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Correspondence

Extracting Boolean Rules from CA Patterns concerned with minimizing known Boolean functions and do not
_ o address the general problem of determining the CA rule from an
Yingxu Yang and S. A. Billings observed possibly noisy complex multidimensional pattern. The latter

problems are much more complex, as discussed by Rickaalq7],

Abstract—A multiobjective geneticalgorithm (GA) isintroduced toiden and a solution would offer an important step forward in the modeling
tify both the neighbor hood and the r ule set in the form of a parsmonious of spatially extended systems that arise in such diverse fields as pattern

Boolean expression for both one- and two-dimensional cellular automata ~ formation, fluidic mixing, brain imaging and in data compression
(CA). Simulation results illustrate that the new algorithm performs well  problems.

even when the patternsare corrupted by static and dynamic noise. This paper considers the identification of Boolean expressions
Index Terms—Boolean identification, cellular automata, genetic algo- 10r one—dimensional (1-D) and two-dimensional (2-D) CA. An
rithms, spatio-temporal systems. evolutionary algorithm is proposed using a multiobjective genetic

algorithm to extract a precise local Boolean expression of the CA rule

from given spatio-temporal patterns blurred by noise. The remainder

of the paper is organized as follows. In Section IlI, the definition of
Cellular automata (CA) are mathematical models for complex na-group of 1-D and 2-D CA is introduced. Section Ill reformulates

ural systems containing large numbers of simple identical componetite Boolean expression for 1-D CA rules and extends these to the

with local interactions. Since the pioneering work of John von Ne@-D case. The GA search for Boolean expressions of CA rules is

mann during the 1950s [1], cellular automata have been largely etien presented with an emphasis on the construction of parsimonious

ployed as a modeling class to approximate nonlinear discrete and ctstims of CA rules. Simulation results are contained in Section IV, and

tinuous dynamical systems in a wide range of applications [2]-[5Pection V discusses the efficiency of the algorithm.

However the inverse problem of determining the CA that satisfies gen-

eral sets of prespecified constraints [6] has received relatively little at- ||, ONE- AND TWO-DIMENSIONAL CELLULAR AUTOMATA

tention. One of the most essential problems in this case is the identi-

fication of CA, i.e., how to learn the underlying rule that governs the A cellular automaton is composed of three parts: a discrete lattice, a

local behavior of cells from temporal slices of the global evolution d?elghborhood and a rule for local transitions. Attention in this paper is
the spatio-temporal pattern restricted to binary CA where the cells can only take binary values.

CA in the classical sense are autonomous systems, i.e., there are no
external inputs exerting an influence on the evolution. It is only poé—' Neighborhoods
sible to observe the evolution of CA as a series of snapshots of thelhe neighborhood of a cellis the set of all the cells capable of directly
global states at various times in a certain finite interval of the evinfluencing the evolution. Sometimes this includes the cell itself. The
lution. An identification procedure can then be established based rmeighborhoods shown in Fig. 1 are used often and have proper names.
using these fixed global states. In CA identification, it is assumed th@A neighborhoods can take cells from various spatial and temporal
a given spatio-temporal pattern (a pattern that evolves in both spacales. For simplicity, this paper only considers neighborhoods com-
and time)<2 has a dimensiod (d > 1) and can be described by aposed of cells from time stefp— 1, but the results are not restricted to
cellular automaton. Identification of a CA involves determining a mirthis case.
imal description of the CA\ that precisely simulateQ such that the
size of the neighborhood of is as small as possible. It is thereforeB. Local Rules

necessary to determine not only the CA rule but also the structure OtI'he local transition rule updates all cells synchronously by assignin
the CA neighborhood. Ideally, the identification technique should Pros P Y g gning

d . ! fthe CA rule. Thi that th ‘]ﬁﬁ ach cell, at a given time step, a value which depends only on the
UCe a concise expression of the rute. This ensures that the m hborhood. The most common method to define the local transition

Is parsimonious and can be.readily interpreted for hardware realizatpme is to use a transition table analogous to a truth table. In this truth
of the cellular automaton. Richardsal.[7] proposed a method for ex- table, the rule is labeled by assigning neighborhoods in ascending nu-

tracting CA rules from given spatio-temporal patterns using a genefic. . .1 o der and specifying which neighborhoods map to zero and

algorithm (GA). Adamatskii [8] discussed the complexity of iOIentifi'which to one. The truth table is also called the component form of the

cation of cellular automata and presented sequential and parallel@’k rule. The component form of a three-site 1-D ritéis shown as
gorithms for computing the local transition table. However, neither % OWS_'

these authors obtained a clear neighborhood structure or parsimonious

rule expression. 000 001 010 011 100 101 110 111
In digital circuit design [9]-[14], small Boolean expressions are

searched to reproduce given data tables. But these solutions are

. INTRODUCTION
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TABLE |

it1,5 I#1,J-1) 1#1,7 |+, 341 THE BOOLEAN FORM OF Rule22 ’USING NOT, AND, AND XOROPERATORS

B=s(j—-1)®s(j),C =Bos(j+1),D = s(j —1)*s(j)*s(j +1)—*,
AND ¢ REPRESENT THEAND AND XOROPERATOR RESPECTIVELY

b IR I 1,31 4 | i L0 45 |4

o AU R NU) snew(J)| B|C|D|C @ D
i1, i-1,3-1] i-Lj |i-1L,34 000 0 0100 0
001 1 01110 1
010 1 111]0 1
(a) (b) fe) 011 0 110/0| 0
100 1 11170 1
Fig. 1. Examples of most frequently used 1-D and 2-D neighborhoods. (a) 101 0 110]0 0
1-D von Neumann neighborhood. (b) 2-D von Neumann neighborhood. (c) 2-D 110 0 ololo 0
Moore neighborhood. 111 0 0l1]1 0

