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Abstract

Mixing Biometric Data For Generating Joint Identities andg&rving Privacy

by

Asem A. Othman
Doctor of Philosophy in Electrical Engineering

West Virginia University
Arun A. Ross, Ph.D., Chair

Biometrics is the science of automatically recognizingvidials by utilizing biological traits
such as fingerprints, face, iris and voice. A classical bimimsystem digitizes the human body
and uses this digitized identity for human recognition.His tvork, we introduce the concept of
mixing biometrics. Mixing biometrics refers to the proce$sgenerating a new biometric image
by fusing images of different fingers, different faces, dfedent irises. The resultant mixed
image can be used directly in the feature extraction andhmmgstages of an existing biometric
system. In this regard, we design and systematically et@ahavel methods for generating mixed
images for the fingerprint, iris and face modalities. Furtiae extend the concept of mixing to
accommodate two distinct modalities of an individual, vimgerprint and iris. The utility of
mixing biometrics is demonstrated in two different appiicas. The first application deals with
the issue of generating a joint digital identity. A joint id#y inherits its uniqueness from two
or more individuals and can be used in scenarios such asljaiit accounts or two-man rule
systems. The second application deals with the issue ofdiitrprivacy, where the concept of
mixing is used for de-identifying or obscuring biometricages and for generating cancelable
biometrics. Extensive experimental analysis suggestsiltieaconcept of biometric mixing has
several benefits and can be easily incorporated into egibtometric systems.
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Chapter 1

Introduction

1.1 Identity Authentication In Digital Era

Over the course of human history, individuals have beendagkelentify themselves in vari-
ous scenarios; and legal names, address, tokens, pseusl@tgnhave been used for this purpose
[12] [13]. In our vast interconnected world, the need foraiglle identity authentication tech-
nigues has become of paramount importance. The emergehaenoétrics has addressed some
of these needs. Biometrics refers to the science of edtatdisndividuals’ identities based on
their physical and behavioral traits such as fingerprimtse firis, voice and gait [14]. Compared
to traditional authentication schemes that are knowlduiged (e.g., passwords) or token-based
(e.g., smart cards), biometric-based systems are comsidenvenient (the user does not have to
memorize passwords or possess proof of identity such asrti3and secure (the impostors can
be deterred or detected easily) [15]. Hence, biometricesysthave been deployed in numerous
commercial, civilian and forensic applications to estsibidentities. Figure 1.1 shows examples
of biometric traits used for establishing individuals’ indiies.

Biometric-based recognition systems rely on the compariga digital representation of a
physical or behavioral trait with a previously recorded afiehe same trait. The first step in
all biometric systems is acquiring the raw biometric dathe Tevice used to acquire biometric
data varies based on the type of the trait. For example, d@nabgensor is typically used to
scan a fingerprint or palm and a digital camera is used to oafdaial images or certain aspects
of the retina or iris. This sensor or camera generates aatligiage of the biometric. Next, in

most biometric systems, the observed raw biometric daga (mage) is reduced into a set of
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Figure 1.1: Examples of some of the biometrics traits usedatahenticating an individual.
Physical traits include face, fingerprint, iris, retinaJrpprint, hand geometry, tooth, ear and
ocular, while gait, signature and keystroke dynamics ameesof the behavioral characteristics.
Voice has been traditionally viewed as being physical oredsalioral characteristic.

salient characteristics (i.e., feature set). These featats are approximations of the acquired
images, but contain more discriminatory and invariantnmfation than the raw digital data. Fi-
nally, the biometric system checks whether the extractatlife set has a matching template in
the database. Depending on the application, a biometriersysould be either a verification
system or an identification system. A verification system jgares the extracted feature set with
a recorded template of a claimed identity. A verificationtegsis referred as a 1-to-1 matching
system. On the other hand, an identification system idesiireindividual by matching the ex-
tracted feature set against all recorded templates in ¢oddgtermine a match. An identification
system is referred as a 1-to-N matching system.

Abstractly, biometric systems digitize our physical bodyrder to recognize us, which im-
plies a certain degree of simplification, and modifies theimreadf our identities. An identity
from an individual’'s perspective is related to their seffaige (an individual's mental model of
him or herself), self-esteem and perceived individualitghim a given society [16]. The digital
representations (created by biometric systems) of bodtg tygically lead to the exclusion of all
details except those that are relevant for human recognitia specific application. So biomet-

ric systems attempt tO reduce the individual into a digigapna [17], that can be measured and
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-hopefully-matched.

The thrust of biometrics involves transferring identitiesn an individual’s body to an exter-
nal electronic digital persona. Although, this transfesea the controversial issue [12, 18] that
biometric systems are digitizing (i.e., oversimplifyingyr physical body and living identities
into passwords (i.e, feature templates), our researcésreln this ability to digitize the human
body. First we provide more details about a biometric sysiefare introducing the focus of this

research.

1.2 Biometric System

A biometric recognition system (or simply a biometric sysjés a pattern recognition system
that recognizes individuals based on their biometric aifl5]. A typical biometric system
consists of four main modules: (i) sensor module that cagtsamples of a biometric trait,
(il) feature extraction module that extracts certain sdlfeatures from the raw biometric data
captured by the sensor, (iii) database module that stoee$etitures extracted by the feature
extraction module along with some biographic or other perit labels, and (iv) matcher module
that matches the features extracted from the biometric kmnwath the features stored in the
system database. These modules will operate in two maiestamnrollment and recognition.
The enrollment stage generates a digital representatian ohdividual’s biometric trait and
then stores this representation (in some cases, the driginalata is also stored) in the system
database. The recognition stage falls into two differetegaries: verification and identification.
Verification involves confirming or denying an individuati&imed identity - “Am | who | claim |
am?”. These systems are referred as 1-to-1 authenticgBSterss, as a probe is compared against
a single (or relatively small) number of gallery entriesentfication involves establishing an
individual’'s identity - “Who am 1?”. These systems are re¢eras 1-to-N authentication systems,
as the entire database is typically searched during thgn&toan stage. Figure 1.2 shows a block
diagram of a typical biometric recognition system.

The following terminologies related to biometric systemb lae adopted in this thesis:

e Biometric trait: A physical or behavioral trait of an indilial that is sensed, processed and
matched for person verification/identification. Exampledude fingerprint, face, voice,

iris and gait.
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Enrollment
t » Feature
Extraction
Sensor
Module
Recognition
t » el Match
FExtraction atcier

Probe Raw
Data

System
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Raw Data

o

Match/Non match

Figure 1.2: An example of a typical biometric recognitiorstgyn which depicts the enroliment
(top) and recognition (bottom) stages of a fingerprint redtogn system.7” denotes the feature
vector that is extracted from the image during enrolimerk stored as a template in the system
database() denotes the probe feature set.

Biometric instance: A specific instance of a biometric teaith as the left eye or the right

index finger.

e Biometric sample: The snapshot of a specific instance of dividual’'s biometric trait
captured by a biometric sensor such as the impression ofgieimdex finger or the image

of a face.

e Biometric template (or simply template): The features aotied from a biometric sample

acquired during user enrollment and stored in the systeabdae.

e Biometric gallery (or simply gallery): The biometric sarapllabeled with user identities

that are stored in the biometric database.

e Biometric probe (or simply probe): The biometric sampleyed by a user during recog-

nition.

We observe that classical biometric systems generabeghedigital identity corresponding
to a single individual during the enrollment and recogmitsbages. This digital identity is stored
in the database. Moreover, preserving the privacy of theedtdigital identity is necessary to
mitigate concerns related to data sharing and data mis@e This has heightened the need

to impart privacy to the stored digital identity. In this i we explore the notion of mixing
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biometrics. Mixing biometrics generates a new biometriage by fusing multiple biometric
images pertaining to a single or different individuals. Demerated image can be considered as
a digital representation ofjaint identity (i.e., a virtual identity) that inherits its unigoness from
two different individuals. The mixing biometrics concept atssm be used to transform a bio-
metric template into a revocable (i.e., changeable) tetapifeat protects the privacy of biometric
data. Consequently, mixing biometrics has benefits (adweitliscussed in the following section)

over traditional biometric systems in terms of storage aulisty.

1.3 Research objective: Mixing Biometrics

Observed physical attributes of an individual are captumepixel space (i.e., images) and
then deterministically transformed to a lower dimensidaature space (i.e., templates). Mixing
biometrics consolidates two different biometric imagestgiring to different identities (e.g.,
fingerprint images of Alice and Bob) or to different instasad the same individual (e.g., left
and right index fingerprints of Alice). Consolidating bioimes of different identities at image
level (instead of feature level) has the benefit that diffefeature extraction algorithms can be
used to compute the features of the mixed image. This meansitted images can be used in

different applications. The concept of biometrics mixignde utilized in the following ways.

1.3.1 Generating joint identities

Mixing biometrics can be used to create a joint digital idigrihat pertains to multiple in-
dividuals instead of a single individual. A joint identitg a digital identity that inherits its
uniqueness from two (or more) different individuals. In tbowing scenarios, generating joint

identities would be preferable.

Scenario 1:

To achieve a high level of secure authentication, governsneave implemented two-man
rule accessing mechanism in some government buildinggangilnstallations, laboratories such
as those dealing with nuclear material [20], poisonoustsimggs, etc. The joint identity concept

can be used in these safety critical applications wherergsepce of two people is required be-
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fore a potentially hazardous operation can be performedtHar words, the authentication pro-
cess relies on verifying the presence of two authorizedtities by presenting their biometrics
simultaneously. For instance, in the case of missile lamgghwo officers must agree that the
launch order is valid and both crew members must turn thegis kemultaneously to launch the
missile. By adopting the joint identity concept, their bietmcs could be used to prevent acciden-
tal or malicious actions. Hence, their biometrics could bedito generate joint identities in such
a way that a successful authentication can be guarantegdvbein both persons are providing

their biometrics simultaneously.

Scenario 2:

Another benefit of a joint identity is in banking applicateonA joint account is a bank ac-
count shared by two or more individuals. Any individual wiscai member of the joint account
can withdraw from the account and deposit to it. Here, thetjmientity concept could be uti-
lized to generate a biometric template of this joint idgnfithen, this template can be positively
matched with either a single biometric probe from one of thaers, or a mixed biometric probe
generated by mixing the probe samples of the two owners. tim ¢tmses the access to the joint

account is guaranteed by performing one verification corspar

Based on the described scenarios, joint identities can fegaazed into identities that are

dissimilaror similar to the original identities, which were mixed to generate it.

1.3.2 Preserving privacy

Although biometrics-based systems are reliable appreatheersonal identification and
verification, traditional authentication systems stilvbaone advantage over biometrics-based
systems. Tokens such as smart cards or passwords can bedeadly when they are com-
promised; on the other hand, the user has a limited humbeiloaifdirics (e.g., one face, two
irises, etc). Moreover, there is the possibility of sharamgl misusing of the biometrics data be-
tween different agencies. Therefore, there are growingems about biometrittinction creep
A company that scans the iris of a user might also allow gawemt or commercial entities to
compare this biometric data against their own databasé®utiuser’'s knowledge. In some in-

stances, biometrics data may have to be transmitted acedssnks with the user’s knowledge.
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Also, biometric templates tend to reveal private informatbout a user such as race, gender and
certain health conditions [12]. Those issues have heiglit¢ime need to accord privacy to the
user by adequately protecting the contents of the datalbhsesmetrics systems.

Conventional cryptography provides numerous approacheéskgorithms to secure impor-
tant data/images. However, there are two main concerns wisemes to encrypting biometric
templates ( i.e., the stored features). First, the secafitige cryptographic algorithms relies on
the assumption that the cryptographic keys are known ontiz@édegitimate user. Maintaining
the secrecy of keys is one of the main challenges in praatiggitosystems. Second, during
every identification/verification attempt, the stored téamgohas to be decrypted. Thus, the orig-
inal biometric template will be exposed to eavesdroppeng Stolen templates could be used to
reconstruct the original biomertics images [21, 22, 23,25}, In other words, compromising a
biometric template may result in the loss of a subject’siten

Therefore, there are two major requirements with regargsdtecting biometric templates
[26, 27, 28]:

1. Non-invertibility (Irreversibility): It must be compationally infeasible to recover the orig-

inal biometric image/data from the stored template.

2. Cancelability (Unlinkability): Different versions ofrptected biometric templates can be
generated based on the same biometric data (renewabiltilg protected templates should

not allow cross-matching between different applicatiahiggfsity).

In order to fulfill these requirements, a number of techngjbave been proposed to limit the
amount of information that can be easily extracted from aestdemplate. Template protec-
tion techniques can be broadly categorized into biometyiptosystems and de-identifying tech-

niques [27, 28].

Biometric cryptosystems|[26, 27, 28] offer solutions to biometric-dependent kelgase
and biometric template protection. In these systems, atagyaphic key is secured by using
biometric template or directly generating a cryptogragtag from the biometric template. In
a biometric cryptosystem, some public information aboet ffometric template is stored and
referred to as helper data. The helper data does not rewealgmificant information about the

original biometric template, but needed during matchingxwact a cryptographic key from the
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probe biometric template. Matching is performed indine&y verifying the validity of the ex-
tracted key. Nevertheless, biometric cryptosystems gdlgeresult in a noticeable decrease in
recognition performance. This is because cryptosystetrsdace a higher degree of quantiza-

tion in the feature extraction module.

De-identifying a biometric image means intentionally changing the bioimetntent of the
image. De-identifying function should allow matching obbietric templates in the transformed
domain and should be noninvertible in order to protect themiidy even if the transformation
function and its parameters are compromised [27, 28]. Thdel&ified biometric image is typ-
ically referred to as a private template [29] or a cancelddbenetric [30]. Ratha et al. [30]
suggested that templates of the cancelable biometric dhomuin the same image or data space
after transformation which allows the use of existing featxtraction and matching algorithms.
Hence, the transformation functions are severely coms&dabecause the space of the biometric
images or data should not be changed after the processtfegancelable face image is a face
image and the cancelable fingerprintimage is a fingerpriagey. So there is a trade-off between

the recognition performance and security.

In mixing biometrics, the biometric images pertaining tetent individuals are utilized to
generate joint, unique, and revocable digitized iderstiti€herefore, this concept could be con-
sidered as an alternative approach to transform the bigwztta by mixing them. For instance,
mixing fingerprints can be used to de-identify an input fipgiet image by fusing it with another
fingerprint (e.g., from a different finger) at image leveloirer to produce different mixed im-
ages that obscure the identity of the original fingerprifitas allows cancelability in biometrics
systems. A user can revoke a template that has been compbansg generate a new template

that cannot be easily guessed using the compromised teamplat

1.4 Mixing Biometrics: An information fusion exercise

Mixing biometrics may be viewed as an exercise in infornrafigsion in general, and im-
age level fusion in particular. For instance, our proposattept of mixing biometrics could be

utilized in multi-instance systems. The left and right thasnthe left and right irises, or even a
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fingerprint and an iris of an individual may be fused and useagetify an individual’s identity. In
the following sections, we will provide an overview of mbibmetric fusion and different image
level fusion approaches. Finally, a brief comparison betwmixing biometrics and multibio-

metric fusion is made.

1.4.1 Multibiometric Fusion

Consolidating multiple sources of an individual’'s digétzrepresentations (e.g., multiple fin-
gerprintimages, multiple matchers operating on a singig tsr multiple traits such as fingerprint
and iris) solves some of the limitations of unimodal bioreetystems (e.g., population coverage,
or spoof attacks) [31]. Although, the development of mudtibetric systems was considered to
be the logical extension of traditional unimodal approactibere is a need for reliable multi-
modal fusion algorithms to consolidate different biometepresentations. Therefore, there has
been a substantial amount of work done on multibiometricofusipproaches. This involves
combining biometric information at the image, feature agtion, match score, or decision level.

The different levels of fusion can be broadly categorizetbsws [31, 32]:
1. Fusion prior to matching.

e Image level fusion: The raw data from the sensor(s) are coeabi

e Feature level fusion: The different feature sets extraéteoh multiple biometric

sources are combined.
2. Fusion after matching.

e Score level fusion : The matching scores output by diffeoinetric matchers are

combined in order to assist the final recognition decision.

e Rank level fusion: The output of each biometric system isestiof possible matches
(i.e., identities) sorted in decreasing order of confidetieese subsets of identities are
combined. This is relevant in an identification system wleerank may be assigned

to the top matching identities.

e Decision level fusion: The decisions output by the indiabibiometric matchers are

combined.
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1.4.2 Image Level Fusion

Image fusion is a process of combining information frometit images into a composite
that is suitable for post processing tasks, such as classiin; recognition and tracking [33].
Image level fusion is the first fusion route for biometricalat a multibiometric system. In the
context of multibiometrics, image level fusion entails tomsolidation of evidence presented by
multiple sources of raw data before they are subjected torfea&xtraction. In order to accom-
modate other types of raw biometric data such as voice, yigeg etc; the phrasesgnal level
fusionandsensor level fusioare also used [31].

The fusion in this early stage of a multibiometric systemthadenefit that different application-
specific feature extraction algorithms could be used to ecdemfhe features from the fused data.
So the fused image could be used in different applicatiodsfasion algorithms at other differ-
ent levels could be applied on it. For example, a mixed fingetrpmage could be fused with
a mixed iris image at the score level. Till date, a number aigmlevel fusion algorithms have

been proposed and we provide a brief overview of these alhgosiin the following section.

Literature Review

Image level fusion has been actively utilized in differeniltibiometric systems. However,
this level of fusion is the least explored compared to thesiotavels of fusion in the context
of biometrics. The work done on the fusion of raw biometritadean be classified into three

categories [34]:

1. Single sensor, single trait: This category of image léwsion can benefit biometric sys-
tems that acquire multiple samples of the same trait usingglessensor. Fusing those
samples can account for variations that occur in a biométit For example, partial
fingerprint images or different profiles image of a face carcdmbined to obtain a fused
representation of the fingerprint or the face image, regmygtwhich can address the chal-
lenges due to the limitation of small fingerprints sensottepose variations between face
images. Note that fusing multiple samples of a biometrit tt@aes not necessarily model
the intra-user variations. It utilizes the acquired sampliethe biometric trait to generate
a composite probe or gallery image. Generating a compaseesentation of different
samples of a biometric trait has the following merits [3H) \when multiple samples of a

subject’s trait are available at the time of enrolimentfeasl of storing these samples as
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independent entities, they are fused into a single entitgdoce the probability of a false
reject and the matching time, and (b) consolidating the eswid presented by multiple
samples of the same biometric alleviates the problem of egelection.

In the context of fingerprints, this category of image fudiais been used to combine mul-
tiple impressions of the same finger as exemplified in thewhg scenarios:

Small-area sensor:Some sensors capture only a small portion of the fingertip [Baere-
fore, several fingerprint mosaicking techniques [36, 37,388 40, 41, 42] have been de-
veloped to stitch multiple impressions of the same fingeraadte a larger fingerprint.
Multi-view sensor: Touchless fingerprint sensors capture multiple views ofgefirusing
several calibrated cameras [43] or a single camera with taogp mirrors [44]. These
multiple views are mosaicked together to yield a single-taihail fingerprint.
Multispectral sensor: Rowe et al. [45] fused multiple images acquired from a mpécs
tral fingerprint scanner into a single high quality fingempimage by utilizing a wavelet-
based method of image fusion.

In the context of faces, multiple 2D face images obtainethfdifferent viewpoints can be
stitched together to form a 3D model of the face [46] or a pamic face mosaic [47][48].
In the context of irises, Hollingsworth et al. [49] and Jédlet al. [50] took advantage of the
temporal continuity in videos to improve matching perfonoa using image level fusion.
From multiple frames of a frontal iris video, they createdrege image. They concluded
that using fused iris images for matching resulted in a perémce which is comparable
to state of the art score level fusion techniques, with lessputational burden. Moreover,
fusing irises in image domain has been proposed in Zuo stvabik to de-identify nor-
malized iris images [51]. They proposed a GRAY-SALT tramsfation [51] to de-identify

irises by adding a synthetic iris image to the original imsage.

2. Multi-sensors, single trait: In this category, samplesacquired by multiple senors instead
of using a single sensor. The information obtained from iplgltsensors are complemen-
tary to each other, and can augment the biometric contentraninize the intra-user
variability. In the literature, this category of image lefiesion has been used in face iden-
tification systems to minimize the variations due to facmdearance (e.g., hairs, wrinkles,
and expression) and the effects due to changes in pose améhdition. Hence, researchers

have fused the visible spectrum images with near infraredjes [52, 53, 54, 55] and with



Asem A. Othman Chapter 1. Introduction 12

the corresponding 3D scan (i.e., the range image) in ordenetate a 3D texture [56, 57].

3. Multibiometric: The previous categories of image lewsibn were employed in unimodal
biometric systems. However, there has also been some cassanducted in fusing im-
ages of different biometric traits into a single compositage. The fused multibiometric
image can address issues such as memory storage [58] arldsample size recognition
[59]. Jing et al. [59] generated a composite image from fawk @almprint biometrics
by concatenating the responses of different Gabor filteh® ré€sulted image is not in the
same image or data space of the face or palmprint imagesefbhner during authentica-
tion, kernel discriminative common vectors are extractedifthe fused image and radial
basis function based neural network is used for classifisatNoore et al. [58] developed
a fusion algorithm which is based on multi-level discretev@lat transform to fuse images
of four biometric traits (i.e., face, iris, fingerprint, asgjnature). Here, the resulted image
is a scrambled multimodal biometric image and special reicaantion procedures are used
to reconstruct the original images and perform authemticatLiu et al. [60] fused the
phase of a normalized iris and a palmprintimage by using Bawited 2D-IDFT. But the
fused image can only be matched with a stored template by asspecial matcher, i.e.,
a phase-based image matcher and they did not analyze if $bd fmage is a cancelable

template or not.

1.4.3 Mixing Biometrics versusMultibiometric fusion

First of all, deploying a multibiometric system improves tlecognition performance by con-
solidating multiple biometric sources of a single indivadi(i.e., it increases the biometric content
of the digital identity of a specific individual). On the oth®and, one objective of mixing bio-
metrics is to generate a joint identity, whose uniquenesgsips to multiple individuals. There-
fore, the biometric samples, i.e., images will be fused toegate a new biometric image.

Second, although generating a biometric image is possibtealitional image level fusion
approaches (see Section 1.4.2), the sources have to beesanfiphe same biometric instance
obtained from a single sensor or multiple compatible semdorother words, traditional image
level fusion augments the biometric content of the temptetaining to a single individual
by fusing multiple samples of the same instance of a biométait. On the contrary, mixing

biometrics generates a new biometric image by fusing imafielfferent biometric instances
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pertaining to single or different individuals.

