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Abstract

Mixing Biometric Data For Generating Joint Identities and Preserving Privacy

by

Asem A. Othman
Doctor of Philosophy in Electrical Engineering

West Virginia University

Arun A. Ross, Ph.D., Chair

Biometrics is the science of automatically recognizing individuals by utilizing biological traits
such as fingerprints, face, iris and voice. A classical biometric system digitizes the human body
and uses this digitized identity for human recognition. In this work, we introduce the concept of
mixing biometrics. Mixing biometrics refers to the processof generating a new biometric image
by fusing images of different fingers, different faces, or different irises. The resultant mixed
image can be used directly in the feature extraction and matching stages of an existing biometric
system. In this regard, we design and systematically evaluate novel methods for generating mixed
images for the fingerprint, iris and face modalities. Further, we extend the concept of mixing to
accommodate two distinct modalities of an individual, viz., fingerprint and iris. The utility of
mixing biometrics is demonstrated in two different applications. The first application deals with
the issue of generating a joint digital identity. A joint identity inherits its uniqueness from two
or more individuals and can be used in scenarios such as jointbank accounts or two-man rule
systems. The second application deals with the issue of biometric privacy, where the concept of
mixing is used for de-identifying or obscuring biometric images and for generating cancelable
biometrics. Extensive experimental analysis suggests that the concept of biometric mixing has
several benefits and can be easily incorporated into existing biometric systems.
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Chapter 1

Introduction

1.1 Identity Authentication In Digital Era

Over the course of human history, individuals have been asked to identify themselves in vari-

ous scenarios; and legal names, address, tokens, pseudonyms, etc. have been used for this purpose

[12] [13]. In our vast interconnected world, the need for reliable identity authentication tech-

niques has become of paramount importance. The emergence ofbiometrics has addressed some

of these needs. Biometrics refers to the science of establishing individuals’ identities based on

their physical and behavioral traits such as fingerprints, face, iris, voice and gait [14]. Compared

to traditional authentication schemes that are knowledge-based (e.g., passwords) or token-based

(e.g., smart cards), biometric-based systems are considered convenient (the user does not have to

memorize passwords or possess proof of identity such as ID cards) and secure (the impostors can

be deterred or detected easily) [15]. Hence, biometric systems have been deployed in numerous

commercial, civilian and forensic applications to establish identities. Figure 1.1 shows examples

of biometric traits used for establishing individuals’ identities.

Biometric-based recognition systems rely on the comparison of a digital representation of a

physical or behavioral trait with a previously recorded oneof the same trait. The first step in

all biometric systems is acquiring the raw biometric data. The device used to acquire biometric

data varies based on the type of the trait. For example, an optical sensor is typically used to

scan a fingerprint or palm and a digital camera is used to capture facial images or certain aspects

of the retina or iris. This sensor or camera generates a digital image of the biometric. Next, in

most biometric systems, the observed raw biometric data (i.e., image) is reduced into a set of
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Figure 1.1: Examples of some of the biometrics traits used for authenticating an individual.
Physical traits include face, fingerprint, iris, retina, palmprint, hand geometry, tooth, ear and
ocular, while gait, signature and keystroke dynamics are some of the behavioral characteristics.
Voice has been traditionally viewed as being physical or as behavioral characteristic.

salient characteristics (i.e., feature set). These feature sets are approximations of the acquired

images, but contain more discriminatory and invariant information than the raw digital data. Fi-

nally, the biometric system checks whether the extracted feature set has a matching template in

the database. Depending on the application, a biometric system could be either a verification

system or an identification system. A verification system compares the extracted feature set with

a recorded template of a claimed identity. A verification system is referred as a 1-to-1 matching

system. On the other hand, an identification system identifies an individual by matching the ex-

tracted feature set against all recorded templates in orderto determine a match. An identification

system is referred as a 1-to-N matching system.

Abstractly, biometric systems digitize our physical body in order to recognize us, which im-

plies a certain degree of simplification, and modifies the nature of our identities. An identity

from an individual’s perspective is related to their self-image (an individual’s mental model of

him or herself), self-esteem and perceived individuality within a given society [16]. The digital

representations (created by biometric systems) of body traits typically lead to the exclusion of all

details except those that are relevant for human recognition in a specific application. So biomet-

ric systems attempt t0 reduce the individual into a digital persona [17], that can be measured and



Asem A. Othman Chapter 1. Introduction 3

-hopefully-matched.

The thrust of biometrics involves transferring identitiesfrom an individual’s body to an exter-

nal electronic digital persona. Although, this transfer raises the controversial issue [12, 18] that

biometric systems are digitizing (i.e., oversimplifying)our physical body and living identities

into passwords (i.e, feature templates), our research relies on this ability to digitize the human

body. First we provide more details about a biometric systembefore introducing the focus of this

research.

1.2 Biometric System

A biometric recognition system (or simply a biometric system) is a pattern recognition system

that recognizes individuals based on their biometric trait(s) [15]. A typical biometric system

consists of four main modules: (i) sensor module that captures samples of a biometric trait,

(ii) feature extraction module that extracts certain salient features from the raw biometric data

captured by the sensor, (iii) database module that stores the features extracted by the feature

extraction module along with some biographic or other pertinent labels, and (iv) matcher module

that matches the features extracted from the biometric samples with the features stored in the

system database. These modules will operate in two main stages: enrollment and recognition.

The enrollment stage generates a digital representation ofan individual’s biometric trait and

then stores this representation (in some cases, the original raw data is also stored) in the system

database. The recognition stage falls into two different categories: verification and identification.

Verification involves confirming or denying an individual’sclaimed identity - “Am I who I claim I

am?”. These systems are referred as 1-to-1 authentication systems, as a probe is compared against

a single (or relatively small) number of gallery entries. Identification involves establishing an

individual’s identity - “Who am I?”. These systems are referred as 1-to-N authentication systems,

as the entire database is typically searched during the recognition stage. Figure 1.2 shows a block

diagram of a typical biometric recognition system.

The following terminologies related to biometric systems will be adopted in this thesis:

• Biometric trait: A physical or behavioral trait of an individual that is sensed, processed and

matched for person verification/identification. Examples include fingerprint, face, voice,

iris and gait.
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Figure 1.2: An example of a typical biometric recognition system which depicts the enrollment
(top) and recognition (bottom) stages of a fingerprint recognition system.T denotes the feature
vector that is extracted from the image during enrollment and stored as a template in the system
database.Q denotes the probe feature set.

• Biometric instance: A specific instance of a biometric traitsuch as the left eye or the right

index finger.

• Biometric sample: The snapshot of a specific instance of an individual’s biometric trait

captured by a biometric sensor such as the impression of the right index finger or the image

of a face.

• Biometric template (or simply template): The features extracted from a biometric sample

acquired during user enrollment and stored in the system database.

• Biometric gallery (or simply gallery): The biometric samples labeled with user identities

that are stored in the biometric database.

• Biometric probe (or simply probe): The biometric sample provided by a user during recog-

nition.

We observe that classical biometric systems generate asingledigital identity corresponding

to a single individual during the enrollment and recognition stages. This digital identity is stored

in the database. Moreover, preserving the privacy of the stored digital identity is necessary to

mitigate concerns related to data sharing and data misuse [19]. This has heightened the need

to impart privacy to the stored digital identity. In this thesis, we explore the notion of mixing
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biometrics. Mixing biometrics generates a new biometric image by fusing multiple biometric

images pertaining to a single or different individuals. Thegenerated image can be considered as

a digital representation of ajoint identity (i.e., a virtual identity) that inherits its uniqueness from

two different individuals. The mixing biometrics concept alsocan be used to transform a bio-

metric template into a revocable (i.e., changeable) template that protects the privacy of biometric

data. Consequently, mixing biometrics has benefits (as willbe discussed in the following section)

over traditional biometric systems in terms of storage and security.

1.3 Research objective: Mixing Biometrics

Observed physical attributes of an individual are capturedin pixel space (i.e., images) and

then deterministically transformed to a lower dimensionalfeature space (i.e., templates). Mixing

biometrics consolidates two different biometric images pertaining to different identities (e.g.,

fingerprint images of Alice and Bob) or to different instances of the same individual (e.g., left

and right index fingerprints of Alice). Consolidating biometrics of different identities at image

level (instead of feature level) has the benefit that different feature extraction algorithms can be

used to compute the features of the mixed image. This means the mixed images can be used in

different applications. The concept of biometrics mixing can be utilized in the following ways.

1.3.1 Generating joint identities

Mixing biometrics can be used to create a joint digital identity that pertains to multiple in-

dividuals instead of a single individual. A joint identity is a digital identity that inherits its

uniqueness from two (or more) different individuals. In thefollowing scenarios, generating joint

identities would be preferable.

Scenario 1:

To achieve a high level of secure authentication, governments have implemented two-man

rule accessing mechanism in some government buildings, military installations, laboratories such

as those dealing with nuclear material [20], poisonous substances, etc. The joint identity concept

can be used in these safety critical applications where the presence of two people is required be-
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fore a potentially hazardous operation can be performed. Inother words, the authentication pro-

cess relies on verifying the presence of two authorized identities by presenting their biometrics

simultaneously. For instance, in the case of missile launching, two officers must agree that the

launch order is valid and both crew members must turn their keys simultaneously to launch the

missile. By adopting the joint identity concept, their biometrics could be used to prevent acciden-

tal or malicious actions. Hence, their biometrics could be used to generate joint identities in such

a way that a successful authentication can be guaranteed only when both persons are providing

their biometrics simultaneously.

Scenario 2:

Another benefit of a joint identity is in banking applications. A joint account is a bank ac-

count shared by two or more individuals. Any individual who is a member of the joint account

can withdraw from the account and deposit to it. Here, the joint identity concept could be uti-

lized to generate a biometric template of this joint identity. Then, this template can be positively

matched with either a single biometric probe from one of the owners, or a mixed biometric probe

generated by mixing the probe samples of the two owners. In both cases the access to the joint

account is guaranteed by performing one verification comparison.

Based on the described scenarios, joint identities can be categorized into identities that are

dissimilaror similar to the original identities, which were mixed to generate it.

1.3.2 Preserving privacy

Although biometrics-based systems are reliable approaches to personal identification and

verification, traditional authentication systems still have one advantage over biometrics-based

systems. Tokens such as smart cards or passwords can be revoked easily when they are com-

promised; on the other hand, the user has a limited number of biometrics (e.g., one face, two

irises, etc). Moreover, there is the possibility of sharingand misusing of the biometrics data be-

tween different agencies. Therefore, there are growing concerns about biometricfunction creep.

A company that scans the iris of a user might also allow government or commercial entities to

compare this biometric data against their own databases without user’s knowledge. In some in-

stances, biometrics data may have to be transmitted across networks with the user’s knowledge.
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Also, biometric templates tend to reveal private information about a user such as race, gender and

certain health conditions [12]. Those issues have heightened the need to accord privacy to the

user by adequately protecting the contents of the databasesof biometrics systems.