R = (ro, r1, r2, 73, 74, 75, 76, 77). The numerical labeD assigned 11,5 ¢an pe extended to multidimensional CA. For example any 2-D

. . 23 _4 as . . .
to R is given by D(R) = > r.2°, which is simply the sum ¢ with a five-site von Neumann neighborhood can be represented by
of the coefficients associated with all nonzero components. All thisgqglean expression:

applies to the ruleR? with any three-site neighborhoods irrespective
of the neighborhood structures. For example, a very often used 1-D 5, .. (i, j) =ao B ars(i — 1, ) -+
three-site ruleRule22 is defined asRule22 = (01 101000) and the - . N . .

, ; D a: -1, Cek 1, 7). 2
numerical labelD( Rule22) = 2' + 2% 4 2* = 22, Baai(s(i= 1, J)w--oxslit 1, ) )

Extending this further, every CA with an n-site neighborhood
[l. EXTRACTING BOOLEAN RULES USING GENETIC ALGORITHMS teell(ar), -, cell(wn)} may be written as
A. Boolean Form of CA Rules Snew(®j) = a0 Dars(x1) D---Dap(s(z)*---x5(xn)) (3)

For a 2-D CA, the local transition can be denotedas. (i, j) =
f1i:(N(4, j)),wheres, ... (i, j) isthe updated state ofll(i, j) attime
stept and N (4, j) represents the states of the cells within the neigly Extracting Boolean Rules using a Genetic Algorithm

borhood ofceli(i, j) at time step — 1. Reducing the dimensions in . o o
this expression will yield models for 1-D CA as a special case. The Equation (3) is important because it significantly reduces the com-

local transition functionf;, is equivalent to the local transition tableP!€Xity of CA identification by using a reduced set of logical opera-

of length2”, wheren is the size of the neighborhood. Therefofe, tors and candidate terms. The difficulty in identifying multidimensional
can be viewed as a Boolean functionofiariables. and CA rules can CA is also decreased because higher-dimensional CA rules are reduced
be expressed as Boolean rules. There are two different ways of clfh&n equation which depends on the size of the neighborhood rather
structing Boolean rules, usingOT, AND, OR andNOT, AND, XOR than the dimensionality. Assume that the oalypriori knowledge is
logical operators, respectively. This paper only considers the latter f#€ dimension of the CA, which can be obtained from examining the
mulation because this usually involves fewer logical operations thgRatio-temporal patterns [7]. Then the emerging difficulty lies in how

the former formulation for the same rule. For example, the Boole& détermine which terms should be included in the Boolean expres-
form of Rule22 = (01101000), which is illustrated in Table I, is sion and which should be discarded. The problem is very similar to

snew(j) = C @ D. For all n-site 1-D CA rules, there is a simple pro_the term selection problem in structure detection for nonlinear system

cedure for the construction of the Boolean expression in tervat identification [16]. However, in CA identification all the terms are com-
AND and XOR operators given the component form (see [15], A,gobined by theXORoperator and are therefore nonlinear-in-the-parame-
rithm 1.1, p. 30 for details). ThNOT operator can be removed fromters, whereas in nonlinear system identification all the items are com-

the obtained Boolean expression by applyM§ T (a) = 1 & a. Fur- bined by the ordinary addition operator and can often be configured to
. be linear-in-the-parameters. This difference increases the difficulty of

thermore, applyind & a« = aand(a ®b)xc = axc @& bxc, it .

is then straightforward to state, e.g., that all the 1-D three-site bindRf CA term selection problem. o
CA can be represented by a Boolean function with @D andXOR Note that CA term §e|gct|9n is dlﬁerfent from and more dlfflpult than
operators of the form Boolean function minimization for which many useful techniques are
available, especially in the digital circuit design literature [9]-[14]. CA
term selection involves both identifying and minimizing Boolean func-
Snew(f) =ao B ars(j —1) B ass(j) Bass(j+1) tions while methods related to Boolean function minimization usually
Das(s(j = 1) xs(j) Das(s(j) *s(j + 1)) only consider deriving the equivalent minimum expression from al-
' ’ ' ’ ready known Boolean functions. The identification is difficult because

whereP = 2" — 1 andcell(z;) is the cell to be updated.

