaluating Cost Scalability of Stream Processing and FaaS

15.8.1 Implementation and Setup

To compare the costs of self-operating a stream processing framework with
a fully-managed service, we run our Apache Beam implementations on
Google Cloud Dataflow with varying numbers e2-standard-4 instances.
Similar to the other frameworks, Dataflow should be used with a durable
data source instead of ingesting data directly via HTTP. As we consider
using a serverless stream processing service along with a self-operated
Kafka cluster to be less realistic for real-world systems, we focus on pro-
cessing data from Google Cloud Pub/Sub and use the Flink experiments
with Pub/Sub as baseline.

15.8.2 Results and Discussion

As shown in Fig. 15.5, Google Cloud Dataflow has significantly lower
costs than our Apache Flink on Kubernetes deployment. Averaged over
all evaluated load profiles (see Fig. 15.6), Dataflow has 85.6% of the costs
for operating Flink for UC1 and only 41.2% for UC3. This is primarily due
to the massively reduced costs for the virtual machines as with Dataflow,
fewer instances are required to process the same load, e.g., the stateful
application can be run with a single VM at all tested load rates. We
observed that costs for Dataflow could be further reduced when using
smaller instances such as n1-standard-1 ones. Additionally, there are no
general managing fees for Dataflow, while Google charges customers $0.10
per hour for managing a Kubernetes cluster. The impact of this fee on total
costs decreases with increasing load (see Fig. 15.3). Since the largest cost
driver in the stateless application are database writes, costs are reduced
less than in the stateful application. An in-depth analysis of resource
efficiency advantages in Dataflow is beyond the scope of this work, but
possible reasons are:

– Dataflow might in general offer a better performance than other stream
processing systems.

– Apache Beam might be optimized for Google Cloud Dataflow and, as
shown in Chapter 13 and previous research [HMG+19], Flink provides

202

15.9. Serverless vs. Serverful Kubernetes

much better performance when running native Flink pipelines instead
of using Beam.

– Flink’s default configuration might not be optimal and additional tuning
is required to reach comparable performance.

– Resource utilization when running Flink in small Kubernetes clusters
might not be optimal.

15.8.3 Takeaway for Platform Choice

Processing event streams with Google Cloud Dataflow has significantly
lower costs in our experiments compared to our Flink deployment. Thus,
serverless stream processing services can be a compelling alternative to
running stream processing frameworks manually in Kubernetes, reducing
both operational complexity and costs.

15.9 Serverless vs. Serverful Kubernetes

Recently, cloud providers started offering managed Kubernetes services,
which charge users per container resource usage instead of for the un-
derlying VM instances. A prominent example for such a service is GKE
Autopilot.3

15.9.1 Implementation and Setup

As autoscaling of the Kubernetes cluster takes a considerable amount of
time, running dedicated experiments with GKE Autopilot is unpractical.
However, we can get a reasonable cost approximation by using the results
of our baseline evaluation, in which we determined the required number
of Flink TaskManagers per load profile on a sufficiently dimensioned
cluster. Total costs are then the costs for the TaskManagers, combined with
the constant costs for other components such as Kafka, HTTP Bridge, or
monitoring.

3
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview

203

https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview

15. Evaluating Cost Scalability of Stream Processing and FaaS

15.9.2 Results and Discussion

Independent of the load profile and the use case, GKE Autopilot has higher
costs compared to GKE’s default mode (see Fig. 15.5). The relative cost
difference appears to decrease with higher loads. This can be explained
by a minimal cost per container that is charged independent of the actual
resource usage. Moreover, the cost difference is less pronounced in the
stateless application, where costs are heavily influenced by database writes
(see Fig. 15.6).

15.9.3 Takeaway for Kubernetes Service Choice

While serverless Kubernetes offerings reduce the management burden,
they also have higher cloud service costs. Nevertheless, costs for running
self-operated stream processing framework in a serverless Kubernetes
cluster are still lower than for FaaS at medium and high loads.

15.10 Threats to Validity

In the following, we briefly report on threats and limitations to the validity
of this chapter’s evaluation.

Threats to Internal Validity The threats to internal validity discussed
in Section 12.6 and Section 13.6 mostly apply to the stream processing
experiments in this chapter. We run our experiments for FaaS platforms on
a small scale and extrapolate the results to obtain cost estimates for larger
load intensities. While we consider this a reasonable method due to the
FaaS deployment model, we cannot rule out that performance diverges
under high load. For example, cloud providers might throttle or prioritize
customers depending on the load.

Threats to External Validity Also the threats to external validity dis-
cussed in Section 12.6 and Section 13.6 mostly apply to the stream process-
ing experiments in this chapter. For example, we focus on two large cloud

204

15.11. Summary of Results and Decision Guidelines

platforms and two rather simple task samples. We cannot directly general-
ize our results to arbitrary other execution environments or applications.
Due to our exploratory evaluation design, we do not test all deployment
options versus each other. For example, we conduct our evaluations of
different frameworks or programming language only in one cloud envi-
ronment. However, our results regarding the cost of stream processing and
FaaS show very clear differences. It is unlikely that experiments in other
execution environments or with other configurations yield fundamentally
different results.

15.11 Summary of Results and Decision Guide-

lines

In our experiments, we quantitatively evaluated the choice between func-
tions and stream processing for cloud event processing and have explored
the impact of choosing cloud providers, endpoints, programming lan-
guages, and platforms. We see that the major influences on cost are the
rate at which events arrive and the type of application. FaaS is the eco-
nomic choice for applications that manage little to no state and process
events with low to medium arrival rates. Stream processing is better suited
for operations that require state, such as window aggregation, and for
applications that process events on the order of thousands of events per
second.

Beyond these considerations, we could not observe any considerable
impact of other deployment parameters on costs. The choice of a specific
communication pattern, such as publish–subscribe or HTTP, should thus
be based not on cost but on functional differences. Similarly, the choice of
cloud service provider did not influence costs significantly and might be
influenced more by specific services that a provider offers.

205

Chapter 16

Case Studies

In the previous chapters, we evaluate our scalability benchmarking method
with our proposed benchmarks for event-driven microservices. In this
chapter, we now evaluate whether our proposed method can be applied
to benchmark different types of existing cloud-native applications. We
selected three systems as case studies, which are a commercial software
for the promotional loan business (Section 16.1), an open-source research
software for software visualization (Section 16.2), and a microservice
reference application frequently used in research (Section 16.3). For each
software system, we design a suitable scalability benchmark, execute this
benchmark, and present and discuss benchmarking results.

16.1 Scalability Benchmarking of a Promotional

Loan System

Enterprises and individuals can often, for example, in Germany, not di-
rectly request promotional loans. Instead they request loans via interme-
diary financial institutions (e.g., their house bank), which communicate
with the actual loan creditor. The Promotional Loan System (PLS) of the
b+m Informatik AG is a distributed software system providing this com-
munication. It consists of components running at the house banks (the
PIs) and a component running at the loan creditor (the ZI). The PLS sup-
ports different processes, for example, for loan applications or contract
acceptance.

We use our Theodolite method to benchmark the scalability of the PLS.
The goal of these evaluations is to assess how computing resources of
the single ZI instance can be increased if the amount of data sent from

207

16. Case Studies

connected PIs increases. Designed benchmarks should also be used to
evaluate scalability of the software on a regular basis. In this section, we
give a brief overview of the benchmark design, execution, and results. We
refer to the work of Wetzel [Wet22] for further details.

16.1.1 Benchmark Design

We design a scalability benchmark for the PLS according to the meta
model of our benchmarking tool architecture described in Chapter 8. It is
defined as follows:

SUT A PLS deployments consists of multiple PI components and one
ZI component. In production, each PI or ZI instance would be deployed
with an individual PostgreSQL database. To save computing resources,
we use a single PostgreSQL database for a set of 5 PIs in our benchmarks.
Furthermore, the identity and access management provider Keycloak is
used. For all our evaluations, we only use container images of the PLS and
actually never had access to the PLS source code.

We enhanced observability of the PLS by deploying it with cloud-native
tools such as Open Service Mesh (OSM), Prometheus, Loki and Promtail.
OSM injects an Envoy proxy to each PI or ZI instance, which monitors
incoming and outgoing network traffic and exposes corresponding perfor-
mance metrics in Prometheus’ data format. These metrics are periodically
queried by Prometheus and, thus, can be used by Theodolite for evaluating
SLOs. Loki, along with Promtail, provides similar opportunities for the
application’s log stream. It allows defining queries such as the rate of log
messages containing a specific substring using an API, compatible with
Prometheus’s query language.

Load Generator Our benchmark is designed around the message domain
entity of the PLS. Messages provide a semi-structured way to exchange
information between the PIs and the ZI. Two users are required to create,
control, approve, and release a message on a PI, before the PI sends it to
the ZI (four-eye principle). Messages can be enriched by file attachments.

In our benchmarks, we simulate two types of users of the web-based
user interface. One type of user creates messages and submits them for

208

16.1. Scalability Benchmarking of a Promotional Loan System

approval. The other type of users releases them. Before creating or releasing
a set of messages, users perform a login. Afterward, they logout again.
This results in a quite complex sequence of HTTP requests to the PIs and
Keycloak, including redirects, cookie management, etc. [Wet22]. For both
user types, we create trace-based workloads [BWT17] for the JMeter load
generator tool, which we deploy within our cluster.

Load Dimension We focus on two dimensions of increasing load on the
PLS. First, we increase the number of messages sent per minute. Second,
we increase the size of messages’ file attachments. Both are reported to be
of special interest by b+m Informatik.

Resource Dimensions The PLS ZI component is not designed to run in
a distributed fashion. Instead we focus on scaling the computing CPU and
memory resources of the single ZI instance to cope with increasing load.

SLOs Since there are no explicitly described SLOs for the PLS, we have
to define custom metrics to assess whether the PLS is functioning as
expected. We define three SLOs: (1) The ZI must receive on average at
least 90% of the created messages. (2) The 90th percentile latency of the
PI-ZI communication must be less or equal than 20 milliseconds. (3) No
more than 20 requests must return an HTTP error code. We specify these
SLOs as corresponding queries to Prometheus and Loki.

16.1.2 Benchmark Execution

We use the SPEL private cloud environment described in Section 12.1 for
executing the benchmarks. In an exploratory pre-study, we run individual
SLO experiments for multiple hours to assess the performance variability
of our PLS deployment.1 Within these experiments, we found a memory
leak in the software only becoming apparent when generating a high load
over multiple hours. We reported our finding to b+m Informatik and were
provided with an updated PLS version, which we used in the following.

1To systematically determine the required experiment duration and number of repetitions,
our evaluations described in Chapter 12 can be used as a blueprint.

209

16. Case Studies

500 1000 1500 2000 2500
messages per minute

0

1

2

3

4

5

6

7

8

re
so

ur
ce

s i
n

CP
U

co
re

s

(a) Increasing the message rate

2500 5000 7500 10000 12500 15000 17500
size of attachments in MB

0

2

4

6

8

10

12

14

16

re
so

ur
ce

s i
n

CP
U

co
re

s

100 msgs/min 200 msgs/min 400 msgs/min

(b) Increasing the size of file attachments

Figure 16.1. Scalability of the ZI component of the PLS software according to our
resource demand metric [Wet22].

In a set of evaluations, we benchmark the scalability of the PLS regard-
ing both defined load dimensions. From the pre-study, we conclude that
18 minutes experiment duration with the measurements of the first 6 min-
utes discarded as warm-up period as well as 5 repetitions are reasonable
configurations. We scale the provisioned number of CPU cores for the ZI
from 1 to 16.

16.1.3 Benchmark Results

Fig. 16.1 shows selected experimental results for both evaluated load di-
mensions in terms of Theodolite’s demand metric. We can see that the PLS
scales reasonable linearly for up to 2 500 generated messages per minute
(6 cores, see Fig. 16.1a). For higher load intensities, disproportionately
more cores are required. Using 12 or 16 cores does not yield an increase in
processable messages.

Increasing the size of file attachments can only be handled to a very
limited extent with additional resources (see Fig. 16.1b). Depending on
the message frequency, attachments up to approximately 3,5 MB, 8 MB, or
18 MB can be processed by 2 cores. A constant load of larger files requires
significantly more resources or cannot be handled at all.

210

16.2. Scalability Benchmarking of ExplorViz

16.2 Scalability Benchmarking of the Open-

Source Research Software ExplorViz

ExplorViz [FKH17; HKZ20] is an open-source research tool for software
visualization and program comprehension. It uses dynamic analysis to
build a continuously updating 3D representation of a monitored software
system. ExplorViz is designed as an event-driven microservice architecture
running in the cloud [KH22]. The most data-intensive components are
the Adapter microservice, the Landscape microservice, and the Trace
microservice. The Adapter service receives incoming monitoring traces and
publishes events to Kafka topics, which are consumed by the Landscape
and the Trace service. All three microservices use the Kafka Streams stream
processing framework.

In this case study, we show how we design and execute a scalability
benchmark for ExplorViz. The ExplorViz maintainers are primarily in-
terested in evaluating how ExplorViz scales with increasing amounts of
monitoring data and being able to repeat these evaluations on a regular
basis. Additionally, we evaluate whether the results of our benchmarking
method can be applied to the Universal Scalability Law (USL, see also
Section 6.4) [Gun07; GPT15]. In this section, we give a brief overview of
the benchmark design, execution, and results. For further details, we refer
to the work of Ehrenstein [Ehr22].

16.2.1 Benchmark Design

Our Theodolite benchmarks for ExplorViz are defined as follows:

SUT ExplorViz is provided as a set of container images. We use these
images to define corresponding Kubernetes manifest for all components.
We define four benchmarks with different SUTs: (1) the Adapter microser-
vice, (2) the Landscape microservice, (3) the Trace microservice, and (4)
the entire trace analysis of ExplorViz consisting of all three microservices.

Load Generator We implement ExplorViz-specific load generators for
each microservice with our Theodolite load generator framework, briefly

211

16. Case Studies

introduced in Section 11.5. It creates a constant rate of traces of config-
urable size. Depending on the ExplorViz microservice under test, it either
creates Protocol Buffers or Apache Avro messages.

Load Dimension In all benchmarks, the load dimension is the number
of generated traces per second.

Resource Dimensions In our benchmarks for individual ExplorViz mi-
croservices, we scale with the number of instances. In the benchmark with
all trace analysis microservices as SUT, we support scaling all services ac-
cording to a specific ratio as well as scaling the CPU resources per service
instance with a fixed number of instances per service. In both cases, this
ratio is two instances of the Adapter microservice and three instances of
the Trace microservice per one instance of the Landscape service.

SLO Since the SUTs studied in this section are event-driven microser-
vices, we can apply our lag trend SLO and our dropped records SLO as
defined in Section 11.4. Both SLOs are configured with a threshold of 5%
of the generated load intensity.

16.2.2 Benchmark Execution

We use the SPEL private cloud environment described in Section 12.1 for
executing the benchmarks. We deploy up to 30 microservice instances for
the benchmarks with a single microservice as SUT and up to 60 instances
for the benchmark with the entire trace analysis as SUT (20 instances of
the Adapter microservice, 10 instances of the Landscape microservice, and
30 instances of the Trace microservice). Depending on the benchmark, we
generate up to 500 000 traces per second.

In contrast to the other case studies, we use our resource capacity metric.
This allows us to prototypically evaluate scalability with the USL. We use
the determined load capacity for each evaluated number of instances to fit
the non-linear rational function of the USL. This function provides us two
coefficients, representing contention and coherency of the SUT.

212

16.2. Scalability Benchmarking of ExplorViz

●

●

●

●

●

●

●

● ●

●

0
1

0
2

0
3

0
4

0

instances

c
a

p
a

c
it
y
 (

th
o

u
s
a

n
d

 t
ra

c
e

s
 p

e
r

s
e

c
o

n
d

)

0 3 6 9 12 15 18 21 24 27 30

(a) Adapter microservice

●

●

●

●

●

●

●

●

●

●

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

instances

c
a

p
a

c
it
y
 (

th
o

u
s
a

n
d

 t
ra

c
e

s
 p

e
r

s
e

c
o

n
d

)

0 3 6 9 12 15 18 21 24 27 30

(b) Landscape microservice

●

● ●

●

●

●

● ●

● ●

0
1

2
3

4
5

instances

c
a

p
a

c
it
y
 (

th
o

u
s
a

n
d

 t
ra

c
e

s
 p

e
r

s
e

c
o

n
d

)

0 3 6 9 12 15 18 21 24 27 30

(c) Trace microservice

●

●

●

●

●

●

● ●

●

●

0
1

2
3

4
5

proportional resource dimension

c
a

p
a

c
it
y
 (

th
o

u
s
a

n
d

 t
ra

c
e

s
 p

e
r

s
e

c
o

n
d

)

0 1 2 3 4 5 6 7 8 9 10

(d) All trace analysis microservices

Figure 16.2. Scalability of ExplorViz microservices benchmarked with our load
capacity metric and the Universal Scalability Law [Ehr22].

16.2.3 Benchmark Results

Fig. 16.2 shows selected scalability benchmarking results for each SUT.
The red curve shows the fitted USL function. The black line corresponds
to linear scalability with a growth rate of the USL’s γ coefficient [Ehr22].