Conventional cryptography provides numerous approaches and algorithms to secure impor-

tant data/images. However, there are two main concerns whenit comes to encrypting biometric

templates ( i.e., the stored features). First, the securityof the cryptographic algorithms relies on

the assumption that the cryptographic keys are known only tothe legitimate user. Maintaining

the secrecy of keys is one of the main challenges in practicalcryptosystems. Second, during

every identification/verification attempt, the stored template has to be decrypted. Thus, the orig-

inal biometric template will be exposed to eavesdroppers. The stolen templates could be used to

reconstruct the original biomertics images [21, 22, 23, 24,25]. In other words, compromising a

biometric template may result in the loss of a subject’s identity.

Therefore, there are two major requirements with regards toprotecting biometric templates

[26, 27, 28]:

1. Non-invertibility (Irreversibility): It must be computationally infeasible to recover the orig-

inal biometric image/data from the stored template.

2. Cancelability (Unlinkability): Different versions of protected biometric templates can be

generated based on the same biometric data (renewability),while protected templates should

not allow cross-matching between different applications (diversity).

In order to fulfill these requirements, a number of techniques have been proposed to limit the

amount of information that can be easily extracted from a stored template. Template protec-

tion techniques can be broadly categorized into biometric cryptosystems and de-identifying tech-

niques [27, 28].

Biometric cryptosystems [26, 27, 28] offer solutions to biometric-dependent key-release

and biometric template protection. In these systems, a cryptographic key is secured by using

biometric template or directly generating a cryptographickey from the biometric template. In

a biometric cryptosystem, some public information about the biometric template is stored and

referred to as helper data. The helper data does not reveal any significant information about the

original biometric template, but needed during matching toextract a cryptographic key from the
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probe biometric template. Matching is performed indirectly by verifying the validity of the ex-

tracted key. Nevertheless, biometric cryptosystems generally result in a noticeable decrease in

recognition performance. This is because cryptosystems introduce a higher degree of quantiza-

tion in the feature extraction module.

De-identifying a biometric image means intentionally changing the biometric content of the

image. De-identifying function should allow matching of biometric templates in the transformed

domain and should be noninvertible in order to protect the identity even if the transformation

function and its parameters are compromised [27, 28]. The de-identified biometric image is typ-

ically referred to as a private template [29] or a cancelablebiometric [30]. Ratha et al. [30]

suggested that templates of the cancelable biometric should be in the same image or data space

after transformation which allows the use of existing feature extraction and matching algorithms.

Hence, the transformation functions are severely constrained because the space of the biometric

images or data should not be changed after the process (e.g.,the cancelable face image is a face

image and the cancelable fingerprint image is a fingerprint image). So there is a trade-off between

the recognition performance and security.

In mixing biometrics, the biometric images pertaining to different individuals are utilized to

generate joint, unique, and revocable digitized identities. Therefore, this concept could be con-

sidered as an alternative approach to transform the biometric data by mixing them. For instance,

mixing fingerprints can be used to de-identify an input fingerprint image by fusing it with another

fingerprint (e.g., from a different finger) at image level, inorder to produce different mixed im-

ages that obscure the identity of the original fingerprints.This allows cancelability in biometrics

systems. A user can revoke a template that has been compromised and generate a new template

that cannot be easily guessed using the compromised template.

1.4 Mixing Biometrics: An information fusion exercise

Mixing biometrics may be viewed as an exercise in information fusion in general, and im-

age level fusion in particular. For instance, our proposed concept of mixing biometrics could be

utilized in multi-instance systems. The left and right thumbs, the left and right irises, or even a
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fingerprint and an iris of an individual may be fused and used to verify an individual’s identity. In

the following sections, we will provide an overview of multibiometric fusion and different image

level fusion approaches. Finally, a brief comparison between mixing biometrics and multibio-

metric fusion is made.

1.4.1 Multibiometric Fusion

Consolidating multiple sources of an individual’s digitized representations (e.g., multiple fin-

gerprint images, multiple matchers operating on a single trait, or multiple traits such as fingerprint

and iris) solves some of the limitations of unimodal biometric systems (e.g., population coverage,

or spoof attacks) [31]. Although, the development of multibiometric systems was considered to

be the logical extension of traditional unimodal approaches, there is a need for reliable multi-

modal fusion algorithms to consolidate different biometric representations. Therefore, there has

been a substantial amount of work done on multibiometric fusion approaches. This involves

combining biometric information at the image, feature extraction, match score, or decision level.

The different levels of fusion can be broadly categorized asfollows [31, 32]:

1. Fusion prior to matching.

• Image level fusion: The raw data from the sensor(s) are combined.

• Feature level fusion: The different feature sets extractedfrom multiple biometric

sources are combined.

2. Fusion after matching.

• Score level fusion : The matching scores output by differentbiometric matchers are

combined in order to assist the final recognition decision.

• Rank level fusion: The output of each biometric system is a subset of possible matches

(i.e., identities) sorted in decreasing order of confidence, these subsets of identities are

combined. This is relevant in an identification system wherea rank may be assigned

to the top matching identities.

• Decision level fusion: The decisions output by the individual biometric matchers are

combined.
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1.4.2 Image Level Fusion

Image fusion is a process of combining information from different images into a composite

that is suitable for post processing tasks, such as classification, recognition and tracking [33].

Image level fusion is the first fusion route for biometric data in a multibiometric system. In the

context of multibiometrics, image level fusion entails theconsolidation of evidence presented by

multiple sources of raw data before they are subjected to feature extraction. In order to accom-

modate other types of raw biometric data such as voice, video, text, etc; the phrasessignal level

fusionandsensor level fusionare also used [31].

The fusion in this early stage of a multibiometric system hasthe benefit that different application-

specific feature extraction algorithms could be used to compute the features from the fused data.

So the fused image could be used in different applications and fusion algorithms at other differ-

ent levels could be applied on it. For example, a mixed fingerprint image could be fused with

a mixed iris image at the score level. Till date, a number of image level fusion algorithms have

been proposed and we provide a brief overview of these algorithms in the following section.

Literature Review

Image level fusion has been actively utilized in different multibiometric systems. However,

this level of fusion is the least explored compared to the other levels of fusion in the context

of biometrics. The work done on the fusion of raw biometric data can be classified into three

categories [34]:

1. Single sensor, single trait: This category of image levelfusion can benefit biometric sys-

tems that acquire multiple samples of the same trait using a single sensor. Fusing those

samples can account for variations that occur in a biometrictrait. For example, partial

fingerprint images or different profiles image of a face can becombined to obtain a fused

representation of the fingerprint or the face image, respectively, which can address the chal-

lenges due to the limitation of small fingerprints sensors orthe pose variations between face

images. Note that fusing multiple samples of a biometric trait does not necessarily model

the intra-user variations. It utilizes the acquired samples of the biometric trait to generate

a composite probe or gallery image. Generating a composite representation of different

samples of a biometric trait has the following merits [31]: (a) when multiple samples of a

subject’s trait are available at the time of enrollment, instead of storing these samples as
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independent entities, they are fused into a single entity toreduce the probability of a false

reject and the matching time, and (b) consolidating the evidence presented by multiple

samples of the same biometric alleviates the problem of template selection.

In the context of fingerprints, this category of image fusionhas been used to combine mul-

tiple impressions of the same finger as exemplified in the following scenarios:

Small-area sensor:Some sensors capture only a small portion of the fingertip [35]. There-

fore, several fingerprint mosaicking techniques [36, 37, 38, 39, 40, 41, 42] have been de-

veloped to stitch multiple impressions of the same finger andcreate a larger fingerprint.

Multi-view sensor: Touchless fingerprint sensors capture multiple views of a finger using

several calibrated cameras [43] or a single camera with two planar mirrors [44]. These

multiple views are mosaicked together to yield a single nail-to-nail fingerprint.

Multispectral sensor: Rowe et al. [45] fused multiple images acquired from a multispec-

tral fingerprint scanner into a single high quality fingerprint image by utilizing a wavelet-

based method of image fusion.

In the context of faces, multiple 2D face images obtained from different viewpoints can be

stitched together to form a 3D model of the face [46] or a panoramic face mosaic [47][48].

In the context of irises, Hollingsworth et al. [49] and Jillela et al. [50] took advantage of the

temporal continuity in videos to improve matching performance using image level fusion.

From multiple frames of a frontal iris video, they created a single image. They concluded

that using fused iris images for matching resulted in a performance which is comparable

to state of the art score level fusion techniques, with less computational burden. Moreover,

fusing irises in image domain has been proposed in Zuo et al.’s work to de-identify nor-

malized iris images [51]. They proposed a GRAY-SALT transformation [51] to de-identify

irises by adding a synthetic iris image to the original iris image.

2. Multi-sensors, single trait: In this category, samples are acquired by multiple senors instead

of using a single sensor. The information obtained from multiple sensors are complemen-

tary to each other, and can augment the biometric content andminimize the intra-user

variability. In the literature, this category of image level fusion has been used in face iden-

tification systems to minimize the variations due to facial appearance (e.g., hairs, wrinkles,

and expression) and the effects due to changes in pose and illumination. Hence, researchers

have fused the visible spectrum images with near infrared images [52, 53, 54, 55] and with
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the corresponding 3D scan (i.e., the range image) in order tocreate a 3D texture [56, 57].

3. Multibiometric: The previous categories of image level fusion were employed in unimodal

biometric systems. However, there has also been some research conducted in fusing im-

ages of different biometric traits into a single composite image. The fused multibiometric

image can address issues such as memory storage [58] and small sample size recognition

[59]. Jing et al. [59] generated a composite image from face and palmprint biometrics

by concatenating the responses of different Gabor filters. The resulted image is not in the

same image or data space of the face or palmprint images. Therefore, during authentica-

tion, kernel discriminative common vectors are extracted from the fused image and radial

basis function based neural network is used for classification. Noore et al. [58] developed

a fusion algorithm which is based on multi-level discrete wavelet transform to fuse images

of four biometric traits (i.e., face, iris, fingerprint, andsignature). Here, the resulted image

is a scrambled multimodal biometric image and special reconstruction procedures are used

to reconstruct the original images and perform authentication. Liu et al. [60] fused the

phase of a normalized iris and a palmprint image by using BaudLimited 2D-IDFT. But the

fused image can only be matched with a stored template by using a special matcher, i.e.,

a phase-based image matcher and they did not analyze if the fused image is a cancelable

template or not.

1.4.3 Mixing BiometricsversusMultibiometric fusion

First of all, deploying a multibiometric system improves the recognition performance by con-

solidating multiple biometric sources of a single individual (i.e., it increases the biometric content

of the digital identity of a specific individual). On the other hand, one objective of mixing bio-

metrics is to generate a joint identity, whose uniqueness pertains to multiple individuals. There-

fore, the biometric samples, i.e., images will be fused to generate a new biometric image.

Second, although generating a biometric image is possible by traditional image level fusion

approaches (see Section 1.4.2), the sources have to be samples of the same biometric instance

obtained from a single sensor or multiple compatible sensors. In other words, traditional image

level fusion augments the biometric content of the templatepertaining to a single individual

by fusing multiple samples of the same instance of a biometric trait. On the contrary, mixing

biometrics generates a new biometric image by fusing imagesof different biometric instances
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pertaining to single or different individuals.

