14 research outputs found

    Online Signature Verification: Present State of Technology

    Get PDF
    The way a person signs his or her name is known to be characteristic of that individual. Signatures are influenced by the physical and emotional conditions of a subject. A signature verification system must be able to detect forgeries, and, at the same time, reduce rejection of genuine signatures. Significant research has been conducted in feature extraction and selection for the application of on-line signature verification. All these features may be important for some problems, but for a given task, only a small subset of features is relevant. In addition to a reduction in storage requirements and computational cost, these may also lead to an improvement in general performance. On the other hand, selection of a feature subset requires a multi-criterion optimization function, e.g. the number of features and accuracy of classification. In this paper all these techniques are reviewed

    Homomorphic Encryption for Speaker Recognition: Protection of Biometric Templates and Vendor Model Parameters

    Full text link
    Data privacy is crucial when dealing with biometric data. Accounting for the latest European data privacy regulation and payment service directive, biometric template protection is essential for any commercial application. Ensuring unlinkability across biometric service operators, irreversibility of leaked encrypted templates, and renewability of e.g., voice models following the i-vector paradigm, biometric voice-based systems are prepared for the latest EU data privacy legislation. Employing Paillier cryptosystems, Euclidean and cosine comparators are known to ensure data privacy demands, without loss of discrimination nor calibration performance. Bridging gaps from template protection to speaker recognition, two architectures are proposed for the two-covariance comparator, serving as a generative model in this study. The first architecture preserves privacy of biometric data capture subjects. In the second architecture, model parameters of the comparator are encrypted as well, such that biometric service providers can supply the same comparison modules employing different key pairs to multiple biometric service operators. An experimental proof-of-concept and complexity analysis is carried out on the data from the 2013-2014 NIST i-vector machine learning challenge

    Privacy-preserving comparison of variable-length data with application to biometric template protection

    Full text link
    The establishment of cloud computing and big data in a wide variety of daily applications has raised some privacy concerns due to the sensitive nature of some of the processed data. This has promoted the need to develop data protection techniques, where the storage and all operations are carried out without disclosing any information. Following this trend, this paper presents a new approach to efficiently compare variable-length data in the encrypted domain using homomorphic encryption where only encrypted data is stored or exchanged. The new variable-length-based algorithm is fused with existing fixed-length techniques in order to obtain increased comparison accuracy. To assess the soundness of the proposed approach, we evaluate its performance on a particular application: a multi-algorithm biometric template protection system based on dynamic signatures that complies with the requirements described in the ISO/IEC 24745 standard on biometric information protection. Experiments have been carried out on a publicly available database and a free implementation of the Paillier cryptosystem to ensure reproducibility and comparability to other schemes.This work was supported in part by the German Federal Ministry of Education and Research (BMBF); in part by the Hessen State Ministry for Higher Education, Research, and the Arts (HMWK) within the Center for Research in Security and Privacy (CRISP); in part by the Spanish Ministerio de Economia y Competitividad / Fondo Europeo de Desarrollo Regional through the CogniMetrics Project under Grant TEC2015-70627-R; and in part by Cecaban

    Mixing Biometric Data For Generating Joint Identities and Preserving Privacy

    Get PDF
    Biometrics is the science of automatically recognizing individuals by utilizing biological traits such as fingerprints, face, iris and voice. A classical biometric system digitizes the human body and uses this digitized identity for human recognition. In this work, we introduce the concept of mixing biometrics. Mixing biometrics refers to the process of generating a new biometric image by fusing images of different fingers, different faces, or different irises. The resultant mixed image can be used directly in the feature extraction and matching stages of an existing biometric system. In this regard, we design and systematically evaluate novel methods for generating mixed images for the fingerprint, iris and face modalities. Further, we extend the concept of mixing to accommodate two distinct modalities of an individual, viz., fingerprint and iris. The utility of mixing biometrics is demonstrated in two different applications. The first application deals with the issue of generating a joint digital identity. A joint identity inherits its uniqueness from two or more individuals and can be used in scenarios such as joint bank accounts or two-man rule systems. The second application deals with the issue of biometric privacy, where the concept of mixing is used for de-identifying or obscuring biometric images and for generating cancelable biometrics. Extensive experimental analysis suggests that the concept of biometric mixing has several benefits and can be easily incorporated into existing biometric systems

    Gesture passwords: concepts, methods and challenges

    Full text link
    Biometrics are a convenient alternative to traditional forms of access control such as passwords and pass-cards since they rely solely on user-specific traits. Unlike alphanumeric passwords, biometrics cannot be given or told to another person, and unlike pass-cards, are always “on-hand.” Perhaps the most well-known biometrics with these properties are: face, speech, iris, and gait. This dissertation proposes a new biometric modality: gestures. A gesture is a short body motion that contains static anatomical information and changing behavioral (dynamic) information. This work considers both full-body gestures such as a large wave of the arms, and hand gestures such as a subtle curl of the fingers and palm. For access control, a specific gesture can be selected as a “password” and used for identification and authentication of a user. If this particular motion were somehow compromised, a user could readily select a new motion as a “password,” effectively changing and renewing the behavioral aspect of the biometric. This thesis describes a novel framework for acquiring, representing, and evaluating gesture passwords for the purpose of general access control. The framework uses depth sensors, such as the Kinect, to record gesture information from which depth maps or pose features are estimated. First, various distance measures, such as the log-euclidean distance between feature covariance matrices and distances based on feature sequence alignment via dynamic time warping, are used to compare two gestures, and train a classifier to either authenticate or identify a user. In authentication, this framework yields an equal error rate on the order of 1-2% for body and hand gestures in non-adversarial scenarios. Next, through a novel decomposition of gestures into posture, build, and dynamic components, the relative importance of each component is studied. The dynamic portion of a gesture is shown to have the largest impact on biometric performance with its removal causing a significant increase in error. In addition, the effects of two types of threats are investigated: one due to self-induced degradations (personal effects and the passage of time) and the other due to spoof attacks. For body gestures, both spoof attacks (with only the dynamic component) and self-induced degradations increase the equal error rate as expected. Further, the benefits of adding additional sensor viewpoints to this modality are empirically evaluated. Finally, a novel framework that leverages deep convolutional neural networks for learning a user-specific “style” representation from a set of known gestures is proposed and compared to a similar representation for gesture recognition. This deep convolutional neural network yields significantly improved performance over prior methods. A byproduct of this work is the creation and release of multiple publicly available, user-centric (as opposed to gesture-centric) datasets based on both body and hand gestures