Moreover, as described in Section 1.4.2, to fuse biomesaraples at image level, these
samples must be compatible, and the correspondences Ipatavedata must be either known in
advance or reliably estimated. Therefore, the traditionage level fusion approaches cannot be
directly used for mixing biometrics images of differentividuals. This is because it is difficult
to ensure the existence of such correspondences betwedrndmetric samples acquired from
different individuals or instances.

Finally, the multibiometric approach improves the accyraicthe system over its individual
unimodal components, but this improvement comes at a cositiddbmetric systems may be
viewed as combinations of two or more unimodal biometrideayss. Each unimodal system has
its own feature extractor and matcher. Thus, fusing theituies, scores or decisions requires
additional time. On the other hand, these systems could$tesffective if a single image is used
in the matching step. Hence, the concept of mixing biometould provide benefits with regards
to storage and security. For example, when images of a dighjedex and thumb are available
at the time of enrollment, a common approach is to store timeages as independent galleries.
Thus, when probe images of these fingers are acquired, eabk pnage is compared against
the corresponding gallery image independently. The negu#tet of scores can be consolidated
to generate a single score (e.g., via the sum rule). Howeavéne case of mixing biometrics,
images of a subject’s fingers are mixed into a single imagés Mixed image will be stored at
the time of enrollment and during the authentication it Ww#f matched against a single mixed
probe image.

Although there are stated differences between mixing bioosgas a concept) and multibio-
metrics fusion (as deployed systems), mixing biometricgiisa multibiometric fusion exercise
by definition [31]. We believe that mixing biometrics extsrahd boosts the biometrics concept
in general, and the multibiometrics fusion concept in gattr. Therefore, in this thesis, we will

introduce different approaches in order to mix differemrbetric traits.

1.5 Thesis Contributions

In this thesis, we explore the possibility of generating @nteetric template that inherits its

characteristics from different individuals or instanc&bis section provides an overview of the
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thesis organization and approaches designed to acconoplisiesearch objective.

In Chapter 2 we will discuss the use of fingerprints, faces iasds as biometrics. The
purpose of this chapter is to give a brief introduction tonbétric traits that have been utilized in
the thesis. The reader can skip this chapter without anyobsgntinuity.

In Chapter 3 we describe a method to protect the privacy oéfprgnt templates by mixing
images to generate a cancelable fingerprint image. To mixfitwgerprints, each fingerprint
pattern is decomposed into two different components, the.continuous and spiral components
by viewing the patterns as holograms. After pre-aligning tomponents of each fingerprint,
the continuous component of one fingerprint is combined thighspiral component of the other
fingerprint.

Chapters 4 and 5 present methods for mixing faces and irsesptively, in order to generate
joint identities that are similar to the original identg&iéas in scenario 2 in Section 1.3.1). The
mixed face image is an intermediate face image in the mogptamtinuum between two faces
and its position on this continuum is specified by the mixiaggmeters. In the case of iris, in
order to mix two iris patterns, horizontal seams are copiethfnormalized iris images into a
new iris image after sorting them based on their importandke images.

In Chapter 6, the mixing concept is utilized in a differentrmar. Here, the mixed image
corresponds to a true identity (and is not a virtual idetipwever, the components of the mixed
image are obtained from other identities. Therefore, westigate the possibility of dithering
a private face image into two host face images such that ikiatprimage can be revealed only
when dithered host images are simultaneously availabtegatame time, the individual dithered
host images do not reveal the identity of the private image.

In Chapter 7, we extend the concept of mixing in order to mstances oflifferentbiometric
traits to obscure the original identity. Specifically, treaghere is generating a new mixed image
that inherits its uniqueness from a finger impression andiamnage, i.e., a fingerprint image
and an annular iris image are mixed in order to generate arigigtint image. This mixed image
incorporates characteristics from the original fingerpimmpression and iris image, and can be
used directly in the feature extraction and matching stajemn existing fingerprint system.
To mix a fingerprint with an iris, the fingerprint is decompdseto two components, viz., the
continuous and spiral phases, and iris minutiae is extlacterder to generate the iris spiral

phase. Then, the continuous phase of the fingerprint is guedbivith the spiral phase of the



Asem A. Othman Chapter 1. Introduction 15

annular iris image.
In all cases, extensive experiments are conducted to cahedyenefits and limitations of the
proposed concepts.

The final chapter summarizes our contributions and prowsdggestions for future work.



16

Chapter 2

Biometric Traits

2.1 Introduction

The purpose of this chapter is to give a brief introductioowlaifferent biometric traits, i.e.,

fingerprint, face, and iris, that have been discussed intbsd.

2.2 From anthropometry to biometrics

In the nineteenth century, Alphonse Bertillon [1], a Frepaticeman, was the first to intro-
duce the science of identifying a person based on his/héonzal features. To identify repeat
offenders, Alphonse built a set of tools referred to in corgerary literature as the Bertillonage
system. These tools were used to measure certain anatdraitabf a person including eleven
different body measurements such as height, length, arditbref the head, the width of cheeks,
the length of different fingers, the length of forearms, €igure 2.1 shows an illustration of the
process for acquiring these measurements. These measuisensge then recorded on an iden-
tity card (as shown in Figure 2.2) and/or manually compaoeslriecord database to check if the
same person was convicted before. The system was used 908] tvhen it was replaced by
fingerprint records. But a few elements of the Bertillon sysiexist even today in the criminal
police identification process, such as the combination afilerand frontal shots, i.e., mug shots

when photographing offenders (see Figure 2.3).
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Figure 2.1: Anthropometry measurements used in Bertilendentification system (taken from

[1])
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Figure 2.2: The ID card of Francis Galton as per the Bertdlpmsystem (taken from [2]) created
during Galton’s visit to Bertillon’s laboratory in 1893.

Figure 2.3: Mugshot of Alphonse Bertillon (taken from [3]).
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2.3 Fingerprint as a biometric

The complexity of the Bertillonage system was the reasompffoviding criminal identifica-
tion systems with accurate and reliable data, but it wastalsoeason for the system’s downfall.
Therefore, the supremacy of the Bertillon system begande iiathe face of a new (at that time)
identification technique, i.e., fingerprint identificatianich was simpler to administer than the
Bertillon anthropometry system. The use of fingerprintsdetablishing identity was started
in the 16th century and thereafter replaced Bertillonagtesy as the world-wide standard for
criminal identification.

A fingerprint refers to the flow of ridge patterns in the tiploé finger. The ridge flow exhibits
irregularities in local regions of the fingertip termed asatiae points (Figure 2.4). In 1892, Sir
Francis Galton used the minutiae features for fingerpririthiag. Since then, the distribution of
these minutiae points along with the associated ridgetsireitias been believed to be distinctive

to each fingerprint, and has been used in individual ideatifia records in police offices.

Figure 2.4: A fingerprint image. The red circles representesof the irregularities in the finger-
print,i.e.,the minutiae points.

Fingerprints recognition systems are considered to beiabtelmethod to recognize indi-
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viduals and are used in different biometric applicatiomghsas physical access control, border

security, watch list, background check, and national ID&ays.

2.3.1 Representation and matching

The uniqueness of a fingerprint is predominantly determimetthe local ridge characteristics
and their relationships, and matching fingerprints magualtlaim that two impressions belong
to the same person, requires complex protocols that have lssd by examiners. Over the
last three decades, research in fingerprint recognitionskas tremendous growth; however,
most automatic fingerprint matchers follow similar protiscas human examiners and depend on
the ridge characteristics of fingerprints. These charaties (i.e., fingerprint features) can be
organized in a hierarchical order [35] at three differemtls. Level 1 features include the ridge
flow, pattern type, external fingerprint shape, orientatroage, and frequency image; level 2
features consist of minutiae location and orientation; landl 3 features consist of information
available at higher resolution images, such as local sh&pelges, dots, pores and incipient
ridges. On the basis of the described hierarchical ordgefprint matching can be accomplished

using three classes of matchers [35].

Level 1 features matchers

The matchers of this class compare the global pattern oésidgg., correlation based match-
ers. During the matching procedures, the fingerprint or tbbal ridge orientation images are
superimposed on each other and the correlation betweerothesponding pixel intensities is
computed for different alignments (e.g., various disphaepts and rotations). In general, it has
been reported [35] that the level 1 features are useful fgefiorint classification and indexing,

but not sufficient for fingerprint matching.

Level 2 features matchers

These are the most popular matchers whereby minutiae pomtsxtracted from the finger-
print to be matched, and their location and ridge orientetiare stored as a fingerprint template
in a central database. The matching process determinebghmant between two minutiae sets
that results in the maximum number of minutiae pairings. &omatchers utilize the level 1 fea-

tures, such as texture information, local orientationgfency and/or ridge pattern, along with
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the extracted minutiae, to match two fingerprints.

Level 3 features matchers

This class of matchers is the least explored by researcB&fsdompared to level 2 features
matchers. This is due to two major reasons; (1) robust exdraof level 3 features (e.g., ridge
shapes, sweat pores) requires high resolution imagdsq00 ppi - number of pixels per inch in
the image) compared to 500 ppi, i.e., the current FBI stah[®4]; and (2) even with availability
of good quality images, these matchers require high conipnt complexity. These reasons
has made the practicality of using these matchers for soomenewcial applications debatable.
However, level 3 features play a significant role in latergdirprint matching, where fingerprints

are lifted from a surface prior to digitizing them.

2.4 Face as a biometric

Extracting intrinsic information from faces, such as idgnigender, ethnicity and age, is a
task that humans perform routinely and efficiently. Themefdhe availability of powerful and
low-cost computing systems has created an interest inalevgl automatic face recognition sys-
tems and deploying them in a number of applications, indgdiometric-based access systems.
Automatic face recognition represents a challenging gmlh the field of image analysis and
computer vision. Thus, research in face recognition iviggito (a) solve fundamental chal-
lenges such as developing face matching methods that aaganvto age, pose, illumination,
and facial expressions; (b) utilize the advances in tedgies such as digital cameras and mo-
bile devices to perform face recognition in new applicasi@md scenarios; and (c) fulfill the
increased demands on security in numerous practical apiplics where human identification is

needed.

2.4.1 Representation and matching

To identify a face in a digital image, the face recognitiosteyn should automatically find
the faces in the image (if there is one), and then the redogroccurs by matching the detected
face with the face template in a database. Just as in the €disgerprints (see section 2.3),

where ridge details were described in a hierarchical ortirae different levels, Klare and Jain
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[4] developed a hierarchical order for describing facialiges (see Figure 2.5).

Level 1 features are the facial characteristics that carbberwed from the general appearance
of the face, such as skin color. Level 2 features are the ilmzhicharacteristics of the face,
such as the shape of the face and the relationship amongdia¢ diributes. Finally, level 3
characteristics are the micro features that can be usefuhédiscrimination of monozygotic

(i.e., identical) twins [61], such as facial marks.

(a) Aface image

<=

(b)Level 1 feature: skin color (c) Level 2 feature: face ghagd) Level 3 feature: face marks

Figure 2.5: Examples of the three levels of facial featuagl®pted from [4]).

Face matching is the process of measuring the similarityissirdilarity between two face
image based on the extracted features. Level 1 face feattg@piite analogous to level 1 finger-
print features. Hence, level 1 face features cannot acdyriatentify an individual over a large
population of candidates. Similarly, as level 2 featurefsngferprints, level 2 face features are the

most discriminative features, and are predominantly usethte recognition approaches. There
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are two broad categories of main approaches to match thetddtiace images [62]: appearance-
based and feature-based methods. Appearance-based metimsiter the global properties of
the face image intensity pattern such as Principal Compohealysis (PCA), Linear Discrimi-
nant Analysis (LDA), and Independent Component AnalysStA|l. Feature-based methods are
using local features of the face such as geometric relabehseen the facial features and local
texture features of the face that are in variant to pose a@hditig such as gradient orientations
and local binary patterns (LBP). Meanwhile, Level 3 feasutentain unstructured, micro level
features on the face that includes scars and facial marksseTteatures have been used along

with level 2 features to identify monozygotic twins [63].

2.5 Iris as a biometric

Irises exhibit an extraordinary amount of textural dettilst are believed [64] to be different
between individuals and between different eyes of the salieidual. The texture of an iris
can be simply described as a multilayered, tangled meshstiucture, which imparts a highly
complex texture to its surface. Figure 2.6 provides a clgseiew of the texture of a sample iris.
Compared with fingerprints, iris image data acquisitionggally non-invasive. Thus the iris has

become one of the most reliable biometric traits for idgntérification and recognition.

Figure 2.6: Close-up view of an iris, showing its complexte®. Image taken from [5].
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2.5.1 Representation and matching

The texture of iris is formed by many interlacing minute @weristics such as pigment spots,
stripes, furrows, crypts, etc. that are embedded on a str¢gdd Based on these features, the
recognition takes place. But, prior to recognition, the region must first be localized and seg-
mented from an image of the eye. Errors in the segmentatuwegil lead to poor performance
due to the inclusion of noise (e.g. eyelashes, sclera, jey®lids, and specular reflection) in the
image.

Several iris representation techniques have been propoghd literature [64, 65] and the
matching is mainly based on the method of representatniie method used for encoding the
iris texture. Thus, most existing techniques for iris radtign can be divided into two major
classes. The first class represents the iris texture usiagsfor transforms [66], The second class
of methods seeks to capture local and macro iris feature asifeckles, crypts, furrows, etc. in
the spatial domain [67][68].

Daugman’s phase encoding technique, which come under sheléss, is the most common
and promising among the different iris recognition apphesc[64] [65] [69]. Figure 2.7 shows
the processing chain of the traditional iris recognitiostsyn following Daugman’s approach
[70]. First, a camera acquires an image of an eye and theniniglar region is segmented, Next,
the annular iris is geometrically normalized,i.e., unveg from raw image coordinates to polar
coordinates. A texture filter is applied to the normalizes image, and the filter responses are
guantized into a binary representation (i.e., iris codée ¢omparison between two iris codes is

done by computing the fractional HD as a dissimilarity measu

2.6 Summary

In this chapter, we gave a brief introduction to three biamodtaits, fingerprint, face and
iris, which will be utilized in this thesis to generate joidentities. We discussed the different
representation and matching schemes for these biometiis.tRecent research has resulted in
the development of robust matchers for these modalitiegh&t new cryptographic constructs
have been proposed for these modalities [71]. For a moreletbtdescription, the reader is
referred to [14].
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1011000101 Quantization
01001001...]

Figure 2.7: Diagram of Daugman’s approach for encodingiannrage.
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Chapter 3

Mixing Fingerprints

3.1 Introduction

In this dissertation, the proposed concept of generatimg jdentities by mixing biometrics
of different individuals is introduced. Biometric imagefsdifferent individuals are fused at the
image level to generate a new biometric image. Image legefLhas been previously used in the
context of fingerprints to combine multiple impressionsta same finger [35]. In this chapter,
unlike previous work (see Section 1.4.2), two fingerprinpressions acquired from twbfferent
fingers are fused into a new fingerprint image resulting in\a ientity*. The mixed image
incorporates characteristics from both the original fipget images, and can be used directly in
the feature extraction and matching stages of an existimgéiric system. In the following, the

major motivations behind the development of the proposgdageh are discussed.

e The proposed approach explores the possibility of fusiregies from distinct fingers at the
image level and determining how this will affect authenima performance. For example,
the proposed approach could be used to mix the prints of tiralirand the index fingers
of a single individual, or index fingers of two different indiuals, and generate a new
fingerprint. Therefore, the concept of mixing fingerprintsikd be utilized in a multi-finger

authentication system. This has benefits in terms of staadesecurity.

e Fingerprint mixing can be used to generate a large set afalirdentities. These virtual

identities can be used to conceal the original identitiesibjects or be used for large-scale

*Here, the term “identity” is used to suggest that the mixegdiprint is unique and possibly different from other
fingerprints.
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evaluation of algorithms [72][35].

¢ De-identifying a fingerprint image is necessary to mitigedecerns related to biometric
data sharing and data misuse [19][29][30]. Fingerprintingxcan be used to de-identify an
input fingerprint image by fusing it with another fingerprfatg., from a different finger) at
image level, in order to produce a new mixed image that olesdte identity of the original
fingerprint. In [73] and [24] a similar approach has been psagl to preserve the privacy
of fingerprints by fusing two distinct fingers but only at tleafure level. Our proposed
approach creates a new image that looks like a plausiblerprigeimage and, thus, (a) it
can be processed by conventional fingerprint algorithms(ajen intruder cannot easily

determine if a given print is mixed or not.

The mixing process begins by decomposing each fingerpraxgénmto two different com-
ponents, viz., the continuous and spiral components (sgerd-i3.1). The continuous
component defines the local ridge orientation, and the lsppraponent characterizes the
minutiae locations. Next, the two components of each fing&rare aligned to a com-
mon coordinate system. Finally, the continuous componkeone fingerprint is combined
with the spiral component of the other fingerprint. This wodnfirmed that (a) the new
fingerprint representing a new identity can potentially Bedufor authentication; (b) the
proposed method can be utilized to generate differentdsiz¢abases of virtual identities
from a fixed fingerprint dataset; (c) it can be used to obsdueertformation present in
an individual’s fingerprint image prior to storing it in a ¢eal database; and (d) it can be
used to generate a cancelable template, i.e., the templatbecreset if the mixed finger-
print is compromised. Since the proposed approach can hiefoisde-identifying finger-
prints, in this chapter, a detailed analysis of the secaspects, i.e., the changeability and
non-invertability properties of the mixing fingerprint appch has been included. This se-
curity analysis is based on metrics commonly used in theetahle biometrics literature
[27][28]. The rest of the chapter is organized as followst®a 3.2 presents the proposed
approach for mixing fingerprints. Section 3.3 reports theeexnental results and Section

3.4 summarizes the chapter.
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Figure 3.1: Proposed approach for mixing fingerprints

3.2 Mixing Fingerprints: The proposed approach

The ridge flow of a fingerprint can be represented as a 2D Aog#iand Frequency Mod-
ulated (AM-FM) signal [74]:

I(z,y) = a(z,y) + b(x,y)cos(V(x,y)) +n(x,y), (3.1)

wherel(x,y) is the intensity of the original image &t,y), a(z,y) is the intensity off-
set,b(z,y) is the amplitude¥(z, y) is the phase and(x,y) is the noise. Based on the
Helmholtz Decomposition Theorem [75], the phase can beuatygdecomposed into the
continuous phase and the spiral phakey, y) = ¥.(x,y) + ¥s(z,y). As shown in Figure
3.2, the cosine of the continuous phase, i.e., the contmaomponentos(v.(z,y)), de-
fines the local ridge orientation, and the cosine of the kpirase, i.e., the spiral component
cos(Ys(x,y)), characterizes the minutiae locations. két, y) denote the spiral phase of a
local region in a fingerprint. Assume that the functig(, y) monotonically changes from
0 to 27 around a particular pointz,, v, ), and has a characteristic jump frénto 27 at the
point (z,, y,). This forms a residue &t,,, y,,) with an associated polarity,, € {—1,1}.

A residue with positive (negative) polarity is referred gaapositive (negative) spiral.

o, y) = pptan™ (2 — 22)/(y — yn)). (3.2)
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(b) (€)

Figure 3.2: Decomposing a fingerprint. (a) A fingerprint ilmagb) Continuous component,
cos(v.(x,y)). (c) Spiral componentos(vs(x,y)). The blue and pink dots represent ridge end-
ings and ridge bifurcations, respectively.

Appending this function to the continuous phase will caupbase jump atz,,, y,,) result-
ing in a minutia. In Figure 3.3, a local ridge pattern is gaed based on the continuous
phase functior fy, with f = 4. Depending upon the polarity value (+1 or -1), a minutia
is generated on the ridge pattern. The relation betweendiaeity, p,,, and the occurrence
of ridge ending or bifurcation is dependent on the gradiémection of the cosine of the
continuous phase. Hence, the spiral phase allows for apabhnange in the local fringe
density by either inserting or deleting a ridge based on tiarjty and the appending lo-
cation within the continuous phase. If the simple functioid.2) is replaced by a sum of

such functions, the spiral phase,(x, y), will correspond to a set of minutiae:

Ys(z,9) =Y patan (2 — 20)/(y — yn)), (3.3)

wherez,, andy,, denote the coordinates of th& minutia, andV denotes the total number
of minutiae. Moreover, the type of a minutia (ending or befation) is determined by its
polarity p, € {—1,1}. Thus, based on this 2D AM-FM representation, the fingetpgrin

oriented patterns can be uniquely decomposed into (a) d sonalber of topologically
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(a)
"ﬂ —— "— —_—
—_— - _— -
— — — —
(b) Pn = +1 (C)pn =-1 (d)pn =+1 (e)pn =-1

Figure 3.3: Generating minutia in a fringe pattern. (a) Gsegle image of continuous phase
given bycos(27 fy). (b) and(c) Appending a minutia at “B”. (d) and (e) Appendaminutia at
“E”-

distinct discontinuities, i.e., the spiral phase, and (l)ed defined smooth flow field, i.e.,

the continuous phase.

3.2.1 Fingerprint Decomposition

Decomposing images into semantic parts is of great int@reaetainy applications such as
compression, enhancement, restoration, and more. Theydfos task has drawn a lot
of research attention and most of the proposed approachagifizing total variational

calculus. These methods are inspired by the total varigfid) regularization for image

denoising and restoration [76]. The separation is done lzpmeosing the image into
texture and non-texture (or cartoon) components, as showigure 3.4. So this kind of
image decomposition can be useful for image compressionedmmpressing the cartoon
and the texture components separately can provide besigitseimage denoising where

zero mean oscillatory noise can be regarded as a fine texnage feature selection, etc.

But these methods are suggested for textures with no primwletge about it, meanwhile,
in order to decompose a biometric image into its componentttres, understanding the
non-linear nature of the image and the source of its distesess and individuality will

be beneficial.
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Figure 3.4: Cartoon-texture decomposition using a totahtian method [6]. (a) A fingerprint
image. (b) Cartoon image. (c) Texture image.

Therefore, we found that the Larkin et al.’s hologram modél][(check Equation 3.1),
i.e., a phase modulated fringe pattern to represent therfingeimages can be the suitable
method to decompose fingerprint images. Larkin et al.'s Wér§[74] is the culmination
of several years of investigating mathematical methodsiémnodulation of optical inter-

ferograms that have fringe pattern such as fingerprint imiage

The hologram representation of fingerprint is an adaptidedata-driven approach in com-
parison to traditional representation such as the Fourigravelet methods where a pre-
defined decomposition basis is used. Moreover, the frequepcesentation fails to work
properly because there is an infinite singularity at eactutiae point. On the other hand,
the hologram phase circumvents the infinite frequency s$angies that always occur at

minutiae in the phase estimation step.