Moreover, as described in Section 1.4.2, to fuse biometricssamples at image level, these

samples must be compatible, and the correspondences between raw data must be either known in

advance or reliably estimated. Therefore, the traditionalimage level fusion approaches cannot be

directly used for mixing biometrics images of different individuals. This is because it is difficult

to ensure the existence of such correspondences between twobiometric samples acquired from

different individuals or instances.

Finally, the multibiometric approach improves the accuracy of the system over its individual

unimodal components, but this improvement comes at a cost. Multibiometric systems may be

viewed as combinations of two or more unimodal biometric systems. Each unimodal system has

its own feature extractor and matcher. Thus, fusing their features, scores or decisions requires

additional time. On the other hand, these systems could be cost-effective if a single image is used

in the matching step. Hence, the concept of mixing biometrics could provide benefits with regards

to storage and security. For example, when images of a subject’s index and thumb are available

at the time of enrollment, a common approach is to store theseimages as independent galleries.

Thus, when probe images of these fingers are acquired, each probe image is compared against

the corresponding gallery image independently. The resulting set of scores can be consolidated

to generate a single score (e.g., via the sum rule). However,in the case of mixing biometrics,

images of a subject’s fingers are mixed into a single image. This mixed image will be stored at

the time of enrollment and during the authentication it willbe matched against a single mixed

probe image.

Although there are stated differences between mixing biometrics (as a concept) and multibio-

metrics fusion (as deployed systems), mixing biometrics isstill a multibiometric fusion exercise

by definition [31]. We believe that mixing biometrics extends and boosts the biometrics concept

in general, and the multibiometrics fusion concept in particular. Therefore, in this thesis, we will

introduce different approaches in order to mix different biometric traits.

1.5 Thesis Contributions

In this thesis, we explore the possibility of generating a biometric template that inherits its

characteristics from different individuals or instances.This section provides an overview of the
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thesis organization and approaches designed to accomplishour research objective.

In Chapter 2 we will discuss the use of fingerprints, faces andirises as biometrics. The

purpose of this chapter is to give a brief introduction to biometric traits that have been utilized in

the thesis. The reader can skip this chapter without any lossof continuity.

In Chapter 3 we describe a method to protect the privacy of fingerprint templates by mixing

images to generate a cancelable fingerprint image. To mix twofingerprints, each fingerprint

pattern is decomposed into two different components, viz.,the continuous and spiral components

by viewing the patterns as holograms. After pre-aligning the components of each fingerprint,

the continuous component of one fingerprint is combined withthe spiral component of the other

fingerprint.

Chapters 4 and 5 present methods for mixing faces and irises,receptively, in order to generate

joint identities that are similar to the original identities (as in scenario 2 in Section 1.3.1). The

mixed face image is an intermediate face image in the morphing continuum between two faces

and its position on this continuum is specified by the mixing parameters. In the case of iris, in

order to mix two iris patterns, horizontal seams are copied from normalized iris images into a

new iris image after sorting them based on their importance in the images.

In Chapter 6, the mixing concept is utilized in a different manner. Here, the mixed image

corresponds to a true identity (and is not a virtual identity); however, the components of the mixed

image are obtained from other identities. Therefore, we investigate the possibility of dithering

a private face image into two host face images such that the private image can be revealed only

when dithered host images are simultaneously available; atthe same time, the individual dithered

host images do not reveal the identity of the private image.

In Chapter 7, we extend the concept of mixing in order to mix instances ofdifferentbiometric

traits to obscure the original identity. Specifically, the goal here is generating a new mixed image

that inherits its uniqueness from a finger impression and an iris image, i.e., a fingerprint image

and an annular iris image are mixed in order to generate a fing’iris’print image. This mixed image

incorporates characteristics from the original fingerprint impression and iris image, and can be

used directly in the feature extraction and matching stagesof an existing fingerprint system.

To mix a fingerprint with an iris, the fingerprint is decomposed into two components, viz., the

continuous and spiral phases, and iris minutiae is extracted in order to generate the iris spiral

phase. Then, the continuous phase of the fingerprint is combined with the spiral phase of the
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annular iris image.

In all cases, extensive experiments are conducted to conveythe benefits and limitations of the

proposed concepts.

The final chapter summarizes our contributions and providessuggestions for future work.
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Chapter 2

Biometric Traits

2.1 Introduction

The purpose of this chapter is to give a brief introduction about different biometric traits, i.e.,

fingerprint, face, and iris, that have been discussed in the thesis.

2.2 From anthropometry to biometrics

In the nineteenth century, Alphonse Bertillon [1], a Frenchpoliceman, was the first to intro-

duce the science of identifying a person based on his/her anatomical features. To identify repeat

offenders, Alphonse built a set of tools referred to in contemporary literature as the Bertillonage

system. These tools were used to measure certain anatomicaltraits of a person including eleven

different body measurements such as height, length, and breadth of the head, the width of cheeks,

the length of different fingers, the length of forearms, etc.Figure 2.1 shows an illustration of the

process for acquiring these measurements. These measurements were then recorded on an iden-

tity card (as shown in Figure 2.2) and/or manually compared to a record database to check if the

same person was convicted before. The system was used until 1903, when it was replaced by

fingerprint records. But a few elements of the Bertillon system exist even today in the criminal

police identification process, such as the combination of profile and frontal shots, i.e., mug shots

when photographing offenders (see Figure 2.3).
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Figure 2.1: Anthropometry measurements used in Bertillonage identification system (taken from
[1])
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Figure 2.2: The ID card of Francis Galton as per the Bertillonage system (taken from [2]) created
during Galton’s visit to Bertillon’s laboratory in 1893.

Figure 2.3: Mugshot of Alphonse Bertillon (taken from [3]).
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2.3 Fingerprint as a biometric

The complexity of the Bertillonage system was the reason forproviding criminal identifica-

tion systems with accurate and reliable data, but it was alsothe reason for the system’s downfall.

Therefore, the supremacy of the Bertillon system began to fade in the face of a new (at that time)

identification technique, i.e., fingerprint identificationwhich was simpler to administer than the

Bertillon anthropometry system. The use of fingerprints forestablishing identity was started

in the 16th century and thereafter replaced Bertillonage system as the world-wide standard for

criminal identification.

A fingerprint refers to the flow of ridge patterns in the tip of the finger. The ridge flow exhibits

irregularities in local regions of the fingertip termed as minutiae points (Figure 2.4). In 1892, Sir

Francis Galton used the minutiae features for fingerprint matching. Since then, the distribution of

these minutiae points along with the associated ridge structure has been believed to be distinctive

to each fingerprint, and has been used in individual identification records in police offices.

Figure 2.4: A fingerprint image. The red circles represent some of the irregularities in the finger-
print,i.e.,the minutiae points.

Fingerprints recognition systems are considered to be a reliable method to recognize indi-
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viduals and are used in different biometric applications, such as physical access control, border

security, watch list, background check, and national ID systems.

2.3.1 Representation and matching

The uniqueness of a fingerprint is predominantly determinedby the local ridge characteristics

and their relationships, and matching fingerprints manually to claim that two impressions belong

to the same person, requires complex protocols that have been used by examiners. Over the

last three decades, research in fingerprint recognition hasseen tremendous growth; however,

most automatic fingerprint matchers follow similar protocols as human examiners and depend on

the ridge characteristics of fingerprints. These characteristics (i.e., fingerprint features) can be

organized in a hierarchical order [35] at three different levels. Level 1 features include the ridge

flow, pattern type, external fingerprint shape, orientationimage, and frequency image; level 2

features consist of minutiae location and orientation; andlevel 3 features consist of information

available at higher resolution images, such as local shape of ridges, dots, pores and incipient

ridges. On the basis of the described hierarchical order, fingerprint matching can be accomplished

using three classes of matchers [35].

Level 1 features matchers

The matchers of this class compare the global pattern of ridges, e.g., correlation based match-

ers. During the matching procedures, the fingerprint or the global ridge orientation images are

superimposed on each other and the correlation between the corresponding pixel intensities is

computed for different alignments (e.g., various displacements and rotations). In general, it has

been reported [35] that the level 1 features are useful for fingerprint classification and indexing,

but not sufficient for fingerprint matching.

Level 2 features matchers

These are the most popular matchers whereby minutiae pointsare extracted from the finger-

print to be matched, and their location and ridge orientations are stored as a fingerprint template

in a central database. The matching process determines the alignment between two minutiae sets

that results in the maximum number of minutiae pairings. Some matchers utilize the level 1 fea-

tures, such as texture information, local orientation, frequency and/or ridge pattern, along with
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the extracted minutiae, to match two fingerprints.

Level 3 features matchers

This class of matchers is the least explored by researchers [35], compared to level 2 features

matchers. This is due to two major reasons; (1) robust extraction of level 3 features (e.g., ridge

shapes, sweat pores) requires high resolution images (≥ 1,000 ppi - number of pixels per inch in

the image) compared to 500 ppi, i.e., the current FBI standard [35]; and (2) even with availability

of good quality images, these matchers require high computational complexity. These reasons

has made the practicality of using these matchers for some commercial applications debatable.

However, level 3 features play a significant role in latent fingerprint matching, where fingerprints

are lifted from a surface prior to digitizing them.

2.4 Face as a biometric

Extracting intrinsic information from faces, such as identity, gender, ethnicity and age, is a

task that humans perform routinely and efficiently. Therefore, the availability of powerful and

low-cost computing systems has created an interest in developing automatic face recognition sys-

tems and deploying them in a number of applications, including biometric-based access systems.

Automatic face recognition represents a challenging problem in the field of image analysis and

computer vision. Thus, research in face recognition is striving to (a) solve fundamental chal-

lenges such as developing face matching methods that are invariant to age, pose, illumination,

and facial expressions; (b) utilize the advances in technologies such as digital cameras and mo-

bile devices to perform face recognition in new applications and scenarios; and (c) fulfill the

increased demands on security in numerous practical applications where human identification is

needed.

2.4.1 Representation and matching

To identify a face in a digital image, the face recognition system should automatically find

the faces in the image (if there is one), and then the recognition occurs by matching the detected

face with the face template in a database. Just as in the case of fingerprints (see section 2.3),

where ridge details were described in a hierarchical order at three different levels, Klare and Jain
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[4] developed a hierarchical order for describing facial features (see Figure 2.5).

Level 1 features are the facial characteristics that can be observed from the general appearance

of the face, such as skin color. Level 2 features are the localized characteristics of the face,

such as the shape of the face and the relationship among the facial attributes. Finally, level 3

characteristics are the micro features that can be useful for the discrimination of monozygotic

(i.e., identical) twins [61], such as facial marks.

(a) A face image

(b)Level 1 feature: skin color (c) Level 2 feature: face shape (d) Level 3 feature: face marks

Figure 2.5: Examples of the three levels of facial features (adopted from [4]).