The Adapter microservice scales sublineraly. We observe mainly con-
tention and very small coherency effects (see Fig. 16.2a). However, as

213

16. Case Studies

argued by Ehrenstein [Ehr22], the contention seems to result from uti-
lizing the underlying hardware and not to be related to the architecture
of the Adapter service. The Landscape microservice scales linearly (see
Fig. 16.2b). We do not see any contention or coherency effects within the
evaluated load and resource ranges. For the Trace service, we can clearly
observe both contention and coherency (see Fig. 16.2c). The load capacity
increases with up to 15 instances, but decreases again with more instances.
An in-depth analysis of the Trace service’s architecture and potentially
further experiments are necessary to evaluate whether this results from
accessing shared resources or too strict SLOs [Ehr22]. The scalability re-
sults of the entire trace analysis consisting of all three microservices (see
Fig. 16.2d) look quite similar to the results for the Trace service. This
clearly indicates that the Trace microservice is the bottleneck of the entire
trace analysis.

16.3 Scalability Benchmarking of the TeaStore

Microservice Reference Application

The TeaStore [vKES+18] is a microservice reference application for bench-
marking, performance modeling, and resource management research. It
resamples a web shop for tea, allowing customers, for example, to browse
the shop catalog, receive product recommendations, or place orders. The
TeaStore consists of six microservices, which synchronously communi-
cate via REST interfaces, and a MariaDB database. It has been used in
several studies, for example, for research on microservice performance
testing [EBS+20], detecting performance regressions [LCL+21], and im-
proving performance of containerized deployments [GGB+20].2 We thus
consider it a reasonable case study for Theodolite.

In this section, we briefly show how a Theodolite benchmark for the
TeaStore can be designed and executed. We provide a step-by-step guide
as part of our Theodolite documentation.3 Further, we show scalability

2An exhaustive list of scientific publications leveraging the TeaStore can be found at the
project’s website: https://github.com/DescartesResearch/TeaStore#the-teastore-in-action

3
https://www.theodolite.rocks/example-teastore.html

214

https://github.com/DescartesResearch/TeaStore#the-teastore-in-action
https://www.theodolite.rocks/example-teastore.html

16.3. Scalability Benchmarking of the TeaStore

benchmark results, which have previously been presented at the 13th
Symposium on Software Performance [HWH23].

16.3.1 Benchmark Design

Our Theodolite benchmark for the TeaStore is defined as follows (see also
Fig. 16.3):

SUT The TeaStore comes with Kubernetes files, which we can directly
use in our benchmark. While the TeaStore integrates application-level mon-
itoring with Kieker [vHWH12; HvH20], we require higher-level metrics
such as latency of requests between services. Therefore, we deploy the
TeaStore along with Open Service Mesh (OSM) as in Section 16.1 to moni-
tor incoming and outgoing network traffic. To actually see scaling effects,
we restrict the containers of the WebUI, Image, Auth, and Recommender
microservices to 0.5 CPU cores and 1 GB memory.

Load Generator For generating load on the TeaStore, we deploy JMeter
within our cluster and use the browse profile [vKES+18], provided as part
of the TeaStore.

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy (OSM)

TeaStore
Recommender

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy (OSM)

TeaStore
Image

Envoy (OSM)

TeaStore
Auth

Envoy (OSM)

TeaStore
Persistence

Envoy (OSM)

TeaStore
WebUI

Envoy (OSM)

TeaStore
Database

Theodolite

Prometheus

Grafana

Benchmark
Results

SUT

Load
Generator

Envoy (OSM)

TeaStore
Registry

starts/stops

monitors

queries

queries

stores

Envoy (OSM)

JMeter

Figure 16.3. Benchmark deployment of the Theodolite stack, the TeaStore as SUT,
and the JMeter load generator [HWH23].

215

16. Case Studies

Load Dimension The load with which we scale is the number of concur-
rent users configured in JMeter. Each user creates a sequence of requests
to the WebUI service, resulting in approximately 25–30 requests per user
and second.

Resource Dimensions We choose two types of resource scaling: (1) We
scale the number of instances for each of the WebUI, Image, Auth, and
Recommender services (benchmarking horizontal scalability). (2) We stick
to one instance per service, but scale the amount of provided CPU cores
and memory for each service (benchmarking vertical scalability).

SLO To consider a certain load intensity to be handleable by a certain
amount of instances, we require that the 95th percentile latency of requests
to the WebUI service does not exceed 200 ms.

16.3.2 Benchmark Execution

Again we use the SPEL private cloud environment described in Section 12.1
to execute the benchmarks. For all benchmark executions, we use the load
capacity metric with Theodolite’s lower bound, linear search strategy. In
manual experiments, we found that after 10 minutes of warmup the WebUI
response latencies are quite stable. Thus, we run each experiment of a
certain load intensity with a certain amount of resources for 20 minutes,
while discarding the measurements of the first 10 minutes. For benchmark-
ing horizontal scalability, we vary the number of pod instances from 1 to
20, while for vertical scalability we vary the pod’s CPU resources from
0.5 to 8 cores and, proportionally, the pod’s memory from 1 GB to 16 GB.
We generate load with 5 to 50 concurrent users, resulting in a runtime of
over 12 hours per benchmark execution.

16.3.3 Benchmark Results

Fig. 16.4 shows the results of our scalability benchmark. For benchmarking
horizontal scalability, we can see that the required number of pods (for each
microservice) scales approximately linearly with the amount of concurrent
users. In our benchmark execution for vertical scalability, we observed

216

16.3. Scalability Benchmarking of the TeaStore

0 10 20 30 40 50
number of concurrent users

0

2

4

6

8

10

12

14

16

18

nu
m

be
r o

f i
ns

ta
nc

es

(a) horizontal scalability

0 10 20 30 40 50
number of concurrent users

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

m
CP

U
(b) vertical scalability

Figure 16.4. Results for benchmarking the horizontal and vertical scalability of the
TeaStore according to our resource demand metric [HWH23].

that 5 concurrent users could be served by providing 1.5 CPU cores and
3 GB memory to each service. Higher amounts of concurrent users could
not be handled, irrespective of the provisioned resources. While a detailed
analysis is beyond the scope of this case study, we suspect that higher
loads could still be processed by tuning the number of threads or accepted
connections.

217

Part V

Conclusions and Future

Work

Chapter 17

Conclusions

In this thesis, we addressed the lack of a suitable scalability benchmarking
method for cloud-native applications and, in particular, for event-driven
microservices. We defined two overarching goals, namely, to design a
scalability benchmarking method for cloud-native applications and to
design benchmarks that allow assessing and comparing the scalability
of different stream processing frameworks, configuration options, and
deployment options for event-driven microservices.

In this chapter, we summarize our contributions in terms of a scalability
benchmarking method (Section 17.1), scalability benchmarks for event-
driven microservices (Section 17.2), and evaluation results (Section 17.3).

17.1 The Theodolite Scalability Benchmarking

Method

We proposed our Theodolite scalability benchmarking method. It allows
experimentally evaluating the scalability of arbitrary cloud-native applica-
tions. Based on the distinction between individual benchmark components
and benchmark quality attributes, our proposed benchmarking method
consists of scalability metrics, a measurement method, and an architec-
ture for a benchmarking tool. Regarding the design of the individual
benchmark components, we raised three research questions RQ 1.1–1.3.

We addressed RQ 1.1 by designing our Theodolite scalability metrics,
namely the resource demand and the load capacity metric, to quantify scal-
ability. Based on established scalability definitions, both metrics quantify
scalability using the notions of load, resources, and SLOs. Our resource
demand metric quantifies how the minimum amount of required resources

221

17. Conclusions

evolves as load increases, while the load capacity metric quantifies how
the maximum processible load evolves as provisioned resources increase.

Our Theodolite measurement method addresses RQ 1.2. It defines a
method for systematically conducting experiments to measure scalability
according to our Theodolite metrics. The fundamental principle is to
run isolated experiments for different load intensities and provisioned
resources, which assess whether specified SLOs are fulfilled. Our method
provides different search strategies and other configuration options to
balance time-efficient execution and statistical grounding.

We designed a software architecture for a scalability benchmarking
tool to address RQ 1.3. Our architecture is built around the common
distinction of actors involved in benchmarking, benchmark designers
and benchmarkers. Based on this distinction, we present a meta model to
describe and relate scalability benchmarks and their execution. We propose
to build a corresponding benchmarking tool as Kubernetes Operator. This
allows for seamless integration into the cloud-native ecosystem and for
defining scalability benchmarks and benchmark executions in declarative
files to foster usability and reproducibility.

Our Theodolite benchmarking framework is an open-source imple-
mentation of our proposed architecture and, hence, our proposed bench-
marking method. Theodolite has been-peer reviewed and successfully
evaluated by the SPEC Research Group for its high quality and relevance
to the software performance engineering community.

17.2 The Theodolite Scalability Benchmarks for

Event-Driven Microservices

Building upon our Theodolite benchmarking method for cloud-native
applications, we designed a set of scalability benchmarks for event-driven
microservices, a special type of cloud-native applications. Our Theodolite
benchmarks provide four task samples to assess the scalability of different
stream processing frameworks, configuration options, and deployment
options for event-driven microservices. We raised four research questions
RQ 2.1-2.4 concerning the identification of relevant task samples, corre-

222

17.3. Experimental Evaluation Results

sponding dataflow architectures for stream processing frameworks, load
and resource dimensions to be evaluated, and respective SLOs.

We addressed RQ 2.1 by identifying real use cases for event-driven
microservices from an IIoT analytics platform. From these use cases, we
derived four dataflow architectures to be implemented by stream process-
ing frameworks, hence, addressing RQ 2.2. These dataflow architectures
serve as a basis for our benchmark task samples. Receiving a stream of
simulated sensor measurements as input, individual dataflow architec-
tures fulfill the tasks of: (1) writing all measurements to a database, (2)
downsampling the measurement frequency, (3) aggregating measurements
based on a time attribute, and (4) hierarchically aggregating measurements
in groups.

As an answer to RQ 2.3, we identified the number of simulated sensors
(i.e., messages with distinct keys per second) as a particularly relevant
load dimension and the number of instances and the number of CPU
cores as particularly relevant resource dimensions. We addressed RQ 2.4
by presenting the lag trend SLO and the dropped records SLO. However,
our proposed benchmarking method allows benchmarking scalability with
respect to arbitrary other load dimensions, resource dimensions, and SLOs.

We provide open-source implementations of the presented dataflow
architectures for the state-of-the-art stream processing frameworks Apache
Flink, Hazelcast Jet, Apache Kafka Streams, and the Apache Beam abstrac-
tion layer. Specific implementations for the latter are provided for Apache
Flink and Apache Samza. Moreover, we provide benchmark definitions
to be used with our Theodolite benchmarking framework (i.e., Theodo-
lite Kubernetes YAML files) for all implementations and identified load
dimensions, resource dimensions, and SLOs.

17.3 Experimental Evaluation Results

We conducted extensive experimental evaluations of and with our scalabil-
ity benchmarking method and our benchmarks for event-driven microser-
vices.

We analyzed the trade-off between a time-efficient execution and stati-
cally grounded results for the case of event-driven microservices. We ran

223

17. Conclusions

experiments in two public and one private cloud infrastructure and found
that in most cases only little (ď 5) repetitions and short execution times
(ď 5 minutes) are necessary to assess whether certain resource amounts
can handle a load intensity. Additionally, our results show that for both
our scalability metrics, search strategies can be used to massively reduce
the amount of individual experiments.

We employed our benchmarking method along with our stream pro-
cessing benchmarks to assess the scalability of state-of-the-art stream
processing frameworks, particularly suited for implementing event-driven
microservices. We found that all benchmarked frameworks provide approx-
imately linear scalability. However, we noticed considerable differences
among the frameworks in terms of the rate at which resource demands
increase. Moreover, no framework is clearly superior. Rather, it depends
on the use case, which framework scales with the lowest resource demand.

Our benchmarking method does not only allow comparing different
stream processing frameworks, but also evaluating different configuration
options and algorithms developed by research. We employed one of our
Theodolite benchmarks as well as another benchmark provided by research
to evaluate scalability of different sliding window aggregation methods.
While all methods provide linear scalability, we found that the Scotty
window processor can reduce resource demands significantly.

We employed our Theodolite benchmarking method as well as our
stream processing benchmark to compare cost scalability of stream pro-
cessing frameworks running in Kubernetes with FaaS offerings. We found
that in terms of pure costs for the cloud services, FaaS is superior for
applications that are subject to small load intensities and maintain small
state. Once load intensities increase and utilize at least a single stream pro-
cessing instance, stream processing systems can be operated at lower costs.
This observation holds independent of the cloud provider and technology
employed for implementation.

In three case studies, we found that our benchmarking method can also
be applied to evaluate scalability of other types of cloud-native applications.
Specifically, our Theodolite method allows using existing deployment
specifications without requiring access to the application’s source code.

224

Chapter 18

Future Work

We complete this thesis by pointing out future research directions. In
this chapter, we primarily show how our benchmarking method and
our benchmarks allow future work to conduct experimental scalability
evaluations (Section 18.1). Moreover, we outline future work regarding
our scalability benchmarking method (Section 18.2) and our scalability
benchmarks for event-driven microservices (Section 18.3). We conclude
this thesis with a small outlook (Section 18.4).

18.1 Experimental Scalability Evaluations with

Theodolite

As summarized in Section 17.1, we designed a scalability benchmarking
method for cloud-native applications. It lays the foundation for future re-
search, defining new benchmarks, adopting existing ones (e.g., addressing
performance), and executing them.

With this thesis, we put a focus on event-driven microservices, a special
type of cloud-native applications, and designed corresponding scalabil-
ity benchmarks for stream processing frameworks (see Section 17.2). This
allows for a wide range of further research on scalability of event-driven mi-
croservices. Building upon our experimental evaluations in Part IV, future
work could involve benchmarking the scalability of different deployment
and configuration options, different algorithms, or load intensities of other
dimensions.

Frequently executing scalability benchmarks, for example, as part of
the continuous integration or continuous deployment process could assist
quality assurance and regression testing. While continuous benchmarking

225

18. Future Work

has been occasionally proposed in research [WEH15; GLB19], it still seems
not to be established, in particular, at a larger scale than microbench-
marking. We suspect that one cause is usability hurdles. Implementing
a benchmarking tool as Kubernetes operator as proposed in this thesis
and considering benchmarks as Infrastructure as Code, however, may
significantly improve usability [HWH21]. Placing benchmarks defined in
Kubernetes manifest files along with application deployment files in Git
repositories, may allow recently emerging cloud-native GitOps [BH22]
tools to automatically run these benchmarks in the continuous deployment
process.

18.2 Future Work on Scalability Benchmarking

Methods

With Theodolite, we presented a systematical and automated method
accompanied by a corresponding tool to evaluate whether specified load
intensities can be handled by specified resource amounts without violat-
ing specified SLOs. We see great potential for using Theodolite beyond
such two-dimensional scalability evaluations. For example, a large field
of research concerns approaches to search the vast space of cloud deploy-
ment options for a cost-optimal one [FFH13; BEG+19]. Combined with
search-based software engineering methods [HMZ12], Theodolite could
contribute to this research.

Another promising future research direction is integrating Theodolite
with elasticity benchmarking approaches of, for example, auto-scalers.
Established elasticity benchmarking methods rely on an approach similar
to ours to determine the optimal resource demand [HKW+15]. Theodolite
and its benchmarks could be used to conduct the necessary experiments for
cloud-native applications and, in particular, for event-driven microservices
in an automated fashion.

In our case study in Section 16.2, we prototypically used the scalability
results of our load capacity metric to fit a Universal Scalability Law (USL)
model. Although the resulting model coefficients might require slightly
alternative interpretations [Ehr22], our initial results look promising. The
major advantage of deriving such coefficients is that they improve inter-

226

18.3. Future Work on Scalability Benchmarks

pretation and ranking of results. Before analyzing cloud-native application
with the USL at a larger scale, however, additional experiments and a
statistically sound evaluation should be performed. If these are successful,
we can also speed up benchmark execution using an USL-based search
strategy. Ehrenstein [Ehr22] built a prototypical extension of such a search
strategy for our Theodolite benchmarking framework. It selects load inten-
sities and resource amounts, for which SLO experiments are executed, to
incrementally refine the USL model.

18.3 Future Work on Scalability Benchmarks for

Event-Driven Microservices

With our Theodolite scalability benchmarks, we focused on four task
samples. In Chapter 10, we identified further types of continuous sensor
data analysis not included in these task samples. Future research could
design corresponding task samples based on our presented goals and
measures. In particular, we found forecasting and anomaly detection
on sensor data streams to be of high relevance. With our Titan Control
Center, we already presented how corresponding microservices could be
designed [HHB+21; HH21d]. We suggest using these architectures as a
basis to complement our Theodolite benchmarks by two additional ones
for forecasting and anomaly detection. In contrast to the existing ones,
such dataflow architectures call an external service or perform a compute-
intensive operation (forecasting) and join two data streams based on the
messages timestamp (anomaly detection).

18.4 Outlook

As introduced in Chapter 1, an end to scalability requirements is not in
sight. Although new technologies will emerge, cloud-native and event-
driven architectures will likely remain highly relevant research topics for
years to come. With this work, we contribute to a solid foundation for
empirical scalability evaluations of software methods, architectures, and
technologies proposed in future research.

227

Bibliography

[AA19] A. Al-Said Ahmad and P. Andras. “Scalability analysis com-
parisons of cloud-based software services”. In: Journal of
Cloud Computing 8.1 (2019), pp. 1–17. doi: 10.1186/s13677-019-

0134-y.