Since ridges and minutiae can be completely determined éyliase [74W(z,y). The
other three parameters in Equation (3.1) contribute to ¢laéistic textural appearance of
the fingerprint. Before fingerprint decomposition, the ghész, y) must be reliably esti-

mated:; this is termed as demodulation.
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Vortex demodulation

The objective of vortex demodulation [77] is to extract tmepditude b(x,y) and phase
U(z,y) of the fingerprint pattern. First, the DC termz, y) has to be removed since the
failure to remove this offset correctly may introduce sfgaint errors in the demodulated
amplitude and phase [77]. To facilitate this, a normalizedédrprint imagef(z, y), con-
taining the enhanced ridge pattern of the fingerprint (gateerby the VeriFinger SDK is
used. From Equation (3.1f(z,y) = I(x,y) — a(x,y) =~ b(z,y)cos(¥(x,y)). The vortex
demodulation operatoV takes the normalized imag&z, y) and applies a spiral phase

Fourier multiplierexp[i®(u, v)]:

V{f(z,y)} = F~{expli®(u, v)].F{b(z,y). cos[ ¥ (x, y)]} }

= —iexpliB(z,y)].b(x, y). sin[¥(z, y)]

(3.4)

where,F is the Fourier transformi ! is the inverse Fourier transform aaeh[i®(u, v)] is

a 2-D signum function [77] defined as a pure spiral phase iomab the spatial frequency

spacegu, v):

U+ v
Vu2 + 02

Note thatin Equation (3.4) there is a new parameiter, y), representing the perpendicular

expli®(u,v)] = (3.5)

direction of the ridges. In Equation (3.6), this directibmep is used to isolate the desired

magnitude and phase from Equation (3.4), i.e.,

—exp[—if(z,y)]. V{f(z,y)} = ib(z,y). sin[¥(z, y)]. (3.6)

Then, Equation (3.6) can be combined with the normalizedyaméA(z, y), to obtain the

magnitude(z, y) and the raw phase malp(z, y) as follows:

—exp[—if(x, y).V{f(z,y)} + f(z,y) = b(z,y). exp(i¥(z,y)). (3.7)

Therefore, determining(x, y) is essential for obtaining the amplitude and phase func-
tions, b(z,y) and ¥ (x,y), respectively. The direction mag(z,y) can be derived from

the orientation image of the fingerprint by a process calledrapping. A sophisticated

Thttp://www.neurotechnology.com



Asem A. Othman Chapter 3. Mixing Fingerprints 33

unwrapping technique using the topological propertiefefridge flow fields is necessary

to account for direction singularities such as cores anthsl¢r4] [23].

Direction Map 5(z, )

Direction is uniquely defined in the rangé @ 360 (modulo 2r). In contrast, finger-
print ridge orientation is indistinguishable from that oL&0 rotated ridge (modular).
Therefore, the fingerprintsrientationmap, denoted bg(z, y), should be unwrapped to a
directionmap, 3(z, y) [74]. Phase unwrapping is a technique used to addréssphase
jump in the orientation map. The unwrapping process addsluracts an offset dir to
successive pixels whenever a phase jump is detected [75.pftcess proceeds by start-
ing at any pixel within the orientation image and using theal@rientation information to
traverse the image pixel-by-pixel, and assigning a dioacfi.e., the traversed direction) to
each pixel with the condition that there are no discontiasibf 27 between neighboring
pixels. However, the presence of flow singularities meaasttirere will be pixels in the
orientation image with a discontinuity éf2 in the traversed direction and, therefore, the
above unwrapping technique will fail. In fingerprint imagsesch flow singularities arise
from the presence of singular points such as core and dédpare=3.5(a) illustrates that es-
timating the direction of ridges in the vicinity of a core pbby starting at any point within
the highlighted rectangle and arbitrarily assigning onewafpossible directions, can result
in an inconsistency in the estimated directions inside #shdd circle. This inconsistency
in the estimated direction map can be avoided by using a bramc[75]. The branch cut
is a line or a curve used to isolate the flow singularity andcWwthsannot be crossed by
the paths of the unwrapping process. Consequently, brangrevents the creation afr
discontinuities and restores the path independence ofriiveapping process. As shown
in Figure 3.5(b), tracing a line down from the core point arsthg this line as a barrier
resolves the inconsistency near the core point (i.e, ingidedashed circle) by selecting
two different directions in each side of the branch cut wittiie same region (i.e, inside
the highlighted rectangle). In our work, a strategy basedhentechniques described in
[74] [7] [23] has been adapted to estimate the direction f@py), which is summarized
in the following three steps.

1. The orientation imagé(x, y) of the normalized fingerprinf(x, y) is determined via the
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Figure 3.5: A portion of the estimated direction map (a) befassigning a branch cut and (b)
after assigning a branch cut [7].

least mean-square method [78]. Then the Poincaré [35kiisdesed to locate the singular
points, if any.

2. In case there are singular points, an algorithm is appbeextract the branch cuts
along suitable paths such as ridge contours, as shown ime&=g8y&(b), to resolve the in-
evitable direction ambiguities near those singulariti€ae branch cuts are extracted by
tracing the contours of ridges (rather than the orientdteld) in the skeleton images. The
algorithm starts from each singular point in a skeleton ienagtil the trace reaches the
border of the segmented foreground region of the fingerprimthen it encounters another
singular point. To generate the skeleton images, first, afsshoothed orientation maps
are generated by applying a Gaussian smoothing operatidiffexent smoothing scales
(e €{1,2,3,5,10, 15,20, 32,50,64}) onf(x, y). Next, a set of Gabor filters, tuned to the
smoothed orientation maps [78], is convolved with the ndized imagef(z,y). Then,

a local adaptive thresholding and thinning algorithm [/@ppplied to the directionally
filtered images producing 10 skeleton images. Thus, theratdeast 10 branch cuts and
the shortest one, associated with each singular pointlasted and Figure 3.6 shows two
examples of skeleton images and the corresponding bransloftca core point. Figure 3.7
shows examples of the branch cuts extracted from the singalats of different finger-
prints.

3. The phase unwrapping algorithm [80] [75] starts from amjteary pixel in the orienta-
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tion mapd(z, y) and visits the other pixels, which are unwrapped in the saarener as in
images without singularity, with the exception here thathbhanch cuts cannot be crossed.

Then, each branch cut is visited individually and its pixais traced and unwrapped.

(d)

Figure 3.6: Examples of skeleton images and branch cutssiogalar point where (a) and (c) are
skeleton images generated with= 3 and 32, respectively and (b) and (d) are the corresponding
branch cuts. Branch cut in (d) is the selected one.

Finally, the direction map(z, y) is determined from the unwrappégr, y) by addingr /2
which allows for the determination of the amplitule’, y) and phas& (z, y) modulations
of fingerprintimage from Equation (3.7). A flowchart for dedubating a fingerprint image
is depicted in Figure 3.8.
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i =

Figure 3.7: Examples of fingerprints with singular pointe€blue dots and red triangle represent
cores and delta, respectively). (a), (c), (e), and (g) Thenabzed fingerprints. (b), (d), (f), and
(h) The extracted branch cuts obtained by tracing the ridg#sad of the orientation field.
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Figure 3.8: Flowchart for demodulating a fingerprint image.

Helmholtz Decomposition

The Helmholtz Decomposition Theorem [75] is used to decaeabe determined phase
U(z,y) of a fingerprint image into two phases. The first phageis a continuous one,
which can be unwrapped, and the second is a spiral phasehich cannot be unwrapped
but can be defined as a phase that exhibits spiral behaviseitd discrete points in the
image. The Bone’s residue detector [81] [75] is first useddtenine the spiral phase
s(x,y) from the demodulated phage(z,y). Next the continuous phase, is computed
asye(z,y) = ¥(x,y) — ¥s(x,y). Finally, although subtracting the spiral phase from the
phase should results in a continuous phase with no disaotés, due to the inevitable
guantization errors in the subtracting operation, it iseatial to unwrap the continuous
phase again by using the branch cuts from the previous sig.eR3.9 illustrates the steps
to determine the continuous component(.(z,y)) (Figure 3.9(h)) from the estimated
spiral componentos(y(x,y)) (Figure 3.9(f)) of a fingerprint and the demodulated phase
U(z,y) (Figure 3.9(a)).
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(b) Spiral Phase (¢) Continuous Phase (d) Unwrapped continuous
Ws(XY) W%y) ) Phase yc(x.y)

‘ 1 N/). Z
(f) Spiral component (g) cos(y(x,y)) (h) Continuous component
cos(Ys(x.y)) cos(wc(xy))

Figure 3.9: Determining fingerprint constituents from (a@ demodulated phasi(z,y). (b)
Spiral Phase),(z,y). (c) Continuous Phase.(z, y). (d) Unwrapped continuous Phase. (e), (f),
(g9) and (h) are the cosine (according to the hologram mogaésentation of fringe pattern, as
explained in Equation 3.1) of (a), (b), (c) and (d), respetyi

3.2.2 Fingerprint Pre-alignment

To mix two different fingerprints after decomposing each dimpyint into its continuous
componentos(y.(z,y)) and spiral componenbs(y,(x, y)), the fingerprints themselves
should be appropriately aligned. Previous research hasrstiwat two fingerprints can
be best aligned using their minutiae correspondences. awe is difficult to ensure
the existence of such correspondences between two finger@cquired from different
fingers. In this work, the components are pre-aligned to axcomcoordinate system prior
to the mixing step by utilizing a reference point and an ahgnt line. The reference point
is used to center the components. The alignment line is wskld a rotation angle about
the reference point. This angle rotates the alignment dmeake it vertical. The two phase

components of each fingerprint are rotated by the same angle.

Locating a reference point

The reference point used in this work is the northern most¢ paint of extracted singu-
larities. For plain arch fingerprints or partial fingerprimages, Novikov et al.’s technique

[82] [21], based on the Hough transform, is used to deteatdfezence point.
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Finding the alignment line

The first step in finding the alignment line is to extract highvature points from the skele-
ton of the fingerprint image’s continuous component. Negtjzontal distances between
the reference point and all high curvature points are catedl Then, based on these dis-
tances, an adaptive threshold is applied to select anceclpsints near the reference point.
Finally, a line is fitted through the selected points to gateethe alignment line. Figure
3.10 shows the steps to find the reference point and the adighfime by utilizing the
continuous phase component of an arch fingerprint. Sincedh#gnuous component of a
fingerprint is a global feature of the fingerprint pattern adot affected by breaks and
discontinuities which are commonly encountered in ridgeaetion, the determined refer-
ence point and alignment line are consistence and do nadlremg information about the

minutia attributes which are local characteristics in thgérprint.

N
Original
Fingerprint cos(¥¢)

Continuous )
component High Curvature Candidate Points Alignment Line

Skeleton Points

Figure 3.10: Finding the reference point and alignmentfianen arch fingerprint.

3.2.3 Mixing Fingerprints

Let 7 and F;, be two different fingerprint images from different fingeraddet.;(x, y)
andy (z, y) be the pre-aligned continuous and spiral phases], 2. As shown in Figure

3.1, there are two different mixed fingerprint image thatbamgeneratedy/ F;, and M Fy:

MFl = COS(¢c2 + %1)7
MF2 = COS(@Z)Cl + ¢52).

(3.8)
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The continuous phase &1, (£7) is combined with the spiral phase 6f (F,) which gen-

erates a new fused fingerprint imadjef; (M F»).

3.2.4 Compatibility Measure

Variations in the orientations and frequencies of ridgds/ben fingerprint images can re-

sult in visually unrealistic mixed fingerprint images, a®wh in Figure 3.11. This issue

can be mitigated if the two fingerprints to be mixed are cdiefthosen using a compati-

bility measure. In this work, the compatibility between &ngrints is computed using non-

minutiae features, viz., orientation fields and frequenepsof fingerprint ridges. Figure

Mixed Fingerprint

(a) Fingerprint Image

(b) Orientation Field

(c) Frequency Map

Figure 3.12: Orientations and frequencies of the ridgesfoigerprint image.
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3.12 shows the orientation and frequency images were cadam the pre-aligned con-
tinuous component of a fingerprint using the technique dwsdin [78]. Then, Yager and
Amin’s [83] approach is used to compute the compatibilityasige. To compute the com-
patibility between two fingerprint images, their orientatifields and frequency maps are
first estimated (see below). Then, the compatibility measubetween them is computed
as the weighted sum of the normalized orientations and &ecy differencesQO D and
F D, respectively:

C=1-(a.0OD+~.FD), (3.9)

wherea and~ are weights that are determined empirically. Figure 3.X8wshexamples
of mixed fingerprints after utilizing the compatibility maare to select the fingerprints
pairs, (1, F»). Perfect compatibility@ = 1) is likely to occur when the two prints to be
mixed are from the same or the look-alike finger - a scenaabignot applicable in the
proposed application. On the other hand, two fingerprintsnigasignificantly different
ridge structures are unlikely to be compatibteé € 0) and will generate an unrealistic
looking fingerprint. Between these two extremes (see FigLré), lies a range of possible
compatible values that is acceptable. However, determithis range automatically may
be difficult.

F, F, Mixed Fingerprint

Figure 3.13: Examples of mixed fingerprints that appear teiseally realistic.
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Compaipy;
€asure (C)

Figure 3.14: Examples of a fingerprint image and its compayilmeasure with other images.

Orientation Field Difference (OD)

The difference in orientation fields betwegnand F; is computed as

1

(z,y)eS

whereS is a set of coordinates within the overlapped area of th@atigcontinuous com-
ponents of two different fingerprints, adgl and 6, represent the orientation fields of the
two fingerprints. If orientations are restricted to the mhgr /2, /2], the operatod(.) is
written as
T—(a—7), fL<a—rvy
d(o,7) = 1 Ja =], if —T<a-—y<™ (3.11)

T4+ (a—7), fa—y< -7,

Frequency Map Difference (D)

Local ridge frequencies are the inverse of the averageraistaetween ridges in the local
area in a direction perpendicular to the local orientatldong et al.’s approach [78] is used

to find the local ridge frequencies of the continuous compbaoga fingerprint image. The



Asem A. Othman Chapter 3. Mixing Fingerprints 43

difference function is computed as :

1
o= (1) X 1Frenton) - Frem(o)l (3.12)
(z,y)eS

whereS is a set of coordinates within the overlapped area,and;; and F'req, represent

the frequency maps of the two fingerpridtsand F5, respectively.

3.3 Experiments and Discussion

The performance of the proposed fingerprints mixing apgroeas tested using two dif-
ferent datasets. The first dataset was taken from the Wegin\arUniversity (WVU)
multimodal biometric database [84]. A subset of 1000 imag®esesponding to 500 fin-
gers (two impressions per finger) was used. The second tatase¢he FVC2002 DB2
fingerprint database containing 110 fingers with 8 impressjger finger (a total of 880
fingerprints). The VeriFinger SDK was used to generate tlmabzed fingerprint images
and the matching scores. Also, an open source Matlab impittien [85] based on Hong
et al.’s approach [78] was used to compute the orientati@hfeeguency images of the
fingerprints. In order to establish the baseline perforreafar each finger in each dataset,
an impression was used as a probe image and another impressadded to the gallery.
This resulted in a rank-1 accuracy €f100% for the WVU dataset and 100% for the
FVC2002 dataset. The EERSs for these two datasets were 0.8%.2%, respectively. In
the following subsections, two set of experiments are dised. These experiments in-
vestigate if the new approach for image level fusion can beed to (a) generate a new
identity by mixing two distinct fingerprints and (b) de-idéy a fingerprint by mixing it
with another fingerprint. Although they have some commoreexpent routines, the used

dataset and the objectives are different.

Computational time We evaluated the time complexity of the approach ugihglab®-
2013a on a PC witlintel® i7 CPU @2.8GHz and 8GB memory. As shown in Figure 3.1,
there are three main steps for mixing fingerprints: Decomntipos Alignment, and Mixing.

Table 3.1 shows the elapsed time of each step.
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3.3.1 Generating Joint Identities

The purpose of the following set of experiments was to reff@tmatching performance
of mixing images of two different fingers pertaining to twdfelient individuals from the
WVU dataset to generate joint identities.Therefore, tHeWng experiments were de-
signed in order to address the following questions:

1. What impact does mixing fingerprints have on the matcheropmance, i.e., can two
mixed impressions pertaining to the same new identity beessfully matched?

2. Are the original fingerprints and the mixed fingerprintretated? It is essential to assure
that the proposed approach generates a new fingerprinstdasimilar from the original
fingerprints

3. How many virtual identities can be generated from a fixedeiprint dataset with an
acceptable recognition rate?

For each finger in the WVU dataset, one impression was usdteggdbe image and the
other was added to the gallery resulting in a probe’sahd a gallery set’ each containing

150 fingerprints.

— Experiment A-1: In this experiment, the performance of generating new itdesat
by mixing random pairs of fingers is reported. Pairs of fingetp in P wereran-
domlypaired and mixed resulting in a new probe 3&f""" consisting of 250 finger-
prints. The corresponding pairs of fingerprintsGrwere also mixed resulting in a
new gallery set\V/ F'¢ consisting of 250 impressions. Since, mixing is an asymmet-
ric process (Equation (3.8)), another probe&et)” and gallery sefi/ I were also
generated. Matching imagesiiF[” against those in/ F¢ and M F” againstM F¢
resulted in a rank-1 accuracy ef 68% and an EER of 15%. The low identifi-

Table 3.1: Elapsed time of mixing two fingerprint images asghin Figure 3.1

Task Time (seconds)
Decomposition 10
Alignment 4
Mixing 0.001

Total 14.001
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cation rate is due to the random pairing of fingers which leadgually unrealistic

fingerprint images (see Figure 3.11).

— Experiment A-2: The purpose of this experiment is to enhance the identibcatte
of Experiment A-1 by mixing fingers based on the compatipititeasure. Therefore,
the compatibility measures between different pairs of fipgets in P were computed
using Equation (3.9) witlx = 0.7 and~y = 0.3. The finger pairs to be mixed were
selected based on this measure. Pairs were selected and imidecreasing order
of their compatibility measures resulting in probe skt$” and M F, and gallery
setsM F¢ and M FS. Figure 3.15 shows examples of the mixed fingerprints froen th
WVU dataset. Matching images M F” against those id/ F'¢ and images in\/ F.Y
against those if/ F" resulted in a rank-1 accuracy ef85% and an EER of 6%.
As shown in Figures 3.11, 3.13, afi@, the compatibility measure assists the mixing
approach in generating visually appealing mixed fingetpnmith less false minutia

in the overlapping area.

— Experiment A-3: It is essential to assure that the new identities are ditasirftom
the original fingers. Therefore, in this experimenmtf” and M Y, generated in Ex-
periment A-2, are matched againgt and i’ in P (as in Experiment A-2[°F and
F} are paired and mixed based on the compatibility measurds)ai” and M F
are the resulting mixed fingerprints).

a. MatchingM P (M FF) againstF}” (FF) resulted in rank-1 accuracy ef 52%
and EER of~ 25%.

b. MatchingM F'F (M FF) againstry)” (F') resulted in rank-1 accuracy ef 38%
and EER of~ 46%.

The poor matching performance indicates that the origimalefiprints are different
from newly generated mixed fingerprints. In other words,dhginal identity can-
not be easily deduced from the mixed image and the new mixgérmint may be
viewed as a cancelable fingerprint. However, in matchingace “a”, the reduction
in the dissimilarity between original and mixed fingerpsirg becausé/ F'” (M F))
and F’ (F}) have the same minutia locations as shown in Figure 3.1 andtion
(3.8). This commonality of minutia locations leads to highitarity scores between

original and virtual identities. Ridge features, e.g.gedength and ridge curvature,
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Figure 3.15: Examples of mixing fingerprint pairs from the W¥dataset.
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can be used along with conventional minutia features toess$othe commonality of

minutia locations betweei/ ' (M F]) and P (FY).

— Experiment A-4: In this experiment, the possibility of utilizing the progasap-
proach to mix the prints from the two fingers of a subject tatze single new fin-
gerprintis investigated. The new identity is a result ofriggmages of the thumb and
the index fingers of a single individual. For this experiméhé data corresponding
to both the left thumb and left index finger of 150 subjectsrfrine WVU database
were used. There were two impressions available for eackrfirgach left thumb
impression was mixed with the corresponding left index firgsulting in two mixed
fingerprint impressions for each subject. One of these mixg@dessions was used as
a probe and the other was added to the gallery set. The obtank-1 accuracy was
~ 81% and the EER was 9% suggesting the possibility of designing a new multi-
finger authentication scheme for access control. Here, t@dymixed impression

needs to be stored in the database (as opposed to images/afuatifingers).

— Experiment A-5: Mixing fingerprints generates new fused fingerprints, imew
identities. Therefore, in this experiment, we investidatiee possibility of gener-
ating different-sized databases of virtual identities.xidg all possible pairs from
150 subject from the probe seP) will result in (2°) = 11,175 different virtual
identities pairs. In this experiment, fingerprints pairghe probe set are sorted based
on the compatibility metric values. Then, théfingerprint pairs with highest com-
patibility values inP were mixed and so were their corresponding impressionsin th
gallery set (). Table 3.2 reports the rank-1, rank-5 accuracies and theskf the
virtual identity datasets created with different values\ofThese results confirm the
possibility of generating virtual identities by mixing fiegprints; however, there is
a trade-off between database size and the identificatiomracg. This trade-off is
because mixing several pairs from the same probeé’sedn lead to the generation
of several identities sharing a common fingerprifit)( Assume two fingerprint pairs
(F,, Fy) and (F,, F.) whereF, # F,.. Combining the spiral components(v), of
the common fingerprintA(,), with the continuous componentsss(¢.), of I, andF,

generates two mixed fingerprint$ F,, andM F,., respectivelyM F,, andM F,. are

{Generating and matching all the 11,175 virtual identitesuited in an EER of 17%
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likely to share some common minutiae locations. This leadsgh impostor match-
ing scores between two different virtual identities, capsantly resulting in high false
acceptance rate and low identification accuracy.

Table 3.2: The Rank-1, -5 accuracies and EER of the virtuaitity databases
Size of the databaséV) Rank-1 (%) Rank-5(%) EER (%)

50 88 95 4
100 85 97 5
200 84 95 5
800 68 82 8

1000 56 81 10

3.3.2 Generating Cancelable ldentities

De-identifying fingerprint image is necessary to mitigad@@erns related to data sharing
and data misuse [19] and this is possible by transforminggfiprint image into a new one
using a set of application-specific transformation funtdiocsuch that the original identity
cannot be easily deduced from the transformed. A fingerphentis transformed in this
way is referred to as a cancelable fingerprint since it carcaeceled” by merely changing
the transformation function [29] [30]. The purpose of théda@ing experiments was to
investigate if the proposed approach can be used to obdeermformation present in
a component fingerprint image by generating a cancelablplégenprior to storing it in

a central database. Therefore, fingerprints from FVC 20B2-Wwere de-identified by

mixing them with fingerprints from the WVU dataset.