Face matching is the process of measuring the similarity or dissimilarity between two face

image based on the extracted features. Level 1 face featuresare quite analogous to level 1 finger-

print features. Hence, level 1 face features cannot accurately identify an individual over a large

population of candidates. Similarly, as level 2 features offingerprints, level 2 face features are the

most discriminative features, and are predominantly used for face recognition approaches. There
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are two broad categories of main approaches to match the detected face images [62]: appearance-

based and feature-based methods. Appearance-based methods consider the global properties of

the face image intensity pattern such as Principal Component Analysis (PCA), Linear Discrimi-

nant Analysis (LDA), and Independent Component Analysis (ICA). Feature-based methods are

using local features of the face such as geometric relationsbetween the facial features and local

texture features of the face that are in variant to pose and lighting such as gradient orientations

and local binary patterns (LBP). Meanwhile, Level 3 features contain unstructured, micro level

features on the face that includes scars and facial marks. These features have been used along

with level 2 features to identify monozygotic twins [63].

2.5 Iris as a biometric

Irises exhibit an extraordinary amount of textural detailsthat are believed [64] to be different

between individuals and between different eyes of the same individual. The texture of an iris

can be simply described as a multilayered, tangled mesh-like structure, which imparts a highly

complex texture to its surface. Figure 2.6 provides a close-up view of the texture of a sample iris.

Compared with fingerprints, iris image data acquisition is usually non-invasive. Thus the iris has

become one of the most reliable biometric traits for identity verification and recognition.

Figure 2.6: Close-up view of an iris, showing its complex texture. Image taken from [5].
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2.5.1 Representation and matching

The texture of iris is formed by many interlacing minute characteristics such as pigment spots,

stripes, furrows, crypts, etc. that are embedded on a stroma. [64]. Based on these features, the

recognition takes place. But, prior to recognition, the iris region must first be localized and seg-

mented from an image of the eye. Errors in the segmentation step will lead to poor performance

due to the inclusion of noise (e.g. eyelashes, sclera, pupil, eyelids, and specular reflection) in the

image.

Several iris representation techniques have been proposedin the literature [64, 65] and the

matching is mainly based on the method of representation, i.e., the method used for encoding the

iris texture. Thus, most existing techniques for iris recognition can be divided into two major

classes. The first class represents the iris texture using filters or transforms [66], The second class

of methods seeks to capture local and macro iris feature suchas freckles, crypts, furrows, etc. in

the spatial domain [67][68].

Daugman’s phase encoding technique, which come under the first class, is the most common

and promising among the different iris recognition approaches [64] [65] [69]. Figure 2.7 shows

the processing chain of the traditional iris recognition system following Daugman’s approach

[70]. First, a camera acquires an image of an eye and the iris annular region is segmented, Next,

the annular iris is geometrically normalized,i.e., unwrapped from raw image coordinates to polar

coordinates. A texture filter is applied to the normalized iris image, and the filter responses are

quantized into a binary representation (i.e., iris code). The comparison between two iris codes is

done by computing the fractional HD as a dissimilarity measure.

2.6 Summary

In this chapter, we gave a brief introduction to three biometric traits, fingerprint, face and

iris, which will be utilized in this thesis to generate jointidentities. We discussed the different

representation and matching schemes for these biometric traits. Recent research has resulted in

the development of robust matchers for these modalities. Further, new cryptographic constructs

have been proposed for these modalities [71]. For a more detailed description, the reader is

referred to [14].
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Figure 2.7: Diagram of Daugman’s approach for encoding an iris image.
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Chapter 3

Mixing Fingerprints

3.1 Introduction

In this dissertation, the proposed concept of generating joint identities by mixing biometrics

of different individuals is introduced. Biometric images of different individuals are fused at the

image level to generate a new biometric image. Image level fusion has been previously used in the

context of fingerprints to combine multiple impressions of the same finger [35]. In this chapter,

unlike previous work (see Section 1.4.2), two fingerprint impressions acquired from twodifferent

fingers are fused into a new fingerprint image resulting in a new identity∗. The mixed image

incorporates characteristics from both the original fingerprint images, and can be used directly in

the feature extraction and matching stages of an existing biometric system. In the following, the

major motivations behind the development of the proposed approach are discussed.

• The proposed approach explores the possibility of fusing images from distinct fingers at the

image level and determining how this will affect authentication performance. For example,

the proposed approach could be used to mix the prints of the thumb and the index fingers

of a single individual, or index fingers of two different individuals, and generate a new

fingerprint. Therefore, the concept of mixing fingerprints could be utilized in a multi-finger

authentication system. This has benefits in terms of storageand security.

• Fingerprint mixing can be used to generate a large set of virtual identities. These virtual

identities can be used to conceal the original identities ofsubjects or be used for large-scale

∗Here, the term “identity” is used to suggest that the mixed fingerprint is unique and possibly different from other
fingerprints.
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evaluation of algorithms [72][35].

• De-identifying a fingerprint image is necessary to mitigateconcerns related to biometric

data sharing and data misuse [19][29][30]. Fingerprint mixing can be used to de-identify an

input fingerprint image by fusing it with another fingerprint(e.g., from a different finger) at

image level, in order to produce a new mixed image that obscures the identity of the original

fingerprint. In [73] and [24] a similar approach has been proposed to preserve the privacy

of fingerprints by fusing two distinct fingers but only at the feature level. Our proposed

approach creates a new image that looks like a plausible fingerprint image and, thus, (a) it

can be processed by conventional fingerprint algorithms and(b) an intruder cannot easily

determine if a given print is mixed or not.

The mixing process begins by decomposing each fingerprint image into two different com-

ponents, viz., the continuous and spiral components (see Figure 3.1). The continuous

component defines the local ridge orientation, and the spiral component characterizes the

minutiae locations. Next, the two components of each fingerprint are aligned to a com-

mon coordinate system. Finally, the continuous component of one fingerprint is combined

with the spiral component of the other fingerprint. This workconfirmed that (a) the new

fingerprint representing a new identity can potentially be used for authentication; (b) the

proposed method can be utilized to generate different-sized databases of virtual identities

from a fixed fingerprint dataset; (c) it can be used to obscure the information present in

an individual’s fingerprint image prior to storing it in a central database; and (d) it can be

used to generate a cancelable template, i.e., the template can be reset if the mixed finger-

print is compromised. Since the proposed approach can be used for de-identifying finger-

prints, in this chapter, a detailed analysis of the securityaspects, i.e., the changeability and

non-invertability properties of the mixing fingerprint approach has been included. This se-

curity analysis is based on metrics commonly used in the cancelable biometrics literature

[27][28]. The rest of the chapter is organized as follows. Section 3.2 presents the proposed

approach for mixing fingerprints. Section 3.3 reports the experimental results and Section

3.4 summarizes the chapter.
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Figure 3.1: Proposed approach for mixing fingerprints

3.2 Mixing Fingerprints: The proposed approach

The ridge flow of a fingerprint can be represented as a 2D Amplitude and Frequency Mod-

ulated (AM-FM) signal [74]:

I(x, y) = a(x, y) + b(x, y)cos(Ψ(x, y)) + n(x, y), (3.1)

whereI(x, y) is the intensity of the original image at(x, y), a(x, y) is the intensity off-

set,b(x, y) is the amplitude,Ψ(x, y) is the phase andn(x, y) is the noise. Based on the

Helmholtz Decomposition Theorem [75], the phase can be uniquely decomposed into the

continuous phase and the spiral phase,Ψ(x, y) = ψc(x, y) + ψs(x, y). As shown in Figure

3.2, the cosine of the continuous phase, i.e., the continuous componentcos(ψc(x, y)), de-

fines the local ridge orientation, and the cosine of the spiral phase, i.e., the spiral component

cos(ψs(x, y)), characterizes the minutiae locations. Letφ(x, y) denote the spiral phase of a

local region in a fingerprint. Assume that the functionφ(x, y) monotonically changes from

0 to 2π around a particular point,(xn, yn), and has a characteristic jump from0 to 2π at the

point (xn, yn). This forms a residue at(xn, yn) with an associated polarity,pn ∈ {−1, 1}.

A residue with positive (negative) polarity is referred to as a positive (negative) spiral.

φ(x, y) = pn tan
−1((x− xn)/(y − yn)). (3.2)
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(a)

(b) (c)

Figure 3.2: Decomposing a fingerprint. (a) A fingerprint image. (b) Continuous component,
cos(ψc(x, y)). (c) Spiral component,cos(ψs(x, y)). The blue and pink dots represent ridge end-
ings and ridge bifurcations, respectively.

Appending this function to the continuous phase will cause aphase jump at(xn, yn) result-

ing in a minutia. In Figure 3.3, a local ridge pattern is generated based on the continuous

phase function2πfy, with f = 4. Depending upon the polarity value (+1 or -1), a minutia

is generated on the ridge pattern. The relation between the polarity, pn, and the occurrence

of ridge ending or bifurcation is dependent on the gradient direction of the cosine of the

continuous phase. Hence, the spiral phase allows for an abrupt change in the local fringe

density by either inserting or deleting a ridge based on the polarity and the appending lo-

cation within the continuous phase. If the simple function in (3.2) is replaced by a sum of

such functions, the spiral phase,ψs(x, y), will correspond to a set of minutiae:

ψs(x, y) =

N
∑

n=1

pn tan
−1((x− xn)/(y − yn)), (3.3)

wherexn andyn denote the coordinates of thenth minutia, andN denotes the total number

of minutiae. Moreover, the type of a minutia (ending or bifurcation) is determined by its

polarity pn ∈ {−1, 1}. Thus, based on this 2D AM-FM representation, the fingerprint’s

oriented patterns can be uniquely decomposed into (a) a small number of topologically
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(a)

(b) pn = +1 (c)pn = -1 (d)pn = +1 (e)pn = -1

Figure 3.3: Generating minutia in a fringe pattern. (a) Grayscale image of continuous phase
given bycos(2πfy). (b) and(c) Appending a minutia at “B”. (d) and (e) Appendinga minutia at
“E”.

distinct discontinuities, i.e., the spiral phase, and (b) awell defined smooth flow field, i.e.,

the continuous phase.

3.2.1 Fingerprint Decomposition

Decomposing images into semantic parts is of great interestin many applications such as

compression, enhancement, restoration, and more. Therefore, this task has drawn a lot

of research attention and most of the proposed approaches are utilizing total variational

calculus. These methods are inspired by the total variation(TV) regularization for image

denoising and restoration [76]. The separation is done by decomposing the image into

texture and non-texture (or cartoon) components, as shown in Figure 3.4. So this kind of

image decomposition can be useful for image compression where compressing the cartoon

and the texture components separately can provide better results, image denoising where

zero mean oscillatory noise can be regarded as a fine texture,image feature selection, etc.

But these methods are suggested for textures with no prior knowledge about it, meanwhile,

in order to decompose a biometric image into its component structures, understanding the

non-linear nature of the image and the source of its distinctiveness and individuality will

be beneficial.
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(a)

(b) (c)

Figure 3.4: Cartoon-texture decomposition using a total variation method [6]. (a) A fingerprint
image. (b) Cartoon image. (c) Texture image.

Therefore, we found that the Larkin et al.’s hologram model [77] (check Equation 3.1),

i.e., a phase modulated fringe pattern to represent the fingerprint images can be the suitable

method to decompose fingerprint images. Larkin et al.’s work[77][74] is the culmination

of several years of investigating mathematical methods fordemodulation of optical inter-

ferograms that have fringe pattern such as fingerprint images.