    Mejora de la seguridad y la privacidad de los sistemas biométricos

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de lectura: 02-06-2016This Thesis was printed with the financial support from EPS-UAM and the Biometric Recognition Group-ATVS

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Speaker Recognition in Unconstrained Environments

    Get PDF
    Speaker recognition is applied in smart home devices, interactive voice response systems, call centers, online banking and payment solutions as well as in forensic scenarios. This dissertation is concerned with speaker recognition systems in unconstrained environments. Before this dissertation, research on making better decisions in unconstrained environments was insufficient. Aside from decision making, unconstrained environments imply two other subjects: security and privacy. Within the scope of this dissertation, these research subjects are regarded as both security against short-term replay attacks and privacy preservation within state-of-the-art biometric voice comparators in the light of a potential leak of biometric data. The aforementioned research subjects are united in this dissertation to sustain good decision making processes facing uncertainty from varying signal quality and to strengthen security as well as preserve privacy. Conventionally, biometric comparators are trained to classify between mated and non-mated reference,--,probe pairs under idealistic conditions but are expected to operate well in the real world. However, the more the voice signal quality degrades, the more erroneous decisions are made. The severity of their impact depends on the requirements of a biometric application. In this dissertation, quality estimates are proposed and employed for the purpose of making better decisions on average in a formalized way (quantitative method), while the specifications of decision requirements of a biometric application remain unknown. By using the Bayesian decision framework, the specification of application-depending decision requirements is formalized, outlining operating points: the decision thresholds. The assessed quality conditions combine ambient and biometric noise, both of which occurring in commercial as well as in forensic application scenarios. Dual-use (civil and governmental) technology is investigated. As it seems unfeasible to train systems for every possible signal degradation, a low amount of quality conditions is used. After examining the impact of degrading signal quality on biometric feature extraction, the extraction is assumed ideal in order to conduct a fair benchmark. This dissertation proposes and investigates methods for propagating information about quality to decision making. By employing quality estimates, a biometric system's output (comparison scores) is normalized in order to ensure that each score encodes the least-favorable decision trade-off in its value. Application development is segregated from requirement specification. Furthermore, class discrimination and score calibration performance is improved over all decision requirements for real world applications. In contrast to the ISOIEC 19795-1:2006 standard on biometric performance (error rates), this dissertation is based on biometric inference for probabilistic decision making (subject to prior probabilities and cost terms). This dissertation elaborates on the paradigm shift from requirements by error rates to requirements by beliefs in priors and costs. Binary decision error trade-off plots are proposed, interrelating error rates with prior and cost beliefs, i.e., formalized decision requirements. Verbal tags are introduced to summarize categories of least-favorable decisions: the plot's canvas follows from Bayesian decision theory. Empirical error rates are plotted, encoding categories of decision trade-offs by line styles. Performance is visualized in the latent decision subspace for evaluating empirical performance regarding changes in prior and cost based decision requirements. Security against short-term audio replay attacks (a collage of sound units such as phonemes and syllables) is strengthened. The unit-selection attack is posed by the ASVspoof 2015 challenge (English speech data), representing the most difficult to detect voice presentation attack of this challenge. In this dissertation, unit-selection attacks are created for German speech data, where support vector machine and Gaussian mixture model classifiers are trained to detect collage edges in speech representations based on wavelet and Fourier analyses. Competitive results are reached compared to the challenged submissions. Homomorphic encryption is proposed to preserve the privacy of biometric information in the case of database leakage. In this dissertation, log-likelihood ratio scores, representing biometric evidence objectively, are computed in the latent biometric subspace. Conventional comparators rely on the feature extraction to ideally represent biometric information, latent subspace comparators are trained to find ideal representations of the biometric information in voice reference and probe samples to be compared. Two protocols are proposed for the the two-covariance comparison model, a special case of probabilistic linear discriminant analysis. Log-likelihood ratio scores are computed in the encrypted domain based on encrypted representations of the biometric reference and probe. As a consequence, the biometric information conveyed in voice samples is, in contrast to many existing protection schemes, stored protected and without information loss. The first protocol preserves privacy of end-users, requiring one public/private key pair per biometric application. The latter protocol preserves privacy of end-users and comparator vendors with two key pairs. Comparators estimate the biometric evidence in the latent subspace, such that the subspace model requires data protection as well. In both protocols, log-likelihood ratio based decision making meets the requirements of the ISOIEC 24745:2011 biometric information protection standard in terms of unlinkability, irreversibility, and renewability properties of the protected voice data

    Pertanika Journal of Science & Technology

    Get PDF
    corecore