Das(s(j = 1) *s(j +1)) of the logical terms, particularly when cellular automata with large
@ar(s(j—1)*xs(j)*s(j+1)) (1) size neighborhoods and, therefore, a large number of candidate log-
ical terms, are involved.
wherea, (i = 0, - -+, 7) are binary numbers and = 1 indicatesthat  In the present study, this problem is solved by evolving a genetic
the following term is included in the Boolean function while = 0 algorithm [17], [18] in the search for appropriate terms through the

indicates that the following term is not included. Note that the numbspace of logical models constructed updND and XOR operators.

of possible expressions in (1)38 = 256, which is exactly the number This algorithm is implemented as follows.

of all three-site 1-D rules. This implies that the representation in (1) is1) Population: In the current application, each candidate Boolean
unique: one setdfe;, i = 0, ---, 7} corresponds to one and only onerule is encoded using a chromosome. Each candidate term is then rep-
CA rule. resented by a bit in this chromosome. Titie chromosome is defined
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asal x (P + 1) binary vector:;, whereP = 2" — 1 andn is the size borhood can often be expressed by a rule with a larger neighborhood.
of the largest neighborhood under consideration. Each entry iithhe Therefore, the best model is always the smallest model amongst all

chromosome corresponds to a term in the following term set: the possible models chosen. This is the principle of parsimony. Thus,
another search objective must be added to direct the algorithm to pro-
ci(1) =1, ¢i(2) = s(z1), -+, ci(n+1) — s(zn), duce a parsimonious logical model with minimal modulus of errors.
ciln+2) = s(x1) x s(x2), -+, An efficient approach to accommodate the second search objective is to
ci(P+1) = s(a1) %% 5(an) employ a multiobjective fithess function. In the present study, the two

search objectives are to minimidder and to minimize the number
wherec;(j) = 1 indicates that the associated term has been selecgfderms in all models with the samé er. The multiobjective fitness

andc;(j) = 0 indicates otherwise. Define function in this study is based on a ranking scheme according to the
, , concept of Pareto optimality [17]. This will guarantee equal probability
=11 s(xr) - s(ar)*---ss(an)] C=[c1 -+ cnpl of reproduction to all nondominant chromosomes and should generate

) ) . a solution nearest to the optimal. The multiobjective fitness function is
wherenp is the number of chromosomes in the population. constructed as follows.

2) Multiobjective Fitness FunctionThe fithess function is de- . L .
signed to measure the performance of Boolean rules represented by thag Each chromosome in the current population is ranked with re-
spect toMer. The chromosome with the leadfer occupies

hrom mes in r nerating th rv io-temporal rns. . - .
cNromosomes egenerating the observed spatio-temporal patterns the first position, the chromosome with the second |ddst

Before introducing the fitness function for the CA term selection - o .
. ) . occupies the second position and so on. Chromosomes with the
problem, the vectoKORoperatorD is defined as follows:
same error share the same rank. So

(a1 - an]@®[by -+ ba]¥ RANK 1 i i
= (a1 %by) @@ (an *by) ERROR  Mer(1) <o« Mer(i) Mer(i+1)
RANK i np
wherex denotes théAND operator. For example, ERROR Mer(i+2) --- Mer(np)
[(1,1 0 as ] D [b] bQ bz ]’T with

= (a1 xb1) © (0xb2) O (a3 x by) = (a1 xb1) O (a3 x by). Mer(l) < --- < Mer(i) = Mer(i+ 1)
In the present problem, an important measure of the performance of the =Mer(i+2) < -+ < Mer(np).

chromosomes is the modulus of errors function defined as ) )
b) Define the structure functio$t(<) for the ith chromosome

Mer(i) = SLZ[ G ) = 300 7] @) as St(i) = St (4)- Resort the orders of chromosomes
sharing the same rank in proportion to the associstéd) and
" keep the ranking of the remainder unchanged. Thus
where , )
r number of data points in the data set extracted RANK 1 T ¢ i+1
from the CA patterns; ERROR Mer(1) --- Mer(i) Mer(i+1)
y(i, §) measured state at data pojrfor chromosome STRUCTURE  St(1) --- St(i) St(i+1)
i; RANK t+1 o np
§(i, j) =ci @ f; predicted state. ERROR Mer(i+2) -+ Mer(np)
If Mer is chosen as the fitness function, a solution with the least mod- STRUCTURE S#(i +2) --- St(np)
ulus of errors will be found. However, it is not guaranteed that the asso- with

ciated neighborhood is correct and minimal. This is because there may
be morethan one model that produces a mininddiar. The initial as- St(1) < --- < St(i) < St(i + 1) = St(i +2) < --- < St(np).
sumed neighborhood almost always encompasses more cells than are

actually in the real neighborhood. A 1-D rule:le30 with avon Neu-  ¢) The multiobjective fitness function of thiéh chromosome is fi-
mann neighborhood, for example, is most concisely represented as nally defined as
snew()=sG -1 @s()Ds(G+1)D(s(j)xs(j+1) (5) Fit(i) = MAX(rank(i)) — rank(i) %

MAX(rank(i)) — MIN(rank(i))"
while during the search for this rule the candidate rules are often ) ) _ _ )
searched for over a larger neighborhood. For example, candidatte ranking technique resultsin a search with a preference toward min-

rules can be assumed to be operating on a five-site neighborhd®izing Mer. The structure functiors't will not have any impact on
{eell(j — 2). cell(j — 1), cell(5), cell(j + 1), cell(j + 2)} and of the first few steps of the search and the fitness of each chromosome in

the form those steps is determined exclusivelyMyr because all the chromo-
somes are highly likely to hold various ranks at that initial stage. Only
Snew(J) =ao Dars(j —2)d--- after certain chromosomes have converged to a similar is it pos-
Sas(s(j—2)%--xs(j+2)). (6) sible to rearrange the ranking at thte- according to the associated