The hologram representation of fingerprint is an adaptive and data-driven approach in com-

parison to traditional representation such as the Fourier or wavelet methods where a pre-

defined decomposition basis is used. Moreover, the frequency representation fails to work

properly because there is an infinite singularity at each minutiae point. On the other hand,

the hologram phase circumvents the infinite frequency singularities that always occur at

minutiae in the phase estimation step.

Since ridges and minutiae can be completely determined by the phase [74]Ψ(x, y). The

other three parameters in Equation (3.1) contribute to the realistic textural appearance of

the fingerprint. Before fingerprint decomposition, the phaseΨ(x, y) must be reliably esti-

mated; this is termed as demodulation.
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Vortex demodulation

The objective of vortex demodulation [77] is to extract the amplitudeb(x, y) and phase

Ψ(x, y) of the fingerprint pattern. First, the DC terma(x, y) has to be removed since the

failure to remove this offset correctly may introduce significant errors in the demodulated

amplitude and phase [77]. To facilitate this, a normalized fingerprint image,f(x, y), con-

taining the enhanced ridge pattern of the fingerprint (generated by the VeriFinger SDK†) is

used. From Equation (3.1),f(x, y) = I(x, y)− a(x, y) ≃ b(x, y)cos(Ψ(x, y)). The vortex

demodulation operatorV takes the normalized imagef(x, y) and applies a spiral phase

Fourier multiplierexp[iΦ(u, v)]:

V{f(x, y)} = F−1{exp[iΦ(u, v)].F{b(x, y). cos[Ψ(x, y)]}}
∼= −i exp[iβ(x, y)].b(x, y). sin[Ψ(x, y)]

(3.4)

where,F is the Fourier transform,F−1 is the inverse Fourier transform andexp[iΦ(u, v)] is

a 2-D signum function [77] defined as a pure spiral phase function in the spatial frequency

space(u, v):

exp[iΦ(u, v)] =
u+ iv√
u2 + v2

. (3.5)

Note that in Equation (3.4) there is a new parameter,β(x, y), representing the perpendicular

direction of the ridges. In Equation (3.6), this directional map is used to isolate the desired

magnitude and phase from Equation (3.4), i.e.,

− exp[−iβ(x, y)].V{f(x, y)} = ib(x, y). sin[Ψ(x, y)]. (3.6)

Then, Equation (3.6) can be combined with the normalized image,f(x, y), to obtain the

magnitudeb(x, y) and the raw phase mapΨ(x, y) as follows:

− exp[−iβ(x, y)].V{f(x, y)}+ f(x, y) = b(x, y). exp(iΨ(x, y)). (3.7)

Therefore, determiningβ(x, y) is essential for obtaining the amplitude and phase func-

tions, b(x, y) andΨ(x, y), respectively. The direction mapβ(x, y) can be derived from

the orientation image of the fingerprint by a process called unwrapping. A sophisticated

†http://www.neurotechnology.com
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unwrapping technique using the topological properties of the ridge flow fields is necessary

to account for direction singularities such as cores and deltas [74] [23].

Direction Map β(x, y)

Direction is uniquely defined in the range 0◦ to 360◦ (modulo 2π). In contrast, finger-

print ridge orientation is indistinguishable from that of a180◦ rotated ridge (moduloπ).

Therefore, the fingerprint’sorientationmap, denoted byθ(x, y), should be unwrapped to a

directionmap,β(x, y) [74]. Phase unwrapping is a technique used to address a2π phase

jump in the orientation map. The unwrapping process adds or subtracts an offset of2π to

successive pixels whenever a phase jump is detected [75]. This process proceeds by start-

ing at any pixel within the orientation image and using the local orientation information to

traverse the image pixel-by-pixel, and assigning a direction (i.e., the traversed direction) to

each pixel with the condition that there are no discontinuities of2π between neighboring

pixels. However, the presence of flow singularities means that there will be pixels in the

orientation image with a discontinuity of±2π in the traversed direction and, therefore, the

above unwrapping technique will fail. In fingerprint images, such flow singularities arise

from the presence of singular points such as core and delta. Figure 3.5(a) illustrates that es-

timating the direction of ridges in the vicinity of a core point by starting at any point within

the highlighted rectangle and arbitrarily assigning one oftwo possible directions, can result

in an inconsistency in the estimated directions inside the dashed circle. This inconsistency

in the estimated direction map can be avoided by using a branch cut [75]. The branch cut

is a line or a curve used to isolate the flow singularity and which cannot be crossed by

the paths of the unwrapping process. Consequently, branch cut prevents the creation of2π

discontinuities and restores the path independence of the unwrapping process. As shown

in Figure 3.5(b), tracing a line down from the core point and using this line as a barrier

resolves the inconsistency near the core point (i.e, insidethe dashed circle) by selecting

two different directions in each side of the branch cut within the same region (i.e, inside

the highlighted rectangle). In our work, a strategy based onthe techniques described in

[74] [7] [23] has been adapted to estimate the direction mapβ(x, y), which is summarized

in the following three steps.

1. The orientation imageθ(x, y) of the normalized fingerprintf(x, y) is determined via the
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(a) (b)

Figure 3.5: A portion of the estimated direction map (a) before assigning a branch cut and (b)
after assigning a branch cut [7].

least mean-square method [78]. Then the Poincaré [35] index is used to locate the singular

points, if any.

2. In case there are singular points, an algorithm is appliedto extract the branch cuts

along suitable paths such as ridge contours, as shown in Figure 3.5(b), to resolve the in-

evitable direction ambiguities near those singularities.The branch cuts are extracted by

tracing the contours of ridges (rather than the orientationfield) in the skeleton images. The

algorithm starts from each singular point in a skeleton image until the trace reaches the

border of the segmented foreground region of the fingerprintor when it encounters another

singular point. To generate the skeleton images, first, a setof smoothed orientation maps

are generated by applying a Gaussian smoothing operation atdifferent smoothing scales

(σ ∈ {1, 2, 3, 5, 10, 15, 20, 32, 50, 64}) on θ(x, y). Next, a set of Gabor filters, tuned to the

smoothed orientation maps [78], is convolved with the normalized imagef(x, y). Then,

a local adaptive thresholding and thinning algorithm [79] is applied to the directionally

filtered images producing 10 skeleton images. Thus, there are at least 10 branch cuts and

the shortest one, associated with each singular point, is selected and Figure 3.6 shows two

examples of skeleton images and the corresponding branch cuts of a core point. Figure 3.7

shows examples of the branch cuts extracted from the singular points of different finger-

prints.

3. The phase unwrapping algorithm [80] [75] starts from any arbitrary pixel in the orienta-
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tion mapθ(x, y) and visits the other pixels, which are unwrapped in the same manner as in

images without singularity, with the exception here that the branch cuts cannot be crossed.

Then, each branch cut is visited individually and its pixelsare traced and unwrapped.

(a) (b)

(c) (d)

Figure 3.6: Examples of skeleton images and branch cuts for asingular point where (a) and (c) are
skeleton images generated withσ = 3 and 32, respectively and (b) and (d) are the corresponding
branch cuts. Branch cut in (d) is the selected one.

Finally, the direction mapβ(x, y) is determined from the unwrappedθ(x, y) by addingπ/2

which allows for the determination of the amplitudeb(x, y) and phaseΨ(x, y) modulations

of fingerprint image from Equation (3.7). A flowchart for demodulating a fingerprint image

is depicted in Figure 3.8.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.7: Examples of fingerprints with singular points (The blue dots and red triangle represent
cores and delta, respectively). (a), (c), (e), and (g) The normalized fingerprints. (b), (d), (f), and
(h) The extracted branch cuts obtained by tracing the ridgesinstead of the orientation field.
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Figure 3.8: Flowchart for demodulating a fingerprint image.

Helmholtz Decomposition

The Helmholtz Decomposition Theorem [75] is used to decompose the determined phase

Ψ(x, y) of a fingerprint image into two phases. The first phase,ψc is a continuous one,

which can be unwrapped, and the second is a spiral phase,ψs, which cannot be unwrapped

but can be defined as a phase that exhibits spiral behavior at aset of discrete points in the

image. The Bone’s residue detector [81] [75] is first used to determine the spiral phase

ψs(x, y) from the demodulated phaseΨ(x, y). Next the continuous phase, is computed

asψc(x, y) = Ψ(x, y) − ψs(x, y). Finally, although subtracting the spiral phase from the

phase should results in a continuous phase with no discontinuities, due to the inevitable

quantization errors in the subtracting operation, it is essential to unwrap the continuous

phase again by using the branch cuts from the previous step. Figure 3.9 illustrates the steps

to determine the continuous componentcos(ψc(x, y)) (Figure 3.9(h)) from the estimated

spiral componentcos(ψs(x, y)) (Figure 3.9(f)) of a fingerprint and the demodulated phase

Ψ(x, y) (Figure 3.9(a)).



Asem A. Othman Chapter 3. Mixing Fingerprints 38

Figure 3.9: Determining fingerprint constituents from (a) the demodulated phaseΨ(x, y). (b)
Spiral Phaseψs(x, y). (c) Continuous Phaseψc(x, y). (d) Unwrapped continuous Phase. (e), (f),
(g) and (h) are the cosine (according to the hologram modal representation of fringe pattern, as
explained in Equation 3.1) of (a), (b), (c) and (d), respectively.

3.2.2 Fingerprint Pre-alignment

To mix two different fingerprints after decomposing each fingerprint into its continuous

componentcos(ψc(x, y)) and spiral componentcos(ψs(x, y)), the fingerprints themselves

should be appropriately aligned. Previous research has shown that two fingerprints can

be best aligned using their minutiae correspondences. However, it is difficult to ensure

the existence of such correspondences between two fingerprints acquired from different

fingers. In this work, the components are pre-aligned to a common coordinate system prior

to the mixing step by utilizing a reference point and an alignment line. The reference point

is used to center the components. The alignment line is used to find a rotation angle about

the reference point. This angle rotates the alignment line to make it vertical. The two phase

components of each fingerprint are rotated by the same angle.

Locating a reference point

The reference point used in this work is the northern most core point of extracted singu-

larities. For plain arch fingerprints or partial fingerprintimages, Novikov et al.’s technique

[82] [21], based on the Hough transform, is used to detect thereference point.
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Finding the alignment line

The first step in finding the alignment line is to extract high curvature points from the skele-

ton of the fingerprint image’s continuous component. Next, horizontal distances between

the reference point and all high curvature points are calculated. Then, based on these dis-

tances, an adaptive threshold is applied to select and cluster points near the reference point.

Finally, a line is fitted through the selected points to generate the alignment line. Figure

3.10 shows the steps to find the reference point and the alignment line by utilizing the

continuous phase component of an arch fingerprint. Since thecontinuous component of a

fingerprint is a global feature of the fingerprint pattern andis not affected by breaks and

discontinuities which are commonly encountered in ridge extraction, the determined refer-

ence point and alignment line are consistence and do not reveal any information about the

minutia attributes which are local characteristics in the fingerprint.

Figure 3.10: Finding the reference point and alignment linefor an arch fingerprint.