[AB17] A. Abedi and T. Brecht. “Conducting repeatable experiments
in highly variable cloud computing environments”. In: Pro-
ceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering. ICPE ’17. 2017, pp. 287–292. doi:
10.1145/3030207.3030229.

[ABB+13] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haber-
man, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S.
Whittle. “Millwheel: fault-tolerant stream processing at in-
ternet scale”. In: Proceedings of the VLDB Endowment 6.11
(2013), pp. 1033–1044. doi: 10.14778/2536222.2536229.

[ABC+15] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F.
Perry, E. Schmidt, and S. Whittle. “The dataflow model:
a practical approach to balancing correctness, latency, and
cost in massive-scale, unbounded, out-of-order data pro-
cessing”. In: Proceedings of the VLDB Endowment 8.12 (2015),
pp. 1792–1803. doi: 10.14778/2824032.2824076.

[ABC+16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J.
Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. “TensorFlow: a system for large-scale machine
learning”. In: Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation. OSDI’16. 2016,
pp. 265–283.

229

https://doi.org/10.1186/s13677-019-0134-y
https://doi.org/10.1186/s13677-019-0134-y
https://doi.org/10.1145/3030207.3030229
https://doi.org/10.14778/2536222.2536229
https://doi.org/10.14778/2824032.2824076

Bibliography

[ABC+21] T. Akidau, E. Begoli, S. Chernyak, F. Hueske, K. Knight, K.
Knowles, D. Mills, and D. Sotolongo. “Watermarks in stream
processing systems: semantics and comparative analysis of
Apache Flink and Google Cloud Dataflow”. In: Proceedings
of the VLDB Endowment 14.12 (Oct. 2021), pp. 3135–3147. doi:
10.14778/3476311.3476389.

[ABE+14] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F.
Hueske, A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F.
Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter,
M. Höger, K. Tzoumas, and D. Warneke. “The stratosphere
platform for big data analytics”. In: The VLDB Journal 23.6
(Dec. 2014), pp. 939–964. doi: 10.1007/s00778-014-0357-y.

[ACG+04] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. “Linear Road:
a stream data management benchmark”. In: Proceedings of
the Thirtieth International Conference on Very Large Data Bases -
Volume 30. VLDB ’04. 2004, pp. 480–491.

[ACJ+21] A. Avritzer, M. Camilli, A. Janes, B. Russo, J. Jahič, A. v.
Hoorn, R. Britto, and C. Trubiani. “PPTAMλ: what, where,
and how of cross-domain scalability assessment”. In: 2021
IEEE 18th International Conference on Software Architecture
Companion (ICSA-C). 2021, pp. 62–69. doi: 10.1109/ICSA-C52384.

2021.00016.

[AE08] M. Albadi and E. El-Saadany. “A summary of demand
response in electricity markets”. In: Electric Power Systems
Research 78.11 (2008), pp. 1989–1996. doi: 10.1016/j.epsr.2008.04.

002.

[AF09] M. L. Abbott and M. T. Fisher. The art of scalability: scalable
web architecture, processes, and organizations for the modern
enterprise. 1st. Addison-Wesley Professional, 2009.

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia. “A view of cloud computing”. In: Communications of
the ACM 53.4 (Apr. 2010), pp. 50–58. doi: 10.1145/1721654.1721672.

230

https://doi.org/10.14778/3476311.3476389
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1109/ICSA-C52384.2021.00016
https://doi.org/10.1109/ICSA-C52384.2021.00016
https://doi.org/10.1016/j.epsr.2008.04.002
https://doi.org/10.1016/j.epsr.2008.04.002
https://doi.org/10.1145/1721654.1721672

Bibliography

[AFJ+20] A. Avritzer, V. Ferme, A. Janes, B. Russo, A. van Hoorn, H.
Schulz, D. Menasché, and V. Rufino. “Scalability assessment
of microservice architecture deployment configurations: a
domain-based approach leveraging operational profiles and
load tests”. In: Journal of Systems and Software 165 (2020),
p. 110564. doi: 10.1016/j.jss.2020.110564.

[Amd67] G. M. Amdahl. “Validity of the single processor approach to
achieving large scale computing capabilities”. In: Proceedings
of the April 18-20, 1967, Spring Joint Computer Conference.
AFIPS ’67 (Spring). 1967, pp. 483–485. doi: 10.1145/1465482.

1465560.

[AMP+17] C. M. Aderaldo, N. C. Mendonça, C. Pahl, and P. Jamshidi.
“Benchmark requirements for microservices architecture re-
search”. In: 2017 IEEE/ACM 1st International Workshop on
Establishing the Community-Wide Infrastructure for Architecture-
Based Software Engineering (ECASE). 2017, pp. 8–13. doi:
10.1109/ECASE.2017.4.

[Apa22] Apache Software Foundation. Nexmark benchmark suite. 2022.
url: https : / / beam . apache . org / documentation / sdks / java / testing /

nexmark/.

[AT16] S. Arora and J. W. Taylor. “Forecasting electricity smart
meter data using conditional kernel density estimation”.
In: Omega 59 (2016). Business Analytics, pp. 47–59. doi:
10.1016/j.omega.2014.08.008.

[Bas13] V. R. Basili. “A personal perspective on the evolution of
empirical software engineering”. In: Perspectives on the Future
of Software Engineering: Essays in Honor of Dieter Rombach. Ed.
by J. Münch and K. Schmid. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 255–273. doi: 10.1007/978- 3- 642-

37395-4_17.

[BBT+15] S. Brunner, M. Blöchlinger, G. Toffetti, J. Spillner, and T. M.
Bohnert. “Experimental evaluation of the cloud-native appli-
cation design”. In: 2015 IEEE/ACM 8th International Confer-

231

https://doi.org/10.1016/j.jss.2020.110564
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1109/ECASE.2017.4
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://doi.org/10.1016/j.omega.2014.08.008
https://doi.org/10.1007/978-3-642-37395-4_17
https://doi.org/10.1007/978-3-642-37395-4_17

Bibliography

ence on Utility and Cloud Computing (UCC). 2015, pp. 488–493.
doi: 10.1109/UCC.2015.87.

[BCK+21] D. Bermbach, A. Chandra, C. Krintz, A. Gokhale, A. Slomin-
ski, L. Thamsen, E. Cavalcante, T. Guo, I. Brandic, and R.
Wolski. “On the future of cloud engineering”. In: 2021 IEEE
International Conference on Cloud Engineering (IC2E). 2021,
pp. 264–275. doi: 10.1109/IC2E52221.2021.00044.

[BDD+18] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M.
Mazzara. “From monolithic to microservices: an experience
report from the banking domain”. In: IEEE Software 35.3
(2018), pp. 50–55. doi: 10.1109/MS.2018.2141026.

[BEG+19] A. Bauer, S. Eismann, J. Grohmann, N. Herbst, and S.
Kounev. “Systematic search for optimal resource config-
urations of distributed applications”. In: 2019 IEEE 4th In-
ternational Workshops on Foundations and Applications of Self*
Systems (FAS*W). 2019, pp. 120–125. doi: 10.1109/FAS-W.2019.00040.

[Bel20] A. Bellemare. Building event-driven microservices. 1st. O’Reilly
Media, Inc., 2020.

[Ben21] J. R. Bensien. “Scalability benchmarking of stream process-
ing engines with Apache Beam”. Bachelor’s Thesis. Kiel
University, 2021.

[Ber17] D. Bermbach. “Quality of cloud services: expect the unex-
pected”. In: IEEE Internet Computing 21.1 (Jan. 2017), pp. 68–
72. doi: 10.1109/MIC.2017.1.

[BGM+20] M. V. Bordin, D. Griebler, G. Mencagli, C. F. R. Geyer, and
L. G. L. Fernandes. “DSPBench: a suite of benchmark ap-
plications for distributed data stream processing systems”.
In: IEEE Access 8 (2020), pp. 222900–222917. doi: 10.1109/ACCESS.

2020.3043948.

[BGO+16] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes.
“Borg, Omega, and Kubernetes”. In: Communications of the
ACM 59.5 (Apr. 2016), pp. 50–57. doi: 10.1145/2890784.

232

https://doi.org/10.1109/UCC.2015.87
https://doi.org/10.1109/IC2E52221.2021.00044
https://doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1109/FAS-W.2019.00040
https://doi.org/10.1109/MIC.2017.1
https://doi.org/10.1109/ACCESS.2020.3043948
https://doi.org/10.1109/ACCESS.2020.3043948
https://doi.org/10.1145/2890784

Bibliography

[BH22] F. Beetz and S. Harrer. “GitOps: the evolution of DevOps?”
In: IEEE Software 39.4 (2022), pp. 70–75. doi: 10.1109/MS.2021.

3119106.

[BHI+17] G. Brataas, N. Herbst, S. Ivansek, and J. Polutnik. “Scal-
ability analysis of cloud software services”. In: 2017 IEEE
International Conference on Autonomic Computing (ICAC). 2017,
pp. 285–292. doi: 10.1109/ICAC.2017.34.

[BHJ16a] A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Microservices
architecture enables DevOps: migration to a cloud-native
architecture”. In: IEEE Software 33.3 (May 2016), pp. 42–52.
doi: 10.1109/ms.2016.64.

[BHJ16b] A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Migrating
to cloud-native architectures using microservices: an expe-
rience report”. In: Advances in Service-Oriented and Cloud
Computing. Ed. by A. Celesti and P. Leitner. 2016, pp. 201–
215.

[BHP+06] S. Becker, W. Hasselbring, A. Paul, M. Boskovic, H. Koziolek,
J. Ploski, A. Dhama, H. Lipskoch, M. Rohr, D. Winteler, S.
Giesecke, R. Meyer, M. Swaminathan, J. Happe, M. Muhle,
and T. Warns. “Trustworthy software systems: a discus-
sion of basic concepts and terminology”. In: ACM SIGSOFT
Software Engineering Notes 31.6 (Nov. 2006), pp. 1–18. doi:
10.1145/1218776.1218781.

[BHT+20] L. Bulej, V. Horký, P. Tuma, F. Farquet, and A. Prokopec.
“Duet benchmarking: improving measurement accuracy in
the cloud”. In: Proceedings of the ACM/SPEC International Con-
ference on Performance Engineering. ICPE ’20. 2020, pp. 100–
107. doi: 10.1145/3358960.3379132.

[Bie20] N. A. Biernat. “Scalability benchmarking of Apache Flink”.
Bachelor’s Thesis. Kiel University, 2020.

[BKD+17] D. Bermbach, J. Kuhlenkamp, A. Dey, A. Ramachandran, A.
Fekete, and S. Tai. “BenchFoundry: a benchmarking frame-
work for cloud storage services”. In: Service-Oriented Comput-
ing: 15th International Conference, ICSOC 2017, Malaga, Spain,

233

https://doi.org/10.1109/MS.2021.3119106
https://doi.org/10.1109/MS.2021.3119106
https://doi.org/10.1109/ICAC.2017.34
https://doi.org/10.1109/ms.2016.64
https://doi.org/10.1145/1218776.1218781
https://doi.org/10.1145/3358960.3379132

Bibliography

November 13–16, 2017, Proceedings. 2017, pp. 314–330. doi:
10.1007/978-3-319-69035-3_22.

[BKK+09] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. “How is
the weather tomorrow? towards a benchmark for the cloud”.
In: Proceedings of the Second International Workshop on Testing
Database Systems. DBTest ’09. 2009. doi: 10.1145/1594156.1594168.

[BLB15] M. Becker, S. Lehrig, and S. Becker. “Systematically de-
riving quality metrics for cloud computing systems”. In:
Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering. ICPE ’15. 2015, pp. 169–174. doi:
10.1145/2668930.2688043.

[Ble20] A. S. Blee-Goldman. KIP-450: sliding window aggregations in
the DSL. 2020. url: https://cwiki.apache.org/confluence/display/

KAFKA/KIP-450%3A+Sliding+Window+Aggregations+in+the+DSL.

[BMH+21] G. Brataas, A. Martini, G. K. Hanssen, and G. Ræder. “Agile
elicitation of scalability requirements for open systems: a
case study”. In: Journal of Systems and Software 182 (2021),
p. 111064. doi: 10.1016/j.jss.2021.111064.

[BMZ+12] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog comput-
ing and its role in the Internet of Things”. In: Proceedings of
the First Edition of the MCC Workshop on Mobile Cloud Com-
puting. MCC ’12. 2012, pp. 13–16. doi: 10.1145/2342509.2342513.

[Bog20] L. Boguhn. “Forecasting power consumption of manufac-
turing industries using neural networks”. Bachelor’s Thesis.
Kiel University, 2020.

[Bog22] L. Boguhn. “Benchmarking the scalability of distributed
stream processing engines in case of load peaks”. Master’s
Thesis. Kiel University, 2022.

[BOH11] M. Bostock, V. Ogievetsky, and J. Heer. “D3 data-driven doc-
uments”. In: IEEE Transactions on Visualization and Computer
Graphics 17.12 (2011), pp. 2301–2309. doi: 10.1109/TVCG.2011.185.

234

https://doi.org/10.1007/978-3-319-69035-3_22
https://doi.org/10.1145/1594156.1594168
https://doi.org/10.1145/2668930.2688043
https://cwiki.apache.org/confluence/display/KAFKA/KIP-450%3A+Sliding+Window+Aggregations+in+the+DSL
https://cwiki.apache.org/confluence/display/KAFKA/KIP-450%3A+Sliding+Window+Aggregations+in+the+DSL
https://doi.org/10.1016/j.jss.2021.111064
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/TVCG.2011.185

Bibliography

[Bon00] A. B. Bondi. “Characteristics of scalability and their impact
on performance”. In: Proceedings of the 2nd International Work-
shop on Software and Performance. WOSP ’00. 2000, pp. 195–
203. doi: 10.1145/350391.350432.

[BSL16] G. Brataas, E. Stav, and S. Lehrig. “Analysing evolution of
work and load”. In: 2016 12th International ACM SIGSOFT
Conference on Quality of Software Architectures (QoSA). 2016,
pp. 90–95. doi: 10.1109/QoSA.2016.18.

[BTV+18] S. Bischof, H. Trittenbach, M. Vollmer, D. Werle, T. Blank,
and K. Böhm. “HIPE: an energy-status-data set from in-
dustrial production”. In: Proceedings of the Ninth Interna-
tional Conference on Future Energy Systems. e-Energy ’18. 2018,
pp. 599–603. doi: 10.1145/3208903.3210278.

[Bun20] Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA).
Merkblatt stromkostenintensive Unternehmen 2022. Brochure.
2020. url: http://www.bafa.de/SharedDocs/Downloads/DE/Energie/bar_

merkblatt_unternehmen.pdf.

[BVS+11] K. Bunse, M. Vodicka, P. Schönsleben, M. Brülhart, and F. O.
Ernst. “Integrating energy efficiency performance in produc-
tion management – gap analysis between industrial needs
and scientific literature”. In: Journal of Cleaner Production 19.6
(2011), pp. 667–679. doi: 10.1016/j.jclepro.2010.11.011.

[BWT17] D. Bermbach, E. Wittern, and S. Tai. Cloud service benchmark-
ing: measuring quality of cloud services from a client perspective.
1st. Springer Publishing Company, Incorporated, 2017. doi:
10.1007/978-3-319-55483-9.

[CCT+22] S. Choochotkaew, T. Chiba, S. Trent, T. Yoshimura, and
M. Amaral. “AutoDECK: automated declarative perfor-
mance evaluation and tuning framework on kubernetes”. In:
2022 IEEE 15th International Conference on Cloud Computing
(CLOUD). 2022, pp. 309–314. doi: 10.1109/CLOUD55607.2022.00053.

235

https://doi.org/10.1145/350391.350432
https://doi.org/10.1109/QoSA.2016.18
https://doi.org/10.1145/3208903.3210278
http://www.bafa.de/SharedDocs/Downloads/DE/Energie/bar_merkblatt_unternehmen.pdf
http://www.bafa.de/SharedDocs/Downloads/DE/Energie/bar_merkblatt_unternehmen.pdf
https://doi.org/10.1016/j.jclepro.2010.11.011
https://doi.org/10.1007/978-3-319-55483-9
https://doi.org/10.1109/CLOUD55607.2022.00053

Bibliography

[CDE+16] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves,
M. Holderbaugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng,
and P. Poulosky. “Benchmarking streaming computation
engines: Storm, Flink and Spark Streaming”. In: 2016 IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). May 2016, pp. 1789–1792. doi: 10.1109/

IPDPSW.2016.138.

[CEF+17] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K.
Tzoumas. “State management in Apache Flink®: consistent
stateful distributed stream processing”. In: Proceedings of
the VLDB Endowment 10.12 (Aug. 2017), pp. 1718–1729. doi:
10.14778/3137765.3137777.

[CFK+20] P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodi-
mos. “Beyond analytics: the evolution of stream processing
systems”. In: Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD ’20. 2020,
pp. 2651–2658. doi: 10.1145/3318464.3383131.

[CIM+19] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski.
“The rise of serverless computing”. In: Communications of the
ACM 62.12 (Nov. 2019), pp. 44–54. doi: 10.1145/3368454.

[CKE+15] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas. “Apache Flink: stream and batch process-
ing in a single engine”. In: Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering 36.4 (2015).

[CKH19] P. Carbone, A. Katsifodimos, and S. Haridi. “Stream window
aggregation semantics and optimization”. In: Encyclopedia
of Big Data Technologies. Ed. by S. Sakr and A. Y. Zomaya.
Springer, 2019, pp. 1615–1623. doi: 10.1007/978-3-319-77525-8_154.