With regards to mixing fingerprints for de-identificationetfollowing key issues are raised
[86][87][88][27][89][28]:

1. Performance: What impact does mixing fingerprints havihematching performance,
i.e., can two mixed impressions pertaining to the same iyeloé successfully matched?
(see Experiment B-1)

2. Changeability: Are the original fingerprint and the mixfederprint correlated? It is

essential to assure that the proposed approach preventgydmking, by preventing the

possibility of successfully matching the original printlvithe mixed print (see Experiment
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B-2).

3. Non-invertibility: Can an adversary create a physicalaf the original fingerprint
from a compromised mixed fingerprint? It must be computatignnfeasible to obtain the
original fingerprint features, i.e., the locations and wi@ions of fingerprint minutia from
the mixed fingerprint (see Experiment B-3).

4. Cancelability: Does mixing result in cancelable temgd&t In case a stored fingerprint
is compromised, a new mixed fingerprint can be generated kngithe original with a
new fingerprint. The new mixed fingerprint and the compronhisexed image must be
sufficiently different, even though they are derived frora game finger. Another way of
looking at this is as follows: if two different fingerprintg; and F3, are mixed with the
same fingerprint,,, are the resulting mixed fingerprintd/; and M5, similar? From the
perspective of security, they shouldt be similar (see Experiments B-4 and B-5).
Therefore, the following experiments were designed touatal the security strength and

the usability of our proposed approach for generating dabtefingerprints.

— Experiment B-1: The purpose of this experiment was to report the matching per
formance of de-identifying fingerprints from FVC 2002-DBg tmixing them with
fingerprints from the WVU dataset. For each fingerprint in FR@D2-DB2 noted by
F7, its compatibility measure with each fingerprint in the WVakaket (300 images
of 150 subjects) was computed using Equation (3.9) with 0.6 andy = 0.4. Based
on the computed compatibility measures, the spiral compiooieF; was combined
with the continuous component of the most compatible fingergmage F; in the
WVU dataset, resulting in the mixed fingerpribf ;. Figure 3.16 shows examples
of mixed fingerprints. Because there are 2 impressions pgerfim FVC2002-DB2,
the mixing process resulted in 2 impressions per mixed fingee of these mixed
impressions was used as probe images and the other was adtexdallery set.
The obtained rank-1 accuracy was83% and the EER was 7%. This indicates
the possibility of matching mixed fingerprints. Tables 32l 8.4 show the recog-
nition performance of mixing fingerprint along with differecancelable techniques
and cryptosystems schemes, respectively. These appsohatie been reported be-
cause they stated their experimental results of protettiedingerprint templates of
FVC2002-DB2.
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Note that the template protection schemes such as biot¢g@hand the cryptosys-
tems schemes [91] [92] are verification systems which combiometric informa-
tion with another assigned secret. Therefore, these schkawe better performance
because the user is required to carry (e.g., a token) or réere(a.g., a password)
another authenticator in addition to his biometrics.

Table 3.3: Recognition performance of mixing fingerprintsl adther cancelable biometrics
approaches

Cacelable biometrics techniques EER(%)

Surface folding transformation [86] 12
Biotokens [90] 0.08
Biophasor [93] 5

Mixing Fingerprints 7

Table 3.4: Recognition performance of mixing fingerprims aryptosystems schemes
Cryptosystems schemesF RRQF AR ~ 0.01%(%)

Fuzzy Vault [91] 5
Fuzzy Commitment [92] 12.6
Mixing Fingerprints 14

— Experiment B-2: In this experiment, the possibility of exposing the idgnof the
FVC2002-DB2 fingerprint image by using the mixed fingerpnmages was investi-
gated. The mixed fingerprint®/ F; (2 impressions per finger) were matched against
the original images in FVC2002-DB2. The resultant rank-Guaacy was less than
30% (and the EER was more than 30%) suggesting that the afiigientity cannot

be easily deduced from the mixed image.

— Experiment B-3: In this experiment, the vulnerability of the proposed dentification
approach to brute-force attacks is discussed with respedrt-invertibility [87] if an
attacker were to access the mixed fingerpfif#;. In other words, if the mixed fin-
gerprint M F; was compromised, the probability of successfully recarcsiing the
original fingerprintF} is estimated. Based on Equation (3.8), if an attacker aesess
a mixed fingerprintV/ F; (with the knowledge that it is a mixed fingerprint) anhg,

and then decomposed F; by using the technique described in sub-section 3.2.1,
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Figure 3.16: Examples of mixing fingerprints whéreandF, are fingerprints from the FVC2000
and WVU datasets, respectively.
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the minutia locations of the original fingerprifi, characterized by the spiral com-
ponent, are compromised. Although several researchers stamwvn that the origi-
nal fingerprint image can be reconstructed from a fingerpnminutiae consisting of
their locationsaandorientations [22][21][23], there is no published work tdegcusses
the possibility to reconstruct the original fingerprint iggeonly from the minutiae lo-
cations. Therefore, the attacker must assume the orientafieach minutia to be
able to reconstruct the original fingerprint. Hencey is the tolerance determining
the acceptable deviation from the original orientatiome, phobability of assuming the

correct orientation for a given minutiae is

T

= . 3.13
180° ( )

Pe

Consequently, the probability of successfully generatingy more minutiae which

are the same as in the original fingerprint is

P = EN (N)p§(1 — )", (3.14)
k
k=n

whereN is the total number of minutiae in a fingerprint, amés the minimum num-
ber of minutiae required for authentication. Table 3.5 shtve probabilities of suc-
cessfully compromising the orientations of minutiae pgintthe original fingerprints

for different values of.. In our experiments, the average number of minutiae per fin-
gerprint, N, is 45. The low probabilities in the table indicate that idifficult to

regenerate the original fingerprint from the mixed fingerpri

Table 3.5: The probability” of generating: or more minutiae which are the same as in the
original fingerprint (V = 45 andxz = 2°)

n P
10 6.41 x 1071

12 7.2490 x 1074
26 3.5620 x 10737
45 1.1457 x 10788

— Experiment B-4: The purpose of this experiment was to investigate if the psed
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approach can be used to cancel a compromised mixed fingespdrgenerate a new
mixed fingerprint by mixing the original fingerprint with awdingerprint. To eval-
uate this, the 2 impressions of one single fingerprint in ti€F002-DB2 database
were selected. Next, this fingerprint was mixed with eachhef300 fingers in the
WVU dataset. This resulted in 500 mixed fingerprints with Dpressions per finger.
One of these impressions per mixed finger was used as a preige iamd the other
was added to the gallery set. Then, each image in the probeasetompared against
all images in the gallery set in order to determine a match. acimis deemed to
be correct (i.e., the probe is correctly identified) if thelpe image and the matched
gallery image are from the same mixed finger. In the resultxggeriments, the rank-
1 identification accuracy obtained was 85% and the EER was 8. reasonably
high identification rate suggests that the 500 mixed fingetpare different from
each other. This means, the fingerprint from the FVC2002-D&2abase can be suc-
cessfully “canceled” and converted into a new “identity’sbd on the choice of the

fingerprint selected from the WVU database for mixing.

— Experiment B-5: In this experiment, two different fingerprints from FVC20DB2,
F, and I (i.e., a single print of two different fingers from two difét identities),
were mixed with each of the 500 different fingers in the WVUsdat. This resulted in
two set of mixed fingerprints - one based Bnand the other based dry. Matching
these two sets against each other resulted in a rank-1 agoofr&% and an EER of
45%. This suggests that two different fingerprints mixechvaitcommon fingerprint
cannot be easily matched against each other. This furthdires the cancelable

aspect of the proposed approach.

3.4 Summary

In this chapter, the concept of fusing biometrics signads, mixing biometrics was used in
the context of fingerprint images. Fingerprint images areechin order to generate joint
identities. Mixing fingerprints refers to the process of g@&ting a new fingerprint image
by fusing fingerprints of two different fingers pertainingaingle individual or different

individuals. The generated mixed image incorporates ciarmatics from the original im-



Table 3.6: The Rank-1 accuracies and EERs of the experiments

Experiment Description Rank-1 accuracy (%) EER (%) The @2edDutput (see sec. 3.3)
A-1 Generating 250 identities 68 15 Low EER
m (randomly paired) High Rank-1 acc.
;g A-2 Generating 250 identities 85 6 Low EER
S (paired based on the compatibility measure) High Rank-1 acc.
i®)
= A-3 (a) Matching new identities against original 52 25 HighHRE
2 (MFP (MF])vs FP (F)) Low Rank-1 acc.
> (b) Matching new identities against original 38 46 High EER
(MFE (MFE)vs FY (FD)) Low Rank-1 acc.
A-4  Mixing two fingerprints from the same subject 81 9 Low EER
High Rank-1 acc.
.f'g’ B-1 De-identifying FVC 2002-DB2 fingerprints 83 7 Low EER
'g High Rank-1 acc.
2 B2 Mixed vs original 30 30 High EER
[<8)
= Low Rank-1 acc.
S
QB4 Mixed vs mixed 85 7 Low EER
§ (samer; and differentr?) High Rank-1 acc.
B-5 Mixed vs mixed 5 45 High EER

(different F;, and samd)

Low Rank-1 acc.
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ages, and can be used directly in the feature extraction atchmg stages of an existing
fingerprint recognition system. Also, it was demonstrateat tmixing fingerprints” can
be utilized to (a) generate a new identity by mixing two dhistifingerprints and (b) de-
identify a fingerprint by mixing it with another fingerprinto mix two fingerprints, each
fingerprint is decomposed into two components, viz., theinaous and spiral compo-
nents. After aligning the components of each fingerprirg ,dbntinuous component of one
fingerprint is combined with the spiral component of the ofiregerprint image. Experi-
ments on two fingerprint databases, that has been summarniZedble 3.6, show that (a)
the mixed fingerprint representing a new identity can paaéiptoe used for authentication,
(b) the mixed fingerprint is dissimilar from the original fexgrints used to generate it, (c)
the same fingerprint can be used in various applicationsarss-gnatching between appli-
cations can be prevented by mixing the original fingerprinb\a different fingerprint, (d)
mixing different fingerprints with the same fingerprint riésuin different identities, and (e)
the proposed method can be utilized to generate a databgsataflentities from a fixed

fingerprint dataset.

Hence, the concept of fingerprint mixing can be utilized ia tbllowing examples to en-
hance the privacy of a fingerprint recognition system.

Scenario . Consider a fingerprint system in which the left index fingek,,, of a subject
1D, is being enrolled. During enrollment, an impression of aeofinger of the subject
(say the right index fingel’R,) is mixed with F'L, resulting in a mixed prinfi/,. Next,
M is stored in the central database while the imajés and F' R, are discarded. During
authentication, the subject offers a sample of the leftirfioger, /'L, and a sample of the
right index finger,F'R.,. These two images are then mixed resulting in a new pdftIn
order to verify the subject’s identityy/! is compared withV/; in the database. Therefore,
the original fingerprint images of the left and right indexgkms are never stored in the
database.

Scenario Il: Consider a remote fingerprint database that maintains # setaof pre-
selected auxiliary fingerprints4, corresponding to multiple fingers (each fingerAnis
assumed to have multiple impressions). Suppose that subjecoffers the left index
fingerprint, F'L,, during enrollment at a local machine. At that time, the lanachine

decomposes the fingerpriftL, into two components, i.e., the spiral component and the
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continuous component. To ensure the privacy of the fingarpriage, the remote system
sends the stored fingerprints in the auxiliary set and tha loachine searches through the
received fingerprints to locate a “compatible” fingerpriasbd on the continuous compo-
nent of F'L, (see Section 3.2), say},, € A (here the subscript: denotes a specific finger
in the auxiliary set), which is then decomposed and its ooiotis component is mixed
with F'L, at the local machine. The template of the new mixed p¥iiatis enrolled in the
remote system database afd,, is discarded from the local machine. During authenti-
cation, when the subject presents a sample of the left indgeffiF'L’, it is decomposed
and its continuous component is used to search through tgerfinnts in the auxiliary
set from the remote fingerprint system to determine the numsthpatible” fingerprint, say
F,, € A. At the local machine, the spiral component/of, is mixed with the continuous
component of;, € A to generate a mixed fingerpriff., which is then compared against
the database enty/,. Figure 3.17 shows the employed protocol to protect theapyiof

a fingerprint image by mixing the input fingerprint image wathother fingerprint from a
set of pre-selected auxiliary fingerprints. The securigt@col (illustrated in Figure 3.17)
ensures that during the enrollment or the authenticationgss, the identities of the users
will not be revealed by the fingerprint system. Further, sipdvacy of the input finger-
prints is the main concern, the privacy of the stored auyikt, e.g.4, could be preserved

by storing just the continuous components of its pre-setefihgerprints.

3.4.1 Research Contribution

e Designing a new cancelability structure for fingerprint pdates.
e Generating a fingerprint image from different fingerprirdtances.

e Proposing a complete approach to decompose a fingerprigeima
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Figure 3.17: Schematic protocol to protect the privacy ongedrprint image by utilizing the
proposed approach
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Chapter 4

Mixing Faces For Generating Joint
ldentities

4.1 Introduction

In this chapter, our goal is generating a joint identity byimg two face images. Therefore,
we explore the possibility of mixing face images of differenbjects and determine how this new
mixed face image will perform during the authenticationqass. Moreover, we investigate the
possibility of generating a realistic face image that neiimg a close similarity with the original
face images. The generated joint identity and the origidahiities should reside in adjacent
identity subspacég(i.e., similar facial features and may be appearance) dvirese original
face images are associated with individuals who are diftarerace, gender and/or age.

Generating interpersonal face images by mashing celesriar family members’ faces has
received a lot of attention from digital artists to revea thsemblance or difference between two
face images (see Figure 4.1). In other cases, digital agiggage in such exercise as a challenge
to mix two different face images and create a face image twdisl familiar. Moreover, as shown
in Figure 4.2, hybrid faces [95] is another example of a facage that visually can be interpreted
as two faces. These different interpretations are basedeoway humans process visual input,
i.e., the viewing distance or image resolution. For examplgenerate a hybrid face, two face
images are summed at two different spatial scales: lowigdsaiale (filtered by a low-pass filter)
and the high-spatial scale (filtered by a high-pass filte5).[9

In this chapter, we discuss another scheme for generatingedrface image that matches

*Here, the face-space is assumed to be partitioned intoifdeagions [94].
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Figure 4.1: Examples of interpersonal faces generatedgmatiartists; (a) melding the smiles of
Barack Obama and Malcolm X (source [8]), (b) splicing fanmlgmbers’ faces (i.e., mother and
daughter) together “genetic portraits” (source [9]), atid\orphing face images of two singers
on an album cover (source [10]).

with both the component face images used to generate it.nglisi possible even if the compo-
nent face images differ in race, gender and/or age. Thefrdst chapter is organized as follows.
Section 4.2 discusses in more detail how the face morpheigitque was adopted for mixing

faces. Section 4.3 reports the experimental results anib8ekt4 summarizes the chapter.

4.2 Mixing Faces: The proposed approach

To generate an interpersonal face image, the principlea& faorphing is used. Consider
two face imaged; and F;. The morphing algorithm generates an intermediate imageish
referred to as an interpersonal face image. The generatedifeage could be anywhere along
the continuum fromF; to F3 and its position on this continuum is specified by the morghin
parameters. The parameters, described later, are usetttonde the rate of warping and color
blending. So, as the morphing proceeds along the continuum F; to 3, the first image £7)
is gradually distorted and is faded out, while the secondjan(&,) is faded in (see Figure 4.5).

Ever since Galton [96] developed the first facial compogitechnique in 1878 (which can be
considered to be the first attempt in generating an inteopaidace image), many studies have
been conducted to analyze various aspects of differentfimephing techniques [97, 98, 99, 100,
101, 102, 103]. While most of them state that the generatedparsonal face image is similar
to the original images, this assertion was only based on hymeaception. To the best of our
knowledge, there has been no systematic study showing lusg the morphed face image is to

the original face images and the possibility of using thenpersonal face image as a biometric
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(a) Face image 1 (b) Face image 2

(c) Hybrid face

Figure 4.2: A hybrid face (see (c)) constructed from lowgfrency components of face image 1
in (&) and high-frequency components of face image 2 in (b).
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indicator from the perspective of automated face recogmisiystems. As shown in Figure 4.3,
there are three distinct phases in the generation of arpersonal face image(F)) : facial

feature extraction, image warping and cross-dissolving.

Cross-
dissolving

Facial Feature Image Warping
Extraction Fi

Figure 4.3: Proposed approach for generating an interpal$ace.

4.2.1 Facial feature extraction

Morphing two face images to generate an interpersonal faege involves the nontrivial
task of locating facial features. For both face imagésand F;, the prominent facial features
are characterized by a pre-defined set of control points.h Bets of control pointsX; and
X5, associated with the two face images (see Figure 4.3), aredsin a vector format. This

representation does not include any information aboutdm@ection between them:

Xj = [1’13'7 T2j, L35y s Tnj, Y15, Y25, Y35 - - -ynj]T> (4-1)

wherej € {1,2} andn = 56 is the number of control points. Since extracting contrahfso
automatically [62] is not the focus of this work, a pre-aratetl face image database was used

(see Section 4.3).

4.2.2 Image warping

Once the corresponding control points between the two faegeés are known, the next step

is to perform image warping by mapping each facial featurg. (enouth, nose and eyes) in the
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individual face images to its corresponding feature in titerpersonal image. A triangulation-
based warping scheme is used to deform the face images [E04}, the intermediate control
points set (which defines the shape of the facial featurekeoiriterpersonal face image) is de-
termined. From the control point set§ and X, of the face image$’ and F;, respectively, the

intermediate control point sek{,) is linearly interpolated as follows:
Xm:(l—Oé)'X1+Oé'X2, (42)

wherea € [0, 1] is thewarping factor that determines how the individual shapes of the two face
images are integrated into the shape of the interpersocal fa

Next, the face region of each face image is dissected intdabdeiset of triangles by utilizing
corresponding control points as the vertices of the triesiglGenerating an optimal triangulation
has to be guaranteed in order to avoid skinny triangles aedgtore, Delaunay triangulation was
utilized to construct a triangular mesh for each face im@&geexample of face images tessellated
into triangular regions according to the annotated comtoahts is shown in Figure 4.3.

Finally, the affine transformation that relates each tridagregion in the original face im-
age () or F,) to the corresponding triangle region in the intermediat@de is computed.
Suppose thaty = [Py, P, BT (T, = [Ry, R, R3]") is a triangular region inX; (X,) and
T,, = [Q1,Q2, Q3] is the corresponding triangular regionif, (see Figure 4.4)4, (4,) is the

affine transformation that maps all pointsiin(7:) onto7,,,.

T = AT, (4.3)

wherej € {1, 2} and the affine transformatiot; =
az ag iy

ap das t1]

Together,T’s (15's) vertices andl;,,’s vertices are used in equation (4.3) to compute the
parameters of the affine transformatidn (A,) (i.e.,aq, as, as, a4, t1, t2).

As shown in Figure 4.3, this results in two warped face imageand F;, such thatF] and

F3 have similar shapes.
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Figure 4.4: An illustration for the corresponding triargjlgetween the faces’ shapes and inter-
personal face’s shape.

4.2.3 Image cross-dissolving

The final step to obtain the interpersonal face image of tlreefage imaged’ and F;, is
simply a cross-dissolving process of the two warped imalfes. and F, are the warped images,

the mixed face image is obtained by linearly interpolatimgjit pixel intensities, such that
MF=(1-p)-F +p3-Fy, (4.4)

wheref € [0, 1] is thecolor-dissolving factor that determines the relative influence of the ap-
pearance of the two face images on the interpersonal faggeind .
Figure 4.5 shows different examples of interpersonal fatages along the continuum from

F} to F, by varying the warping factor() and the cross-dissolving factar)(

4.3 Experiments and Discussion

The performance of the proposed approach to generate maed fvas tested using the
XM2VTS database. This database was used since the facaéhkks (control points) of in-
dividual images were manually annotated and availablenenliThe XM2VTS frontal image
database [105] consists of 8 frontal face images each of @bfeds. For each subject, four
samples were used as the probe image and the remaining foplesawere added to the gallery
resulting in a probe sdf and gallery setG each containing 1180 face images. In the following

experiments, the match scores were generated using tHedke8DK. In order to establish the
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Figure 4.5: Interpersonal face images along the continuom ¥} to F; at different position
wherea = = (a) 0.2, (b) 0.3, (c) 0.4, (d) 0.5, (e) 0.6, (f) 0.7 and (g) 0.8.

baseline performance, the imagesinvere matched against those(n This resulted in a rank-1
accuracy of 98% and an Equal Error Rate (EER) of 5%. To gem#énatinterpersonal face image
from two face imageg and F;, the morphing technique described earlier was utilizedtaed
generated face image can be anywhere along the continummArdo F;. But where on this
continuous continuum should the interpersonal face image b

The position of the interpersonal face on this continuunpecgied by the morphing parame-
ters, i.e..v andg. Although the two parameters can be different, the besityualinterpersonal
face images along this continuum is observed to be obtaifeshw&ssigning the same value to
the two factors.

In this chapter, our objective is to generate an interpatistate image that is unique and
also has an identity subspace close to the identity subspd@®mponent face images;(and
F). Therefore, the similarity between the interpersonat facages {/ F’) that are generated for
different values of morphing parametensgnd/) and the component face images was examined.

Face images of two different identities in wererandomlypaired. Different interpersonal
face images were generated by morphing the two face imagescbfpair with 7 different values
of « andp (« = 5 = {0.2,0.3,0.4,0.5,0.6,0.7,0.8}). This resulted in 7 probe sets and each
probe set consisted of 588 face images (i.e., 147 jointitlentvith 4 samples for each identity).
The corresponding pairs of face imagesirwere also mixed with the corresponding values of
« and g resulting in 7 gallery sets and each gallery set consistet4@fjoint identities (each

identity has 4 face image samples).
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Figure 4.6 shows the ROC curves of matching the interpet$ac@images against the cor-
responding component imagé$ and F;, respectively. Based on these curves, and in order to
ensure that the interpersonal face image is influenced tsaime degree by the two component,

a andg( were selected to be 0.5 in the following experiments.

" [a=p=0.9

. ~va=p=0.3
g ~, +a=p=0.4
2 \‘ -a=B=0.5
S g 0"
< RS *0a=p=0.§
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(b)

Figure 4.6: ROC curves of matching interpersonal face irmggenerated with different values
of v and3) against the corresponding original imagesKapnd (b)F5.