3.2.3 Mixing Fingerprints

Let F1 andF2 be two different fingerprint images from different fingers, and letψci(x, y)

andψsi(x, y) be the pre-aligned continuous and spiral phases,i = 1, 2. As shown in Figure

3.1, there are two different mixed fingerprint image that canbe generated,MF1 andMF2:

MF1 = cos(ψc2 + ψs1),

MF2 = cos(ψc1 + ψs2).
(3.8)
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The continuous phase ofF2 (F1) is combined with the spiral phase ofF1 (F2) which gen-

erates a new fused fingerprint imageMF1 (MF2).

3.2.4 Compatibility Measure

Variations in the orientations and frequencies of ridges between fingerprint images can re-

sult in visually unrealistic mixed fingerprint images, as shown in Figure 3.11. This issue

can be mitigated if the two fingerprints to be mixed are carefully chosen using a compati-

bility measure. In this work, the compatibility between fingerprints is computed using non-

minutiae features, viz., orientation fields and frequency maps of fingerprint ridges. Figure

Figure 3.11: Examples of mixed fingerprints that look unrealistic.

(a) Fingerprint Image

(b) Orientation Field (c) Frequency Map

Figure 3.12: Orientations and frequencies of the ridges of afingerprint image.



Asem A. Othman Chapter 3. Mixing Fingerprints 41

3.12 shows the orientation and frequency images were computed from the pre-aligned con-

tinuous component of a fingerprint using the technique described in [78]. Then, Yager and

Amin’s [83] approach is used to compute the compatibility measure. To compute the com-

patibility between two fingerprint images, their orientation fields and frequency maps are

first estimated (see below). Then, the compatibility measureC between them is computed

as the weighted sum of the normalized orientations and frequency differences,OD and

FD, respectively:

C = 1− (α.OD + γ.FD), (3.9)

whereα andγ are weights that are determined empirically. Figure 3.13 shows examples

of mixed fingerprints after utilizing the compatibility measure to select the fingerprints

pairs, (F1, F2). Perfect compatibility (C = 1) is likely to occur when the two prints to be

mixed are from the same or the look-alike finger - a scenario that isnot applicable in the

proposed application. On the other hand, two fingerprints having significantly different

ridge structures are unlikely to be compatible (C = 0) and will generate an unrealistic

looking fingerprint. Between these two extremes (see Figure3.14), lies a range of possible

compatible values that is acceptable. However, determining this range automatically may

be difficult.

Figure 3.13: Examples of mixed fingerprints that appear to bevisually realistic.
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Figure 3.14: Examples of a fingerprint image and its compatibility measure with other images.

Orientation Field Difference (OD)

The difference in orientation fields betweenF1 andF2 is computed as

OD =

(

1

|S|

)

∑

(x,y)∈S

d(θ1(x, y), θ2(x, y)), (3.10)

whereS is a set of coordinates within the overlapped area of the aligned continuous com-

ponents of two different fingerprints, andθ1 andθ2 represent the orientation fields of the

two fingerprints. If orientations are restricted to the range [−π/2, π/2], the operatord(.) is

written as

d(α, γ) =























π − (α− γ), if π
2
< α− γ

|α− γ|, if − π
2
< α− γ < π

2

π + (α− γ), if α− γ ≤ −π
2
.

(3.11)

Frequency Map Difference (FD)

Local ridge frequencies are the inverse of the average distance between ridges in the local

area in a direction perpendicular to the local orientation.Hong et al.’s approach [78] is used

to find the local ridge frequencies of the continuous component of a fingerprint image. The



Asem A. Othman Chapter 3. Mixing Fingerprints 43

difference function is computed as :

FD =

(

1

|S|

)

∑

(x,y)∈S

|Freq1(x, y)− Freq2(x, y)|, (3.12)

whereS is a set of coordinates within the overlapped area, andFreq1 andFreq2 represent

the frequency maps of the two fingerprintsF1 andF2, respectively.

3.3 Experiments and Discussion

The performance of the proposed fingerprints mixing approach was tested using two dif-

ferent datasets. The first dataset was taken from the West Virginia University (WVU)

multimodal biometric database [84]. A subset of 1000 imagescorresponding to 500 fin-

gers (two impressions per finger) was used. The second dataset was the FVC2002 DB2

fingerprint database containing 110 fingers with 8 impressions per finger (a total of 880

fingerprints). The VeriFinger SDK was used to generate the normalized fingerprint images

and the matching scores. Also, an open source Matlab implementation [85] based on Hong

et al.’s approach [78] was used to compute the orientation and frequency images of the

fingerprints. In order to establish the baseline performance, for each finger in each dataset,

an impression was used as a probe image and another impression was added to the gallery.

This resulted in a rank-1 accuracy of∼ 100% for the WVU dataset and∼ 100% for the

FVC2002 dataset. The EERs for these two datasets were 0.5% and 0.2%, respectively. In

the following subsections, two set of experiments are discussed. These experiments in-

vestigate if the new approach for image level fusion can be utilized to (a) generate a new

identity by mixing two distinct fingerprints and (b) de-identify a fingerprint by mixing it

with another fingerprint. Although they have some common experiment routines, the used

dataset and the objectives are different.

Computational time We evaluated the time complexity of the approach usingMatlab R©-

2013a on a PC withIntel R© i7 CPU @2.8GHz and 8GB memory. As shown in Figure 3.1,

there are three main steps for mixing fingerprints: Decomposition, Alignment, and Mixing.

Table 3.1 shows the elapsed time of each step.
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3.3.1 Generating Joint Identities

The purpose of the following set of experiments was to reportthe matching performance

of mixing images of two different fingers pertaining to two different individuals from the

WVU dataset to generate joint identities.Therefore, the following experiments were de-

signed in order to address the following questions:

1. What impact does mixing fingerprints have on the matching performance, i.e., can two

mixed impressions pertaining to the same new identity be successfully matched?

2. Are the original fingerprints and the mixed fingerprint correlated? It is essential to assure

that the proposed approach generates a new fingerprint that is dissimilar from the original

fingerprints

3. How many virtual identities can be generated from a fixed fingerprint dataset with an

acceptable recognition rate?

For each finger in the WVU dataset, one impression was used as the probe image and the

other was added to the gallery resulting in a probe setP and a gallery setG each containing

150 fingerprints.

– Experiment A-1: In this experiment, the performance of generating new identities

by mixing random pairs of fingers is reported. Pairs of fingerprints in P were ran-

domlypaired and mixed resulting in a new probe setMF P
1 consisting of 250 finger-

prints. The corresponding pairs of fingerprints inG were also mixed resulting in a

new gallery setMFG
1 consisting of 250 impressions. Since, mixing is an asymmet-

ric process (Equation (3.8)), another probe setMF P
2 and gallery setMFG

2 were also

generated. Matching images inMF P
1 against those inMFG

1 andMF P
2 againstMFG

2

resulted in a rank-1 accuracy of∼ 68% and an EER of∼ 15%. The low identifi-

Table 3.1: Elapsed time of mixing two fingerprint images as shown in Figure 3.1
Task Time (seconds)

Decomposition 10

Alignment 4

Mixing 0.001

Total 14.001



Asem A. Othman Chapter 3. Mixing Fingerprints 45

cation rate is due to the random pairing of fingers which lead to visually unrealistic

fingerprint images (see Figure 3.11).

– Experiment A-2: The purpose of this experiment is to enhance the identification rate

of Experiment A-1 by mixing fingers based on the compatibility measure. Therefore,

the compatibility measures between different pairs of fingerprints inP were computed

using Equation (3.9) withα = 0.7 andγ = 0.3. The finger pairs to be mixed were

selected based on this measure. Pairs were selected and mixed in decreasing order

of their compatibility measures resulting in probe setsMF P
1 andMF P

2 , and gallery

setsMFG
1 andMFG

2 . Figure 3.15 shows examples of the mixed fingerprints from the

WVU dataset. Matching images inMF P
1 against those inMFG

1 and images inMF P
2

against those inMFG
2 resulted in a rank-1 accuracy of∼ 85% and an EER of∼ 6%.

As shown in Figures 3.11, 3.13, and??, the compatibility measure assists the mixing

approach in generating visually appealing mixed fingerprints with less false minutia

in the overlapping area.

– Experiment A-3: It is essential to assure that the new identities are dissimilar from

the original fingers. Therefore, in this experiment,MF P
1 andMF P

2 , generated in Ex-

periment A-2, are matched againstF P
1 andF P

2 in P (as in Experiment A-2,F P
1 and

F P
2 are paired and mixed based on the compatibility measures, andMF P

1 andMF P
2

are the resulting mixed fingerprints).

a. MatchingMF P
1 (MF P

2 ) againstF P
1 (F P

2 ) resulted in rank-1 accuracy of∼ 52%

and EER of∼ 25%.

b. MatchingMF P
1 (MF P

2 ) againstF P
2 (F P

1 ) resulted in rank-1 accuracy of∼ 38%

and EER of∼ 46%.

The poor matching performance indicates that the original fingerprints are different

from newly generated mixed fingerprints. In other words, theoriginal identity can-

not be easily deduced from the mixed image and the new mixed fingerprint may be

viewed as a cancelable fingerprint. However, in matching scenario “a”, the reduction

in the dissimilarity between original and mixed fingerprints is becauseMF P
1 (MF P

2 )

andF P
1 (F P

2 ) have the same minutia locations as shown in Figure 3.1 and Equation

(3.8). This commonality of minutia locations leads to high similarity scores between

original and virtual identities. Ridge features, e.g., ridge length and ridge curvature,
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Figure 3.15: Examples of mixing fingerprint pairs from the WVU dataset.
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can be used along with conventional minutia features to address the commonality of

minutia locations betweenMF P
1 (MF P

2 ) andF P
1 (F P

2 ).

– Experiment A-4: In this experiment, the possibility of utilizing the proposed ap-

proach to mix the prints from the two fingers of a subject to create a single new fin-

gerprint is investigated. The new identity is a result of fusing images of the thumb and

the index fingers of a single individual. For this experiment, the data corresponding

to both the left thumb and left index finger of 150 subjects from the WVU database

were used. There were two impressions available for each finger. Each left thumb

impression was mixed with the corresponding left index finger resulting in two mixed

fingerprint impressions for each subject. One of these mixedimpressions was used as

a probe and the other was added to the gallery set. The obtained rank-1 accuracy was

∼ 81% and the EER was∼ 9% suggesting the possibility of designing a new multi-

finger authentication scheme for access control. Here, onlythe mixed impression

needs to be stored in the database (as opposed to images of individual fingers).