St. This search is therefore able to always select chromosomes with the
It is highly likely that more than one expression including (5) mayinimum structure within the span of the lowéster. Hence, chro-
be selected from (6) to match the patterns. The solution is therefen®@somes with a parsimonious logical expression and minimum error
not necessarily unique, and this often leads to a false extension of Wik remain in the latest population to yield the final solution.
neighborhood. To avoid the algorithm becoming trapped at a local optima, two sub-
Note that a rule with a larger neighborhood cannot be representeddmpulations will be introduced which evolve in parallel with the main
a rule with a smaller neighborhood while a rule with a smaller neigipopulation [19]. The subpopulations are evolved separately under two
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Fig. 2. Noise-free pattern and static noise contaminated patterns produced Byle22. (a)p = 0. (b)p = 0.05. (¢)p = 0.1. (d)p = 0.2.

different search objectives of minimiziny/ er and St, respectively. IV. SIMULATION ANALYSIS
Each candidate in the main population is produced by genetic commu- )
nication between the two subpopulations and is subject to evaluatfon 1he Effects of Noise

by the ranking technique. In cellular automata, noise is a form of imperfection which at a crit-
For details of reproduction, crossover, and mutation see [18] a@| magnitude is able to induce an essential phase transition that can
[20]. suddenly change the behavior of the CA. Static noise can be added to
3) Summary of the CA Term Selection Algorithifhe CAterm se- 3 spatio-temporal pattern by first evolving a deterministic CA rule and
lection algorithm can be summarized as follows. then randomly flipping a limited number of binary values according to
a) Generate three initial population séts Q and R with each a specified probability, wherep = g1/g2, ¢1 is the number of cells
consisting ofnp individuals. Set the current generation numbeto be flipped, and: is the total number of cells in the spatio-temporal
i =1. pattern. This is referred to as static noise because it is added after the
b) ComputeMer for each individual in. CalculateSt in each CA evolution. Fig. 2 shows the noise-free pattegn< 0) for the 1-D
chromosome irQ. Rank the individuals ifR using the ranking Rule22 with von Neumann neighborhood and the same pattern cor-
technique. Calculate the fitness value. rupted by noise with probabilities of switchipg= 0.05,p = 0.1, and
c) Apply the parent selection techniquefoand Q. p = 0.2, respectively. All these were developed on a 20000 lattice
d) Employ crossover and mutationfoandQ separately to produce with time evolution from top to bottom, and with a periodic boundary
the corresponding offspring s and ©'. Employ crossover condition, i.e., the lattice is taken as a circle in the horizontal dimen-
and mutation t6® andQ combined to produce the offspring setsion, so the first and last sites are identified as if they lay on a circle of

R’ for the population seR . finite radius. The evolution started from an initial condition of a ran-
e) Calculate the corresponding fitness values for the chromosonaesnly generated binary vector.
in the offspring set®’, Q" andR'. Select thexp fittest individ- Unlike static noise, which is added to the CA patterns after the evo-

uals from both the population seBs Q, andR and the corre- lution, dynamic noise is directly involved in the development of the
sponding offspring set®’, Q' andR’, respectively, by com- spatio-temporal patterns by specifying that one or more (not all) of the
paring the fitness values. ResBt Q, and’R using the cor- rule components of the rule be 1 with a probabilityand be 0 with
responding newly selectedp individuals. Set the generation probability (1 — p), wherep = w1 /w2, w1 is the number of the pre-
numberi = i + 1 and nullify the three offspring se®’, Q'  specified rule components to be filled in by 1, and is the number
andR’'. of the prespecified rule components. This may exhibit a transition de-

f) Returnto c) and repeat until a prespecified number of generatiopending on the probability. Fig. 3 shows the transition from a simple
has been reached. 1-D Rulel184 with von Neumann neighborhood to a chadiale60
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Fig. 3. The transition fronRRule184 (p = 0) to Rule60 (p = 1) with p varying to indicate different noise densities fay= 0, (b) p = 0.1, (c)p = 0.5, (d)
p = 0.65,(e)p = 0.8 and (f)p = 1.0.

under the transition rule in Table II. Note that the maximum noise den- TABLE I
sity for the transition is 0.5. For example, wher= 0.6, the transition TRANSITION RULE FROM Rule184 TO Rule60 WHERED < p < 1
behaves more lik&ule60 thanRule184 and, therefore, the noise den-

sity for the transition should be consideredlas p = 0.4 for Rule60 Nesghbourhoods 000 001 010 011 100 101 110 111

rather than 0.6 foRRule184. Rule184 6 o0 0o 1 1 1 0 1
Transition 0 0 p 1 1 1 0 1-p

B. Extracting Boolean Rules from 1-D CA Patterns Rule60 oo 1 1 1 1 0 0

1) From Patterns Corrupted by Static Noisé&issume the neighbor-
hood structure of a class of 1-D CA is definedfey!l(j —2), cell(j—
1), cell(j), cell(j + 1), cell(j + 2)}. Given the spatio-temporal pat- « with p = 0, the optimal solutions were found in all the 100 trials. It
terns in Fig. 2, the CA term selection algorithm was used to producan be seen from the results in Table Il that whes- 0, methoda
the results in Table Ill. A typical run using data extracted from thiended to find suboptimal solutions for the neighborhood and the rule.
noise-free pattern in Fig. 2(a) is shown in Fig. 4. In each case, 100 tridlsis is also illustrated in Fig. 4(a), where althougfer has finally
were conducted using different initial assignments. The program weettled to zeroSt shows no sign of further decreasing through the re-
terminated after 120 generations had been reached. Except for metimadhing generations. The Boolean rules found using metheatied
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TABLE I
SUMMARY OF RESULTS OBTAINED IN EXTRACTING Rule22 FROM THE