[CKK13] P. Chujai, N. Kerdprasop, and K. Kerdprasop. “Time series
analysis of household electric consumption with arima and
arma models”. In: Proceedings of the International MultiCon-
ference of Engineers and Computer Scientists. 2013, pp. 295–
300.

236

https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.1145/3368454
https://doi.org/10.1007/978-3-319-77525-8_154

Bibliography

[Clo18] Cloud Native Computing Foundation. CNCF cloud native
definition v1.0. 2018. url: https://github.com/cncf/toc/blob/main/

DEFINITION.md.

[Clo22] Cloud Native Computing Foundation. CNCF annual survey
2021. 2022. url: https://www.cncf.io/reports/cncf-annual-survey-

2021.

[CMS17] M. Cunha, N. C. Mendonça, and A. Sampaio. “Cloud
Crawler: a declarative performance evaluation environment
for infrastructure-as-a-service clouds”. In: Concurrency and
Computation: Practice and Experience 29.1 (2017), e3825. doi:
10.1002/cpe.3825.

[CS19] C. Cooremans and A. Schönenberger. “Energy management:
a key driver of energy-efficiency investment?” In: Journal
of Cleaner Production 230 (2019), pp. 264–275. doi: 10.1016/j.

jclepro.2019.04.333.

[CT14] J.-S. Chou and A. S. Telaga. “Real-time detection of anoma-
lous power consumption”. In: Renewable and Sustainable En-
ergy Reviews 33 (2014), pp. 400–411. doi: 10.1016/j.rser.2014.01.

088.

[CTC+17] J.-S. Chou, A. S. Telaga, W. K. Chong, and G. E. Gibson.
“Early-warning application for real-time detection of energy
consumption anomalies in buildings”. In: Journal of Cleaner
Production 149 (2017), pp. 711–722. doi: 10.1016/j.jclepro.2017.02.

028.

[CWT+13] E. Cagno, E. Worrell, A. Trianni, and G. Pugliese. “A novel
approach for barriers to industrial energy efficiency”. In:
Renewable and Sustainable Energy Reviews 19 (2013), pp. 290–
308. doi: 10.1016/j.rser.2012.11.007.

[CYH+20] R. Cordingly, H. Yu, V. Hoang, D. Perez, D. Foster, Z.
Sadeghi, R. Hatchett, and W. J. Lloyd. “Implications of
programming language selection for serverless data pro-
cessing pipelines”. In: 2020 IEEE Intl Conf on Dependable,
Autonomic and Secure Computing, Intl Conf on Pervasive In-
telligence and Computing, Intl Conf on Cloud and Big Data

237

https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://www.cncf.io/reports/cncf-annual-survey-2021
https://www.cncf.io/reports/cncf-annual-survey-2021
https://doi.org/10.1002/cpe.3825
https://doi.org/10.1016/j.jclepro.2019.04.333
https://doi.org/10.1016/j.jclepro.2019.04.333
https://doi.org/10.1016/j.rser.2014.01.088
https://doi.org/10.1016/j.rser.2014.01.088
https://doi.org/10.1016/j.jclepro.2017.02.028
https://doi.org/10.1016/j.jclepro.2017.02.028
https://doi.org/10.1016/j.rser.2012.11.007

Bibliography

Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). 2020, pp. 704–711. doi:
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120.

[CYH20] Z. Chu, J. Yu, and A. Hamdull. “Maximum sustainable
throughput evaluation using an adaptive method for stream
processing platforms”. In: IEEE Access 8 (2020), pp. 40977–
40988. doi: 10.1109/ACCESS.2020.2976738.

[DG08] J. Dean and S. Ghemawat. “MapReduce: simplified data
processing on large clusters”. In: Communications of the ACM
51.1 (Jan. 2008), pp. 107–113. doi: 10.1145/1327452.1327492.

[DL20] A. Davoudian and M. Liu. “Big data systems: a software
engineering perspective”. In: ACM Computing Surveys 53.5
(Sept. 2020). doi: 10.1145/3408314.

[DLR13] L. Duboc, E. Letier, and D. S. Rosenblum. “Systematic elab-
oration of scalability requirements through goal-obstacle
analysis”. In: IEEE Transactions on Software Engineering 39.1
(2013), pp. 119–140. doi: 10.1109/TSE.2012.12.

[DM17] G. M. U. Din and A. K. Marnerides. “Short term power
load forecasting using deep neural networks”. In: 2017 In-
ternational Conference on Computing, Networking and Commu-
nications (ICNC). Jan. 2017, pp. 594–598. doi: 10.1109/ICCNC.2017.

7876196.

[DRW07] L. Duboc, D. Rosenblum, and T. Wicks. “A framework for
characterization and analysis of software system scalabil-
ity”. In: Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering. ESEC-FSE
’07. 2007, pp. 375–384. doi: 10.1145/1287624.1287679.

[DvH17] T. F. Düllmann and A. van Hoorn. “Model-driven generation
of microservice architectures for benchmarking performance
and resilience engineering approaches”. In: Proceedings of
the 8th ACM/SPEC on International Conference on Performance
Engineering Companion. ICPE ’17 Companion. 2017, pp. 171–
172. doi: 10.1145/3053600.3053627.

238

https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/10.1109/ACCESS.2020.2976738
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3408314
https://doi.org/10.1109/TSE.2012.12
https://doi.org/10.1109/ICCNC.2017.7876196
https://doi.org/10.1109/ICCNC.2017.7876196
https://doi.org/10.1145/1287624.1287679
https://doi.org/10.1145/3053600.3053627

Bibliography

[EBS+20] S. Eismann, C.-P. Bezemer, W. Shang, D. Okanović, and A.
van Hoorn. “Microservices: a performance tester’s dream
or nightmare?” In: Proceedings of the ACM/SPEC Interna-
tional Conference on Performance Engineering. ICPE ’20. 2020,
pp. 138–149. doi: 10.1145/3358960.3379124.

[Ehr19] S. B. N. F. A. Ehrenstein. “Distributed sensor management
for an Industrial DevOps monitoring platform”. Bachelor’s
Thesis. Kiel University, 2019.

[Ehr22] S. B. N. F. A. Ehrenstein. “Scalability evaluation of ExplorViz
with the Universal Scalability Law”. Master’s Thesis. Kiel
University, 2022.

[ESvE+21] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Groh-
mann, N. Herbst, C. L. Abad, and A. Iosup. “Serverless
applications: why, when, and how?” In: IEEE Software 38.1
(2021), pp. 32–39. doi: 10.1109/MS.2020.3023302.

[EZL89] D. Eager, J. Zahorjan, and E. Lazowska. “Speedup versus
efficiency in parallel systems”. In: IEEE Transactions on Com-
puters 38.3 (1989), pp. 408–423. doi: 10.1109/12.21127.

[FAS+13] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and
C. Tosun. “Benchmarking in the cloud: what it should, can,
and cannot be”. In: Selected Topics in Performance Evaluation
and Benchmarking. Ed. by R. Nambiar and M. Poess. 2013,
pp. 173–188.

[FBS22] S. Forti, U. Breitenbücher, and J. Soldani. “Trending topics in
software engineering”. In: ACM SIGSOFT Software Engineer-
ing Notes 47.3 (July 2022), pp. 20–21. doi: 10.1145/3539814.3539820.

[FBW+19] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann. “Mi-
croservices migration in industry: intentions, strategies, and
challenges”. In: 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 2019, pp. 481–490. doi:
10.1109/ICSME.2019.00081.

[FCK+20] M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos.
A survey on the evolution of stream processing systems. 2020.
doi: 10.48550/arxiv.2008.00842.

239

https://doi.org/10.1145/3358960.3379124
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/12.21127
https://doi.org/10.1145/3539814.3539820
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.48550/arxiv.2008.00842

Bibliography

[FFH13] S. Frey, F. Fittkau, and W. Hasselbring. “Search-based ge-
netic optimization for deployment and reconfiguration of
software in the cloud”. In: 2013 35th International Confer-
ence on Software Engineering (ICSE). 2013, pp. 512–521. doi:
10.1109/ICSE.2013.6606597.

[FKH17] F. Fittkau, A. Krause, and W. Hasselbring. “Software land-
scape and application visualization for system comprehen-
sion with ExplorViz”. In: Information and Software Technology
87 (2017), pp. 259–277. doi: 10.1016/j.infsof.2016.07.004.

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Ar-
bitter. Cloud computing patterns: fundamentals to design, build,
and manage cloud applications. Springer Publishing Company,
Incorporated, 2014. doi: 10.1007/978-3-7091-1568-8.

[FM12] T. Fiedler and P.-M. Mircea. “Energy management systems
according to the ISO 50001 standard — challenges and ben-
efits”. In: 2012 International Conference on Applied and Theo-
retical Electricity (ICATE). Oct. 2012, pp. 1–4. doi: 10.1109/ICATE.

2012.6403411.

[FMR+22] K. Feichtinger, K. Meixner, F. Rinker, I. Koren, H. Eichel-
berger, T. Heinemann, J. Holtmann, M. Konersmann, J.
Michael, E.-M. Neumann, J. Pfeiffer, R. Rabiser, M. Riebisch,
and K. Schmid. “Industry voices on software engineering
challenges in cyber-physical production systems engineer-
ing”. In: 2022 IEEE 27th International Conference on Emerging
Technologies and Factory Automation (ETFA). 2022, pp. 1–8.
doi: 10.1109/ETFA52439.2022.9921568.

[FP18] V. Ferme and C. Pautasso. “A declarative approach for per-
formance tests execution in continuous software develop-
ment environments”. In: Proceedings of the 2018 ACM/SPEC
International Conference on Performance Engineering. ICPE ’18.
2018, pp. 261–272. doi: 10.1145/3184407.3184417.

[GBL+96] J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh. “Data
cube: a relational aggregation operator generalizing GROUP-
BY, CROSS-TAB, and SUB-TOTALS”. In: Proceedings of the

240

https://doi.org/10.1109/ICSE.2013.6606597
https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.1109/ICATE.2012.6403411
https://doi.org/10.1109/ICATE.2012.6403411
https://doi.org/10.1109/ETFA52439.2022.9921568
https://doi.org/10.1145/3184407.3184417

Bibliography

Twelfth International Conference on Data Engineering. 1996,
pp. 152–159. doi: 10.1109/ICDE.1996.492099.

[GBS17] D. Gannon, R. Barga, and N. Sundaresan. “Cloud-native
applications”. In: IEEE Cloud Computing 4.5 (2017), pp. 16–
21. doi: 10.1109/MCC.2017.4250939.

[GGB+20] S. Gholami, A. Goli, C.-P. Bezemer, and H. Khazaei. “A
framework for satisfying the performance requirements of
containerized software systems through multi-versioning”.
In: Proceedings of the ACM/SPEC International Conference on
Performance Engineering. ICPE ’20. 2020, pp. 150–160. doi:
10.1145/3358960.3379125.

[GGS+22a] A. M. Garcia, D. Griebler, C. Schepke, and L. G. Fernandes.
“SPBench: a framework for creating benchmarks of stream
processing applications”. In: Computing (2022). doi: 10.1007/

s00607-021-01025-6.

[GGS+22b] A. M. Garcia, D. Griebler, C. Schepke, and L. G. L. Fer-
nandes. “Evaluating micro-batch and data frequency for
stream processing applications on multi-cores”. In: 2022
30th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP). 2022, pp. 10–17. doi:
10.1109/PDP55904.2022.00011.

[GHP+19] M. Grambow, J. Hasenburg, T. Pfandzelter, and D. Bermbach.
“Is it safe to dockerize my database benchmark?” In: Pro-
ceedings of the 34th ACM/SIGAPP Symposium on Applied Com-
puting. SAC ’19. 2019, pp. 341–344. doi: 10.1145/3297280.3297545.

[GJK+14] T. Goldschmidt, A. Jansen, H. Koziolek, J. Doppelhamer,
and H. P. Breivold. “Scalability and robustness of time-
series databases for cloud-native monitoring of industrial
processes”. In: 2014 IEEE 7th International Conference on Cloud
Computing. 2014, pp. 602–609. doi: 10.1109/CLOUD.2014.86.

[GKK+12] J. Grundy, G. Kaefer, J. Keung, and A. Liu. “Guest editors’
introduction: software engineering for the cloud”. In: IEEE
Software 29.2 (2012), pp. 26–29. doi: 10.1109/MS.2012.31.

241

https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1145/3358960.3379125
https://doi.org/10.1007/s00607-021-01025-6
https://doi.org/10.1007/s00607-021-01025-6
https://doi.org/10.1109/PDP55904.2022.00011
https://doi.org/10.1145/3297280.3297545
https://doi.org/10.1109/CLOUD.2014.86
https://doi.org/10.1109/MS.2012.31

Bibliography

[GLB19] M. Grambow, F. Lehmann, and D. Bermbach. “Continu-
ous benchmarking: using system benchmarking in build
pipelines”. In: 2019 IEEE International Conference on Cloud En-
gineering (IC2E). 2019, pp. 241–246. doi: 10.1109/IC2E.2019.00039.

[GME+15] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Hi-
gashino, A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere.
“Edge-centric computing: vision and challenges”. In: ACM
SIGCOMM Computer Communication Review 45.5 (Sept. 2015),
pp. 37–42. doi: 10.1145/2831347.2831354.

[GMW+20] M. Grambow, L. Meusel, E. Wittern, and D. Bermbach.
“Benchmarking microservice performance: a pattern-based
approach”. In: Proceedings of the 35th Annual ACM Sympo-
sium on Applied Computing. SAC ’20. 2020, pp. 232–241. doi:
10.1145/3341105.3373875.

[Gor17] I. Gorton. “Hyperscalability – the changing face of software
architecture”. In: Software Architecture for Big Data and the
Cloud. Ed. by I. Mistrik, R. Bahsoon, N. Ali, M. Heisel, and
B. Maxim. Boston: Morgan Kaufmann, 2017, pp. 13–31. doi:
10.1016/B978-0-12-805467-3.00002-8.

[Gor22] I. Gorton. Foundations of scalable systems. 1st. O’Reilly Media,
Inc., 2022.

[GP21] B. E. Granger and F. Pérez. “Jupyter: thinking and story-
telling with code and data”. In: Computing in Science & Engi-
neering 23.2 (2021), pp. 7–14. doi: 10.1109/MCSE.2021.3059263.

[GPT15] N. J. Gunther, P. Puglia, and K. Tomasette. “Hadoop super-
linear scalability”. In: Communications of the ACM 58.4 (Mar.
2015), pp. 46–55. doi: 10.1145/2719919.

[Gra21] J. Grabitzky. “A showcase for the Titan Control Center”.
Bachelor’s Thesis. Kiel University, 2021.

[Gra22] Grafana Labs. Grafana. 2022. url: https://grafana.com/grafana.

[Gra93] J. Gray. The benchmark handbook for database and transaction
systems. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 1993.

242

https://doi.org/10.1109/IC2E.2019.00039
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1145/3341105.3373875
https://doi.org/10.1016/B978-0-12-805467-3.00002-8
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1145/2719919
https://grafana.com/grafana

Bibliography

[GTĎ+21] C. Gencer, M. Topolnik, V. Ďurina, E. Demirci, E. B. Kahveci,
A. Gürbüz, O. Lukáš, J. Bartók, G. Gierlach, F. Hartman,
U. Yılmaz, M. Doğan, M. Mandouh, M. Fragkoulis, and A.
Katsifodimos. “Hazelcast Jet: low-latency stream processing
at the 99.99th percentile”. In: Proceedings of the VLDB En-
dowment 14.12 (July 2021), pp. 3110–3121. doi: 10.14778/3476311.

3476387.

[Gun07] N. J. Gunther. Guerrilla capacity planning: a tactical approach
to planning for highly scalable applications and services. 1st.
Springer-Verlag Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-

31010-5.

[Han19] A. Hansen. “Exploring an energy-status-data set from indus-
trial production”. Bachelor’s Thesis. Kiel University, 2019.

[Has16] W. Hasselbring. “Microservices for scalability: keynote talk
abstract”. In: Proceedings of the 7th ACM/SPEC on Interna-
tional Conference on Performance Engineering. ICPE ’16. 2016,
pp. 133–134. doi: 10.1145/2851553.2858659.

[Has18] W. Hasselbring. “Software architecture: past, present, fu-
ture”. In: The Essence of Software Engineering. Ed. by V. Gruhn
and R. Striemer. Springer, 2018, pp. 169–184. doi: 10.1007/978-

3-319-73897-0_10.

[Has21] W. Hasselbring. “Benchmarking as empirical standard in
software engineering research”. In: Evaluation and Assessment
in Software Engineering. EASE ’21. 2021, pp. 457–462. doi:
10.1145/3463274.3463361.

[HB15] T. Hoefler and R. Belli. “Scientific benchmarking of parallel
computing systems: twelve ways to tell the masses when
reporting performance results”. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’15. 2015. doi: 10.1145/2807591.2807644.

[HCH+20] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, and T. Tiropa-
nis. “Open source research software”. In: Computer 53.8
(2020), pp. 84–88. doi: 10.1109/MC.2020.2998235.

243

https://doi.org/10.14778/3476311.3476387
https://doi.org/10.14778/3476311.3476387
https://doi.org/10.1007/978-3-540-31010-5
https://doi.org/10.1007/978-3-540-31010-5
https://doi.org/10.1145/2851553.2858659
https://doi.org/10.1007/978-3-319-73897-0_10
https://doi.org/10.1007/978-3-319-73897-0_10
https://doi.org/10.1145/3463274.3463361
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1109/MC.2020.2998235

Bibliography

[HCL20] H. Herodotou, Y. Chen, and J. Lu. “A survey on automatic
parameter tuning for big data processing systems”. In: ACM
Computing Surveys 53.2 (Apr. 2020). doi: 10.1145/3381027.