– Experiment A-5: Mixing fingerprints generates new fused fingerprints, i.e.,new

identities. Therefore, in this experiment, we investigated the possibility of gener-

ating different-sized databases of virtual identities. Mixing all possible pairs from

150 subject from the probe set (P ) will result in
(

150
2

)

= 11, 175 different virtual

identities pairs. In this experiment, fingerprints pairs inthe probe set are sorted based

on the compatibility metric values. Then, theN fingerprint pairs with highest com-

patibility values inP were mixed and so were their corresponding impressions in the

gallery set (G). Table 3.2 reports the rank-1, rank-5 accuracies and the EERs of the

virtual identity datasets created with different values ofN . These results confirm the

possibility of generating virtual identities by mixing fingerprints; however, there is

a trade-off between database size and the identification accuracy‡. This trade-off is

because mixing several pairs from the same probe setP can lead to the generation

of several identities sharing a common fingerprint (F1). Assume two fingerprint pairs

(Fa, Fb) and (Fa, Fc) whereFb 6= Fc. Combining the spiral component,cos(ψs), of

the common fingerprint (Fa), with the continuous components,cos(ψc), of Fb andFc

generates two mixed fingerprintsMFab andMFac, respectively.MFab andMFac are

‡Generating and matching all the 11,175 virtual identities resulted in an EER of 17%
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likely to share some common minutiae locations. This leads to high impostor match-

ing scores between two different virtual identities, consequently resulting in high false

acceptance rate and low identification accuracy.

Table 3.2: The Rank-1, -5 accuracies and EER of the virtual identity databases
Size of the database (N) Rank-1 (%) Rank-5 (%) EER (%)

50 88 95 4

100 85 97 5

200 84 95 5

800 68 82 8

1000 56 81 10

3.3.2 Generating Cancelable Identities

De-identifying fingerprint image is necessary to mitigate concerns related to data sharing

and data misuse [19] and this is possible by transforming fingerprint image into a new one

using a set of application-specific transformation functions, such that the original identity

cannot be easily deduced from the transformed. A fingerprintthat is transformed in this

way is referred to as a cancelable fingerprint since it can be “canceled” by merely changing

the transformation function [29] [30]. The purpose of the following experiments was to

investigate if the proposed approach can be used to obscure the information present in

a component fingerprint image by generating a cancelable template prior to storing it in

a central database. Therefore, fingerprints from FVC 2002-DB2 were de-identified by

mixing them with fingerprints from the WVU dataset.

With regards to mixing fingerprints for de-identification, the following key issues are raised

[86][87][88][27][89][28]:

1. Performance: What impact does mixing fingerprints have onthe matching performance,

i.e., can two mixed impressions pertaining to the same identity be successfully matched?

(see Experiment B-1)

2. Changeability: Are the original fingerprint and the mixedfingerprint correlated? It is

essential to assure that the proposed approach prevents identity linking, by preventing the

possibility of successfully matching the original print with the mixed print (see Experiment
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B-2).

3. Non-invertibility: Can an adversary create a physical spoof of the original fingerprint

from a compromised mixed fingerprint? It must be computationally infeasible to obtain the

original fingerprint features, i.e., the locations and orientations of fingerprint minutia from

the mixed fingerprint (see Experiment B-3).

4. Cancelability: Does mixing result in cancelable templates? In case a stored fingerprint

is compromised, a new mixed fingerprint can be generated by mixing the original with a

new fingerprint. The new mixed fingerprint and the compromised mixed image must be

sufficiently different, even though they are derived from the same finger. Another way of

looking at this is as follows: if two different fingerprints,F1 andF2, are mixed with the

same fingerprintFm, are the resulting mixed fingerprints,M1 andM2, similar? From the

perspective of security, they shouldnotbe similar (see Experiments B-4 and B-5).

Therefore, the following experiments were designed to evaluate the security strength and

the usability of our proposed approach for generating cancelable fingerprints.

– Experiment B-1: The purpose of this experiment was to report the matching per-

formance of de-identifying fingerprints from FVC 2002-DB2 by mixing them with

fingerprints from the WVU dataset. For each fingerprint in FVC2002-DB2 noted by

F1, its compatibility measure with each fingerprint in the WVU dataset (300 images

of 150 subjects) was computed using Equation (3.9) withα = 0.6 andγ = 0.4. Based

on the computed compatibility measures, the spiral component of F1 was combined

with the continuous component of the most compatible fingerprint imageF2 in the

WVU dataset, resulting in the mixed fingerprintMF1. Figure 3.16 shows examples

of mixed fingerprints. Because there are 2 impressions per finger in FVC2002-DB2,

the mixing process resulted in 2 impressions per mixed finger. one of these mixed

impressions was used as probe images and the other was added to the gallery set.

The obtained rank-1 accuracy was∼ 83% and the EER was∼ 7%. This indicates

the possibility of matching mixed fingerprints. Tables 3.3 and 3.4 show the recog-

nition performance of mixing fingerprint along with different cancelable techniques

and cryptosystems schemes, respectively. These approaches have been reported be-

cause they stated their experimental results of protectingthe fingerprint templates of

FVC2002-DB2.
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Note that the template protection schemes such as biotokens[90] and the cryptosys-

tems schemes [91] [92] are verification systems which combine biometric informa-

tion with another assigned secret. Therefore, these schemes have better performance

because the user is required to carry (e.g., a token) or remember (e.g., a password)

another authenticator in addition to his biometrics.

Table 3.3: Recognition performance of mixing fingerprints and other cancelable biometrics
approaches

Cacelable biometrics techniques EER(%)

Surface folding transformation [86] 12

Biotokens [90] 0.08

Biophasor [93] 5

Mixing Fingerprints 7

Table 3.4: Recognition performance of mixing fingerprints and cryptosystems schemes
Cryptosystems schemesFRR@FAR ≃ 0.01%(%)

Fuzzy Vault [91] 5

Fuzzy Commitment [92] 12.6

Mixing Fingerprints 14

– Experiment B-2: In this experiment, the possibility of exposing the identity of the

FVC2002-DB2 fingerprint image by using the mixed fingerprintimages was investi-

gated. The mixed fingerprintsMF1 (2 impressions per finger) were matched against

the original images in FVC2002-DB2. The resultant rank-1 accuracy was less than

30% (and the EER was more than 30%) suggesting that the original identity cannot

be easily deduced from the mixed image.

– Experiment B-3: In this experiment, the vulnerability of the proposed de-identification

approach to brute-force attacks is discussed with respect to non-invertibility [87] if an

attacker were to access the mixed fingerprintMF1. In other words, if the mixed fin-

gerprintMF1 was compromised, the probability of successfully reconstructing the

original fingerprintF1 is estimated. Based on Equation (3.8), if an attacker accesses

a mixed fingerprintMF1 (with the knowledge that it is a mixed fingerprint) andF2,

and then decomposesMF1 by using the technique described in sub-section 3.2.1,
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Figure 3.16: Examples of mixing fingerprints whereF1 andF2 are fingerprints from the FVC2000
and WVU datasets, respectively.
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the minutia locations of the original fingerprintF1, characterized by the spiral com-

ponent, are compromised. Although several researchers have shown that the origi-

nal fingerprint image can be reconstructed from a fingerprint’s minutiae consisting of

their locationsandorientations [22][21][23], there is no published work thatdiscusses

the possibility to reconstruct the original fingerprint image only from the minutiae lo-

cations. Therefore, the attacker must assume the orientation of each minutia to be

able to reconstruct the original fingerprint. Hence, ifx is the tolerance determining

the acceptable deviation from the original orientation, the probability of assuming the

correct orientation for a given minutiae is

pθ =
x

180 ◦
. (3.13)

Consequently, the probability of successfully generatingn or more minutiae which

are the same as in the original fingerprint is

P =

N
∑

k=n

(

N

k

)

pkθ(1− pθ)
N−k, (3.14)

whereN is the total number of minutiae in a fingerprint, andn is the minimum num-

ber of minutiae required for authentication. Table 3.5 shows the probabilities of suc-

cessfully compromising the orientations of minutiae points in the original fingerprints

for different values ofn. In our experiments, the average number of minutiae per fin-

gerprint,N , is 45. The low probabilities in the table indicate that it isdifficult to

regenerate the original fingerprint from the mixed fingerprint.

Table 3.5: The probabilityP of generatingn or more minutiae which are the same as in the
original fingerprint (N = 45 andx = 2 ◦)

n P

10 6.41× 10−11

12 7.2490× 10−14

26 3.5620× 10−37

45 1.1457× 10−88

– Experiment B-4: The purpose of this experiment was to investigate if the proposed
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approach can be used to cancel a compromised mixed fingerprint and generate a new

mixed fingerprint by mixing the original fingerprint with a new fingerprint. To eval-

uate this, the 2 impressions of one single fingerprint in the FVC2002-DB2 database

were selected. Next, this fingerprint was mixed with each of the 500 fingers in the

WVU dataset. This resulted in 500 mixed fingerprints with 2 impressions per finger.

One of these impressions per mixed finger was used as a probe image and the other

was added to the gallery set. Then, each image in the probe setwas compared against

all images in the gallery set in order to determine a match. A match is deemed to

be correct (i.e., the probe is correctly identified) if the probe image and the matched

gallery image are from the same mixed finger. In the resultingexperiments, the rank-

1 identification accuracy obtained was 85% and the EER was 7%.The reasonably

high identification rate suggests that the 500 mixed fingerprints are different from

each other. This means, the fingerprint from the FVC2002-DB2database can be suc-

cessfully “canceled” and converted into a new “identity” based on the choice of the

fingerprint selected from the WVU database for mixing.

– Experiment B-5: In this experiment, two different fingerprints from FVC2002-DB2,

F1 andF2 (i.e., a single print of two different fingers from two different identities),

were mixed with each of the 500 different fingers in the WVU dataset. This resulted in

two set of mixed fingerprints - one based onF1 and the other based onF2. Matching

these two sets against each other resulted in a rank-1 accuracy of 5% and an EER of

45%. This suggests that two different fingerprints mixed with a common fingerprint

cannot be easily matched against each other. This further confirms the cancelable

aspect of the proposed approach.

3.4 Summary

In this chapter, the concept of fusing biometrics signals, i.e., mixing biometrics was used in

the context of fingerprint images. Fingerprint images are mixed in order to generate joint

identities. Mixing fingerprints refers to the process of generating a new fingerprint image

by fusing fingerprints of two different fingers pertaining toa single individual or different

individuals. The generated mixed image incorporates characteristics from the original im-
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Table 3.6: The Rank-1 accuracies and EERs of the experiments

Experiment Description Rank-1 accuracy (%) EER (%) The Desired Output (see sec. 3.3)

V
irt

u
al

Id
en

tit
ie

s

A-1 Generating 250 identities 68 15 Low EER
(randomly paired) High Rank-1 acc.

A-2 Generating 250 identities 85 6 Low EER
(paired based on the compatibility measure) High Rank-1 acc.

A-3 (a) Matching new identities against original 52 25 High EER
(MF P

1 (MF P
2 ) vsF P

1 (F P
2 )) Low Rank-1 acc.

(b) Matching new identities against original 38 46 High EER
(MF P

1 (MF P
2 ) vsF P

2 (F P
1 )) Low Rank-1 acc.

A-4 Mixing two fingerprints from the same subject 81 9 Low EER
High Rank-1 acc.
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B-1 De-identifying FVC 2002-DB2 fingerprints 83 7 Low EER
High Rank-1 acc.

B-2 Mixed vs original 30 30 High EER
Low Rank-1 acc.

B-4 Mixed vs mixed 85 7 Low EER
(sameF1 and differentF2) High Rank-1 acc.