PATTERNS INFIG. 2,USING METHOD ¢: AN UNMODIFIED GENETIC ALGORITHM

WITH Mer AS THE FITNESS FUNCTION, AND METHOD b: THE CA TERM

SELECTION ALGORITHM. THE “GENERATIONS’ COLUMN INDICATES THE

NUMBER OF GENERATIONS REACHED WHEN THE OPTIMAL SOLUTION WAS
FOUND. AV.R.T. REPRESENTS THEAVERAGE RUN TIME IN THE SEARCH FOR
THE OPTIMAL SOLUTION IN ONE TRIAL. ONE HUNDRED TRIALS WERE MADE

FOR EACH PROBLEM. THE OPTIMAL SOLUTION IS ALREADY KNOWN

error (solid) and number of items chosen (dashed)

method | p criteria min | max | mean |std.dev.| avort. € | ——} o, |
generations 40 87 | 63.92 12.14
a 0 [ modulus of errors | 0 0 0 0 45.61 min.
structure 8 15 10.83 1.82
generations 8 36 | 22.54 9.01 1
b 0 | modulus of errors | 0 0 0 0 24.52 min.
structure 4 4 4 0
generations 12 45 | 26.18 16.25
b 0.1 mod;tl;lfci)lflre:rors Z 144 11‘.110 1.81 28.16 min. o 20 m o0 BIO 160 20
. generations
generations 39 | 101 | 75.25 28.44 @)
b 0.2 | modulus of errors | 18 31 | 24.63 5.81 59.86 min.
structure 4 4 4 0 25 T T T T
o
with different trials, but all involved an incorrectly extended neigh- %20, i
borhood. For example, the rule produced from the evolution shown in<
Fig. 4(a) is é
o
. . . . . . 2151 1
snew(j) =s( = 1) @ s(j) D s(j+1) @ (s(j = 1) xs(j + 1)) s
@ (s(j = 1) # s(j) * 5(j +2) 3
& (s(j = 1) xs(+ 1) x5(j - 2)) 210, 1
. . . o
©s(i—Dxs(+1)xs(j+2)) 8oL
; . . . . 3 e
S(s(j—D)xs(f)xs(j+1)xs(j—2)) | \‘ |
. . N el O woof g L€ 3 PR
D(s(j—1)yxs(j)xs(j—2)*s(j+2)) £
O =D *s(f+1)*s(j—2)*s(j+2)). (8
0 : . . .
In contrast, whep = 0 methodb generated only one Boolean rule 0 2 O eoions 100 120
in all 100 trials, this Boolean rule is (b)

Snew(J) = s(j=1)Bs(j)Bs(j+1)P(s(j—1)xs(j)*s(j+1)). (9) Fig. 4. Search process fétule22 using the noise-free pattern, and methods
a andb, respectively, (a) using methadand (b) using method. Legend: The
Although the Boolean rules in both (8) and (9) produce the same cdashed line is the evolution of the number of terms in the chromosome with

rect truth table ofRule22. the former covers a five-site neighborhoodhe best fitness. The solid line is the evolution of the modulus of error of the
{eell(j — 2), cell(j — 1), cell(j), cell(j + 1), cell(j + 2)} while ~ CfomMoSome with the best fitness.

the real neighborhood should Beell(j — 1), cell(j), cell(j + 1)}.

The neighborhood structure of the former is therefore suboptimal. This TABLE IV

result was obtained because methogklected the rules with the min- SUMMARY OF RESULTS OBTAINED IN EVOLVING THE TRANSITION FORM

. . _ - . Rulel84 TO Rule60 USING THE CA TERM SELECTION ALGORITHM

imum M er without considering the structure of the neighborhood. In

contrast, the Boolean rule in (9) was obtained using a search also tak generations | modulus of errors structure

into account the number of terms in the candidate rule, and this pi P inean [std.dev. | mean | std.dev. |mean|stddev.| "
duced a rule exactly the same as listed in [15] with a correct neighb¢ _0_| 41.13 | 1112 | 0 0 3 0 50.28 min.
hood and a parsimonious Boolean expression. This is also illustratec 00615 giéé 2; ‘11;) 2‘41362 iﬁ 3 8 gé;’ s
Fig. 4(b) whereSt diminishes afted/er has settled on zero. Further- 419765 T 3159 T 6.68 ) 5 0 $0.98 min.
more, the modulus of errors using methiodonverged considerably ~1 12365 36.16 0 0 2 0 121.64 min.

