71,356 research outputs found

    DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and its Application for Time Series Prediction

    Get PDF
    This paper introduces a new type of fuzzy inference systems, denoted as DENFIS (dynamic evolving neural-fuzzy inference system), for adaptive on-line and off-line learning, and their application for dynamic time series prediction. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning and accommodate new input data, including new features, new classes, etc. through local element tuning. New fuzzy rules are created and updated during the operation of the system. At each time moment the output of DENFIS is calculated through a fuzzy inference system based on m-most activated fuzzy rules which are dynamically chosen from a fuzzy rule set. Two approaches are proposed: (1) dynamic creation of a first-order TakagiSugeno type fuzzy rule set for a DENFIS on-line model; (2) creation of a first-order TakagiSugeno type fuzzy rule set, or an expanded high-order one, for a DENFIS off-line model. A set of fuzzy rules can be inserted into DENFIS before, or during its learning process. Fuzzy rules can also be extracted during the learning process or after it. An evolving clustering method (ECM), which is employed in both on-line and off-line DENFIS models, is also introduced. It is demonstrated that DENFIS can effectively learn complex temporal sequences in an adaptive way and outperform some well known, existing models

    Quantification of temporal fault trees based on fuzzy set theory

    Get PDF
    © Springer International Publishing Switzerland 2014. Fault tree analysis (FTA) has been modified in different ways to make it capable of performing quantitative and qualitative safety analysis with temporal gates, thereby overcoming its limitation in capturing sequential failure behaviour. However, for many systems, it is often very difficult to have exact failure rates of components due to increased complexity of systems, scarcity of necessary statistical data etc. To overcome this problem, this paper presents a methodology based on fuzzy set theory to quantify temporal fault trees. This makes the imprecision in available failure data more explicit and helps to obtain a range of most probable values for the top event probability

    Visual Importance-Biased Image Synthesis Animation

    Get PDF
    Present ray tracing algorithms are computationally intensive, requiring hours of computing time for complex scenes. Our previous work has dealt with the development of an overall approach to the application of visual attention to progressive and adaptive ray-tracing techniques. The approach facilitates large computational savings by modulating the supersampling rates in an image by the visual importance of the region being rendered. This paper extends the approach by incorporating temporal changes into the models and techniques developed, as it is expected that further efficiency savings can be reaped for animated scenes. Applications for this approach include entertainment, visualisation and simulation

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Extracting Boolean rules from CA patterns

    Get PDF
    A multiobjective genetic algorithm (GA) is introduced to identify both the neighborhood and the rule set in the form of a parsimonious Boolean expression for both one- and two-dimensional cellular automata (CA). Simulation results illustrate that the new algorithm performs well even when the patterns are corrupted by static and dynamic nois
    • …
    corecore