Computational time We evaluated the time complexity of the approach uginglab®-2013a
on a PC with/ntel® i7 CPU @2.8GHz and 8GB memory. The elapsed time of mixing &ee f

images is 2 seconds.

4.3.1 Experimental design

In the following subsections, different experiments argcdssed. These experiments were
designed in order to address the following questions:
1. Can two interpersonal faces pertaining to the same jdenttity be successfully matched?
2. Are the original faces and the interpersonal face imagasi? In this work, note that our
objective is to generate a joint identity that matches wiadthicomponent identities.

3. If a set of face images are mixed with a common face imag®, éine the resulting joint iden-
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tities different from one another? The interpersonal fasages must be sufficiently different,
even if they share one common face. Another way of lookingiati$ as follows: if two different
face images/f; and F5, are fused with the same face imagjg, are the resulting interpersonal
face imagesM F; and M Fy, similar? From the perspective of the distinctiveness ertypof
biometrics, they shouldotbe similar.

4. Does the degree of similarity of dissimilarity betweea to original face images affect the
recognition performance of the mixed face?

5. Can mixing faces be an alternative approach to obscurenagtaphic attribute of a database

such as the gender of users enrolled in a face recognitidarss

4.3.2 Performance metrics

The notion of similarity/dissimilarity is assessed usihg match scores generated by a face
matcher. A high degree of similarity is stated to exist bemwea probe image and a gallery
image, if the similarity match score between the two imagegenerally higher than (a) the
scores between the probe image aftitergallery images, and (b) the scores between the gallery
image anddther probes. Thus, in the context of identification, a higher rardccuracy would
imply a higher similarity; in the context of verification, awer Equal Error Rate (EER) would
imply higher similarity. So we use rank-1 accuracy and EEBharacterize notions of similarity

and dissimilarity.

4.3.3 Experiment 1. Matching two interpersonal face images

In this experiment, the matching performance of interpeastace images generated by mix-
ing random pairs of faces is reported. The process of mixanglom pairs of face images
to generateM/ F'*’ and then mixing the corresponding pairsGnto generateM/ F'“ is repeated
20 times. This resulted in twenty differeif F'*’ sets and their correspondidgF“ sets. When
matching eactd/ F'¥ set against the correspondingF’“ set, the average of the resultant rank-1
accuracies was 95% and the average of the EERs wa8%. The reasonably good recognition
rates suggest that the interpersonal face images can basiggometric indicators for the joint

identities. Figure 4.7 shows examples of mixing pairs oéfewages.
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Figure 4.7: Examples of interpersonal face images. Theseifaages are generated by mixing
face images that are different in terms of gender (as inf@j¥ (as in (a) and (b)), and/or age (as

in (c)).

4.3.4 Experiment 2: Similarity to the original face images

In this experiment, the similarity between the interpesddace image and the component
face images was evaluated. Recall that the objective ofuhiik is to generate a mixed face image
that is sufficiently similar to both component faces. Theref the interpersonal face images
generated in Experiment 1 were matched against the origoraponent images in gallery set
G. Here, a genuine score is generated when the interpersm®irhage is matched with either
of the component face images (the rest are impostor scofiés).average of resultant rank-1
accuracies was 95% (and the average of EERs was 9%). Theses igsow some evidence
that the original face images are similar to the interpessonage. The similarity between the
mixed and original faces can be further enhanced by exgaiternate algorithms for mixing

the different face images.

4.3.5 Experiment 3: Mixing with a common face image

The purpose of this experiment was to investigate if mixuag tlifferent face imagegs;; and
Fy, with a common face imagg,,, results in interpersonal face image&F; and M F; that are
sufficiently dissimilar from each other.

For example, the 8 samples Bf, is mixed with the 8 samples df; (i.e., the first face image
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of remaining face images after selectifg), and the resulted mixed samples (8 samples) are
pertaining to the first joint identity;. Then, 4 Samples of, are added td/ F'* and the other

4 are added td/F“. Similarly, if samples of the face imagg, is mixed with the 8 samples

of F; (i.e., the second face image of remaining face images) adceulted mixed samples (8
samples) are pertaining to the first joint identiky Then, 4 Samples of, are added ta\/ F'”

and the other 4 are added6F“. Hence, 16 genuine scores will be generated by matching the
4 samples of/; in M F¥ against the other 4 samples .6f in M F“. Meanwhile, 16 impostor
scores will be generated by matching the 4 samplek of M ¥ against the 4 samples df in
MF€,

To achieve the goal of this work, the interpersonal face iesagust be sufficiently different,
even if they share one common face.

To evaluate this, a face imagé;() in the probe sef’ was arbitrarily selected and mixed
with the remaining face images in that set to generate thad/det. The same pairs of images
were mixed in the gallery sef resulting in)M F¢. Each set now has 1176 interpersonal face
images for 294 joint identities (i.e., 4 samples for eachtjaentity). This selection and mixing
process is done 20 times, each time selecting a differeaifaage ag",,. This resulted in twenty
different M F” sets and their correspondidg F“ sets. When matching eadd F'** set against
the corresponding/ F¢ set, the average of the resultant rank-1 accuraciesw@5% and the
average of the EERs was 10%. These numbers suggest that the the interpersonalnfeces
are sufficiently different, even though they share a comnwnpgonent face image. However, it

must be noted that the distinctiveness has decreased cediodExperiment 2.

4.3.6 Experiment 4: Mixing look-alike face images

The purpose of this experiment is to investigate the efféchiging look-alike face images
[106]. The purpose here is to determine if the similarityqissimilarity) between the face images
to be mixed has any impact on the distinctiveness of the tieguhterpersonal face image. The
matching scores are used as a metric to select pairs of fagesrthat look alike.

Experiment 4a: F'1 and F'2 look alike
To mix look-alike faces, pairs whose matching score is mboam tan empirical threshold (1/10
* highest impostor score) were selected and mixed restitirgprobe sef\/ Il and a gallery

set MFY. Each set consists of 588 face images (i.e., 147 joint ilestiith 4 samples for
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each identity) - this number can be changed by altering theiresal threshold. Figure 4.8
shows examples of the generated face images. MatcHiRg againstM/ F¢ resulted in a rank-
1 accuracy ofv 95% and an EER of 8%.

Meanwhile, matchind/ F'“ against the component face images (as in Experiment 2 bet her
the components are look-alike faces) resulted in an averagak-1 accuracies of 8% and an

average of EERs of 94%.

Figure 4.8: Examples of interpersonal face images gertelatenixing pairs of look-alike face
images based on the matching scores.
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Experiment 4b: F'1 and F'2 do not look alike
To generate mixed face images from pairs of face images varelklissimilar (i.e., do not look-
alike), pairs whose matching scores equal zero were sdlacig mixed resulting in a probe set
MF} and a gallery sef/ . Each set consists of 588 interpersonal face images. Mugchi
M F} againstM F{' resulted in a rank-1 accuracy f95% and an EER of 9%.

Matching M " against the component face images (as in Experiment 2 batthercom-
ponents are not look-alike faces) resulted in an averagar#-t accuracies of 80% and an
average of EERs of 15%.

Upon comparing the results of Experiments 4a and 4b withékalts of Experiment 1, we
observe that there is no big difference in the identificatioouracy and the verification accuracy.
These results demonstrate that the degree of similaritiseirdilarity between the face images to
be mixed has almost no influence on the recognition perfoceahthe generated joint identities.

Nonetheless, the influence is noticeable when the simjlbetween component face images
and the mixed faces was tested. The mixed faces are morastmtheir components if they are
look-alike faces than if they are dissimilar. Note that,histexperiment, the components have
been assigned based on the matching score. This may not batke of real scenarios which
have been examined in Experiment 2 by mixing random paira fidace database.

Results of the 4 experiments are summarized in Table 4.1.

4.4 Summary

In this chapter, it was demonstrated that the concept of ifrgixaces” can be utilized to
generate a joint identity. To mix two face images, a face mimgp technique was adopted in
this work. The mixed face image lies in the continuum betwientwo component faces and
its position on this continuum is specified by the mixing paeters. We also investigated the
possibility of generating a mixed face image when the two ponent images are different in
terms of race, gender and/or age (see Figure 4.7). Furtleedetermined if the similarity (or
dissimilarity) between the face images to be mixed has arpaghon the distinctiveness of
the resulting interpersonal face image. Experiments orXM@VTS dataset, which have been
summarized in Table 4.1, indicate that (a) the mixed facgenapresenting a new joint identity

can potentially be used as a biometric indicator, (b) thesohiface exhibits similarity with both



Table 4.1: Results of the experiments

Experiment Description Rank-1 accuracy(%) EER (%) Implication
1 Matching two interpersonal 95 8 Mixed faces can be
face images used as biometric identifiers
2 Similarity to the original 95 9 The mixed face exhibits dimity
face images to both the component faces
3 Mixing with a common 85 10 The mixed faces are reasonabfgreift,
face image even if they share a common face image
4 (a) F1 and I, look alike 95 8 The degree of similarity between
the original face images to be mixed
(b) 7 and F; do not look alike 95 9 has almost no influence on

the recognition performance
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the component faces, and (c) the mixing process is not unishydgcted by differences in gender,

race, age and similarity between component images.

4.4.1 Research Contribution

e Defining the concept of digital joint identity through faceages.

e Generating a face image from different face instances.



73

Chapter 5

Mixing Irises For Generating Joint
ldentities

5.1 Introduction

In this chapter, our goal is to generate a joint identity bying two iris images acquired from
two differenteyes. We investigate the possibility of mixing irises inertb generate a realistic
iris image that maintains a close similarity with the orglisomponents. In the following, some

of the applications of the proposed approach are discussed.

e Generating Joint Identities: Mixing irises can be utilized to generate a new iris image
by fusing two different iris images acquired from two di#éet eyes. In the context of
iris, image level fusion approaches have been developeshtbine different video frames
of the same iris instance to improve the iris recognitionfgrenance [49] [50]. Also,
fusing irises has been proposed in Zuo et al.’'s work to datifyenormalized iris images
[51]. They proposed a de-identifying function which addsyatketic iris image to the
original iris image. In this chapter, a new approach to fuseimages is introduced by
mixing iris images. The objective of this work is to generatenixed iris image that is
sufficiently similar to both component iris. Therefore, thixed iris image can be used for

authentication of individuals who share a joint bank ac¢oun

e Multi-eye Authentication System: Patterns of the left iris of an individual are assumed to
be different from those of right iris in the context of iriscognition systems [107][108].

Therefore, during the enrollment phase of an iris-baseleautication system, the oper-
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ator/usemustindicate the iris from which eye is enrolled. Then, duringagnition, the
system must capture the iris from the same eye image so tiaat lie successfully matched
with the corresponding one in the database. In many deployseenarios, itis easy for the
operator/user to mislabel the eyes. Mislabeling in thi® cas lead to a drop in the match-
ing performance as the captured iris image during the ratognvill not be matched with
the stored one in the database. In response to this problassifeers to determine whether
an eye image is a left or right eye have been developed totdetecs in the labeled data.
One initial approach for differentiating between left aight eyes uses the locations of the
pupil center and the iris center [109]. The pupil is oftenali@el on the nasal side of iris
rather than being directly concentric with it. Abiantun e®avvides [110] evaluated five
different methods for detecting the tear duct in an iris imagorder to classify eye images
as being left or right: (1) Adaboost algorithm with Haardifeatures, (2) Adaboost with
a mix of Haar-like and Gabor features, (3) support vectorhires, (4) linear discrimi-
nant analysis, and (5) principal component analysis. Aerattudy [111] used active shape
models (ASMs) to determine the shape of the eye and predietheghan eye is a right or
left eye.

Mixing irises can be considered as an alternative methotewaiate this problem by mix-
ing the left and right irises during the enrollment phase siiding the mixed iris image.
During the recognition phase, the stored mixed iris will chatorrectly with the captured
probe iris irrespective of it being the left or right iris ig@or even the mixed iris image
from both eyes. Therefore, the concept of mixing irises camtilized in a multi-eye au-
thentication system where the irises from the left and thketreyes of a single individual,
or left irises of two different individuals are mixed to geate a new iris image. This has

benefits in terms of performance by avoiding the enrollmentre

The mixing process (see Figure 5.1) begins by segmentsgagions for two acquired eyes
and normalizing these segmented regions. Next, the oppmels from the two iris images are
copied on to a mixed iris image where the optimality is defimeterms of importance of each
pixel in the iris image. The selected pixels should be coteteim such a way that will capture
the dominant features of the irises’ texture. These pixeldctbe in a single row in the form of
a horizontal bar. However, simply copying horizontal bagsras restrictive and places a hard

constraint on the location of optimal pixels. Hence, copymorizontal seams is proposed. A
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seam is a horizontal 8-connected path that contains onlypow per column of the optimal
pixels. Extracting seams based on the concept of importawagehas been proposed in [112] for

content-aware resizing of images and is also known as seannga

By — e - SR -

Finding Optimal Seams

Figure 5.1: Proposed approach for mixing irises.

The rest of the chapter is organized as follows. Section Ee&qmts the proposed approach
for mixing irises. Section 5.3 reports the experimentalitssand Section 5.4 summarizes the

chapter.

5.2 Mixing Irises: The proposed approach

Our approach to mix irises from two different eyes involvepying the most important
connected pixels, i.e., seams, from the normalized irig@santo a new mixed iris image. The
importance of a pixel is defined by an importance map thatees the importance of each pixel

based on its contrast with its neighbors. Seams can be &#hiiral or horizontal. A horizontal
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seam is a path of pixels connected from left to right in an ienagh one pixel in each column. A
vertical seam is similar with the exception of the connetbeing from top to bottom with one

pixel in each row. Here is an outline of the proposed approachix two iris images:

=

. Generating normalized iris images

2. Constructing importance maps

w

. Finding the optimal seams

N

. Copying seams

5.2.1 Generating normalized iris images

Given two iris image, the irises have to be localized andatsal from the sclera, pupil, eye-
lids and eyelashes and this can be done by using a segmeraigarithm. In this chapter, we
used an approach that utilizes geodesic active contou8} {@ segment the annular region of an
iris image. During the segmentation, a noise mask is gesetatrecord the locations of eyelids
and eyelashes that may be occluding the true iris regionblgang pixels from iris regions to
copy them into a mixed iris image is computationally expeasind requires repeated Cartesian-
to-Polar coordinates conversions. Therefore, both theneated irises and corresponding noise
masks are unwrapped into rectangular regions using Daugnudber sheet model [70]. This
allows the mixing irises approach to address pixels in sempWs and columns format. For a
detailed description and review of various eye localizgtios segmentation, and iris unwrap-
ping techniques, see [66], [114], [64] and [65]. Figure Shawes an example of an eye and its

normalized iris and noise mask images.

5.2.2 Constructing importance maps

The next step in mixing irises is locating the important jBxa the original normalized iris
images in order to copy them into the mixed image. This is dpnassigning a value to every
pixel in the normalized iris image, where higher values migigher importance. In this work,
every pixel in a normalized iris imagewill have an corresponding value in the importance map

I M, which will be the absolute sum of both gradient componettisad pixel.
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Figure 5.2: Iris segmentation and normalization (a) An eyage. (b) The normalized iris image.
(c) The estimated noise mask.

or, oI
[M—]%]Jr]a—y. (5.1)

Figure 5.3 visualizes the importance map for the normaligedmage in Figure 5.2. This
also shows that using thie, norm (see Equation 5.1) for computing the importance thap
highlighted the edges in the normalized iris texture, tlee, pixels along the edges have higher

importance.

Figure 5.3: Estimated importance map\() of the normalized iris image in Figure 5.2.

5.2.3 Finding the optimal seams

Mixing irises is done by repeatedly determining seams vhthrhaximal importance from

two normalized iris images and copying them into the new nhixes image. Therefore, once
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the importance map is calculated, the next step is to find pienal horizontal or vertical seam
in normalized iris image/. A horizontal (or a vertical) seam), (s,) is an 8-connected path of
pixels that runs from the left (top) of the image to the righgttom) with one pixelin each column
(row). The 8-connected property means that for each pixeingd the backtracing process, only
its 8 adjacent neighbors are considered. Based on this ti@fiof a seam and given thdtis

a normalized iris image of size x m, wheren is the number of rows anah is the number of

columns, a horizontal seam is defined as [112]:

sn={(n(4),4)}7L1, 8:2.¥5, [Sh(F) — Su(i — D) < 1, (5.2)

wheresS), is a mapping function of, andS,(j) = 1,...,n. Similarly, a vertical seam is defined

by its mapping functiord, as:
sy = {(1,8,(2)) } iy, s.t.Vi, [S, (i) — Sy (1 — 1) < 1, (5.3)

whereS, (i) = 1,...,m.
The importance of a seasis defined as the sum of the associated importance valuesat pi
lying on that seam in the importance map. Hence, given th@itapce mag M, an optimal

horizontal seam; is the seam with a mapping functiof) that maximizes its importance.
sp=max > IM(Si(5), j) (5.4)
j=1

To find horizontal or vertical optimal seams in order to capgrh into the mixed iris images,
the dynamic programming concept is utilized and maximum wative importance maps are
created [112]. The maximum cumulative importance maps habe created separately for the
horizontal (Figure 5.4 - a) and vertical (Figure 5.4 - b) seamd backtracking is done on these.

For example, to locate the optimal horizontal seam, thezbatal cumulative importance
mapC M}, is computed. The first column in the importance nidp is copied to the first column
in C'M;, and then,

CMy(i,5) = IM(i,5)+

(5.5)
maz{IM(i —1,j — 1), IM(i,j —1),IM(i+1,j — 1)}.
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(b)

Figure 5.4: Cumulative importance maps (a) The horizonth i’ M/,,). (b) The vertical map
(CM,).

The optimal horizontal seam is determined by simply backtgaonC M, the maximum entry.

Figure 5.5 shows an example of a traced optimal seam on a fipech&is.

Figure 5.5: The traced optimal horizontal seam on the nomedliris image in Figure 5.2.

5.2.4 Copying seams

Let /; and ], be the two normalized iris images of sizex m from two different eye im-
ages.I M, and M, are their importance maps, respectively. The followingstare invoked to

generate a mixed iris imag¥d / by copying horizontal seams frofm and/,:
1. MI = MI;nitial (M I;nitial is an initial image).
2. Find the optimal horizontal seasy, in I;.

3. Copy the pixels that make up, into M [ in the same location as they arelin

MI(s1,) = Li(si)-
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4. Replace the pixels at, in I; andM; with black pixels.
L(s7,) = 0, IMi(s7,) = 0.

5. Replace the pixels iy, and I M, that are in the same location as the pixelsgtwith

black pixels.
I(s3,) = 0, IMy(s,) = 0.

6. Find the optimal horizontal seas, in I,.

7. Copy the pixels that make uf), into M [ in the same location as they arelin
MI(s3),) = I(s3)-
8. Replace the pixels at, in I, and/ M, with black pixels.
Iy(s3,) = 0, IMy(s3;) = 0.

9. Replace the pixels i, and /M, that are in the same location as the pixels:gtwith

black pixels.
I1(s5,) = 0, IMi(s3;,) = 0.

10. Repeat steps from 2 toBtimes.

There are some remarks the mixing steps.

e Same steps can be used to copy vertical seams from the irgegnastead of horizontal
seams. But this requires more iterations because the widtbrmalized images is much

larger than their height.

¢ If the mixed iris image was initially set to a blaeckx m image, i.e., it M I;nitial is a
black image, the mixed iris image will exhibit black backgna as shown in Figure 5.6.
Therefore, in this work, the mixed iris image is initializéal 11, i.e., M I;nitial = I,.

Figure 5.7 shows examples of mixed iris images whéhnitial = I;.

e The noise mask of the mixed iris image is the union of the twisenonasks of the two

original iris images.
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Figure 5.7: Mixed iris images from Figure 5.6 when they aigahzed as/; .

Computational time We evaluated the time complexity of the proposed approacigugatlab®-
2013a on a PC witlintel® i7 CPU @2.8GHz and 8GB memory. The elapsed time for mixing

two iris images is 3 seconds.

5.3 Experiments and Discussion

The experiments were conducted on a subset of the CASIA-t#bdse [115]. The CASIA-
v3 database consists of gray scale iris images captured uasiar infrared illumination. The
subset used in our experiments consists of the left eye isade32 users with 2 samples per user.
Theimages in this dataset were segmented and normalizegithsi algorithms proposed by Shah
and Ross [113]. An open source Matlab implementation [L&6Ed on the Daugman’s approach
[117] was used to encode and match the normalized irises p&tiermance of matching irises
is summarized using the Equal Error Rate (EER) and the raideqtification rate. For each
iris, one sample was added to a probe Beind the other sample was added to a gallerycset
each containing 182 irises. In order to establish the bas@kerformance, the images fhwere
matched against those @i This resulted in a rank-1 accuracy of 100% and an Equal Rabe
(EER) of 1.4%.

5.3.1 Maitching performance

In this experiment, the matching performance of generatinged irises from random pairs
of irises is reported. Random pairs of iris imagesirwere mixed in order to generafe 17

and then the corresponding pairsGhwere mixed to generat&//“. As the mixed iris can be
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generated by copying horizontal or vertical seams, theltseate reported for both cases below

by matchingM I set against the corresponding/“ set.

Results of mixing by copying horizontal seams

The resultant rank-1 accuracy was96% and the EER was 1.5%. The reasonably high
recognition rate indicates the possibility of mixing issand suggests that the mixed iris can be
used as a biometric indicator. Figure 5.8 shows examplesx@dirises based on the copying of

horizontal seams.

Iris 2 (I,) Mixed Iris (MI)

)

Figure 5.8: Examples of mixed irises by copying horizonégras from the original components.
Mixed iris images are initialized wit; .

Results of mixing by copying vertical seams

The resultant rank-1 accuracy was0% and the EER was 40%. The degradation in the
performance, in comparison with the previous experimenicates that mixing irises by copying
vertical seams may be not viable. This is because, durintgrieaxtractions the 1D log Gabor
filter is convolved with each row of the normalized iris imade other words, the encoding and
matching process is row-based which causes a drop in therpefice in case of mixing irises

based on vertical seams.
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5.3.2 Similarity to the original iris images

In this experiment, the objective of generating a mixedthiet is similar to both the original
iris images is investigated. The mixed imag&$I() in the probe setX//”), which are generated
in the previous experiment by copying horizontal seams ftloenoriginal irises, were matched
against the corresponding original imagésdnd/,) in the gallery set of5.

a. Matching)M I against/; resulted in rank-1 accuracy ef 100% and EER of- 1.5%.
b. MatchingM I against/; resulted in rank-1 accuracy ef 97% and EER of- 1.9%.