[Hel22] Helm Authors. Helm. 2022. url: https://helm.sh.

[Hen19] S. Henning. “Monitoring electrical power consumption with
Kieker”. In: Softwaretechnik-Trends 39.3 (Nov. 2019). (Proceed-
ings of the 9th Symposium on Software Performance (SSP
2018)), pp. 31–33.

[Hes22] G. Hesse. “A benchmark for enterprise stream processing
architectures”. PhD thesis. Universität Potsdam, 2022. doi:
10.25932/publishup-56600.

[HH19a] S. Henning and W. Hasselbring. Replication package for: scal-
able and reliable multi-dimensional aggregation of sensor data
streams. Zenodo, 2019. doi: 10.5281/zenodo.3540895.

[HH19b] S. Henning and W. Hasselbring. “Scalable and reliable multi-
dimensional aggregation of sensor data streams”. In: 2019
IEEE International Conference on Big Data (Big Data). 2019,
pp. 3512–3517. doi: 10.1109/BigData47090.2019.9006452.

[HH20a] S. Henning and W. Hasselbring. Replication package for: scal-
able and reliable multi-dimensional sensor data aggregation in
data-streaming architectures. Zenodo, 2020. doi: 10.5281/zenodo.

3736689.

[HH20b] S. Henning and W. Hasselbring. “Scalable and reliable multi-
dimensional sensor data aggregation in data-streaming ar-
chitectures”. In: Data-Enabled Discovery and Applications 4.1
(2020). doi: 10.1007/s41688-020-00041-3.

[HH20c] S. Henning and W. Hasselbring. “Toward efficient scalability
benchmarking of event-driven microservice architectures at
large scale”. In: Softwaretechnik-Trends 40.3 (Nov. 2020). (Pro-
ceedings of the 11th Symposium on Software Performance
(SSP 2020)), pp. 28–30.

244

https://doi.org/10.1145/3381027
https://helm.sh
https://doi.org/10.25932/publishup-56600
https://doi.org/10.5281/zenodo.3540895
https://doi.org/10.1109/BigData47090.2019.9006452
https://doi.org/10.5281/zenodo.3736689
https://doi.org/10.5281/zenodo.3736689
https://doi.org/10.1007/s41688-020-00041-3

Bibliography

[HH21a] S. Henning and W. Hasselbring. “How to measure scalabil-
ity of distributed stream processing engines?” In: Companion
of the ACM/SPEC International Conference on Performance En-
gineering. ICPE ’21. 2021, pp. 85–88. doi: 10.1145/3447545.3451190.

[HH21b] S. Henning and W. Hasselbring. Replication package for: a
configurable method for benchmarking scalability of cloud-native
applications. Zenodo, 2021. doi: 10.5281/zenodo.5596982.

[HH21c] S. Henning and W. Hasselbring. Replication package for:
Theodolite: scalability benchmarking of distributed stream pro-
cessing engines in microservice architectures. Zenodo, 2021. doi:
10.5281/zenodo.4476083.

[HH21d] S. Henning and W. Hasselbring. “The Titan Control Cen-
ter for Industrial DevOps analytics research”. In: Software
Impacts 7 (2021). doi: 10.1016/j.simpa.2020.100050.

[HH21e] S. Henning and W. Hasselbring. “Theodolite: scalability
benchmarking of distributed stream processing engines in
microservice architectures”. In: Big Data Research 25 (2021),
p. 100209. doi: 10.1016/j.bdr.2021.100209.

[HH22a] S. Henning and W. Hasselbring. “A configurable method for
benchmarking scalability of cloud-native applications”. In:
Empirical Software Engineering 27.6 (2022). doi: 10.1007/s10664-

022-10162-1.

[HH22b] S. Henning and W. Hasselbring. “Demo paper: benchmark-
ing scalability of cloud-native applications with Theodolite”.
In: 2022 IEEE International Conference on Cloud Engineering
(IC2E). 2022, pp. 275–276. doi: 10.1109/IC2E55432.2022.00037.

[HH22c] S. Henning and W. Hasselbring. Replication package for: bench-
marking scalability of stream processing frameworks deployed
as event-driven microservices in the cloud. Zenodo, 2022. doi:
10.5281/zenodo.7497281.

[HH23a] S. Henning and W. Hasselbring. “Benchmarking scalability
of cloud-native applications”. In: Software Engineering 2023.
2023.

245

https://doi.org/10.1145/3447545.3451190
https://doi.org/10.5281/zenodo.5596982
https://doi.org/10.5281/zenodo.4476083
https://doi.org/10.1016/j.simpa.2020.100050
https://doi.org/10.1016/j.bdr.2021.100209
https://doi.org/10.1007/s10664-022-10162-1
https://doi.org/10.1007/s10664-022-10162-1
https://doi.org/10.1109/IC2E55432.2022.00037
https://doi.org/10.5281/zenodo.7497281

Bibliography

[HH23b] S. Henning and W. Hasselbring. Benchmarking scalability of
stream processing frameworks deployed as event-driven microser-
vices in the cloud. 2023. doi: 10.48550/arXiv.2303.11088.

[HHB+21] S. Henning, W. Hasselbring, H. Burmester, A. Möbius, and
M. Wojcieszak. “Goals and measures for analyzing power
consumption data in manufacturing enterprises”. In: Journal
of Data, Information and Management 3.1 (2021), pp. 65–82.
doi: 10.1007/s42488-021-00043-5.

[HHL+19] W. Hasselbring, S. Henning, B. Latte, A. Möbius, T. Richter,
S. Schalk, and M. Wojcieszak. “Industrial DevOps”. In: 2019
IEEE International Conference on Software Architecture Compan-
ion (ICSA-C). 2019, pp. 123–126. doi: 10.1109/ICSA-C.2019.00029.

[HHL+21] W. Hasselbring, S. Henning, B. Latte, I. Stemmler, M. Woj-
cieszak, and U. Glockmann. Abschlussbericht KMU-innovativ:
Verbundprojekt Titan Industrial DevOps Plattform für iterative
Prozessintegration und Automatisierung. Tech. rep. Kiel: Selb-
stverlag des Instituts für Informatik, Kiel, 2021.

[HHM+18] J. Herman, H. Herman, M. J. Mathews, and J. C. Vosloo.
“Using big data for insights into sustainable energy con-
sumption in industrial and mining sectors”. In: Journal of
Cleaner Production 197 (2018), pp. 1352–1364. doi: 10.1016/j.

jclepro.2018.06.290.

[HHM19] S. Henning, W. Hasselbring, and A. Möbius. “A scalable
architecture for power consumption monitoring in indus-
trial production environments”. In: 2019 IEEE International
Conference on Fog Computing (ICFC). 2019, pp. 124–133. doi:
10.1109/ICFC.2019.00024.

[Hil90] M. D. Hill. “What is scalability?” In: ACM SIGARCH Com-
puter Architecture News 18.4 (Dec. 1990), pp. 18–21. doi:
10.1145/121973.121975.

[HKR13] N. R. Herbst, S. Kounev, and R. Reussner. “Elasticity in
cloud computing: what it is, and what it is not”. In: Inter-
national Conference on Autonomic Computing. ICAC ’13. 2013,
pp. 23–27.

246

https://doi.org/10.48550/arXiv.2303.11088
https://doi.org/10.1007/s42488-021-00043-5
https://doi.org/10.1109/ICSA-C.2019.00029
https://doi.org/10.1016/j.jclepro.2018.06.290
https://doi.org/10.1016/j.jclepro.2018.06.290
https://doi.org/10.1109/ICFC.2019.00024
https://doi.org/10.1145/121973.121975

Bibliography

[HKW+15] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda.
“BUNGEE: an elasticity benchmark for self-adaptive IaaS
cloud environments”. In: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems. 2015, pp. 46–56. doi: 10.1109/SEAMS.2015.23.

[HKZ20] W. Hasselbring, A. Krause, and C. Zirkelbach. “ExplorViz:
research on software visualization, comprehension and col-
laboration”. In: Software Impacts 6 (2020), p. 100034. doi:
10.1016/j.simpa.2020.100034.

[HL15] G. Hesse and M. Lorenz. “Conceptual survey on data stream
processing systems”. In: 2015 IEEE 21st International Con-
ference on Parallel and Distributed Systems (ICPADS). 2015,
pp. 797–802. doi: 10.1109/ICPADS.2015.106.

[HLL+21] S. He, T. Liu, P. Lama, J. Lee, I. K. Kim, and W. Wang.
“Performance testing for cloud computing with dependent
data bootstrapping”. In: 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 2021,
pp. 666–678. doi: 10.1109/ASE51524.2021.9678687.

[HMG+19] G. Hesse, C. Matthies, K. Glass, J. Huegle, and M. Uflacker.
“Quantitative impact evaluation of an abstraction layer for
data stream processing systems”. In: 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS).
2019, pp. 1381–1392. doi: 10.1109/ICDCS.2019.00138.

[HMP+21] G. Hesse, C. Matthies, M. Perscheid, M. Uflacker, and H.
Plattner. “ESPBench: the enterprise stream processing bench-
mark”. In: Proceedings of the ACM/SPEC International Confer-
ence on Performance Engineering. ICPE ’21. 2021, pp. 201–212.
doi: 10.1145/3427921.3450242.

[HMS+19] S. He, G. Manns, J. Saunders, W. Wang, L. Pollock, and M. L.
Soffa. “A statistics-based performance testing methodology
for cloud applications”. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering.
ESEC/FSE 2019. 2019, pp. 188–199. doi: 10.1145/3338906.3338912.

247

https://doi.org/10.1109/SEAMS.2015.23
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1109/ICPADS.2015.106
https://doi.org/10.1109/ASE51524.2021.9678687
https://doi.org/10.1109/ICDCS.2019.00138
https://doi.org/10.1145/3427921.3450242
https://doi.org/10.1145/3338906.3338912

Bibliography

[HMZ12] M. Harman, S. A. Mansouri, and Y. Zhang. “Search-based
software engineering: trends, techniques and applications”.
In: ACM Computing Surveys 45.1 (Dec. 2012). doi: 10.1145/

2379776.2379787.

[HRM+18] G. Hesse, B. Reissaus, C. Matthies, M. Lorenz, M. Kraus,
and M. Uflacker. “Senska – towards an enterprise streaming
benchmark”. In: Performance Evaluation and Benchmarking for
the Analytics Era. Ed. by R. Nambiar and M. Poess. 2018,
pp. 25–40. doi: 10.1007/978-3-319-72401-0_3.

[HS17] W. Hasselbring and G. Steinacker. “Microservice architec-
tures for scalability, agility and reliability in e-commerce”. In:
Proceedings of the IEEE International Conference on Software Ar-
chitecture Workshops. 2017, pp. 243–246. doi: 10.1109/ICSAW.2017.11.

[HS19] M. Hausenblas and S. Schimanski. Programming Kubernetes:
developing cloud-native applications. O’Reilly Media, Inc., 2019.

[HT09] C. Herrmann and S. Thiede. “Process chain simulation to
foster energy efficiency in manufacturing”. In: CIRP Journal
of Manufacturing Science and Technology 1.4 (2009), pp. 221–
229. doi: 10.1016/j.cirpj.2009.06.005.

[Hup09] K. Huppler. “The art of building a good benchmark”. In:
Performance Evaluation and Benchmarking. Ed. by R. Nambiar
and M. Poess. 2009, pp. 18–30. doi: 10.1007/978-3-642-10424-4_3.

[HvH20] W. Hasselbring and A. van Hoorn. “Kieker: a monitoring
framework for software engineering research”. In: Software
Impacts 5 (2020), p. 100019. doi: 10.1016/j.simpa.2020.100019.

[HvHK+17] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare,
C. Pahl, S. Schulte, and J. Wettinger. “Performance engineer-
ing for microservices: research challenges and directions”.
In: Proceedings of the 8th ACM/SPEC on International Confer-
ence on Performance Engineering Companion. ICPE ’17 Com-
panion. 2017, pp. 223–226. doi: 10.1145/3053600.3053653.

248

https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1007/978-3-319-72401-0_3
https://doi.org/10.1109/ICSAW.2017.11
https://doi.org/10.1016/j.cirpj.2009.06.005
https://doi.org/10.1007/978-3-642-10424-4_3
https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/10.1145/3053600.3053653

Bibliography

[HWD21] W. Hasselbring, M. Wojcieszak, and S. Dustdar. “Control
flow versus data flow in distributed systems integration: re-
vival of flow-based programming for the Industrial Internet
of Things”. In: IEEE Internet Computing 25.4 (2021), pp. 5–12.
doi: 10.1109/MIC.2021.3053712.

[HWH21] S. Henning, B. Wetzel, and W. Hasselbring. “Reproducible
benchmarking of cloud-native applications with the Kuber-
netes Operator Pattern”. In: Symposium on Software Perfor-
mance 2021. 2021. url: http://ceur-ws.org/Vol-3043.

[HWH23] S. Henning, B. Wetzel, and W. Hasselbring. “Cloud-native
scalability benchmarking with Theodolite: applied to the
TeaStore benchmark”. In: Softwaretechnik-Trends 43.1 (Feb.
2023). (Proceedings of the 13th Symposium on Software
Performance (SSP 2022)), pp. 23–25.

[IH19] B. Ibryam and R. Huss. Kubernetes patterns: reusable elements
for designing cloud native applications. 1st. O’Reilly Media, Inc.,
2019.

[ILF+12] S. Islam, K. Lee, A. Fekete, and A. Liu. “How a consumer
can measure elasticity for cloud platforms”. In: Proceedings
of the 3rd ACM/SPEC International Conference on Performance
Engineering. ICPE ’12. 2012, pp. 85–96. doi: 10.1145/2188286.

2188301.

[Int18] International Organization for Standardization. Energy man-
agement systems – Requirements with guidance for use. Standard.
Geneva, CH: International Organization for Standardization,
Aug. 2018.

[Int19] International Energy Agency. World energy balances 2019.
2019, p. 793. doi: 10.1787/3a876031-en.

[IPE14] A. Iosup, R. Prodan, and D. Epema. “IaaS cloud bench-
marking: approaches, challenges, and experience”. In: Cloud
Computing for Data-Intensive Applications. Ed. by X. Li and
J. Qiu. New York, NY: Springer New York, 2014, pp. 83–104.
doi: 10.1007/978-1-4939-1905-5_4.

249

https://doi.org/10.1109/MIC.2021.3053712
http://ceur-ws.org/Vol-3043
https://doi.org/10.1145/2188286.2188301
https://doi.org/10.1145/2188286.2188301
https://doi.org/10.1787/3a876031-en
https://doi.org/10.1007/978-1-4939-1905-5_4

Bibliography

[IPV17] S. Imai, S. Patterson, and C. A. Varela. “Maximum sustain-
able throughput prediction for data stream processing over
public clouds”. In: 2017 17th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGRID). 2017,
pp. 504–513. doi: 10.1109/CCGRID.2017.105.

[IYE11] A. Iosup, N. Yigitbasi, and D. Epema. “On the performance
variability of production cloud services”. In: 2011 11th IEEE/
ACM International Symposium on Cluster, Cloud and Grid Com-
puting. 2011, pp. 104–113. doi: 10.1109/CCGrid.2011.22.

[JF16] B. Jovanović and J. Filipović. “ISO 50001 standard-based
energy management maturity model – proposal and valida-
tion in industry”. In: Journal of Cleaner Production 112 (2016),
pp. 2744–2755. doi: 10.1016/j.jclepro.2015.10.023.

[JFD+16] A. Johanson, S. Flögel, C. Dullo, and W. Hasselbring. “Ocean-
TEA: exploring ocean-derived climate data using microser-
vices”. In: Proceedings of the Sixth International Workshop on
Climate Informatics. NCAR Technical Note NCAR/TN. Sept.
2016, pp. 25–28.

[JKP21] A. R. Jadhav, S. Kiran M. P. R., and R. Pachamuthu. “Devel-
opment of a novel IoT-enabled power-monitoring architec-
ture with real-time data visualization for use in domestic
and industrial scenarios”. In: IEEE Transactions on Instrumen-
tation and Measurement 70 (2021), pp. 1–14. doi: 10.1109/TIM.2020.

3028437.

[JW00] P. Jogalekar and M. Woodside. “Evaluating the scalability
of distributed systems”. In: IEEE Transactions on Parallel and
Distributed Systems 11.6 (2000), pp. 589–603. doi: 10.1109/71.

862209.

[KBF+15] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja. “Twitter
Heron: stream processing at scale”. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’15. 2015, pp. 239–250. doi: 10.1145/2723372.

2742788.

250

https://doi.org/10.1109/CCGRID.2017.105
https://doi.org/10.1109/CCGrid.2011.22
https://doi.org/10.1016/j.jclepro.2015.10.023
https://doi.org/10.1109/TIM.2020.3028437
https://doi.org/10.1109/TIM.2020.3028437
https://doi.org/10.1109/71.862209
https://doi.org/10.1109/71.862209
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/2723372.2742788

Bibliography

[KBS19] M. Kleppmann, A. R. Beresford, and B. Svingen. “Online
event processing”. In: Communications of the ACM 62.5 (Apr.
2019), pp. 43–49. doi: 10.1145/3312527.