faster than using methadbecause in metho subpopulations were
incorporated to accelerate the convergence. This effect is demonstrated
in Table IIl, where the average run-time using metlhodtas almost fect the development. The patterns contaminated by dynamic noise are
half the time using method. It can also be seen from Table Il thattherefore much more complicated. Ideally, an identification procedure
althoughi er did not converge to zero for eithgr= 0.1 orp = 0.2, should be designed to remain insensitive to these disturbances and to
due to random flipping of some cell values, the correct and parsimecover the underlying rule in as much is possible. Table IV shows the
nious Boolean expression in (9) was still obtained in both cases. Thisults of a search for the appropriate CA rule using data generated
suggests that the CA term selection algorithm is not sensitive to stdticthe transition fromRule184 to Rule60 shown in Fig. 3. In each
noise when the noise density is within a certain amplitude, in this casase, 100 trials were conducted using different initial assignments. The
p < 0.2, program was terminated when 200 generations had been reached. For
2) From Patterns Corrupted by Dynamic Nois®ynamic noise is simplicity, only the corresponding average and standard deviation are
immediately involved in the CA evolution and can considerably afisted in Table IV. The search result for= 0 in Table IV produces
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smew(J) = 8(j — 1) @ (s(j — 1) # s(j)) @ (5(j) * s(j + 1)), which
is exactly the same as the Boolean fornfaflc184 listed in [15]. The
result in Table IV forp = 0.1 produces

SuMmMm.
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TABLE V
ARY OF RESULTSOBTAINED IN EXTRACTING A 2-D CA RULE AND THE

SAME RULE CORRUPTED BY ADYNAMIC NOISE/IN TRANSITION AT p = 0.8

USING THE CA TERM SELECTION ALGORITHM

generations | modulus of errors structure

Snew (7) - e(; - b 9(] B 1) s )) P mean [std.dev. | mean| std.dev. |mean]std.dev. av.r.t.
(9(7)*8’(7—1-1) D(s(j— D) xs(i)*s(i+1)) 1 [51316] 4967 | 0 0 BN 0 |8.25hr.
0.8 | 600.36 57.25 6.40 1.63 20 0 9.64 hr.

which generates the rule components (01011 100). Note that in com-
parison with the correct rule components fdrle184 (01011 101),

the last bit in the identified rule components is incorrect. The reasth Table V forp = 1 produces a Boolean expression of @R

for this appears to lie in the nature of the rule itself. Rules that prgomb
duce simple patterns of self-repetition or shifting imply that a certain

ination of the following 20 terms:

number of combinations of the states of the cells within the neighbor- B =s(i, j — 1), C = s(i, j)

hood have probably never appeared in the existing data set. Hence, the p, _ s(i, j+ 1), = s(i—1, )
searchis unlikely to learn that particular behavior and most probably in- e
discriminately selects a rule from a range of rules satisfying only other ~ © =5(/ + 1) * s’(' J+1
combinations. FoRule184, even though the evolution is slightly com- G=s(i,j—1)*s(i, j)

plicated, and the data set extracted from the noise-free pattern is rich g — s(i, j— 1) xs(i, j+1)

enough to allow the identification of the correct rule (00011 101), the T=s(i,j— 1) ss(i+1, )
combination of the states of the cells within the neighborhood (111), ’

which corresponds to the last component, appears infrequently and the J =i, j)xs(i, j+1)

noise simplifies the data set by eliminating (111). Subsequently, the =s(i+1,7)xs(i,j—1)*s(i, j)
search failed to I_egrn the behavior of (111)_and, hen_ce, produced @ I — (i + 1, j)*s(i,j—1)*s(i, j+1)
wrong result. A similar phenomena appears in other simple 1-D rules M= s(i+1. ) s(is j) %5, j+1)
such asRuled6, Rule116, Rule72, andRulel72. The search may re- ) s 1, 5)x s j)x st j+
peatedly produce incorrect rules even after the size of the data sethas vV =s(i + 1, j) * s(i, j) x s(i — 1, j)

been enlarged. Consequently, under certain combination of rules and
initial conditions, the optimal solution can be deduced only provided
sufficient data are available.

However, forp = 0.8, where the noise density is— 0.8 = 0.2 for
the rule transition, the search resulis..(j) = s(j —1) @ s(j). This
result is correct and parsimonious and exactly the same as the Boolean
expression foRule60 listed in [15], even though the noise level is 10%
higher than irp = 0.1. This appears to be because of the chaotic nature
of Rule60, which is able to generate patterns complicated enough so
that even after the patterns are contaminated by a relatively high density
of noise, the data set still contains sufficient information to correctly
characterize the behavior. Whenr= 1, the result iss,...(j) = s(j —  Table VI shows the tabular form of this identified Boolean rule. It can
1) & s(y), which is the same as fgr = 0.8 and is the parsimonious be seen that this rule covers a five-site von Neumann neighborhood,
Boolean expression faRule60. Note that forp = 0.65, the search which has been extracted from the assumed nine-site Moore neighbor-
also converged to the correct rest(lf) = s(j — 1) © s(j) despite the hood and is correct. The truth table produced from the identified rule
high noise density of — 0.65 = 0.35 for Rule60. is also correct. Therefore, according to the principle of parsimony, the