The high matching performance suggests that the origiradtity is sufficiently similar to
the mixed image. Note that there is a performance differéteeen the two cases since the
mixed image, in both cases, is initialized fp prior to copying the seams and this biases the
mixed image with respect th. The same difference in the performance is encounterectif th

mixed image is initialized td,, but this biases the mixed image with respeci;to

5.4 Summary

In this chapter, the possibility of generating a mixed insrhixing two distinct irises is
explored. It was demonstrated that the concept of “mixirsgs” can be utilized to (a) generate a
virtual identity and (b) generate mixed images that arelaino the original iris images. To mix
two irises, horizontal seams are copied from normalizediimiages into a new iris image after
sorting them based on their importance in the images. Exyeris on a CASIA-v3 dataset show
that (a) the mixed iris representing a joint identity cangmtially be used for authentication,and

(b) the mixed iris is similar to the original irises.

5.4.1 Research Contribution
¢ Defining the concept of digital joint identity through irimages.

e Generating a mixed iris image from different instances.
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Chapter 6

Decomposing Faces For Privacy Protection

6.1 Introduction

A face recognition system operates by acquiring face imega & subject, extracting a fea-
ture set from the data (e.qg., eigen-coefficients) and coimgpére feature set against the templates
stored in a database in order to identify the subject or tdyarclaimed identity. The template
of a person in the database is generated during enrollmehisaoften stored along with the
original face image. This has heightened the need to accosacy” to the subject by adequately
protecting the contents of the database.

For protecting the privacy of an individual enrolled in a mietric database, Davida et al.
[29] and Ratha et al. [30] proposed storing a transformed fatage instead of the original
image in the database. This was referred to as a private &enj@9] or a cancelable biometric
[30]. Feng et al. [118] proposed a three-step hybrid apprdhat combined the advantages
of cryptosystems and cancelable biometrics. Apart frons¢hmethods, various image hiding
approaches [119][120][121] have been suggested by rdszarto provide anonymity to the
stored biometric data.

For according privacy to face images present in surveitarideos, Newton et al. [122]
and Gross et al. [123] introduced a face de-identificatigo@thm that minimized the chances
of performing automatic face recognition while preserviegails of the face such as expression,
gender and age. Bitouk et al. [124] proposed a face swappampique which protected the iden-
tity of a face image by automatically substituting it witlpfacements taken from a large library

of public face images. However, in the case of face swappmiaggressive de-identification

*The term "privacy” as used in this chapter refers to the datiification of biometric data.
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the original face image can be lost. Recently, Moskovich@geddchy [125] proposed a method
to perform secure face identification by representing aapeiface image with indexed facial
components extracted from a public face database.

In this chapter, Visual Cryptography techniques will bedusepreserve privacy. Hence, the
privacy of a face image will be accorded by decomposing thgral image into two face images
in such a way that the original image can be revealed only vao#imimages are mixed; further,
the individual component images do not reveal any inforameéibout the original image. Figure
6.1 shows a block diagram of the proposed approach. In tlpgoaph, a private face image is
decomposed into two independent public host images; thagtivate image can be viewed as
being encrypted into two host face images.

During the enrollment process, the private face image it teea trusted third-party entity.
Once the trusted entity receives it, the biometric data odgosed into two images and the
original data is discarded. The decomposed componenth@netansmitted and stored in two
different database servers such that the identity of thaf@iface image is not revealed to either
server. During the authentication process, the trusteityesgnds a request to each server and
the corresponding sheets are transmitted to it. Sheetsiaeglfi.e., superimposed) in order to
reconstruct the private image thereby avoiding any coraf@it decryption and decoding com-
putations that are used in watermarking [119][120], stegaaphy [121] or cryptosystem [27]
approaches. Once the matching score is computed, the nagedrhage is discarded. Further,
co-operation between the two servers is essential in oodecbnstruct the original face image.

Decomposing the private face image into face images as [astspposed to using random
noise or other natural images) has several benefits in thexdasf biometric applications. First,
the demographic attributes of the private face images sadchge, gender, ethnicity, etc. can
be retained in the host images thereby preserving the dexpbgraspects of the face while
perturbing its identity. Alternately, these demograpltidlautes, as manifested in an individual’'s
face, can also be deliberately distorted by selecting meages with opposite attributes as that
of the private image. Second, a set of public face images tease of celebrities) may be used
to host the private face database. In essence, a small seblo¢ pnages can be used to encrypt
the entire set of private face images. Third, using non-ii@ages as hosts may result in visually
revealing the existence of a secret face as can be seen iref8dl Finally, while decomposing

the face image into random noise structures may be preéeraltan pique the interest of an
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Figure 6.1: Proposed approach for de-identifying and is¢pai face image

eavesdropper by suggesting the existence of secret data.

Additionally, the proposed approach addresses the faligwemplate protection require-
ments [27][126].
(1) Diversity: Since different applications can adopt different sets &t Images for encrypting
the same private face image, cross-matching across apphisao reveal the identity of a private
face image will be difficult.
(2) Revocability: If the private data is deemed to be compromised, then it cashebemposed
again into two new sheets based on new host images. Howeveslity, break-ins to a server
are very hard to detect when the attacker simply stealsicenfarmation without modifying the
stored data. To strengthen security, the decomposing tiper@an be periodically invoked at
regular time intervals.
(3) Security: It is computationally hard to obtain the private biometnwige from the individual
stored sheets due to the use of visual cryptography. Funtrey, the private image is revealed
only when both sheets are simultaneously available. Bygudistributed servers to store the
sheets, the possibility of obtaining the original privateage is minimized. There have been
numerous efforts in the literature to guarantee that tha gered in distributed databases are
protected from unauthorized modification and inaccuratiatgs (e.g., [127]).

(4) Performance: As will be shown in the experiments section, the recognitierformance due
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to the reconstructed image is not significantly degradest ditcryption.

The rest of the chapter is organized as follows. In Secti@maasic introduction to visual
cryptography and its extensions are presented. Sectiah$:@ss the proposed approach for face

images. Section 6.4 reports the experimental results actib86.5 summarizes the chapter.

6.2 Visual Cryptography

One of the best known techniques to protect data such as bion@mplates [128] is Cryp-
tography. Itis the art of sending and receiving encryptedsages that can be decrypted only by
the sender or the receiver. Encryption and decryption aremaplished by using mathematical
algorithms in such a way that no one but the intended redigian decrypt and read the mes-
sage. Naor and Shamir [129] introduced the Visual CryptogysScheme (VCS) as a simple
and secure way to allow the secret sharing of images withouteyptographic computations.
VCS is a cryptographic technique that allows for the encoypof visual information such that
decryption can be performed using the human visual systeime. bRsic scheme is referred to
as thek-out-of-n visual cryptography scheme which is denoted/as:) VCS [129]. Given an

original binary imagé€l’, it is encrypted im images, such that:
T:Shl@ShQGEShS@...@Shk (61)

where® is a boolean operatiorsy;,,, h; € 1,2, ...,k IS an image which appears as white
noise,k < n, andn is the number of noisy images. It is difficult to decipher tbergt imagd’
using individualS},.’s [129]. The encryption is undertaken in such a way thar more out of
then generated images are necessary for reconstructing thealnignage? .

In the case 0f2, 2) VCS, each pixeP in the original image is encrypted into two sub-pixels
called shares. Figure 6.2 denotes the shares of a whitegrigled black pixel. Note that the choice
of shares for a white and black pixel is randomly determiriedré are two choices available for
each pixel). Neither shares provide any clue about the raigiixel since different pixels in
the secret image will be encrypted using independent rarchlamtes. When the two shares are
superimposed, the value of the original piXxecan be determined. IP is a black pixel, we get

two black sub-pixels; if it is a white pixel, we get one blaakbspixel and one white sub-pixel.
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Therefore, the reconstructed image will be twice the widtthe original secret image and there

will be a 50% loss in contrast [129]. However, the originaaige will become visible.

. - Shares Superposition of
Pixel Probability #1 the two shares

(1] ™

White
Pixels

=™
||

Black
Pixels

m
s (01N

Figure 6.2: lllustration of a 2-out-of-2 VCS scheme with D<ixels construction

L] ™

In 2002, Nakajima and Yamaguchi [11] presented a 2-out-BkZnded Visual Cryptogra-
phy Scheme for natural images. They suggested a theortaoa¢work for encoding a natural
image in innocuous images as illustrated in Figures 6.3 ahdTis is known as the Gray-level

Extended Visual Cryptography Scheme (GEVCS). In this wtrk,extended visual cryptogra-

(b)

(@) 0 @)

Figure 6.3: Encryption of a private face image in two staddaost images. (a) Camera-man
image. (b) Lena image. (c) A private face image. (e) and (B ™o host images after visual
encryption (two sheets). (g) Result of superimposing (€l)(@n

phy scheme for grayscale images is used to secure face irhggescomposing a private face
image into two host images. Then, mixing, i.e., overlying blost images reveals the secret im-
age. The basic Visual Cryptography scheme and its exte(f&®BWCS) are discussed in detail

below.
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(a) (b) (©)
(e) (f) (@)
Figure 6.4: Encryption of a private face image in two prepadid and cropped face images. (a)

and (b) are two host images. (c) is a private face image. (@)frare the host images after
visual encryption (two sheets). (g) is the result of mixiegydnd (f)

6.2.1 Visual Cryptography Scheme

There are a few basic definitions which need to be providearbdbrmally defining the VCS
model and its extensions.
(1) Secret image Q): The original image that has to be hidden. In our applicatibis, is the
private face image.
(2) Hosts (H's): These are the face images used to encrypt the secret imaggethisiGray-level
Extended Visual Cryptography Scheme (GEVCS). In our appba, these correspond to the
face images in the public dataset.
(3) Sheets §’s): The secret image is encrypted intosheet images which appear as random
noise images (in the case @f, n) VCS) or as a natural host image (in the case of GEVCS).
(4) Target (T): The image reconstructed by mixing (i.e., superimposingstieets.
(5) Sub-pixel: Each pixelP is divided into a certain number of sub-pixels during thergpton
process.
(6) Pixel Expansion (n): The number of sub-pixels used by the sheet images to encatie ea

pixel of the original image.
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(7) Shares: Each pixel is encrypted by collections ofm black-and-white sub-pixels. These
collections of sub-pixels are known as shares.

(8) Relative Contrast (): The difference in intensity measure between a black pixakanwhite
pixel in the target image.

(9) OR-ed m-vector (V): An n x m matrix is transformed to am-dimensional vector by
applying the booleaw R operation across each of thecolumns.

(10) Hamming weight (H (V')): The number of ‘1’ bits in a binary vectar.

Thek-out-of-n VCS deals with binary images. Each pixel is reproducedstsares with each
share consisting af: sub-pixels. This can be represented and described by>amn boolean
matrix B= [b;;] whereb;; = 1 if and only if thej" sub-pixel in thei’" share is black. Theé&
matrix is selected randomly from one of two collectionswak m boolean matrice§, andC’;
the size of each collection is If the pixel P in the secret image is a white pixel, one of the
matrices inCy is randomly chosen; if it is a black pixel, a matrix frofy is randomly chosen.
Upon overlaying these shares, a gray level for the pixef the target image becomes visible and
it is proportional to the Hamming weight (1), of theO R-edm-vectorV for a given matrix5.

It is interpreted visually as black # (V') > d and as white iff (V') < d — am for some fixed
thresholdl < d < m and relative difference: > 0. The contrast of the target is the difference
between the minimuni/ (V') value of a black pixel and the maximum allow&d V') value for a
white pixel, which is proportional to the relative contrés) and the pixel expansiomr{). The
scheme is considered valid if the following three condisiane satisfied.

Condition (1) For any matrixB in Cy, theO R operation on any of then rows satisfies? (V') <

d — am.

Condition (2): For any matrixB in C}, the OR operation on any: of the n rows satisfies
H(V) >d.

Condition (3): Consider extracting rows, ¢ < k, from two matricesB, € Cy, andB; € C}
resulting in new matrice®, and B]. Then,Bj and B] are indistinguishable in that there exists
a permutation of columns aB], which would result inB;. In other words, any; x m matrix
By € CyandB; € C are identical up to a column permutation.

Conditions (1) and (2) define the image contrast due to VC&d(ion (3) imparts the security
property of a(k,n) VCS which states that the careful examination of fewer thamares will

not provide information about the original pix&l. Therefore, the important parameters of the
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scheme are the following. First, the number of sub-pixetsshareq.); this parameter represents
the loss in resolution from the original image to the resultarget image and it needs to be as
small as possible such that the target image is still visilmi@ddition, them sub-pixels need to
be in the form of @ x v matrix wherev € N in order to preserve the aspect ratio of the original
image. Secondy, which is the relative difference in the Hamming weight & tombined shares
corresponding to a white pixel and that of a black pixel in thiginal image; this parameter
represents the loss in contrast and it needs to be as largesamble to ensure visibility of the
target pixel. Finally, the size of the collection 6f andC}, r, which represents the number of
possibilities forB. This parameter does not directly affect the quality of Hrgét image.

The scheme can be illustrated byza2) VCS example which is shown in Figure 6.5. One
pixel of the original image corresponds to four pixels inteabare. Therefore, six patterns of

shares are possible. Based on this, the following collaafanatrices are defined:

1.10 0

Cy = {all the matrices obtained by permuting the column{ of }
1 100
. . _ 1.1 0 0

(', = {all the matrices obtained by permuting the column{oof 011 }

This 2-out-of-2 visual cryptography scheme has the paramet = 4, a = 1/2 andr = 6. A
secret image is encrypted by selecting shares in the fallgwianner. If the pixel of the secret
binary image is white, the same pattern of four pixels fohis#tares is randomly selected which
is equivalent to randomly selecting a boolean maktiftom the collection”. If the pixel of the
original image is black, a complementary pair of pattermamslomly picked which is equivalent
to selecting a boolean matrix from the collection”;. Condition (1) and (2) can be easily tested
to validate this (2,2) VCS. The last condition which is retato the security of the scheme can
be verified by taking any row from®, € C, andB; € C; and observing that they have the same

frequency of black and white values.

6.2.2 Gray-level Extended Visual Cryptography Scheme (GEES)

VCS allows one to encode a secret image ingheet images, each revealing no information
about the original. Since these sheets appear as a randah@seels, they may pique the cu-
riosity of an interceptor by suggesting the existence ofcaetemage. To mitigate this concern,

the sheets could be reformulated as natural images as biaaor and Shamir [129]. Ateniese
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Figure 6.5: Illustration of a 2-out-of-2 scheme with 4 sukebconstruction

et al. [130] introduced such a framework known as the Extdndsual Cryptography scheme.
Nakajima and Yamaguchi [11] proposed a theoretical frannkwamapply Extended Visual Cryp-
tography on grayscale images (GEVCS) and also introduceetlagd to enhance the contrast of
the target images. The Gray-level Extended Visual Cry@tplgy Scheme (GEVCS) operates by
changing the dynamic range of the original and host imagasstorming the gray-level images
into meaningful binary images (also known as halftoned i@sa@nd then applying a boolean
operation on the halftoned pixels of the two hosts and thgirmal image. However, some of
these pixels (in the host and the original) have to be fumhedified. This is explained in more

detail below.

Digital Halftoning and Pixel Expansion

Digital Halftoning is a technique for transforming a digitaay-scale image to an array of
binary values represented as dots in the printing proc@44.[Error diffusion is a type of halfton-
ing technique in which the quantization error of a pixel istdbuted to neighboring pixels which
have not yet been processed. Floyd and Steinberg [132]ideda system for performing error
diffusion on digital images based on a simple kernel. Thigioghm could also be used to pro-
duce output images with more than two levels. So, ratherularg a single threshold to produce
a binary output, the closest permitted level is determinetithe error, if any, is diffused to the
neighboring pixels according to the chosen kernel. Theegfgrayscale images are quantized to

a number of levels equalling the number of sub-pixels peresiha During the dithering process
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at the pixel level, any continuous tone pixel is expandedrt@tix of black and white sub-pixels
defined by the gray level of the original pixel. The propantaf white sub-pixels in this matrix is
referred to as pixel transparency. In our application, & hmages used for encrypting a private

face image and the private image itself are converted todmedtl images.

Encryption

The encryption process is applied on a pixel-by-pixel basiag the three halftoned images
(the two hosts and the original image). The arrangemenedulb-pixels in the shares of both the
hosts has to be controlled such that the required transpaféme number of white sub-pixels)
of the target pixel is obtained. The arrangement is detexchbased on the pixel transparencies
triplet. (t1, 12, t7). t1, to @andty are transparencies of the entire sub-pixel region for shasbare

2 and the target, respectively.
ty=4/9 t,=5/9
R
E + E - & tr =3/9
ERECRE UG

Figure 6.6: Examples of sub-pixel arrangement

The security of the scheme is also important. Thereforendwncryption, a Boolean matrix
Bis randomly selected from a set of 22xBoolean matrice€’; " for every pixel in the original
image. This is the primary difference between this schenteNaor-Shamir's scheme: in the
latter only a single collection of matrices is required whaepends on the number of hosts and
the pixel expansion/). Nakajima and Yamaguchi describe in detail the method topzde this

collection of Boolean matrices [11].

K-

Figure 6.7: Example of impossible arrangements
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However, as shown in Figure 6.7, there are cases when th@eddguansparency for the
corresponding pixel in the target image cannot be obtainedyatter how the shared sub-pixels
are rearranged. Therefore, to determine if it is possiblelttain the target transparency by
rearranging the transparent (white) sub-pixels in theeshdhe target transparency must be within

the following range (condition (T1)) [11]:

tr € [max(0, (t1 +t2 — 1)), min(t1, t2)], (6.2)

where,t, t, andty (€ [0, 1]) are the transparencies of the entire pixel region for shashdre
2 and the target, respectively. The range of each of thesspaaencies for the entire image
corresponds to the dynamic range of the pixel intensiti¢sefespective images. Assuming that
the dynamic ranges of the transparencies of the two sheeth@samelL, U] C [0, 1], all the
triplets, {1, t2,tr), would satisfy condition (T1) if and only if the dynamic i@ of the target
fulfils condition (T2) [11]:

tr € [max(0, (2U — 1)), L]. (6.3)

Nakajima and Yamaguchi[11] described a method to enharedeidge quality (contrast) and
decrease the number of violated triplets by performing aaptide dynamic range compression.
In their method, the dynamic range of the sheets and thettargamodified a$,,t, € [L, L +
K] C[0,1]andty € [0, K] C [0, 1], respectively, wheré denotes the lower bound of the sheets’
dynamic range and\ is a fixed value. It is clear that O is the most appropriate e/ditur the
lower bound of the target to ensure that the target is daheer both sheets [11]. However, after
enhancing the contrast, it is necessary to consider condifil) again before encryption. Thus,
if a triplet violates condition (T1), the gray levels of thenglicting triplets are adjusted and the
resulting errors diffused to the nearby pixels. Conseduenoth halftoning and encryption are
done simultaneously to facilitate this adjustment.

To perform this adjustment,3D-space is defined using the transparencies of the pixelgin th
three images: the-axis represents the transparencies of the pixels in shdhe g-axis repre-
sents the transparencies of the pixels in share 2 and#xes represents the transparencies of the
pixels in the target image. Any point in this space is cham@oed by a triplet representing trans-
parencies in the three images. The volume correspondihg fodints for which reconstruction is

possible (Figure 6.6) is determined. Every point outsigge\vblume is adjusted. Assume a point
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p'(t}, 15, tr) outside the determined volume. To encrypt this triplet aittdegrading the images,
p’ will be replaced withp” wherep” (t”1,t”,,t" 1) is the closest point tp’ in the constructed
volume. Thus, the transparencies of the correspondindspixeshare 1, share 2, and target will
become”,t”5 andt” 1, respectively. If condition (T1) is violated, the errorg aalculated and
diffused using an error-diffusion algorithm to the nearliyets. These steps are summarized in

Figure 6.8.

Consider 3 pixels (1
from private image
and 2 from hosts)

.| Perform half-toning .| Determine triplet
and pixel expansion (ty, t, t;)

Is
Condition
Tl
satisfied?

Select matrix B from C Construct the YES

at random for collection of matrices
encoding pixel C

A

A

Modify triplet and
diffuse error to
nearby pixels

Figure 6.8: Flowchart for illustrating GEVCS at the pixeisl

6.3 Securing A Private Face Image by Mixing Host Images

Let P = {Hy, H,, ..., Hy} be the public dataset containing a set of candidate hostémag
that can hide the assigned private face im&geT he first task is to select two host imagésand
H;,i+# jandi,j =1,2,...N from P. Note that due to variations in face geometry and texture
between the images in the public dataset and the privateifieage, the impact of the target
image on the sheet images and vice versa may become peleeptils issue can be mitigated
if the host images for a particular private image are calefiiosen. Figure 6.9 shows the block

diagram that illustrates the key steps of the proposed approlhese steps will be explained in
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more detail in the following sub-sections.

Private
Image

- Image
Selection of

Registration
and Cropping

Hosts

Hosts
(H,;&H;)

Secret
Reconstruction

Target Image Sheets
(S,&S;)

Figure 6.9: Block diagram of the proposed approach forsgpand matching face images

6.3.1 Active Appearance Model

The proposed approach essentially selects host imagearthatost likely to be compatible
with the private image based on geometry and appearanceh®stmilarity measures from an
automated face recognition systems are not adequate t gstecompatible host face images
from a public dataset. In this work, the Verilook SDI§ used to generate the similarity scores.
We found that the similarity score between the private imaige a candidate host image in a
public dataset is small or almost equal zero, because itisipastor score form the preceptive
of a face matcher. So using a face matcher are not the suitayl¢o select compatible hosts.
Therefore, an Active Appearance Model (AAM) [133] that caterizes the shape and texture
of the face is utilized to determine the similarity betweka private face image and candidate
host images (Figure 6.9). The steps for building the AAM asthg it for locating predefined

landmarks on face features, as shown in Figure 6.10, isskeclin detail in [134] and [133] and

thttp://www.neurotechnology.com
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is summarized below.

Figure 6.10: Example of an annotated face

Building the Active Appearance Model
Four steps are needed for building a basic Active Appearbduadel (AAM) from a set of

training images.

Annotate the training set First, for each face image in the training dataset, its faeguires
are annotated manually by landmarks of a pre-defined shawt. ghapeX; is stored in a vector
format, wherej € 1,..,s ands is the number of training images. This representation doges n

include any information about the connection between laar#tsr Thus,
Xj = [1’13'7 T2j, L3553 Tnj, Y15, Y25, Y35, - - -ynj]T> (6-4)
wheren is the number of landmarks used to locate and annotate fataés.