[KÇC+21] I. Karabey Aksakalli, T. Çelik, A. B. Can, and B. Tekiner-
doğan. “Deployment and communication patterns in mi-
croservice architectures: a systematic literature review”. In:
Journal of Systems and Software 180 (2021), p. 111014. doi:
10.1016/j.jss.2021.111014.

[KF19] A. Katsifodimos and M. Fragkoulis. “Operational stream
processing: towards scalable and consistent event-driven
applications”. In: Advances in Database Technology - 22nd In-
ternational Conference on Extending Database Technology. 2019,
pp. 682–685. doi: 10.5441/002/edbt.2019.86.

[KH19] H. Knoche and W. Hasselbring. “Drivers and barriers for
microservice adoption – a survey among professionals in
Germany”. In: Enterprise Modelling and Information Systems
Architectures (EMISAJ) – International Journal of Conceptual
Modeling 14.1 (2019), pp. 1–35. doi: 10.18417/emisa.14.1.

[KH22] A. Krause-Glau and W. Hasselbring. “Scalable collaborative
software visualization as a service: short industry and expe-
rience paper”. In: 2022 IEEE International Conference on Cloud
Engineering (IC2E). 2022, pp. 182–187. doi: 10.1109/IC2E55432.2022.

00026.

[KJJ+20] F. M. Kanchiralla, N. Jalo, S. Johnsson, P. Thollander, and
M. Andersson. “Energy end-use categorization and per-
formance indicators for energy management in the engi-
neering industry”. In: Energies 13.2 (Jan. 2020), p. 369. doi:
10.3390/en13020369.

[KK15] M. Kleppmann and J. Kreps. “Kafka, Samza and the Unix
philosophy of distributed data”. In: Bulletin of the IEEE Com-
puter Society Technical Committee on Data Engineering 36.4
(2015).

251

https://doi.org/10.1145/3312527
https://doi.org/10.1016/j.jss.2021.111014
https://doi.org/10.5441/002/edbt.2019.86
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.1109/IC2E55432.2022.00026
https://doi.org/10.1109/IC2E55432.2022.00026
https://doi.org/10.3390/en13020369

Bibliography

[KKL10] D. Kossmann, T. Kraska, and S. Loesing. “An evaluation of
alternative architectures for transaction processing in the
cloud”. In: Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD ’10. 2010,
pp. 579–590. doi: 10.1145/1807167.1807231.

[KKR14] J. Kuhlenkamp, M. Klems, and O. Röss. “Benchmarking
scalability and elasticity of distributed database systems”.
In: Proceedings of the VLDB Endowment 7.12 (Aug. 2014),
pp. 1219–1230. doi: 10.14778/2732977.2732995.

[Kle17] M. Kleppmann. Designing data-intensive applications. 1st.
O’Reilly Media, Inc., 2017.

[KLvK20] S. Kounev, K.-D. Lange, and J. von Kistowski. Systems bench-
marking: for scientists and engineers. 1st. Springer Publishing
Company, Incorporated, 2020.

[KNR11] J. Kreps, N. Narkhede, and J. Rao. “Kafka: a distributed
messaging system for log processing”. In: Proceedings of the
International Workshop on Networking Meets Databases. 2011.

[Koc20] T. Koch. “Scalable and interactive real-time visualization of
time series data”. Bachelor’s Thesis. Kiel University, 2020.

[KQ17] N. Kratzke and P.-C. Quint. “Understanding cloud-native
applications after 10 years of cloud computing - a system-
atic mapping study”. In: Journal of Systems and Software 126
(2017), pp. 1–16. doi: 10.1016/j.jss.2017.01.001.

[Kra22] N. Kratzke. “Cloud-native observability: the many-faceted
benefits of structured and unified logging—a multi-case
study”. In: Future Internet 14.10 (2022). doi: 10.3390/fi14100274.

[Kre14] J. Kreps. Questioning the Lambda architecture. 2014. url: https:
//www.oreilly.com/radar/questioning-the-lambda-architecture.

[KRK+18] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiska-
nen, and V. Markl. “Benchmarking distributed stream data
processing systems”. In: 2018 IEEE 34th International Confer-
ence on Data Engineering (ICDE). Apr. 2018, pp. 1507–1518.
doi: 10.1109/ICDE.2018.00169.

252

https://doi.org/10.1145/1807167.1807231
https://doi.org/10.14778/2732977.2732995
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.3390/fi14100274
https://www.oreilly.com/radar/questioning-the-lambda-architecture
https://www.oreilly.com/radar/questioning-the-lambda-architecture
https://doi.org/10.1109/ICDE.2018.00169

Bibliography

[KRP+16] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bus-
sonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay,
P. Ivanov, D. Avila, S. Abdalla, C. Willing, and Jupyter de-
velopment team. “Jupyter Notebooks – a publishing format
for reproducible computational workflows”. In: Positioning
and Power in Academic Publishing: Players, Agents and Agendas.
2016, pp. 87–90. url: https://eprints.soton.ac.uk/403913/.

[KYA17] Z. Karakaya, A. Yazici, and M. Alayyoub. “A comparison
of stream processing frameworks”. In: 2017 International
Conference on Computer and Applications (ICCA). Sept. 2017,
pp. 1–12. doi: 10.1109/COMAPP.2017.8079733.

[LC16] P. Leitner and J. Cito. “Patterns in the chaos—a study of per-
formance variation and predictability in public IaaS clouds”.
In: ACM Transactions on Internet Technology 16.3 (Apr. 2016).
doi: 10.1145/2885497.

[LCL+21] L. Liao, J. Chen, H. Li, Y. Zeng, W. Shang, C. Sporea, A.
Toma, and S. Sajedi. “Locating performance regression root
causes in the field operations of web-based systems: an expe-
rience report”. In: IEEE Transactions on Software Engineering
(2021), pp. 1–1. doi: 10.1109/TSE.2021.3131529.

[LEB15] S. Lehrig, H. Eikerling, and S. Becker. “Scalability, elasticity,
and efficiency in cloud computing: a systematic literature
review of definitions and metrics”. In: Proceedings of the 11th
International ACM SIGSOFT Conference on Quality of Software
Architectures. QoSA ’15. 2015, pp. 83–92. doi: 10.1145/2737182.

2737185.

[LF14] J. Lewis and M. Fowler. Microservices. 2014. url: https://

martinfowler.com/articles/microservices.html.

[LHW19] B. Latte, S. Henning, and M. Wojcieszak. “Clean code: on
the use of practices and tools to produce maintainable code
for long-living software”. In: Proceedings of the Workshops of
the Software Engineering Conference 2019. Vol. Vol-2308. Feb.
2019, pp. 96–99. url: http://ceur-ws.org/Vol-2308.

253

https://eprints.soton.ac.uk/403913/
https://doi.org/10.1109/COMAPP.2017.8079733
https://doi.org/10.1145/2885497
https://doi.org/10.1109/TSE.2021.3131529
https://doi.org/10.1145/2737182.2737185
https://doi.org/10.1145/2737182.2737185
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://ceur-ws.org/Vol-2308

Bibliography

[Lil00] D. J. Lilja. Measuring computer performance: a practitioner’s
guide. Cambridge University Press, 2000. doi: 10 . 1017 /

CBO9780511612398.

[Lin17] J. Lin. “The Lambda and the Kappa”. In: IEEE Internet Com-
puting 21.5 (2017). doi: 10.1109/MIC.2017.3481351.

[LM10] A. Lakshman and P. Malik. “Cassandra: a decentralized
structured storage system”. In: ACM SIGOPS Operating Sys-
tems Review 44.2 (Apr. 2010), pp. 35–40. doi: 10.1145/1773912.

1773922.

[LMS+18] D. Li, H. Mei, Y. Shen, S. Su, W. Zhang, J. Wang, M. Zu, and
W. Chen. “ECharts: a declarative framework for rapid con-
struction of web-based visualization”. In: Visual Informatics
2.2 (2018), pp. 136–146. doi: 10.1016/j.visinf.2018.04.011.

[LN18] X. Liu and P. S. Nielsen. “Scalable prediction-based online
anomaly detection for smart meter data”. In: Information
Systems 77 (2018), pp. 34–47. doi: 10.1016/j.is.2018.05.007.

[LSB+18] S. Lehrig, R. Sanders, G. Brataas, M. Cecowski, S. Ivanšek,
and J. Polutnik. “CloudStore – towards scalability, elasticity,
and efficiency benchmarking and analysis in cloud com-
puting”. In: Future Generation Computer Systems 78 (2018),
pp. 115–126. doi: 10.1016/j.future.2017.04.018.

[LSL19] C. Laaber, J. Scheuner, and P. Leitner. “Software microbench-
marking in the cloud. how bad is it really?” In: Empirical
Software Engineering 24.4 (Aug. 2019), pp. 2469–2508. doi:
10.1007/s10664-019-09681-1.

[LTW+15] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. “Spark-
Bench: a comprehensive benchmarking suite for in memory
data analytic platform spark”. In: Proceedings of the 12th ACM
International Conference on Computing Frontiers. CF ’15. 2015.
doi: 10.1145/2742854.2747283.

[LWS+19] P. Leitner, E. Wittern, J. Spillner, and W. Hummer. “A mixed-
method empirical study of Function-as-a-Service software
development in industrial practice”. In: Journal of Systems and
Software 149 (2019), pp. 340–359. doi: 10.1016/j.jss.2018.12.013.

254

https://doi.org/10.1017/CBO9780511612398
https://doi.org/10.1017/CBO9780511612398
https://doi.org/10.1109/MIC.2017.3481351
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1016/j.visinf.2018.04.011
https://doi.org/10.1016/j.is.2018.05.007
https://doi.org/10.1016/j.future.2017.04.018
https://doi.org/10.1007/s10664-019-09681-1
https://doi.org/10.1145/2742854.2747283
https://doi.org/10.1016/j.jss.2018.12.013

Bibliography

[LWX+14] R. Lu, G. Wu, B. Xie, and J. Hu. “Stream Bench: towards
benchmarking modern distributed stream computing frame-
works”. In: 2014 IEEE/ACM 7th International Conference on
Utility and Cloud Computing. 2014, pp. 69–78. doi: 10.1109/UCC.

2014.15.

[LZJ+21] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J.
Shen, and M. Ali Babar. “Understanding and addressing
quality attributes of microservices architecture: a systematic
literature review”. In: Information and Software Technology 131
(2021), p. 106449. doi: 10.1016/j.infsof.2020.106449.

[LZS+21] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kali-
nowski. “Data management in microservices: state of the
practice, challenges, and research directions”. In: Proceedings
of the VLDB Endowment 14.13 (Sept. 2021), pp. 3348–3361.
doi: 10.14778/3484224.3484232.

[MAL18] N. Mohamed, J. Al-Jaroodi, and S. Lazarova-Molnar. “En-
ergy cloud: services for smart buildings”. In: Sustainable
Cloud and Energy Services: Principles and Practice. Ed. by W.
Rivera. Springer International Publishing, 2018, pp. 117–134.
doi: 10.1007/978-3-319-62238-5_5.

[MAL19] N. Mohamed, J. Al-Jaroodi, and S. Lazarova-Molnar. “Lever-
aging the capabilities of Industry 4.0 for improving en-
ergy efficiency in smart factories”. In: IEEE Access 7 (2019),
pp. 18008–18020. doi: 10.1109/ACCESS.2019.2897045.

[MBL+17] M. Masoodian, I. Buchwald, S. Luz, and E. André. “Tempo-
ral visualization of energy consumption loads using time-
tone”. In: 2017 21st International Conference Information Visu-
alisation (IV). July 2017, pp. 146–151. doi: 10.1109/iV.2017.13.

[MBM+21] N. C. Mendonça, C. Box, C. Manolache, and L. Ryan. “The
monolith strikes back: why istio migrated from microser-
vices to a monolithic architecture”. In: IEEE Software 38.5
(2021), pp. 17–22. doi: 10.1109/MS.2021.3080335.

255

https://doi.org/10.1109/UCC.2014.15
https://doi.org/10.1109/UCC.2014.15
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.14778/3484224.3484232
https://doi.org/10.1007/978-3-319-62238-5_5
https://doi.org/10.1109/ACCESS.2019.2897045
https://doi.org/10.1109/iV.2017.13
https://doi.org/10.1109/MS.2021.3080335

Bibliography

[MCF+22] A. Margara, G. Cugola, N. Felicioni, and S. Cilloni. A model
and survey of distributed data-intensive systems. 2022. doi: 10.

48550/arxiv.2203.10836.

[MDJ+18] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stuts-
man, and R. Ricci. “Taming performance variability”. In:
Proceedings of the 13th USENIX Conference on Operating Sys-
tems Design and Implementation. OSDI’18. 2018, pp. 409–425.

[Mer22] L. A. Mertens. “Reengineering Theodolite with the Java
Operator SDK”. Bachelor’s Thesis. Kiel University, 2022.

[MG11] P. M. Mell and T. Grance. Sp 800-145. the NIST definition of
cloud computing. Tech. rep. Gaithersburg, MD, USA, 2011.
doi: 10.6028/NIST.SP.800-145.

[MLB+15] M. Masoodian, B. Lugrin†, R. Bühling, and E. André. “Visu-
alization support for comparing energy consumption data”.
In: 2015 19th International Conference on Information Visualisa-
tion. July 2015, pp. 28–34. doi: 10.1109/iV.2015.17.

[MMS+07] M. Michael, J. E. Moreira, D. Shiloach, and R. W. Wisniewski.
“Scale-up x scale-out: a case study using Nutch/Lucene”.
In: 2007 IEEE International Parallel and Distributed Processing
Symposium. 2007, pp. 1–8. doi: 10.1109/IPDPS.2007.370631.

[Mon22] MongoDB, Inc. MongoDB. 2022. url: https://www.mongodb.com.

[Mor10] J. P. Morrison. Flow-based programming, 2nd edition: a new
approach to application development. Paramount, CA: Create-
Space, 2010.

[MP19] D. Méndez Fernández and J.-H. Passoth. “Empirical soft-
ware engineering: from discipline to interdiscipline”. In:
Journal of Systems and Software 148 (2019), pp. 170–179. doi:
10.1016/j.jss.2018.11.019.

[MS13] G. Miragliotta and F. Shrouf. “Using Internet of Things
to improve eco-efficiency in manufacturing: a review on
available knowledge and a framework for IoT adoption”.
In: Advances in Production Management Systems. Competitive
Manufacturing for Innovative Products and Services. Ed. by C.

256

https://doi.org/10.48550/arxiv.2203.10836
https://doi.org/10.48550/arxiv.2203.10836
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1109/iV.2015.17
https://doi.org/10.1109/IPDPS.2007.370631
https://www.mongodb.com
https://doi.org/10.1016/j.jss.2018.11.019

Bibliography

Emmanouilidis, M. Taisch, and D. Kiritsis. 2013, pp. 96–102.
doi: 10.1007/978-3-642-40352-1_13.

[MTA+15] F. Martínez-Álvarez, A. Troncoso, G. Asencio-Cortés, and J.
Riquelme. “A survey on data mining techniques applied to
electricity-related time series forecasting”. In: Energies 8.11
(2015), pp. 13162–13193. doi: 10.3390/en81112361.

[MTA+20] A. Merenstein, V. Tarasov, A. Anwar, D. Bhagwat, L. Rup-
precht, D. Skourtis, and E. Zadok. “The case for benchmark-
ing control operations in cloud native storage”. In: 12th
USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 20). July 2020.

[MTA+21] A. Merenstein, V. Tarasov, A. Anwar, D. Bhagwat, J. Lee, L.
Rupprecht, D. Skourtis, Y. Yang, and E. Zadok. “CNSBench:
a cloud native storage benchmark”. In: Conference on File and
Storage Technologies. FAST 21. Feb. 2021, pp. 263–276. url:
https://www.usenix.org/conference/fast21/presentation/merenstein.

[MW15] N. Marz and J. Warren. Big data: principles and best practices of
scalable realtime data systems. 1st. USA: Manning Publications
Co., 2015.

[NCM+21a] F. Nikolaidis, A. Chazapis, M. Marazakis, and A. Bilas. “Fris-
bee: a suite for benchmarking systems recovery”. In: Work-
shop on High Availability and Observability of Cloud Systems.
HAOC ’21. 2021, pp. 18–24. doi: 10.1145/3447851.3458738.

[NCM+21b] F. Nikolaidis, A. Chazapis, M. Marazakis, and A. Bilas. Fris-
bee: automated testing of cloud-native applications in Kubernetes.
Sept. 2021. doi: 10.48550/arxiv.2109.10727.

[New15] S. Newman. Building microservices. 1st. O’Reilly Media, Inc.,
2015.

[New21] S. Newman. Building microservices. 2nd. O’Reilly Media, Inc.,
2021.

[NNG19] H. Nasiri, S. Nasehi, and M. Goudarzi. “Evaluation of dis-
tributed stream processing frameworks for IoT applications
in smart cities”. In: Journal of Big Data 6.52 (2019). doi:
10.1186/s40537-019-0215-2.

257

https://doi.org/10.1007/978-3-642-40352-1_13
https://doi.org/10.3390/en81112361
https://www.usenix.org/conference/fast21/presentation/merenstein
https://doi.org/10.1145/3447851.3458738
https://doi.org/10.48550/arxiv.2109.10727
https://doi.org/10.1186/s40537-019-0215-2

Bibliography

[NPP+17] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bring-
hurst, I. Gupta, and R. H. Campbell. “Samza: stateful scal-
able stream processing at LinkedIn”. In: Proceedings of the
VLDB Endowment 10.12 (Aug. 2017), pp. 1634–1645. doi:
10.14778/3137765.3137770.