The search result for the transition rulepa¢= 0.8 is also shown in identified Boolean rule is optimal. However as shown in Table V the
Table V. Although the data were contaminated by a dynamic noise wikerage run time is much longer than in the 1-D noise-free case. This is
densityl — 0.8 = 0.2, which had substantial impact on the growingbecause the growth of the size of the neighborhood will inevitably in-
patterns (the growth of the noise corrupted patterns was 100% fastace a considerable increase in the number of possible terms that can
than the noise-free patterns), and the error did not converge to zdse,included in the Boolean expression and, hence, an increase in the
the search produced the same correct and parsimonious Boolean ¢ol@plexity of the search.
as identified in the noise-free cage<£ 1). This suggests that the CA

term selection algorithm is robust in the presence of dynamic noige Extracting Boolean Rules from Patterns Produced by a Large
even for the 2-D case. Set of CA Rules

The CA term selection algorithm was tested over a large set of CA
rules with various neighborhoods of randomly chosen radius. Some of

Table V shows the results of the search for CA rules usirthe 1-D results are summarized in Table VII. Because the numerical
data produced by both the evolution of a deterministic 2-D rulabel and the component form of the rules grow astronomically with
Rule(01101010 11101110 01001111 11100100) and a even a slight increase in the size of the neighborhood, only rules with
transition(01101010 1110111(1 —p) 01001111 p1100100) relatively small neighborhoods were specified. For each rule, both the
of the same rule at = 0.8 over the five-site von Neumann neigh-noise-free case and the case where the pattern has been corrupted by
borhood in Fig. 1(b). The neighborhood was initially assumed as thestatic noise ap = 0.2 were considered. One hundred runs were
nine-site Moore neighborhood in Fig. 1(c). In each case, 100 trialtenducted for each problem, and the search was terminated after 1000
were conducted using different initial assignments. The progragenerations. The starting neighborhood was assumed as a nine-site
was terminated when 800 generations had been reached. The rewitihborhood{cell(j — 4), cell(j — 3), cell(j — 2), cell(j — 1),

O=s(i+1, ) %s(i, j+ 1) xsli —1, j)
P=s(i,j—1)%s(i, j)%s(i, j+ 1)
Q=s(i,j)*s(i,j+1)xs(i—1, j)
R=s(i+1,j)*s(i, j—1)xs(i, j)=s(i,j+1)
S=s(i+1,j)*xs(i,j— D =xs(i,j+1)xs(i—1, )
T=s(i+1,j)xs(i, j)xs(i, j+1)*xs(i =1, j)
U=s(i+1, j)xs(i,j—1)xs(i, j)

xs5(i, 7+ 1)xs(i— 1, 7).

C. Extracting Boolean Rules from 2-D CA Patterns
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TABLE VI
TABULAR FORM OF THE IDENTIFIED 2-D BOOLEAN RULE

N(i,j) | smew i) eleje|laje|e|o|e|e|lo|a sla|a[s]ale]s]|e

Y IBl|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U
00000 0 ojoJoJolojJojfojojoJoJo]JoJolojoJo]o]olo]o
00001 1 oo o Tttt 1Jt[1I]1]1]1
00010 1 oottt 11111
00011 0 oJoj1]JojofolojojojololoJolojoJo]Jolo]o]oO
00100 1 O [T {1t T[T [T 1111
00101 0 of1]1Jojojofojolojofo[o[|o]ojo[oc]o]oJo]o
00110 1 oJ1JoJojojolofor[r (T[Tt 1]1]1
00111 0 oJ1JoJrJr[1]TiTJooJoo]ojol[o[o]oJoJo0]oO
01000 1 Tl ot [1{1[1]1]1
01001 1 Tiij1]Jofojojo [ttt ]1]1[1]1}1
01010 1 T{rjofolofojr T[] i[1l1i1
01011 0 t{1JojfaJrjofrfrrjrjr i 1]olo]olofo
01100 1 tjofJoJofoja it 1[I ]111]1
01101 1 rJoJolrrJolo[r T[T I f1]1]1
01110 1 TJoJtJrJtjJor[1jojJoo|6 0 o[t [1]1]1
01111 0 1JoJtJoJolrJo[1]ojo]JoJolojojl]0[06][0]0]0
10000 0 o[oloJojo[0oJojoJoj0][0o[0[0[0]0/0[0[0]0]O
10001 1 olofoajr it [T [T [T iiIJi[I]1]1
10010 0 O[o[1]1JoJoJojo o000 |0[0]0f0j0]0]0]O®
10011 0 oJolrJoju a1t ji[1]1Jo][o]jo0]oJoo0]o0
10100 1 ottt a1yt 1]1]1
10101 I OfT 1 Jofofojofolo[a6jolor 111t ]1]1
10110 1 ofjt]Jojo|r|rjifrfjofolojr 1 11|11 r]1]1
10111 1 ojrfojrjoJofofol1[tl1i]Jol1ToloJoJoJo t]1
11000 1 Ll oo T]i]|t]1(1]1]1]1
11001 1 If1[rJofoJojJo i1yl
11010 1 tJtJoJofiJrJoJojoJor[r It iT]1]1
11011 0 TJTJoJTjoJo[r[oJoJo]1[1[rJoJof1[1]0]0]0
11100 0 TlofJoJojoji]r]ilTifolo]ofoJojojojofo]o]o0
11101 1 TJoJoliiaJolotlrjofo]o [ttt [1]1
11110 0 tjojrj1jofiJofJoJtiof{1]JofofJojtft1jofjo]0]0
11111 0 rjofJrjofrJoJr[oftJoJtrjo1JoJtjoJ1][o][L]®O

TABLE VI Simulations over a large set of rules suggest that the average run

SUMMARY OF RESULTS OBTAINED IN EVOLVING SOME 1-D CA RULES
WITH VARIOUS SIZES OF NEIGHBORHOOD n INDICATES THE SIZE
OF THE NEIGHBORHOOD

al rule » generations modulus of errors structure vt
mean | std.dev. | mean | std.dev. | mean | std.dev.