Building the shape model A shape alignment process is performed to remove the effécts
affine transformations (translation, scaling and rotgtidimen the Principle Component Analysis

(PCA) is used to construct a simple linear model of shapalsdity across the training images:

X = X + &,b,. (6.5)
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Here, X is the mean shape vectdr, is a matrix describing the modes of variation derived

from the training set antb is the shape model parameters vector.

Building the texture model All images in the training set are warped to the mean shape by
utilizing the annotated landmarks. Next, the pixel valuesach warped image is consolidated
to create a texture vector. Then, a photometric normatinat used to minimize the effects of

lighting changes on the texture vector. The normalizeditextector i:

g=1[91.92.95-- - 9ml", (6.6)

wherem is the number of pixels within the image. Then, PCA is usednredrly model the

texture vectors as in equation6.7.

g =g+ Pybg. (6.7)

Here,g is the mean texture vectob, is the modes of variation matrix argj, is the texture

model parameter vector.

Building the combined Active Appearance Model (AAM) Shape and texture are often corre-
lated [134] and, so, PCA is once again used to construct aaocimpodel fromX andg resulting
in a set of combined parameters This helps in synthesizing an image with a given shpe

and textureg using one set of parameteatsas shown below.

X=X+ ®,C, (6.8)

Annotating an Image

A randomly selected template model is initially generated an image based on the corre-
sponding model parameters is synthesized. The error bettheanput image /..., that has
to be annotated) and the synthesized imaQg, .si-.s) Needs to be minimized. The solution
is found by varying two sets of parameters: the combined mnpaemetersC and the pose

parameters (translation, scaling and rotation).
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6.3.2 Selection of Hosts

For selecting compatible hosts, the cost of registeringrfalg) each image in the public
dataset with the private image is computed/asThese costs are sorted in order to locate two
host imagesH,; and H,,, which have the smallest registration cost. However, asb&ishown
in the experiments section, this cost alone is not suffici8atthe texture is used as an additional
criteria and the cost associated with this is denoted asTherefore, the final cost., which
is associated with each host image, is the sum of the norethttansformation cost,. and
the normalized appearance co§t The simple min-max normalization technique is used to

normalize both costs.

Transformation Cost 7.,

This cost measures the amount of geometric transformagorssary to align two images
based on the annotated landmarks generated by the AAM. Gineeget of correspondences
between these finite sets of points on two face images, aftramation7 : R? — R? can
be estimated to map any point from one set to the other. Whéestare several choices for
modeling this geometric transformation, the thin platergp(TPS) model is used [135]. The
transformation cost/,, is the measure of how much transformation is needed to #ligrnwo
face images by utilizing the thin plate spline model, whishhe bending energy necessary to

perform the transformation.

Appearance CostA.

First, the private face imagg)) and the host imagéH ) are normalized by warping them
to the mean shapé&, resulting in shape-free texture image@sand H'. Figures 6.11 shows
an example of a shape-free image for a private face images Adrimalization step uses the
mean shape computed during the AAM training phase. Eacleshap image is represented as
a texture vector (equation 6.6).

Both O’ and H' can be expressed by the texture model parameter végtomn order to get
these basis vectors, each image is projected onto the ¢esppace by using the stored modes of
variation,®,:

bg =o' {g— g} (6.10)
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Figure 6.11: The shape-free image of annotated face imaggume 6.10

The appearance cost,, is defined as the Manhattan distance between the basigyvecioe-

sponding taD" and H'.

6.3.3 Image Registration and Cropping

In this step, the global affine transformation componenhefthin plate spline model is used
to align the two selected host imagés,( ,H,,) with the secret image). Next, the aligned hosts
and the secret image are cropped to capture only the faairés which have been located by
AAM as illustrated in Figure 6.10.

6.3.4 Secret Encryption and Reconstruction By Mixing Host mages

GEVCS is used to hide the secret image,n the two host image#/;; and H,, resulting in
two sheets denoted & and.S,, respectively.S; and.S; are mixed by superimposing them in
order to reveal the secret private image. The final targeg@msiobtained by the reconstruction

process that reverses the pixel expansion step to retaoritfinal image size.

6.4 Experiments and Results

The performance of the proposed technique was tested onifi@cedt databases: the IMM
and XM2VTS databases. These databases were used sinceididaiadmarks of individual
images were annotated and available online. These ammuatiere necessary for the AAM
scheme. The IMM Face Database [136] is an annotated databatening 6 face images each

of 40 different subjects; 3 of the frontal face images pefextiwere used in the experiments. 27
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subjects were used to construct the private dataset anéitteaning 13 were used as the public
dataset. The XM2VTS frontal image database [105] consis&fmontal face images each of
295 subjects. 192 of these subjects were used to consteigrrittate dataset and 91 subjects
were used to construct the pubic dataset. The remainingsishjvere excluded because several
of their face images could not be processed by the commenadher. The composition of the
public dataset is shown in Figure 6.12. Figure 6.13 showsekes of the proposed approach
when dataset D in Figure 6.12 is used as the public dataget|(he- 0, K = 0.75] and the pixel
expansion valuen is 36). The AAM for each database was constructed using the faagem
(one per subject) from the public dataset.

In the following experiments, the match scores were geadrasing the Verilook SDK In
order to establish a baseline, the images in the privatdds¢awere first matched against each
other. This resulted in an EER of 6% for the IMM database and 2% for the XM2VTS

database.

Computational time We evaluated the time complexity of the approach uginglab®-2013a
on a PC withIntel® i7 CPU @2.8GHz and 8GB memory. The elapsed time of decomga@sin

private face image into two host image is 1.5 seconds.

6.4.1 Experiment1

In this experiment, the impact of varying the number of inmgethe public dataset was
investigated (datasets A, B, C, D and E were used). The satexfthosts from the public dataset
was based only on the transformation cost. The experimamisted of matching the mixed
private images against each other. EERs using the 5 pulibsets are shown in Tables 6.1 and
6.2. For the IMM database in Table 6.1, it is clear that addnoge images to the public dataset
initially improves the result. However, dataset E resuitshie worst EER with respect to the
other datasets. This drop in performance could be attribtiotéhe inclusion of an individual with
a beard in the public dataset: the absence of the appearasicied to the selection of this host
image even for those private face images that did not posdasard, thereby affecting the mixed

images.

thttp://www.neurotechnology.com
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Name of Dataset Images in the Public dataset

Dataset A --
Dataset B ---
Dataset C - --
Dataset D ----
Dataset E ----H.

e AOanOEaR e
Dataset G [BEES BB e

39 face images, three different frontal face images for each subject.

(a) IMM Database

Name of Dataset Images in the Public dataset

Dataset A

Dataset B

Dataset C

Dataset D

Dataset E ﬂ

Dataset F = G

91 face images
Dataset G ﬂ ............................................................. “H

273 face images, three different frontal face images for each subject.

(b) XM2VTS Database

1 o

Figure 6.12: Images in the public datasets for both the IMBI ANM2VTS databases

Table 6.1: Equal Error Rates (%) when using different putditasets with = 0.567 andn=16

Dataset| IMM Database| XM2VTS Database
A 9.7 21.9
B 7.7 21.8
C 6.3 21.7
D 5.6 21.4
E 11.4 22




Asem A. Othman Chapter 6. Decomposing Faces For Privace&ron 103

Reconstructed|
Image

Original Image Generated sheets

Figure 6.13: lllustration of the proposed approach usinages from the IMM Database

Table 6.2: Equal Error Rates (%) when using different putbditasets with = 0.875 andn=36

Dataset| IMM Database| XM2VTS Database
A 2.2 6.4
B 2.1 6.4
C 2 6.2
D 2 6
E 3.4 10.2
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6.4.2 Experiment 2

In this experiment, the appearance cost was added to tleei@ntto select the host images
and it is clear that this solves the problem encounteredperment 1. Dataset E is used in this
experiment to select the hosiH(, H,). Tables 6.3 and 6.4 show the EERs of the mixed images
when host images are selected using (a) the transformatiirY conly and (b) the sum of the
normalized transformation co$t and appearance ca4t.

From both the above experiments it is also apparentAa0.875 andn=36 results in better
matching performance.

Table 6.3: Equal Error Rates (%) when different selectigteiga are used with = 0.567 and
m=16

Selection Criteria IMM Database| XM2VTS Database
T. 11.4 22
T.+ A, 8 21

Table 6.4: Equal Error Rates (%) when different selectiatega are used with = 0.875 and
m=36

Selection Criteria IMM Database| XM2VTS Database
T. 3.4 10.2
T.+ A, 2 6

6.4.3 Experiment 3

The purpose of this experiment was to determine if the mizaed fmages upon reconstruction
could be successfully matched against the original prifete images. To evaluate this, the
public Dataset A in Figure 6.12, consisting of two fixed fasgges as hosts, was used. For
each subject in the private dataset, one frontal face imaxpeselectedas the secret image to
be encrypted by mixing the two host face images. The visygitography scheme was invoked
with contrastK’ = 0.875 and a pixel expansion factor et = 36. The mixed images were
observed to match very well with the original images reaglin an EER o 0% in the case of
the IMM database and 0.5% in the case of the XM2VTS databasetl@r hand, when either of

the sheets were matched against the original images, thka®sEERS were greater than 45%.

§In the case of IMM database, the face sample exhibiting akexpression and diffuse light was selected
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6.4.4 Experiment 4

The purpose of this experiment was to determine if the mired fmages could be success-
fully matched against those images in the private dataséttbre not used in Experiment 3. To
establish this, for each subject in the reconstructed datasfrontal face images were chosen
from the private database to assemble the galldry= 2 for IMM and N = 3 for XM2VTS).
The matching exercise consisted of comparing the recaststidace images (from Experiment
1) against these gallery images (not used in Experiment @)EER of~ 2% was obtained for
the IMM database. This performance, in this case, was evierlikan that of the original im-
ages (EER~ 6%). The improvement could be due to the contrast enhandeohéine private
face images that occurs when increasing the dynamic rantfeedfheets resulting in improved
quality of the reconstructed secret image. For the XM2VTfaliase, the obtained EER was

6% which is still comparable with the 2% obtained when matghhe original images.

6.4.5 Experiment5

By using public Dataset D and = 16 and 36, sheet images were created with different con-
trast valuesK = 0.567,0.6888,0.75, 0.875. Table 6.5 reports the Equal Error Rates (EERs) for
these different values df’. Here, the matching procedure was the same as that of Exgetrdn
For both database& = 0.875 results in better performance than the other values. Tipsowe-
ment could be due to the contrast enhancement of the targgesithat occurs by increasing the
dynamic range of the sheets and, consequently, the quélitg anixed image.

Table 6.5: Equal Error Rates (%) for different valuediofindm = 16. The choice of is based
on [11]

K IMM Database| XM2VTS Database
0.567 10.7 21.4
0.6888 6.5 17.5

0.75 7.8 16
0.875 5.9 15

6.4.6 Experiment 6

Next, the effect of pixel expansion on the final reconstrdateage was tested. Figure 6.14

shows that details of the sheets can appear on the final imagéeher values ofn. The impact
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of m on matching performance is shown in Table 6.7. Here, the mraggrocedure was the
same as that of Experiment 4. The host images were selec@®ddataset D with' = 0.567.
As shown in Figure 6.14, the pixel expansion value affecesrtbmber of gray-levels in the
reconstructed image, and this impacts the amount of dgtpéaxing in it. Therefore, when is
100, the visual details of the sheet images appear on thaesgacted image resulting in a drop

in overall performance.

(a) m=4 (b) m=16 (c) m=36 (d) m=100

Figure 6.14: Examples of mixed images for a subject withedéht values for the pixel expansion
factor,m

6.4.7 Experiment 7

In this experiment, the possibility of exposing the idgntt the secret image by using the

sheet images in the matching process is investigated. Roexperiment, the sheet images for 3

Table 6.6: Equal Error Rates (%) for different valuegiofindm = 36. The choice of( is based
on [11]

K IMM Database| XM2VTS Database
0.567 5.3 12.6
0.6888 5 6.5
0.75 4 6.3
0.875 2 6

Table 6.7: Equal Error Rates for different valueso{%)
m | IMM Database| XM2VTS Database

4 23.5 41
16 10.7 21.4
36 5.3 12.6

100 8 11
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different face samples of the same subject were first cordpiNext, the mixed images and the
corresponding sheets were independently used in the mgtphocess (i.e., sheet image 1 of all
the private images were matched against each other; shageithof all the private images were
matched against each other; mixed images of all the privaéges were matched against each
other). Figure 6.15 shows that each subject in the privaesdahas three reconstructed images.
The public datasets used in this experiments were datas&sAd G. This experiment resulted
in three EERs: the first was a result of using the reconstiutiged images for matching, while
the second and the third EERs were a result of using the fiegttstmd second sheet, respectively,
for matching. The results in Table 6.8 confirm the difficulfye@posing the identity of the secret
face image by using the sheets alone.

Note that experiment 7 involves automatic host selectiomfthe public dataset based on the
registration costF.,, described earlier. The positive impact of automatic hekdction is seen in
Figure 6.15 where the selected host images (sheets) anédhet smage are observed to have

compatible expressions.

6.4.8 Experiment 8

Different applications may employ different public datssier host image selection. Thus,
the hosts selected for encrypting an individual’s face ienegn differ across applications. This
experiment seeks to confirm that cross-matching of the dteheets across applications (and
inferring identities) will not be feasible. To demonstrdies, the possibility of using host images
from differentpublic databases for encrypting the same identity (i.€e fanage) was investi-
gated. The experiment was set up as follows. Two face samplesch of the 192 subjects in
the XM2VTS private dataset were randomly selected. For hitrary subject, lelO; and O,
denote the two face samples that were selected. Furthep, lee encrypted into shee M
and SIMM ysing a public dataset from the IMM database. SimilarlyQetbe encrypted into
sheetsSEM2VTS and SXM2VTS ysing a public dataset from the XM2VTS database. TLieand
T, denote the reconstructed face images pertaining,tand O,, respectively. The following
matching exercises were conducted: $8)* againstS;*M2VTs; (b) S{MM againstS; M2V TS
(c) SIMM againstS¥M2VTS; (d) SIMM againstS M2V, (e) Ty againstl,. The public datasets
used in this experiment was the same as Experiment 7 (i.¢asB@ A , F and G). Table 6.9

shows the EERSs for these matching experiments and it isttlesit is difficult to perform cross-
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(9)

Figure 6.15: Examples from experiment 7 where (a), (d) andug the first sheets and (b), (e)
and (h) are the second sheets. (c), (f) and (i) are the camespy mixed face images
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Table 6.8: Equal Error Rates (%) for Experiment 7. Experitaeonfirm the difficulty of using

sheet images to reveal the secret image

(

() XM2VTS Database: Dataset G

Chapter 6. Decomposing Faces For Privace&ron

EER (%)

Mixed vs Mixed

2.4

Sheet 1 vs Sheet

1 44.7

Sheet 2 vs Sheet

P 44.2

(a) IMM Database: Dataset A

EER (%)

Mixed vs Mixed

6.2

Sheet 1 vs Sheet

1 36.0

Sheet 2 vs Sheet

2 33.8

(b) XM2VTS Database: Dataset A

EER (%)

Mixed vs Mixed

7.4

Sheet 1 vs Sheet

1 35.7

Sheet 2 vs Sheet

2 40

(c) IMM Database: Dataset F

EER (%)

Mixed vs Mixed

8.2

Sheet 1 vs Sheet

1 31.7

Sheet 2 vs Sheet

2 38.3

d) XM2VTS Database: Dataset F

EER (%)

Mixed vs Mixed

6.8

Sheet 1 vs Sheet

1 33.8

Sheet 2 vs Sheet

2 39.5

(e) IMM Database: Dataset G

EER (%)

Mixed vs Mixed

9.2

Sheet 1 vs Sheet

1 37.8

Sheet 2 vs Sheet

2 39.3
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matching across different applications. However, wherctireesponding reconstructed images

(m = 36 and K = 0.875) are compared, the resulting EER suggests the possibilgyacessful

matching.
Table 6.9: Equal Error Rates (%) for Experiment 8
Matching EER (%)
S{MM VS SlXM2VTS 47 .4
S{MM VS SQXMQVTS 48.2
S2IMM VS SIXMQVTS 50
SQIMM VS SQXMQVTS 46.3
T, vsSTs 13.6
(a) Datasets A
Matching EER (%)
S{MM VS SlXM2VTS 49
S{MM VS S2XM2VTS 495
SQIMM VS SIXMQVTS 49
SQIMM VS SQXMQVTS 48.5
T, vsSTs 4.4
(b) Datasets F
Matching EER (%)
S{MM VS SlXMQVTS 48.3
S{MM VS S2XM2VTS 50
SQIMM VS SIXMQVTS 48.6
SQIMM VS SQXMQVTS 50
T, vsSTs 4.8
(c) Datasets G
6.5 Summary

This chapter explored the possibility of decomposing fdoesmparting privacy to private
face images. The contribution of this chapter includes énodlogy to protect the privacy of a
face database by decomposing an input private face imagevotindependent face images such
that the private face image can be reconstructed by mixiegetimodified host face images. The
proposed algorithm selects the host images that are me$t ik be compatible with the secret
image based on geometry and appearance. GEVCS is then usadrypt the private image
in the selected host images. It is observed that when the/gieck host images (i.e., sheets)
are mixed they are similar to the original private images.e Btudy on the effect of various

parameters A andm) on the matching performance suggests that there is indeethigon
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between the quality of the reconstructed secret and theampgers. Finally, experimental results
demonstrate the difficulty of exposing the identity of thersé image by using only one of the
sheets; further individual sheets cannot be used to pertwoss-matching between different
applications. Increasing the pixel expansion factor,can lead to an increase in the storage
requirements for the sheets. In the recent literature thave been some efforts to develop a
visual cryptography scheme without pixel expansion [133f]. But no such scheme currently
exists for generating sheets that are not random noisy isaadeus, more work is necessary to

handle this problem.

6.5.1 Research Contribution

¢ Introducing a new privacy structure for de-identifyingdamages.

e Proposing an approach to utilize visual cryptography sasefor face privacy.
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Chapter 7
Finger’iris’print

7.1 Introduction

In the previous chapters we discussed different approatthgenerate a mixed biometric
image. The mixed images have the following properties: ifapiporate characteristics from
component images, and (b) can be used directly in the feattraction and matching stages
of an existing biometric system. However, we only discussggproaches to mix images of a
single biometric trait (i.e., mixing fingerprints, facesdanises). In this chapter, we demonstrate
that the concept of mixing biometrics can be extended to differentbiometric traits such as
fingerprints with irises. By mixing samples from these twtiadent traits, a new, unique, and
revocable biometric image can be generated. Specificahiygbal here is generating a new mixed
image that inherits its uniqueness from a finger impressi@ham iris image. The uniqueness
of a fingerprint is determined by the topographic relief efriige structure and the presence of
certain ridge irregularities termed as minutiae. Wherkasuman iris, which is the annular part
between the pupil and the white sclera, contains intrieatital details. The iris and fingerprint
patterns are believed to be unique to each eye and to each, fiegpectively. Therefore, the
process of iris or fingerprint recognition is done by analgzthese patterns and comparing it
with that of an entry in the gallery.

The mixing process of fingerprint and iris begins by decormmpthe fingerprint image into
two different components, viz., the continuous and spicghpgonents. The continuous com-
ponent defines the local ridge orientation, and the spiralpmment characterizes the minutiae

locations [74]. Next, the spiral component of the iris is @uried by locating minutiae on the iris
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texture; in order to avoid loss of information due to normaation [66], a segmented iris image
(i.e., annular region) is used directly in the minutiae detaation step. A Gabor filter is applied
to capture the iris texture and the minutiae considered thdeentroids of iris regions that result
in consistent filter responses. Finally, the continuousmament of the fingerprint is combined

with the spiral of the iris image to create a new biometricgearl his new and unique biometric

image appears as a fingerprint image and has been denoteslwotk as ding’iris’print .

Continuous Phase
Determination

Minutiae

Determination Fing’iris’print

Figure 7.1: lllustration of the proposed approach to gereaéing’iris’print .

This work confirms that (a) a new biometric image (i.e., fing'print) can be created by
fusing two different biometric traits (i.e., a fingerpriman iris); (b) the new fing’iris’print can
potentially be used for authentication; and (c) it can belis®bscure the information present in
an individual’s fingerprint and iris images, and can be stonea central database instead of the
original templates. Therefore, this approach can be usgdnerate a cancelable template (i.e.,
the template can be reset if the fing'iris’print is comproeais and different applications can mix
different fingers with an iris image from the right or left eyieereby ensuring that the identities
enrolled in one application cannot be matched against gdiites in another application.

Section 7.2 presents the proposed approach of generating'igi$iprint by fusing a finger-
print with an iris image. Section 7.3 reports the experirabrgsults and section 7.4 summarizes

the chapter.

7.2 Generating Fing'iris’print

Fingerprints have been fused with irises at the feature,[139], score [141], rank [142]

levels. The only work, based on our knowledge, that generateimage by fusing the raw
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data of different biometric traits is Noore et al.'s work [58 hey developed a fusion algorithm
based on multi-level discrete wavelet transform to fusegeseof four biometric traits (i.e., face,
iris, fingerprint, and signature). The resultant image [88 scrambled image that cannot be
used directly in the matching step; therefore, specialnstraction procedures are needed to
reconstruct the original images and to perform authemtioa® his exposes the original biometric
templates to eavesdroppers during every identificatioifiva@tion attempt.

In contrast, the mixed image generated in our work (i.e.,’ifisgprint) has the following
properties: (a) incorporates characteristics from theefipgnt and iris images, (b) can be used
directly in the feature extraction and matching stages afxasting fingerprint system, and (c)
obscures the identity of the component images. As shownguarEi7.1, there are three distinct
phases in the generation of a fing'iris’print: determinirantnuous phase of the fingerprint,

determining minutiae of the iris, and mixing.

7.2.1 Continuous Phase Determination

The ridge flow of a fingerprint can be represented as a 2D Aog#iand Frequency Modu-
lated (AM-FM) signal [74]:

F(z,y) = a(z,y) + b(z, y)cos(¥* (2,y)) + n(z,y), (7.1)

whereF'(z, y) is the intensity of the original image @t, ), a(x, y) is the intensity offset)(x, y)

is the amplitudeW ! (z, y) is the phase and(z, y) is the noise. Based on the Helmholtz Decom-
position Theorem [75], the phase can be uniquely decompagethe continuous phase and the
spiral phase¥*i(z, y) = ¥f (z,y) + ¢ (z,y). As shown in Figure 7.2, the cosine of the contin-
uous phase, i.e., the continuous compomresty’ (z, y)), defines the local ridge orientation, and
the cosine of the spiral phase, i.e., the spiral companeiit'’ (x, y)), characterizes the minutiae
locations.