[Ope22] OpenTSDB Authors. OpenTSDB. 2022. url: http://opentsdb.

net.

[Ous11] J. Ousterhout. “Is scale your enemy, or is scale your friend?
technical perspective”. In: Communications of the ACM 54.7
(July 2011), p. 110. doi: 10.1145/1965724.1965748.

[PB19] T. Pfandzelter and D. Bermbach. “IoT data processing in
the fog: functions, streams, or batch processing?” In: 2019
IEEE International Conference on Fog Computing (ICFC). 2019,
pp. 201–206. doi: 10.1109/ICFC.2019.00033.

[PHS+22a] T. Pfandzelter, S. Henning, T. Schirmer, W. Hasselbring, and
D. Bermbach. Replication package for: streaming vs. functions: a
cost perspective on cloud event processing. Zenodo, 2022. doi:
10.5281/zenodo.7495024.

[PHS+22b] T. Pfandzelter, S. Henning, T. Schirmer, W. Hasselbring, and
D. Bermbach. “Streaming vs. functions: a cost perspective
on cloud event processing”. In: 2022 IEEE International Con-
ference on Cloud Engineering (IC2E). 2022, pp. 67–78. doi:
10.1109/IC2E55432.2022.00015.

[PHU20] A. Pagliari, F. Huet, and G. Urvoy-Keller. “NAMB: a quick
and flexible stream processing application prototype gener-
ator”. In: 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID). 2020, pp. 61–
70. doi: 10.1109/CCGrid49817.2020.00-87.

[PJ16] C. Pahl and P. Jamshidi. “Microservices: a systematic map-
ping study”. In: Proceedings of the 6th International Conference
on Cloud Computing and Services Science - Volume 1. CLOSER
2016. 2016, pp. 137–146. doi: 10.5220/0005785501370146.

258

https://doi.org/10.14778/3137765.3137770
http://opentsdb.net
http://opentsdb.net
https://doi.org/10.1145/1965724.1965748
https://doi.org/10.1109/ICFC.2019.00033
https://doi.org/10.5281/zenodo.7495024
https://doi.org/10.1109/IC2E55432.2022.00015
https://doi.org/10.1109/CCGrid49817.2020.00-87
https://doi.org/10.5220/0005785501370146

Bibliography

[PJZ18] C. Pahl, P. Jamshidi, and O. Zimmermann. “Architectural
principles for cloud software”. In: ACM Transactions on Inter-
net Technology 18.2 (Feb. 2018). doi: 10.1145/3104028.

[Pro22] Prometheus Authors. Prometheus. 2022. url: https://prometheus.
io.

[PVB+21] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. v.
Kistowski, A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tůma,
and A. Iosup. “Methodological principles for reproducible
performance evaluation in cloud computing”. In: IEEE Trans-
actions on Software Engineering 47.8 (2021), pp. 1528–1543. doi:
10.1109/TSE.2019.2927908.

[QMM+18] J. C. Quiroz, N. Mariun, M. R. Mehrjou, M. Izadi, N. Misron,
and M. A. M. Radzi. “Fault detection of broken rotor bar
in LS-PMSM using random forests”. In: Measurement 116
(2018), pp. 273–280. doi: 10.1016/j.measurement.2017.11.004.

[QT19] Q. Qi and F. Tao. “A smart manufacturing service system
based on edge computing, fog computing, and cloud com-
puting”. In: IEEE Access 7 (2019), pp. 86769–86777. doi:
10.1109/ACCESS.2019.2923610.

[QWH+16] S. Qian, G. Wu, J. Huang, and T. Das. “Benchmarking mod-
ern distributed streaming platforms”. In: 2016 IEEE Interna-
tional Conference on Industrial Technology (ICIT). 2016, pp. 592–
598. doi: 10.1109/ICIT.2016.7474816.

[RbAB+21] P. Ralph, N. bin Ali, S. Baltes, D. Bianculli, J. Diaz, Y. Dittrich,
N. Ernst, M. Felderer, R. Feldt, A. Filieri, B. B. N. de França,
C. A. Furia, G. Gay, N. Gold, D. Graziotin, P. He, R. Hoda,
N. Juristo, B. Kitchenham, V. Lenarduzzi, J. Martínez, J. Mel-
egati, D. Mendez, T. Menzies, J. Molleri, D. Pfahl, R. Robbes,
D. Russo, N. Saarimäki, F. Sarro, D. Taibi, J. Siegmund, D.
Spinellis, M. Staron, K. Stol, M.-A. Storey, D. Taibi, D. Tam-
burri, M. Torchiano, C. Treude, B. Turhan, X. Wang, and
S. Vegas. Empirical standards for software engineering research.
Version 0.2.0. Mar. 2021. doi: 10.48550/arXiv.2010.03525.

259

https://doi.org/10.1145/3104028
https://prometheus.io
https://prometheus.io
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1016/j.measurement.2017.11.004
https://doi.org/10.1109/ACCESS.2019.2923610
https://doi.org/10.1109/ICIT.2016.7474816
https://doi.org/10.48550/arXiv.2010.03525

Bibliography

[RJD+15] T. Rackow, T. Javied, T. Donhauser, C. Martin, P. Schud-
erer, and J. Franke. “Green Cockpit: transparency on en-
ergy consumption in manufacturing companies”. In: Proce-
dia CIRP 26 (2015). 12th Global Conference on Sustainable
Manufacturing – Emerging Potentials, pp. 498–503. doi:
10.1016/j.procir.2015.01.011.

[RM19] T. Rist and M. Masoodian. “Promoting sustainable energy
consumption behavior through interactive data visualiza-
tions”. In: Multimodal Technologies and Interaction 3.3 (2019),
p. 56. doi: 10.3390/mti3030056.

[Roh22] T. Rohrmann. “Rethinking how distributed applications are
built”. In: Proceedings of the 16th ACM International Conference
on Distributed and Event-Based Systems. DEBS ’22. 2022, p. 4.
doi: 10.1145/3524860.3544410.

[RSE+19] R. Rabiser, K. Schmid, H. Eichelberger, M. Vierhauser, S.
Guinea, and P. Grünbacher. “A domain analysis of resource
and requirements monitoring: towards a comprehensive
model of the software monitoring domain”. In: Information
and Software Technology 111 (2019), pp. 86–109. doi: 10.1016/j.

infsof.2019.03.013.

[SAS19] E. Shahverdi, A. Awad, and S. Sakr. “Big stream process-
ing systems: an experimental evaluation”. In: 2019 IEEE
35th International Conference on Data Engineering Workshops
(ICDEW). 2019, pp. 53–60. doi: 10.1109/ICDEW.2019.00-35.

[Sax20] M. J. Sax. “Performance optimizations and operator se-
mantics for streaming data flow programs”. PhD thesis.
Humboldt-Universität zu Berlin, 2020. doi: 10.18452/21424.

[SBA20] R. Sahal, J. G. Breslin, and M. I. Ali. “Big data and stream
processing platforms for Industry 4.0 requirements map-
ping for a predictive maintenance use case”. In: Journal of
Manufacturing Systems 54 (2020), pp. 138–151. doi: 10.1016/j.

jmsy.2019.11.004.

260

https://doi.org/10.1016/j.procir.2015.01.011
https://doi.org/10.3390/mti3030056
https://doi.org/10.1145/3524860.3544410
https://doi.org/10.1016/j.infsof.2019.03.013
https://doi.org/10.1016/j.infsof.2019.03.013
https://doi.org/10.1109/ICDEW.2019.00-35
https://doi.org/10.18452/21424
https://doi.org/10.1016/j.jmsy.2019.11.004
https://doi.org/10.1016/j.jmsy.2019.11.004

Bibliography

[SBS+17] T. Szydlo, R. Brzoza-Woch, J. Sendorek, M. Windak, and C.
Gniady. “Flow-based programming for IoT leveraging fog
computing”. In: 2017 IEEE 26th International Conference on En-
abling Technologies: Infrastructure for Collaborative Enterprises
(WETICE). 2017, pp. 74–79. doi: 10.1109/WETICE.2017.17.

[SCG+14] H. Sequeira, P. Carreira, T. Goldschmidt, and P. Vorst. “En-
ergy Cloud: real-time cloud-native energy management sys-
tem to monitor and analyze energy consumption in multiple
industrial sites”. In: 2014 IEEE/ACM 7th International Confer-
ence on Utility and Cloud Computing. Dec. 2014, pp. 529–534.
doi: 10.1109/UCC.2014.79.

[SCS17] A. Shukla, S. Chaturvedi, and Y. Simmhan. “RIoTBench: an
IoT benchmark for distributed stream processing systems”.
In: Concurrency and Computation: Practice and Experience 29.21
(2017), e4257. doi: 10.1002/cpe.4257.

[SEH03] S. E. Sim, S. Easterbrook, and R. C. Holt. “Using benchmark-
ing to advance research: a challenge to software engineer-
ing”. In: 25th International Conference on Software Engineering.
2003, pp. 74–83. doi: 10.1109/icse.2003.1201189.

[SGO17] F. Shrouf, B. Gong, and J. Ordieres-Meré. “Multi-level aware-
ness of energy used in production processes”. In: Journal of
Cleaner Production 142 (2017), pp. 2570–2585. doi: 10.1016/j.

jclepro.2016.11.019.

[SM15] F. Shrouf and G. Miragliotta. “Energy management based
on Internet of Things: practices and framework for adoption
in production management”. In: Journal of Cleaner Production
100 (2015), pp. 235–246. doi: 10.1016/j.jclepro.2015.03.055.

[SNO+16] M. Schulze, H. Nehler, M. Ottosson, and P. Thollander.
“Energy management in industry – a systematic review of
previous findings and an integrative conceptual framework”.
In: Journal of Cleaner Production 112 (2016), pp. 3692–3708.
doi: 10.1016/j.jclepro.2015.06.060.

261

https://doi.org/10.1109/WETICE.2017.17
https://doi.org/10.1109/UCC.2014.79
https://doi.org/10.1002/cpe.4257
https://doi.org/10.1109/icse.2003.1201189
https://doi.org/10.1016/j.jclepro.2016.11.019
https://doi.org/10.1016/j.jclepro.2016.11.019
https://doi.org/10.1016/j.jclepro.2015.03.055
https://doi.org/10.1016/j.jclepro.2015.06.060

Bibliography

[SOG+14] F. Shrouf, J. Ordieres-Meré, A. García-Sánchez, and M.
Ortega-Mier. “Optimizing the production scheduling of a
single machine to minimize total energy consumption costs”.
In: Journal of Cleaner Production 67 (2014), pp. 197–207. doi:
10.1016/j.jclepro.2013.12.024.

[SOM14] F. Shrouf, J. Ordieres, and G. Miragliotta. “Smart factories
in Industry 4.0: a review of the concept and of energy man-
agement approached in production based on the Internet
of Things paradigm”. In: 2014 IEEE International Conference
on Industrial Engineering and Engineering Management. Dec.
2014, pp. 697–701. doi: 10.1109/IEEM.2014.7058728.

[Spæ21] T. Spæren. “Performance analysis and improvements for
Apache Beam”. Master’s Thesis. University of Oslo, 2021.

[Spi89] J. M. Spivey. The Z notation: a reference manual. USA: Prentice-
Hall, Inc., 1989.

[SSH+18] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund.
“Industrial Internet of Things: challenges, opportunities, and
directions”. In: IEEE Transactions on Industrial Informatics
14.11 (2018), pp. 4724–4734. doi: 10.1109/TII.2018.2852491.

[Sto18] B. Stopford. Designing event-driven systems. 1st. O’Reilly Me-
dia, Inc., 2018.

[STV18] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel. “The
pains and gains of microservices: a systematic grey litera-
ture review”. In: Journal of Systems and Software 146 (2018),
pp. 215–232. doi: 10.1016/j.jss.2018.09.082.

[SW02] C. U. Smith and L. G. Williams. Performance solutions: a
practical guide to creating responsive, scalable software. USA:
Addison Wesley Longman Publishing Co., Inc., 2002.

[SWW+18] M. J. Sax, G. Wang, M. Weidlich, and J.-C. Freytag. “Streams
and tables: two sides of the same coin”. In: Proceedings of the
International Workshop on Real-Time Business Intelligence and
Analytics. BIRTE ’18. 2018, pp. 1–10. doi: 10.1145/3242153.3242155.

262

https://doi.org/10.1016/j.jclepro.2013.12.024
https://doi.org/10.1109/IEEM.2014.7058728
https://doi.org/10.1109/TII.2018.2852491
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1145/3242153.3242155

Bibliography

[SY18] S. Singh and A. Yassine. “Big data mining of energy time
series for behavioral analytics and energy consumption fore-
casting”. In: Energies 11.2 (Feb. 2018), p. 452. doi: 10.3390/

en11020452.

[TBP+22] L. Thamsen, J. Beilharz, A. Polze, and O. Kao. The methods
of cloud computing. Tech. rep. Technische Universität Berlin,
Feb. 2022.

[TdCP+20] F. S. Tesch da Silva, C. A. da Costa, C. D. Paredes Crovato,
and R. da Rosa Righi. “Looking at energy through the lens
of Industry 4.0: a systematic literature review of concerns
and challenges”. In: Computers & Industrial Engineering 143
(2020), p. 106426. doi: 10.1016/j.cie.2020.106426.

[TGC+21] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodi-
mos, T. Rabl, and V. Markl. “Scotty: general and efficient
open-source window aggregation for stream processing sys-
tems”. In: ACM Transactions on Database Systems 46.1 (Mar.
2021). doi: 10.1145/3433675.

[THS11] W.-T. Tsai, Y. Huang, and Q. Shao. “Testing the scalability
of SaaS applications”. In: 2011 IEEE International Conference
on Service-Oriented Computing and Applications (SOCA). 2011,
pp. 1–4. doi: 10.1109/SOCA.2011.6166245.

[Tic14] W. F. Tichy. “Where’s the science in software engineering?
ubiquity symposium: the science in computer science”. In:
Ubiquity 2014 (Mar. 2014), pp. 1–6. doi: 10.1145/2590528.2590529.

[Tic98] W. F. Tichy. “Should computer scientists experiment more?”
In: Computer 31.5 (1998), pp. 32–40. doi: 10.1109/2.675631.

[TLP17] D. Taibi, V. Lenarduzzi, and C. Pahl. “Processes, motivations,
and issues for migrating to microservices architectures: an
empirical investigation”. In: IEEE Cloud Computing 4.5 (2017),
pp. 22–32. doi: 10.1109/MCC.2017.4250931.

263

https://doi.org/10.3390/en11020452
https://doi.org/10.3390/en11020452
https://doi.org/10.1016/j.cie.2020.106426
https://doi.org/10.1145/3433675
https://doi.org/10.1109/SOCA.2011.6166245
https://doi.org/10.1145/2590528.2590529
https://doi.org/10.1109/2.675631
https://doi.org/10.1109/MCC.2017.4250931

Bibliography

[TPC+15] P. Thollander, S. Paramonova, E. Cornelis, O. Kimura,
A. Trianni, M. Karlsson, E. Cagno, I. Morales, and J. P.
Jiménez Navarro. “International study on energy end-use
data among industrial SMEs (small and medium-sized enter-
prises) and energy end-use efficiency improvement opportu-
nities”. In: Journal of Cleaner Production 104 (2015), pp. 282–
296. doi: 10.1016/j.jclepro.2015.04.073.

[Tsa20] C. Tsatia Tsida. “Analyzing environmental data with the
Titan platform”. Master’s Thesis. Kiel University, 2020.

[TTP+10] P. Tucker, K. Tufte, V. Papadimos, and D. Maier. NEXMark
– a benchmark for queries over data streams (draft). 2010. url:
https://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf.

[TTS+14] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.
Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham,
N. Bhagat, S. Mittal, and D. Ryaboy. “Storm@twitter”. In:
Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’14. 2014, pp. 147–156. doi:
10.1145/2588555.2595641.

[VD10] A. Vijayaraghavan and D. Dornfeld. “Automated energy
monitoring of machine tools”. In: CIRP Annals 59.1 (2010),
pp. 21–24. doi: 10.1016/j.cirp.2010.03.042.

[vDon21] G. van Dongen. “Open stream processing benchmark: an
extensive analysis of distributed stream processing frame-
works”. PhD thesis. Ghent University, 2021.

[vDvdP20] G. van Dongen and D. van den Poel. “Evaluation of stream
processing frameworks”. In: IEEE Transactions on Parallel and
Distributed Systems 31.8 (2020), pp. 1845–1858. doi: 10.1109/

TPDS.2020.2978480.

[vDvdP21a] G. van Dongen and D. van den Poel. “A performance analy-
sis of fault recovery in stream processing frameworks”. In:
IEEE Access 9 (2021), pp. 93745–93763. doi: 10.1109/ACCESS.2021.

3093208.

264

https://doi.org/10.1016/j.jclepro.2015.04.073
https://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1016/j.cirp.2010.03.042
https://doi.org/10.1109/TPDS.2020.2978480
https://doi.org/10.1109/TPDS.2020.2978480
https://doi.org/10.1109/ACCESS.2021.3093208
https://doi.org/10.1109/ACCESS.2021.3093208

Bibliography

[vDvdP21b] G. van Dongen and D. van den Poel. “Influencing factors
in the scalability of distributed stream processing jobs”. In:
IEEE Access 9 (2021), pp. 109413–109431. doi: 10.1109/ACCESS.

