216,529 research outputs found

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Temporal and causal reasoning in deaf and hearing novice readers

    Get PDF
    Temporal and causal information in text are crucial in helping the reader form a coherent representation of a narrative. Deaf novice readers are generally poor at processing linguistic markers of causal/temporal information (i.e., connectives), but what is unclear is whether this is indicative of a more general deficit in reasoning about temporal/causal information. In Study 1, 10 deaf and 63 hearing children, matched for comprehension ability and age, were compared on a range of tasks tapping temporal/causal reasoning skills. In Study 2, 20 deaf and 32 hearing children, matched for age but not reading comprehension ability, were compared on revised versions of the tasks. The pattern of performance of the deaf was different from that of the hearing; they had difficulties when temporal and causal reasoning was text-based, but not when it was nonverbal, indicating that their global temporal/causal reasoning skills are comparable with those of their hearing counterparts

    Case Adaptation with Qualitative Algebras

    Get PDF
    This paper proposes an approach for the adaptation of spatial or temporal cases in a case-based reasoning system. Qualitative algebras are used as spatial and temporal knowledge representation languages. The intuition behind this adaptation approach is to apply a substitution and then repair potential inconsistencies, thanks to belief revision on qualitative algebras. A temporal example from the cooking domain is given. (The paper on which this extended abstract is based was the recipient of the best paper award of the 2012 International Conference on Case-Based Reasoning.

    Algebraic Properties of Qualitative Spatio-Temporal Calculi

    Full text link
    Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi and we discuss the relevance of the according axioms for representation and reasoning. We also analyze existing qualitative calculi and provide a classification involving different notions of a relation algebra.Comment: COSIT 2013 paper including supplementary materia

    Guest Editorial: Temporal representation and reasoning

    Get PDF
    In this editorial I introduce the main topics of papers in the special issue

    Temporal Representation and Reasoning in OWL 2

    Get PDF
    The representation of temporal information has been in the center of intensive research activities over the years in the areas of knowledge representation, databases and more recently, the Semantic Web. The proposed approach extends the existing framework of representing temporal information in ontologies by allowing for representation of concepts evolving in time (referred to as “dynamic” information) and of their properties in terms of qualitative descriptions in addition to quantitative ones (i.e., dates, time instants and intervals). For this purpose, we advocate the use of natural language expressions, such as “before” or “after”, for temporal entities whose exact durations or starting and ending points in time are unknown. Reasoning over all types of temporal information (such as the above) is also an important research problem. The current work addresses all these issues as follows: The representation of dynamic concepts is achieved using the “4D-fluents” or, alternatively, the “N-ary relations” mechanism. Both mechanisms are thoroughly explored and are expanded for representing qualitative and quantitative temporal information in OWL. In turn, temporal information is expressed using either intervals or time instants. Qualitative temporal information representation in particular, is realized using sets of SWRL rules and OWL axioms leading to a sound, complete and tractable reasoning procedure based on path consistency applied on the existing relation sets. Building upon existing Semantic Web standards (OWL), tools and member submissions (SWRL), as well as integrating temporal reasoning support into the proposed representation, are important design features of our approach

    The indexed time table approach for planning and acting

    Get PDF
    A representation is discussed of symbolic temporal relations, called IxTeT, that is both powerful enough at the reasoning level for tasks such as plan generation, refinement and modification, and efficient enough for dealing with real time constraints in action monitoring and reactive planning. Such representation for dealing with time is needed in a teleoperated space robot. After a brief survey of known approaches, the proposed representation shows its computational efficiency for managing a large data base of temporal relations. Reactive planning with IxTeT is described and exemplified through the problem of mission planning and modification for a simple surveying satellite
    corecore