Since ridges and minutiae can be completely determined é&\plttase [74], we are only
interested inU'(z,y). The other three parameters in Equation (7.1) contributbeaealistic
textural appearance of the fingerprint. To mix a fingerpriithwan iris, first, the phas&” (x, y)
of the component fingerprint must be reliably estimateds thitermed as demodulation [74]

[143]. Next, the phasel(”(z,y)) of the fingerprint image is decomposed into a continuous
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(b) (€)

Figure 7.2: Decomposing a fingerprint. (a) A fingerprint irmagb) Continuous component,
cos(¢f(z,y)). (c) Spiral componentzos(v'f(x,y)). The blue and pink dots represent ridge
endings and ridge bifurcations, respectively.

phase ¢! (z,y)) and a spiral phase/('(x,y)) [75]. The continuous phase’ (z,y) pertaining
to the fingerprint will be added during the mixing processgenerated spiral phase'(x, y))
from the iris image in order to construct the fing'iris’primtage. In the following sub-section,
the detailed steps for locating iris minutiae, in order tagate the spiral phase(z, y)) of an

iris image, is described.

7.2.2 lIris Minutiae

Before discussing our proposed approach for determinisigiinutiae, the properties of ideal

iris minutiae is defined below.

Repeatability Given two iris images of the same eye, acquired during diffesessions, the
determined minutia should be found in the same position th boages. Specifically, determi-
nation of iris minutiae should be invariant and robust rd@gss of the presence of noise (e.g.,
eyelids, eyelashes, reflections, or occlusions); the ud#fefent sensors; and the different image

properties like size, compression, or format.
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Distinctiveness Given two iris images of two different eyes, the determinadutiae should
have good discriminatory ability over different eyes. Speally, any two persons should be

sufficiently different in terms of iris minutiae.

Quantity The number of determined iris minutiae should be sufficismth that the generated

fing'iris’print has a reasonable number of minutiae to becpesed by a fingerprint matcher.
Specifically, the average number of minutiae of fing'irig'ps should be close to the average
number of minutiae in the original fingerprints (i.e., for E2002-db2, which is the database
used in our experiments, the average number of minutiae)isd&ally, the number of detected

minutiae should be adaptable over a large range by simplénamitive parameters. Also they

should reflect the textural content of an iris image to pre\accompact representation.

In fingerprint literature [35], there are many well estaidéid techniques that extract “ ideal”
minutiae from fingerprint images. These techniques areoredsy stable and robust to fin-
gerprint impression conditionsBut the texture of an iris is varied, random, and scrambled in
comparison with the texture of a fingerprint; so it is diffictd use the same minutiae-extraction
approaches that are widely used in fingerprint recognitystesns. Therefore, rather than using a
few typical minutial structures to describe the local tegtinformation, our approach will utilize
existing iris processing methods.

Daugman’s phase encoding technique is the most common amdging among the different
iris recognition approaches [64] [65] [69]. Figure 7.3 sisaive processing chain of the tradi-
tional iris recognition system following Daugman’s appibd70]. First, a camera acquires an
image of an eye and the iris annular region is segmented., Nexannular iris is geometrically
normalized, i.e., unwrapped from raw image coordinatestugdo-polar coordinates. A texture
filter is applied to the normalized iris image, and the filesponses are quantized into a binary
representation (i.e., iris code). The comparison betweeriris codes is done by computing the
fractional hamming distance as a dissimilarity measure.

In this chapter, the same technique will be utilized to esttthe local features of the iris
image, i.e., iris minutiae. However, in our approach, thiterfivill be applied to the annular iris

region due to the following reasons.

e During the mixing step (see section 7.2.3), the fingerprmambponent (i.e., the continuous

*Based on the enumerated properties of ideal minutiae.
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Figure 7.3: Diagram of Daugman’s approach for encodingiannrage.

phase) is pre-aligned to a common coordinates, such thaarés(where ridge orientation
changes abruptly) is at the center of the new image. Therebhyr using the annular iris
image, after the mixing process, the locations of the irisutiae points will be around the
core point of the fing’iris’print which will be similar to thdistribution of minutiae in a

fingerprint’.

e Unwrapping the annular iris into normalized image can bamgd as a sampling process,

with the inherent possibility of aliasing that may deteai@the discriminability of the iris’s

texture.

The steps for extracting iris minutiae from annular iris gaa are described below.

Applying a Gabor filter on the annular iris

A log-Gabor filter is used for capturing the local featurete# annular iris image. So, first, a
Fourier transform is applied to the iris image, and then tidlaes are multiplied by the log-Gabor

filter. The frequency response of a log-Gabor filter is given a

—(ZOQ(f/fo))Z
P Tlog(o/ o) =

fZhu et al. [144] show that minutiae are not uniformly distitied but tend to cluster around core points.

G(f) =
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where f, represents the center frequency and the bandwidth of the filter [116]. Next, an
inverse Fourier transform is applied, yielding a compleksed filter response for each point
in the image (see Figure 7.4). In a traditional iris recagnisystem, each complex number is
quantized to two bits; the first bit is set to one if the real jphthe complex number is positive,
and the second bitis set to one if the imaginary part is p@sitn our work, the goal is finding key
responses that can be noted as iris minutiae from the respohthe whole image. Therefore, we
applied a sequence of pruning steps on the iris responseden to locate consistent responses

that will be utilized to locate iris minutiae.

Pruning filter responses

Our goal is to prune the phase responses to find the most tamsasd reliable points that
can be marked as iris minutiae. The concept that some respans less consistent than others
was first mentioned by Bolle et al. [145]. Since then, mangaeshers have investigated and
studied the consistence (i.e., fragility) of the phaseaasps [146]. Hollingsworth et al. [146]
demonstrated that by masking responses near the axes ajrtipex plane could dramatically
decrease the false rejection rate of an iris template. Naitie the inconsistency of the responses
does not measure the stability or robustness of the iristexThe inconsistency of an iris region
occurs when the inner product between the log-Gabor filtdragparticular region of the annular
iris produces a response with a value close to the complee@aes [147] [146].

Therefore, as shown in Figure 7.4, to prune the responses oifsaas suggested in [147]
[146], a series of adaptive thresholding was performed ksgere 7.4). The first pruning step
eliminated responses corresponding to a portion of filtepoasest(.%) closest to the axes.
Then, to exclude the outliers that, in some cases, are dugetepecular highlights, a second
threshold parametet/(,) is set for that purpose: real and imaginary responsesegréen: 1,%
of the filter responses are eliminated.

The final pruning is done by considering responses only irrtégooof the first quadrant of the
complex plane. Specifically, the responses with anglesdmitke intervaky, were eliminated.

In this work, we have empirically set the values of these ipatars to be as followsh,. = 90%,

th, = 99%, andas = [30, 60].
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() (d)

Figure 7.4: Polar plots of the complex-valued responses ahaular iris image after (b) applying
the filter, (c) pruning usingh. andth,, and (d) pruning using.
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Locating the minutiae

After pruning, the number of remaining responses is stiidabecause of the rich detailed
texture of the iris image. Figure 7.5-b shows the remain@gponses on the annular iris image.
To resolve this, the remaining responses have to be brokenameaningful subsets. Therefore,
a hierarchical clustering algorithm that constructs @tsbased on distance connectivity, where
the cutoff distance is 5, is used to cluster the remainirsgresponses. Finally, the barycenter of

these clusters is considered to be the iris minutiae.

(@) (b)

Figure 7.5: Annotating the phase responses on the annidafier (a) pruning (i.e., red dots)
and (b) finding the barycenter of their clusters (i.e., blatsy

Constructing the iris spiral phase !)

To mix an iris with the continuous phase of a fingerprint, aapphase!(z,y) which

corresponds to the minutiae of the iris has to be computed:

Gl y) = patan " ((x — 20)/(y = yn)), (7.3)

wherep,, is the polarity valuey,, andy,, denote the coordinates of th& minutia, andV denotes
the total number of iris minutiae.

Appending this function to a continuous phase of a fingetpmage will cause phase jumps
resulting in minutiae. Depending upon the polarity valug ¢¥ -1), a minutia is generated on
the ridge pattern. The relation between the polayity,and the occurrence of ridge ending or

bifurcation is dependent on the gradient direction of tham® of the continuous phase. Hence,



Asem A. Othman Chapter 7. Finger’iris’print 121

the spiral phase causes an abrupt change in the local fremgsetd by either inserting or deleting
a ridge based on the polarity and the appending locationimitie continuous phase. In this
work, the polarity value will be set to +1. This means thattyye of a fing'iris’print minutia
(i.e., ending or bifurcation) will be based on the fingerppattern at the appending location of
an iris minutia.

Moreover, as shown in Figure 7.6-a, appending the spiradg@l&an annular iris to a con-
tinuous phase of a fingerprint can result in a visually unsgalfingerprint image. This is due
to difference in the spatial distribution and frequencitisi® minutiae and real fingerprint minu-
tiae. To resolve this issue (see Figure 7.6-b), the spiras@lof each iris minutia is tuned to the
corresponding local ridge frequency and orientation ofitingerprint component by using Gabor
bandpass filters [78].

The form of the Gabor elementary function that is orientealsangle)® is given as;

1 {xz y?

G(z,y) = exp {—5 52 + 67] } cos(2mfx), (7.4)

where f represents the local ridge frequency of the fingerprint whes minutia will be ap-
pended, and, andJ, are the space constants of the filter envelope aloagdy axes, respec-
tively. Their values determine the trade between enhancear& spurious artifacts. In this
work, we have empirically set the values®Qfandd, to be 5 (as suggested in [78]). Note that
the filters have been tuned to the corresponding local ridigatation of fingerprint component

at the appended iris minutiae by rotating the elementanyeter

7.2.3 Mixing

Prior to mixing, the continuous component of the fingerpimmage is pre-aligned to a com-
mon coordinate system by utilizing a reference point andrigsntation. In this work, Nilsson
et al.'s [148][149] approach to detect the reference powds adopted. This approach has the
advantage of being able to extract the position and spatht@tion of the reference point si-
multaneously. The reference point is used to translatedh@gonent to the center of the annular
iris image and its orientation is used to find a rotation aagpeut the reference point. This angle
rotates the fingerprint component to make the referencatatien orthogonal to the horizontal

axis.
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Figure 7.6: (a) An example of a fing'iris’print that looks eatistic. (b) Enhancing the appear-
ance by using Gabor bandpass filters tuned to the orientatidrfrequency of the continuous
component.

Let F' and! be a fingerprint and an annular iris image, respectivelyr, y) be the continu-
ous component determined frofy and!(z, i) be the spiral component determined frédmA

fing’iris’print (M F'I) can be generated as:
MF1I = cos(t. + ). (7.5)

The continuous phase 6fis combined with the spiral phase bivhich generates a new biomet-

ricimageM F'I.

7.3 Experiments and Discussion

The proposed approach to generate fing'iris’prints wagtkasing a fingerprint and an iris
dataset. The iris dataset was taken from the UP®is database. The UPOL database has high
guality iris images of the left and right eye of 64 users whach mostly unoccluded by eyelids or
lashes. The used dataset consists of 2 samples of the letgyléing in a total of 128 iris images
which were manually segmented and converted to grayscalarder to establish a baseline

performance, an open source Matlab implementation [116¢d¢h@n the Daugman’s approach

thttp://www.inf.upol.cz/iris/
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[117] was used to encode and match the irises. For each isinoage was added to the probe
set (P;) and the other one was added to the galléfy, Matching the probe set against the gallery
set resulted in a rank-1 accuracy-~0f99% and EER of~ 0%.

The fingerprint dataset was taken from the FVC2002-DB2 @etabIn this work, we used
the first 2 impression of the first 64 fingers in the FVC2002-Of2abase resulting in a total
of 128 fingerprint images (as in the case of the iris datasBte baseline performance of the
fingerprint dataset was determined by adding one impresdieach finger to the probe set and
the other to the gallery set. Matching the probe $&{) (@gainst the gallery set{) by using the
verifinger SDK resulted in a rank-1 accuracy 6f99% and EER of~ 0%.

With regards to generating fing'iris’prints for obscurirgetoriginal component images, the
following key questions are raised:

1. Can two mixed impressions pertaining to the same idebétguccessfully matched?

2. Can the original fingerprint and the fing’iris’print be Kied?

3. Can the original iris and the fing’iris’print be linked?

It is essential to assure that the proposed approach peeisittity linking, by preventing the

possibility of successfully matching the original fingenpror iris image with the mixed image.

Computational time We evaluated the time complexity of the proposed approadgugatiab®-
2013a on a PC witlintel® i7 CPU @2.8GHz and 8GB memory. As shown in Figure 7.1, there
are three main steps for generating a fing'iris’print: Contius phase Determination, Iris Minu-

tiae Determination and Mixing. Table 7.1 shows the elapsed bf each step.

Table 7.1: Elapsed time of generating a fing’iris’print aswh in Figure 7.1

Task Time (seconds)
Continuous phase Determination 10
Iris Minutiae Determination 0.5
Mixing 1
Total 115

Shttp://www.neurotechnology.com
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7.3.1 Matching Performance

The purpose of this experiment was to report the matchinigpeance of fing’iris’print. The
annular iris of each eye in the probe g&twere mixed with a fingerprint image from the probe
set Pr resulting in a new probe sét/ '/ consisting of 64 fing'iris’prints. The corresponding
pairs of fingerprints inGx were also mixed with annular iris i&'; resulting in a new gallery
set M FI¢ consisting of 64 fing’iris’prints. Figure 7.7 shows exangpté mixed image. In this
work, the parameters of the log-Gabor filter, i.d./ f,) the center wavelength and [f,) the
bandwidth of the filter, were set to be 12 and 0.5, respegtiB3l matching the probe and gallery
sets of fing'iris’prints, the obtained rank-1 accuracy wa82% and the EER was 10%. This
indicates the possibility of matching fing'iris’prints. Mever, further work should be done to
improve the rank-1 accuracy. Currently, different pararsewalues (i.e.th., th,, Qpetq, and
clustering cutoff) along with different methods to locatis minutiae are being examined. Note
that the Gabor filter parameters have no noticeable effeth@mesults as shown in Tables 7.2
and 7.3.

Table 7.2: Equal Error Rates for different values of the eemavelength

1/7, | EER (%)
6 10.3
12 10
18 11
24 11.7

Table 7.3: Equal Error Rates for different values of the badth of the filter

o/7, | EER (%)
0.25 10.2
0.5 10
1.5 11

2 12

7.3.2 Exposing the original identities from fing’iris’prin ts

In this experiment, the possibility of exposing the idgntf the FVC2002-DB2 fingerprint

image or UPOL iris image by using the fing’iris’print imageasvnvestigated.



Asem A. Othman Chapter 7. Finger’iris’print 125

Fingerprint Fing’iris’print

Figure 7.7: Examples of fing'iris’print where fingerprintsedrom the FVC2002-DB2 dataset
and irises are from UPOL dataset.

First, the impressions in F'I; were matched against the original fingerprint imageB;n
The resultant rank-1 accuracy was 0% and the EER was more48tdn Second, the annular
iris in P; was matched against fing'iris’print impressionsifF' I. But the mixed images are
fingerprint images that share only the minutiae locationthefannular iris images. Therefore,
to perform the experiment, the minutiae location of the fimigjprint and the annular iris were
matched using a point pattern matching algorithm utilizihng RANdom SAmple Consensus
(RANSAC) method [150]. The resultant rank-1 accuracy wasabththe EER was 48%.

These results suggest that the original identity cannotisdyededuced from the mixed im-
age. However, more formal analysis of different securifyegss (such as the non-invertiblity and

cancelability of the approach) is necessary.

7.4 Summary

In this chapter, the concept of mixing biometrics was exphbiin the context of mixing
different biometric traits, i.e., fingerprints with iriseé\ fingerprint image and an annular iris

image are mixed in order to generate a fing'iris’print imagéhis mixed image incorporates
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characteristics from the original fingerprint impressiod ¢he orignal iris image, and can be used
directly in the feature extraction and matching stages abasting fingerprint system. To mix a
fingerprint with an iris, the fingerprint is decomposed int@ ttcomponents, viz., the continuous
and spiral phases , and iris minutiae is extracted in ordgeteerate the iris spiral phase. In
the final step of mixing, the continuous phase of the fingatge combined with the spiral
phase of the annular iris image resulting in a new fingerpmaige. Our experiments conducted
on fingerprint and iris datasets show that (a) the new bidmgtrage (i.e., fing’iris’print) can
potentially be used for authentication, and (b) the origfimgerprint and iris images cannot be

easily matched with the mixed image.

7.4.1 Research Contribution
¢ Designing a new cancelability structure for fingerprint amgltemplates.
e Generating a fingerprint image from a fingerprint and irisgma

e Proposing an approach to extract iris minutiae by utilizimg concept of bit fragility.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The emergence of biometrics has facilitated the rapid aittegion of individuals based on
their biological traits. In a biometric system, each refieetemplate stored in the database is
usually associated with only a single individual. Whileiinduals can be independently authenti-
cated based on their respective biometric templates,sritibsis we investigated whether a single
biometric template can be generated from multiple indigiduln other words, we explored the
possibility of generating a biometric template represena joint identity that inherits its char-
acteristics from two different individuals. Mixing bioni&ts refers to the process of generating
a new biometric signal by fusing signals of different biorest instances pertaining to a single
individual or different individuals. The generated mixetkige incorporates characteristics from
the original biometrics images, and can be used directlhenféature extraction and matching
stages of an existing biometric system. The utility of mginometrics was demonstrated in
two different applications. The first application dealtlwvihe issue of generating a joint digital
identity. The second application dealt with the issue ofi®tric privacy, where the concept of
mixing was used for de-identifying or obscuring biometrieaiges.

After introducing the concept of mixing biometrics and iemiefits in the first chapter, in the
second chapter we gave a brief introduction to biometritstnsidered in this thesis.

In the third chapter, a method to mix fingerprint images was@nted. It was demonstrated
that the concept of “mixing fingerprints” could be utilizex(t) generate a new identity by mixing

two distinct fingerprints and (b) de-identify a fingerpritimixing it with another fingerprint.
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In the fourth chapter, a method to mix face images was intedult was demonstrated that
the concept of “mixing faces” could be used to generate &iilentities. The mixed face image
is the mid-face in the morphing continuum between the twomament faces and its position on
this continuum is specified by the mixing parameters. Ouedgrpents showed that (a) the mixed
face representing a new identity can potentially be useddtrentication, (b) the mixed face has
similarities with both the original faces, and (c) the pregd method can be utilized to generate
a database of virtual identities.

In the fifth chapter, iris images were mixed in order to (a)egate a virtual identity and (b)
generate mixed images that have similarities with both tmaponent iris images. To mix two
irises, horizontal seams were copied from normalized images after sorting them based on
their importance in the images. Experiments on the CASIAdataset show that (a) the mixed
iris representing a new identity can potentially be usedaisthentication, (b) the mixed iris is
similar to the original irises, and (c) the proposed methand loe utilized to generate a database
of virtual identities from a fixed iris dataset.

In the sixth chapter, we explored the possibility of decosipg faces for imparting privacy
to private face images. We proposed a novel method to prttegbrivacy of a face database
by decomposing an input private face image into two indepehfhce images such that the
private face image can be reconstructed by mixing thesefraddiost face images. The proposed
algorithm selects the host images that are most likely todmepatible with the private image
based on geometry and appearance. The difficulty of expasenglentity of the private image
by using only one of the modified hosts was demonstratedhdyrindividual hosts cannot be
used to perform cross-matching between different appbioat

Finally, we extended the concept of mixing to mix instancéslifferent biometric traits.
Specifically, a fingerprint image and an annular iris imageewaixed in order to generate a
fing’iris’print. To mix a fingerprint with an iris, the fingermt was decomposed into two compo-
nent, viz., the continuous and spiral phases, and iris nai@ewtas extracted in order to generate
the iris spiral phase. Extracting the iris minutiae was doyasing a one-dimensional log-Gabor
filter. The ensuing iris responses were pruned in order t@téoa few iris points that were labeled
as iris minutiae. In the final step of mixing, the continuobsge of the fingerprint is combined
with the spiral phase of the annular iris image resulting mew fingerprint image. Experiments

showed that (a) the new biometric image (i.e., fing’irig'pyican potentially be used for authen-
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tication, and (b) the original fingerprint and iris imagesmat be easily matched with the mixed

image.

8.2 Future Research

We conclude this thesis by suggesting possible ways in wihielresearch presented here

may be expanded.

e The concept of mixing can be further generalized to develgpmmap authentication system
[151]. In such a system, biometric images of a group of irthiiais can be used for authen-
tication. The group authentication can be designed forgpaniented applications. This
could be used in scenarios where the authentication is rgetdrased on a single individ-
ual unlike most of the conventional biometric systems. lougrauthentication, access is
granted only ifk or more of the authorized individuals are simultaneoustyialing their

biometric traits.

e The performances of mixing fingerprints and generating fiiiggprint can be enhanced
and improved by exploring alternate algorithms for prepailng the biometric images, and

for decomposing and representing the texture of fingerpand irises.

¢ In the fourth chapter, we discussed a technique to mix fa@g@s to generate an inter-
personal face image that is similar to the original face iesagAs future work, different
approaches can be investigated to generate a face imags thssimilarto the original
face images. Also, the possibility of combining more than face images has to be stud-
ied. Another application would be the deliberate distoriod the soft biometric attributes
such as age, gender, race, etc. of a person’s face image loygnitixvith a public face
image (e.g., a celebrity) that has opposite attributeshaw/s in Figure 8.1. While this
perturbs the soft biometric attributes of the face, the ohireage can still be used to match
with another face image of the person. But a more formal amalg needed to derive a

privacy measure that can be utilized to validate the uggitnfithe technique.

e In chapter 7, the experimental results suggested that émitg corresponding to the orig-

inal iris and fingerprint images cannot be easily deducenh fifee mixed image. However,
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Identity 1 Identity 2

Figure 8.1: Examples of interpersonal face images. Heesintlages to be mixed have different
soft biometric attributes.
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a more formal analysis of different security aspects (ssdah@non-invertiblity and cance-
lability of the approach) is necessary. Further, more itigaton is needed to study if the
similarity (i.e., compatibility) between the extractedsiminutiae and the component fin-
gerprint minutiae could leak any information about the imagfingerprint (i.e., the original
identity). Therefore, in order to increase security andimipe the linkage, the similarity
between the iris minutiae and the fingerprint should be nredsand if there is a possibility
to select between different pairs of irises and fingers, thewith the least compatibility

measure should be mixed.
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