R - 0 |347.15 38.24 0 0 4 [ 5.27 hr.
ule22 =

3 0.2 {219.27 35.11 12.13 4.98 4 i} 3.48 hr.

Rulesa | O 123049 ] 2978 0 0 4 0 3.54 hr.

0.2 | 253.46 27.14 13.25 6.44 4 0 3.79 hr.

Rulel?9 0 |392.76 41.65 0 0 7 0 5.80 Ar.

4 0.2 | 440.03 40.32 13.58 5.12 7 [ 6.57 hr.

. 0 1346.82 31.59 0 0 0 5.35 hr.

Fule24 o 3g5 90 | 36 | 000 5.08 9 0 571 hr

Rulel 0 | 488.16 43.38 0 1 15 0 7.63 hr.

5 0.2 | 460.03 44.56 20.17 7.76 15 0 7.29 hr.

Rule? 0 |499.74 40.87 0 0 18 0 7.76 hr.

0.2 | 538.92 42.31 15.68 6.99 18 0 8.32 hr.

Rule3 0 [611.15 53.78 1] 0 25 0 9.69 hr.

6 0.2 | 572,26 50.51 23.85 7.74 23 0 8.91 hr.

Ruled 0 | 633.50 41.16 0 0 19 0 10.24 Ar.

0.2 | 659.66 53.54 19.96 5.58 19 0 10.69 hr.

Rules 0 | 354.59 46.78 0 0 16 0 8.63 hr.

7 0.2 | 660.27 5193 238.22 4.18 16 0 10.47 hr.

Rule 0 | 700.53 59.20 0 0 58 0 11.38 hr.

0.2 | 651.84 32.72 30.11 8.52 58 0 10.31 hr.

Ruler |0 10643201 29.88 0 0 44 0 10.28 hr.

3 0.2 1 602.33 27.84 25.14 7.30 44 [ 9.81 hr.

Rules 0 | 568.29 32.25 0 0 30 0 8.72 hr.

0.2 | 637.48 29.54 31.51 6.58 30 0 10.30 Ar.

Ruled 0 | 71033 65.47 0 0 52 0 11.49 Ar.

9 0.2 | 685.46 40.33 36.58 7.24 52 0 10.84 hr.

Rulelo 0 |740.58 36.29 0 0 54 0 11.77 hr.

0.2 690.43 48.59 34.20 7.95 34 0 10.96 Ar.

cell(§), cell(j+1), cell(j+2), cell(j+3), cell(j+4)}. The identi-
fied neighborhoods and the truth tables produced by the correspondin?z] 1951.

Boolean rules are all correct. Therefore, according to the principal of

parsimony, the identified Boolean rules are all optimal.

time relies more on the size of the assumed neighborhood than on the
size of the actual neighborhood. For example Rai¢22, the average
run-time in Table VII, where the initial neighborhood was assumed
as nine-site, is considerably larger than in Table Ill, where the initial
neighborhood was assumed as five-site. However, as has also been in-
dicated in Table VII, under the same neighborhood assumption, rules
with more cells in the actual neighborhood tend to require more gener-
ations to converge to the optimal solution. Because the CA term selec-
tion algorithm discriminates only the number of cells in the neighbor-
hood rather than the position each individual cell occupies, the results
for 2-D rules were very similar to the 1-D case and are therefore not
listed in this paper.

V. CONCLUSIONS

A solution to the inverse problem in cellular automata has been pro-
posed using a multiobjective evolutionary algorithm. Both 1- and 2-D
cellular automata have been investigated, and it has been shown that
the CA rule, in the form of a parsimonious Boolean expression, can be
identified by carefully formulating the GA search procedure. The sim-
ulation results illustrate the efficiency of the new algorithm and demon-
strate that the correct neighborhood and CA rule can be determined in
the presence of both static and dynamic noise.
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Based on Zadeh's fuzzy set theory [19], fuzzy logic views each pred-
icate as a fuzzy set. In fuzzy logic, a linguistic variable like “size” can
have several linguistic values like “small,” “medium,” or “large.” Each
linguistic value is viewed as a fuzzy set associated with a membership
function, which can be triangular, bell-shaped, or of another form. The
degree of membership can be interpreted as the degneassibility;
which evades the requirement of satisfying the probability axioms.

The relationship between fuzzy systems and neural networks has
drawn much attention since both are trainable systems capable of han-
dling uncertainty and imprecision and both have found may successful
applications. Their complimentary roles suggested in [10] and [14]
have led to so-called fuzzy neural networks for handling the fuzzy (in-
exact) nature of inference involving symbols (symbolic inference). In
such networks, an input pattern is enhanced via fuzzy representation.
Furthermore, when the decision function or boundary involves curves,
a smooth membership function at fuzzy neural units allows close mod-

eling or approximation.

Index Terms—Certainty factor, classification, fuzzy set theory, machine
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