2021.3102645.

[VGB13] K. Vikhorev, R. Greenough, and N. Brown. “An advanced
energy management framework to promote energy aware-
ness”. In: Journal of Cleaner Production 43 (2013), pp. 103–112.
doi: 10.1016/j.jclepro.2012.12.012.

[VGT+23] J. Verwiebe, P. M. Grulich, J. Traub, and V. Markl. “Survey
of window types for aggregation in stream processing sys-
tems”. In: The VLDB Journal (Feb. 2023). doi: 10.1007/s00778-022-

00778-6.

[vHoo14] A. van Hoorn. Model-driven online capacity management for
component-based software systems. Kiel Computer Science Se-
ries 2014/6. Kiel, Germany: Department of Computer Sci-
ence, Kiel University, 2014.

[vHWH12] A. van Hoorn, J. Waller, and W. Hasselbring. “Kieker: a
framework for application performance monitoring and
dynamic software analysis”. In: Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineer-
ing. ICPE ’12. 2012, pp. 247–248. doi: 10.1145/2188286.2188326.

[vKAH+15] J. von Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange,
J. L. Henning, and P. Cao. “How to build a benchmark”. In:
Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering. ICPE ’15. 2015, pp. 333–336. doi:
10.1145/2668930.2688819.

[vKES+18] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Groh-
mann, and S. Kounev. “TeaStore: a micro-service reference
application for benchmarking, modeling and resource man-
agement research”. In: 2018 IEEE 26th International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). Sept. 2018, pp. 223–
236. doi: 10.1109/MASCOTS.2018.00030.

265

https://doi.org/10.1109/ACCESS.2021.3102645
https://doi.org/10.1109/ACCESS.2021.3102645
https://doi.org/10.1016/j.jclepro.2012.12.012
https://doi.org/10.1007/s00778-022-00778-6
https://doi.org/10.1007/s00778-022-00778-6
https://doi.org/10.1145/2188286.2188326
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1109/MASCOTS.2018.00030

Bibliography

[Von21a] B. Vonheiden. “Empirical scalability evaluation of window
aggregation methods in distributed stream processing”.
Master’s Thesis. Kiel University, 2021.

[Von21b] B. Vonheiden. Master thesis replication package for: empirical
scalability evaluation of hopping window aggregation methods in
distributed stream processing. Zenodo, 2021. doi: 10.5281/zenodo.

5764902.

[VT20] V. E. Venugopal and M. Theobald. “Benchmarking syn-
chronous and asynchronous stream processing systems”.
In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD.
CoDS COMAD 2020. 2020, pp. 322–323. doi: 10.1145/3371158.

3371206.

[Wal14] J. Waller. Performance benchmarking of application monitoring
frameworks. Kiel Computer Science Series 2014/5. Kiel, Ger-
many: Department of Computer Science, Kiel University,
2014.

[WCD+21] G. Wang, L. Chen, A. Dikshit, J. Gustafson, B. Chen, M. J.
Sax, J. Roesler, S. Blee-Goldman, B. Cadonna, A. Mehta,
V. Madan, and J. Rao. “Consistency and completeness: re-
thinking distributed stream processing in Apache Kafka”.
In: Proceedings of the 2021 International Conference on Manage-
ment of Data. SIGMOD/PODS ’21. 2021, pp. 2602–2613. doi:
10.1145/3448016.3457556.

[WEH15] J. Waller, N. C. Ehmke, and W. Hasselbring. “Including
performance benchmarks into continuous integration to
enable DevOps”. In: ACM SIGSOFT Software Engineering
Notes 40.2 (Mar. 2015), pp. 1–4. doi: 10.1145/2735399.2735416.

[Wet19] D. B. Wetzel. “Entwicklung eines Dashboards für eine In-
dustrial DevOps Monitoring Plattform”. Bachelor’s Thesis.
Kiel University, 2019.

[Wet22] D. B. Wetzel. “Scalability benchmarking of a promotional
loan system”. Master’s Thesis. Kiel University, 2022.

266

https://doi.org/10.5281/zenodo.5764902
https://doi.org/10.5281/zenodo.5764902
https://doi.org/10.1145/3371158.3371206
https://doi.org/10.1145/3371158.3371206
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1145/2735399.2735416

Bibliography

[WHG+14] A. Weber, N. Herbst, H. Groenda, and S. Kounev. “Towards
a resource elasticity benchmark for cloud environments”.
In: Proceedings of the 2nd International Workshop on Hot Topics
in Cloud Service Scalability. HotTopiCS ’14. 2014. doi: 10.1145/

2649563.2649571.

[WHH03] C. Wohlin, M. Höst, and K. Henningsson. “Empirical re-
search methods in software engineering”. In: Empirical Meth-
ods and Studies in Software Engineering: Experiences from ESER-
NET. Ed. by R. Conradi and A. I. Wang. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 7–23. doi: 10.1007/978-3-

540-45143-3_2.

[WKS+15] G. Wang, J. Koshy, S. Subramanian, K. Paramasivam, M.
Zadeh, N. Narkhede, J. Rao, J. Kreps, and J. Stein. “Building
a replicated logging system with Apache Kafka”. In: Pro-
ceedings of the VLDB Endowment 8.12 (2015), pp. 1654–1655.
doi: 10.14778/2824032.2824063.

[WvHK+16] J. Walter, A. van Hoorn, H. Koziolek, D. Okanovic, and
S. Kounev. “Asking “what?”, automating the “how?”: the
vision of declarative performance engineering”. In: Proceed-
ings of the 7th ACM/SPEC on International Conference on Per-
formance Engineering. ICPE ’16. 2016, pp. 91–94. doi: 10.1145/

2851553.2858662.

[YCL+20] C.-T. Yang, S.-T. Chen, J.-C. Liu, R.-H. Liu, and C.-L. Chang.
“On construction of an energy monitoring service using big
data technology for the smart campus”. In: Cluster Comput-
ing 23 (2020), pp. 265–288. doi: 10.1007/s10586-019-02921-5.

[YJH+17] S. Yang, Y. Jeong, C. Hong, H. Jun, and B. Burgstaller. “Scal-
ability and state: a critical assessment of throughput obtain-
able on big data streaming frameworks for applications with
and without state information”. In: Euro-Par 2017: Parallel
Processing Workshops. Vol. 10659. Lecture Notes in Computer
Science. 2017, pp. 141–152. doi: 10.1007/978-3-319-75178-8_12.

267

https://doi.org/10.1145/2649563.2649571
https://doi.org/10.1145/2649563.2649571
https://doi.org/10.1007/978-3-540-45143-3_2
https://doi.org/10.1007/978-3-540-45143-3_2
https://doi.org/10.14778/2824032.2824063
https://doi.org/10.1145/2851553.2858662
https://doi.org/10.1145/2851553.2858662
https://doi.org/10.1007/s10586-019-02921-5
https://doi.org/10.1007/978-3-319-75178-8_12

Bibliography

[YML+17] J. Yan, Y. Meng, L. Lu, and L. Li. “Industrial big data in an
Industry 4.0 environment: challenges, schemes, and applica-
tions for predictive maintenance”. In: IEEE Access 5 (2017),
pp. 23484–23491. doi: 10.1109/ACCESS.2017.2765544.

[You22] E. You. Vue.js. 2022. url: https://vuejs.org.

[ZHD+17] S. Zhang, B. He, D. Dahlmeier, A. C. Zhou, and T. Heinze.
“Revisiting the design of data stream processing systems
on multi-core processors”. In: 2017 IEEE 33rd International
Conference on Data Engineering (ICDE). 2017, pp. 659–670.
doi: 10.1109/ICDE.2017.119.

[Zim17] O. Zimmermann. “Microservices tenets”. In: Computer Sci-
ence – Research and Development 32.3 (July 2017), pp. 301–310.
doi: 10.1007/s00450-016-0337-0.

[ZLC+23] X. Zhou, S. Li, L. Cao, H. Zhang, Z. Jia, C. Zhong, Z. Shan,
and M. A. Babar. “Revisiting the practices and pains of
microservice architecture in reality: an industrial inquiry”.
In: Journal of Systems and Software 195 (2023), p. 111521. doi:
10.1016/j.jss.2022.111521.

[ZMK+19] S. Zeuch, B. D. Monte, J. Karimov, C. Lutz, M. Renz, J.
Traub, S. Breß, T. Rabl, and V. Markl. “Analyzing efficient
stream processing on modern hardware”. In: Proceedings
of the VLDB Endowment 12.5 (Jan. 2019), pp. 516–530. doi:
10.14778/3303753.3303758.

[ZMY+18] Y. Zhang, S. Ma, H. Yang, J. Lv, and Y. Liu. “A big data
driven analytical framework for energy-intensive manufac-
turing industries”. In: Journal of Cleaner Production 197 (2018),
pp. 57–72. doi: 10.1016/j.jclepro.2018.06.170.

[ZXW+16] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A.
Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin,
A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. “Apache
Spark: a unified engine for big data processing”. In: Com-
munications of the ACM 59.11 (Oct. 2016), pp. 56–65. doi:
10.1145/2934664.

268

https://doi.org/10.1109/ACCESS.2017.2765544
https://vuejs.org
https://doi.org/10.1109/ICDE.2017.119
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1016/j.jss.2022.111521
https://doi.org/10.14778/3303753.3303758
https://doi.org/10.1016/j.jclepro.2018.06.170
https://doi.org/10.1145/2934664

Bibliography

[ZXW+20] Y. Zhang, B. Xia, K. Wu, and X. Liu. Building a better and faster
Beam Samza runner. 2020. url: https://engineering.linkedin.com/
blog/2020/building-a-better-and-faster-beam-samza-runner.

[ZXZ+17] J. Zheng, C. Xu, Z. Zhang, and X. L. Li. “Electric load fore-
casting in smart grids using long-short-term-memory based
recurrent neural network”. In: 2017 51st Annual Conference
on Information Sciences and Systems (CISS). Mar. 2017, pp. 1–6.
doi: 10.1109/CISS.2017.7926112.

269

https://engineering.linkedin.com/blog/2020/building-a-better-and-faster-beam-samza-runner
https://engineering.linkedin.com/blog/2020/building-a-better-and-faster-beam-samza-runner
https://doi.org/10.1109/CISS.2017.7926112

	Introduction
	Motivation and Context
	Problem Statement
	Lack of a Commonly Accepted Scalability Benchmarking Method
	Lack of Scalability Benchmarks for Event-Driven Microservices

	Guiding Goals and Research Questions
	A Method for Benchmarking the Scalability of Cloud-Native Applications
	A Benchmark to Assess and Compare the Scalability of Event-Driven Microservice Architectures

	Contributions and Evaluation Summary
	The Theodolite Scalability Benchmarking Method
	The Theodolite Scalability Benchmarks for Event-Driven Microservices
	Experimental Evaluations

	Preliminary Work
	Peer-Reviewed Publications
	Replication Packages
	Non-Reviewed Publications
	Co-Supervised Bachelor's and Master's Theses

	Document Structure

	I Foundations
	Scalability of Software Systems
	Scalability in Parallel and Distributed Systems
	Scalability in Cloud Computing
	Vertical and Horizontal Scalability
	Scalability vs. Elasticity

	Benchmarking Software Systems
	Definitions for Benchmarks
	Benchmarking in Empirical Software Engineering Research
	Components of Benchmarks
	Quality Attributes of Benchmarks
	Classification of Benchmarks
	Provision of Benchmarks
	Sizes and Scopes of Benchmarks

	Benchmarking in Cloud Computing

	Cloud-Native Applications and Event-Driven Microservices
	Cloud-Native Applications
	Cloud Computing
	A Definition for Cloud-Native
	The Cloud-Native Ecosystem

	The Microservice Architectural Pattern
	Microservice Characteristics
	Microservices for Enabling Scalability
	Microservice Performance Testing and Benchmarking

	Event-Driven Microservices
	Log-Based Messaging Systems as Backbone
	Event-Driven Microservice Architecture Patterns

	Distributed Stream Processing
	Stream Processing Models and Patterns
	Modern Stream Processing Frameworks

	II The Theodolite Benchmarking Method
	Research Design and Methods
	Deriving Design Rationales
	Evaluation Overview

	Scalability Metrics
	Design Rationale
	Formal Definition of Scalability Metrics
	Resource Demand Metric
	Load Capacity Metric

	Discussion
	Relation of Our Metrics
	Comparison of Our Metrics

	Related Work

	Scalability Measurement Method
	Design Rationale
	Fundamental Approach
	SLO Experiments
	Search Strategies
	Balancing Statistical Grounding and Time-Efficiency
	Related Work

	Benchmarking Tool Architecture
	Design Rationale
	Declarative Benchmarks and Executions
	Integration with the Cloud-Native Ecosystem

	Overview of the Benchmarking Process
	Benchmarking Meta Model
	Operator-Based Cloud-Native Architecture
	The Theodolite Benchmarking Framework
	Related Work

	III The Theodolite Benchmarks for Event-Driven Microservices
	Research Design and Methods
	Design Rationale
	Research Design Overview
	Evaluation Overview

	Industrial Internet of Things Analytics for the Case of Industrial Power Consumption
	Context
	Literature Review
	Goals for Analyzing Power Consumption Data
	Measures for Analyzing Power Consumption Data
	Implementation of Measures

	Studied Pilot Cases
	Goals for Analyzing Power Consumption Data
	Reporting
	Optimization
	Fault Detection
	Predictive Maintenance

	Measures for Analyzing Power Consumption Data
	Near Real-time Data Processing
	Multi-Level Monitoring
	Temporal Aggregation
	Correlation
	Anomaly Detection
	Forecasting
	Visualization
	Alerting

	Pilot Implementation of the Measures
	Near Real-Time Data Processing
	Multi-Level Monitoring
	Temporal Aggregation
	Correlation
	Anomaly Detection
	Forecasting
	Visualization
	Alerting

	Scalability Benchmarks for Event-Driven Microservices
	Dataflow Architectures
	Use Case UC1: Database Storage
	Use Case UC2: Downsampling
	Use Case UC3: Time-Attribute-Based Aggregation
	Use Case UC4: Hierarchical Aggregation

	Load Types
	Resource Types
	Service Level Objectives
	Consumer Lag Trend SLO
	Dropped Records SLO

	Systems under Test and Load Generation
	Related Work

	IV Experimental Evaluation
	Evaluating Variability of Benchmark Results in the Cloud
	Experimental Setup
	Benchmark Implementations and Configurations
	Evaluated Cloud Platforms
	Replication Package

	Evaluation of Warm-up and SLO Experiment Duration
	Experiment Design
	Results and Discussion
	Summary

	Evaluation of Repetition Count
	Experiment Design
	Results and Discussion
	Summary

	SLO Evaluation with Increasing Resources
	Experiment Design
	Results and Discussion
	Summary

	SLO Evaluation with Increasing Load
	Experiment Design
	Results and Discussion
	Summary

	Threats to Validity

	Evaluating Scalability of Stream Processing Frameworks
	Experimental Setup
	Configuration of Frameworks
	Configuration of Task Samples
	Configuration of the Benchmarking Method

	Baseline Experiments
	Apache Beam Configuration
	Apache Flink
	Apache Samza

	Scaling the Window Aggregation Duration
	Scaling on a Single Node
	Threats to Validity

	Evaluating Scalability of Sliding Window Aggregations
	Methods for Sliding Window Aggregations
	Experimental Setup
	Results and Discussion
	Theodolite's UC3 Benchmark
	OSPBench

	Threats to Validity

	Evaluating Cost Scalability of Stream Processing and Function-as-a-Service
	Experimental Setup and Methodology
	Baseline: Stream Processing and FaaS
	Implementation
	Results and Discussion
	Takeaway for Platform Choice

	Impact of Pub/Sub in FaaS and Streaming
	Implementation and Setup
	Results and Discussion
	Takeaway for Transport Method Choice

	Different FaaS Platforms
	Implementation and Setup
	Results and Discussion
	Takeaway for Cloud Provider Choice in FaaS

	Different Kubernetes Engines
	Implementation and Setup
	Results and Discussion
	Takeaway for Cloud Platform Choice in Streaming

	Different Programming Languages in FaaS
	Implementation and Setup
	Results and Discussion
	Takeaway for Language Choice in FaaS

	Different Streaming Frameworks
	Implementation and Setup
	Results and Discussion
	Takeaway for Framework Choice

	Serverless vs. Serverful Stream Processing
	Implementation and Setup
	Results and Discussion
	Takeaway for Platform Choice

	Serverless vs. Serverful Kubernetes
	Implementation and Setup
	Results and Discussion
	Takeaway for Kubernetes Service Choice

	Threats to Validity
	Summary of Results and Decision Guidelines

	Case Studies
	Scalability Benchmarking of a Promotional Loan System
	Benchmark Design
	Benchmark Execution
	Benchmark Results

	Scalability Benchmarking of ExplorViz
	Benchmark Design
	Benchmark Execution
	Benchmark Results

	Scalability Benchmarking of the TeaStore
	Benchmark Design
	Benchmark Execution
	Benchmark Results

	V Conclusions and Future Work
	Conclusions
	The Theodolite Scalability Benchmarking Method
	The Theodolite Scalability Benchmarks for Event-Driven Microservices
	Experimental Evaluation Results

	Future Work
	Experimental Scalability Evaluations with Theodolite
	Future Work on Scalability Benchmarking Methods
	Future Work on Scalability Benchmarks
	Outlook

	Bibliography