B-5 Mixed vs mixed 5 45 High EER
(differentF1 and sameF2) Low Rank-1 acc.
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ages, and can be used directly in the feature extraction and matching stages of an existing

fingerprint recognition system. Also, it was demonstrated that “mixing fingerprints” can

be utilized to (a) generate a new identity by mixing two distinct fingerprints and (b) de-

identify a fingerprint by mixing it with another fingerprint.To mix two fingerprints, each

fingerprint is decomposed into two components, viz., the continuous and spiral compo-

nents. After aligning the components of each fingerprint, the continuous component of one

fingerprint is combined with the spiral component of the other fingerprint image. Experi-

ments on two fingerprint databases, that has been summarizedin Table 3.6, show that (a)

the mixed fingerprint representing a new identity can potentially be used for authentication,

(b) the mixed fingerprint is dissimilar from the original fingerprints used to generate it, (c)

the same fingerprint can be used in various applications and cross-matching between appli-

cations can be prevented by mixing the original fingerprint with a different fingerprint, (d)

mixing different fingerprints with the same fingerprint results in different identities, and (e)

the proposed method can be utilized to generate a database ofjoint identities from a fixed

fingerprint dataset.

Hence, the concept of fingerprint mixing can be utilized in the following examples to en-

hance the privacy of a fingerprint recognition system.

Scenario I: Consider a fingerprint system in which the left index finger,FLs, of a subject

IDs is being enrolled. During enrollment, an impression of another finger of the subject

(say the right index finger,FRs) is mixed withFLs resulting in a mixed printMs. Next,

Ms is stored in the central database while the imagesFLs andFRs are discarded. During

authentication, the subject offers a sample of the left index finger,FL′
s, and a sample of the

right index finger,FR′
s. These two images are then mixed resulting in a new printM ′

s. In

order to verify the subject’s identity,M ′
s is compared withMs in the database. Therefore,

the original fingerprint images of the left and right index fingers are never stored in the

database.

Scenario II: Consider a remote fingerprint database that maintains a small set of pre-

selected auxiliary fingerprints,A, corresponding to multiple fingers (each finger inA is

assumed to have multiple impressions). Suppose that subject IDs offers the left index

fingerprint,FLs, during enrollment at a local machine. At that time, the local machine

decomposes the fingerprintFLs into two components, i.e., the spiral component and the
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continuous component. To ensure the privacy of the fingerprint image, the remote system

sends the stored fingerprints in the auxiliary set and the local machine searches through the

received fingerprints to locate a “compatible” fingerprint based on the continuous compo-

nent ofFLs (see Section 3.2), sayFm ∈ A (here the subscriptm denotes a specific finger

in the auxiliary set), which is then decomposed and its continuous component is mixed

with FLs at the local machine. The template of the new mixed printMs is enrolled in the

remote system database andFLs is discarded from the local machine. During authenti-

cation, when the subject presents a sample of the left index finger,FL′
s, it is decomposed

and its continuous component is used to search through the fingerprints in the auxiliary

set from the remote fingerprint system to determine the most “compatible” fingerprint, say

Fn ∈ A. At the local machine, the spiral component ofFL′
s is mixed with the continuous

component ofFn ∈ A to generate a mixed fingerprintM ′
s, which is then compared against

the database entryMs. Figure 3.17 shows the employed protocol to protect the privacy of

a fingerprint image by mixing the input fingerprint image withanother fingerprint from a

set of pre-selected auxiliary fingerprints. The security protocol (illustrated in Figure 3.17)

ensures that during the enrollment or the authentication process, the identities of the users

will not be revealed by the fingerprint system. Further, since privacy of the input finger-

prints is the main concern, the privacy of the stored auxiliary set, e.g.A, could be preserved

by storing just the continuous components of its pre-selected fingerprints.

3.4.1 Research Contribution

• Designing a new cancelability structure for fingerprint templates.

• Generating a fingerprint image from different fingerprint instances.

• Proposing a complete approach to decompose a fingerprint image.
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Figure 3.17: Schematic protocol to protect the privacy of a fingerprint image by utilizing the
proposed approach
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Chapter 4

Mixing Faces For Generating Joint

Identities

4.1 Introduction

In this chapter, our goal is generating a joint identity by mixing two face images. Therefore,

we explore the possibility of mixing face images of different subjects and determine how this new

mixed face image will perform during the authentication process. Moreover, we investigate the

possibility of generating a realistic face image that maintains a close similarity with the original

face images. The generated joint identity and the original identities should reside in adjacent

identity subspaces∗ (i.e., similar facial features and may be appearance) even if these original

face images are associated with individuals who are different in race, gender and/or age.

Generating interpersonal face images by mashing celebrities’ or family members’ faces has

received a lot of attention from digital artists to reveal the resemblance or difference between two

face images (see Figure 4.1). In other cases, digital artists engage in such exercise as a challenge

to mix two different face images and create a face image that looks familiar. Moreover, as shown

in Figure 4.2, hybrid faces [95] is another example of a face image that visually can be interpreted

as two faces. These different interpretations are based on the way humans process visual input,

i.e., the viewing distance or image resolution. For example, to generate a hybrid face, two face

images are summed at two different spatial scales: low-spatial scale (filtered by a low-pass filter)

and the high-spatial scale (filtered by a high-pass filter) [95].

In this chapter, we discuss another scheme for generating a mixed face image that matches

∗Here, the face-space is assumed to be partitioned into identity regions [94].
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(a) (b) (c)

Figure 4.1: Examples of interpersonal faces generated by digital artists; (a) melding the smiles of
Barack Obama and Malcolm X (source [8]), (b) splicing familymembers’ faces (i.e., mother and
daughter) together “genetic portraits” (source [9]), and (c) Morphing face images of two singers
on an album cover (source [10]).

with both the component face images used to generate it. Mixing is possible even if the compo-

nent face images differ in race, gender and/or age. The rest of the chapter is organized as follows.

Section 4.2 discusses in more detail how the face morphing technique was adopted for mixing

faces. Section 4.3 reports the experimental results and Section 4.4 summarizes the chapter.

4.2 Mixing Faces: The proposed approach

To generate an interpersonal face image, the principle of face morphing is used. Consider

two face imagesF1 andF2. The morphing algorithm generates an intermediate image that is

referred to as an interpersonal face image. The generated face image could be anywhere along

the continuum fromF1 to F2 and its position on this continuum is specified by the morphing

parameters. The parameters, described later, are used to determine the rate of warping and color

blending. So, as the morphing proceeds along the continuum fromF1 to F2, the first image (F1)

is gradually distorted and is faded out, while the second image (F2) is faded in (see Figure 4.5).

Ever since Galton [96] developed the first facial compositing technique in 1878 (which can be

considered to be the first attempt in generating an interpersonal face image), many studies have

been conducted to analyze various aspects of different facemorphing techniques [97, 98, 99, 100,

101, 102, 103]. While most of them state that the generated interpersonal face image is similar

to the original images, this assertion was only based on human perception. To the best of our

knowledge, there has been no systematic study showing how close the morphed face image is to

the original face images and the possibility of using the interpersonal face image as a biometric
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(a) Face image 1 (b) Face image 2

(c) Hybrid face

Figure 4.2: A hybrid face (see (c)) constructed from low-frequency components of face image 1
in (a) and high-frequency components of face image 2 in (b).
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indicator from the perspective of automated face recognition systems. As shown in Figure 4.3,

there are three distinct phases in the generation of an interpersonal face image (MF ) : facial

feature extraction, image warping and cross-dissolving.

Figure 4.3: Proposed approach for generating an interpersonal face.

4.2.1 Facial feature extraction

Morphing two face images to generate an interpersonal face image involves the nontrivial

task of locating facial features. For both face images,F1 andF2, the prominent facial features

are characterized by a pre-defined set of control points. Both sets of control points,X1 and

X2, associated with the two face images (see Figure 4.3), are stored in a vector format. This

representation does not include any information about the connection between them:

Xj = [x1j , x2j , x3j , . . . , xnj, y1j, y2j, y3j, . . . ynj]
T , (4.1)

wherej ∈ {1, 2} andn = 56 is the number of control points. Since extracting control points

automatically [62] is not the focus of this work, a pre-annotated face image database was used

(see Section 4.3).

4.2.2 Image warping

Once the corresponding control points between the two face images are known, the next step

is to perform image warping by mapping each facial feature (e.g., mouth, nose and eyes) in the
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individual face images to its corresponding feature in the interpersonal image. A triangulation-

based warping scheme is used to deform the face images [104].First, the intermediate control

points set (which defines the shape of the facial features of the interpersonal face image) is de-

termined. From the control point setsX1 andX2 of the face imagesF1 andF2, respectively, the

intermediate control point set (Xm) is linearly interpolated as follows:

Xm = (1− α) ·X1 + α ·X2, (4.2)

whereα ∈ [0, 1] is thewarping factor that determines how the individual shapes of the two face

images are integrated into the shape of the interpersonal face.

Next, the face region of each face image is dissected into a suitable set of triangles by utilizing

corresponding control points as the vertices of the triangles. Generating an optimal triangulation

has to be guaranteed in order to avoid skinny triangles and, therefore, Delaunay triangulation was

utilized to construct a triangular mesh for each face image.An example of face images tessellated

into triangular regions according to the annotated controlpoints is shown in Figure 4.3.

Finally, the affine transformation that relates each triangular region in the original face im-

age (F1 or F2) to the corresponding triangle region in the intermediate image is computed.

Suppose thatT1 = [P1, P2, P3]
T (T2 = [R1, R2, R3]

T ) is a triangular region inX1 (X2) and

Tm = [Q1, Q2, Q3]
T is the corresponding triangular region inXm (see Figure 4.4).A1 (A2) is the

affine transformation that maps all points inT1 (T2) ontoTm.

Tm = AjTj , (4.3)

wherej ∈ {1, 2} and the affine transformationAj =

[

a1 a2 t1

a3 a4 t2

]

.

Together,T1’s (T2’s) vertices andTm’s vertices are used in equation (4.3) to compute the

parameters of the affine transformationA1 (A2) (i.e.,a1, a2, a3, a4, t1, t2).

As shown in Figure 4.3, this results in two warped face imagesF ′
1 andF ′

2 such thatF ′
1 and

F ′
2 have similar shapes.
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Figure 4.4: An illustration for the corresponding triangles between the faces’ shapes and inter-
personal face’s shape.

4.2.3 Image cross-dissolving

The final step to obtain the interpersonal face image of the two face imagesF1 andF2, is

simply a cross-dissolving process of the two warped images.If F ′
1 andF ′

2 are the warped images,

the mixed face image is obtained by linearly interpolating their pixel intensities, such that

MF = (1− β) · F ′
1 + β · F ′

2, (4.4)

whereβ ∈ [0, 1] is thecolor-dissolving factor that determines the relative influence of the ap-

pearance of the two face images on the interpersonal face imageMF .

Figure 4.5 shows different examples of interpersonal face images along the continuum from

F1 to F2 by varying the warping factor (α) and the cross-dissolving factor (β).

4.3 Experiments and Discussion

The performance of the proposed approach to generate mixed faces was tested using the

XM2VTS database. This database was used since the facial landmarks (control points) of in-

dividual images were manually annotated and available online. The XM2VTS frontal image

database [105] consists of 8 frontal face images each of 295 subjects. For each subject, four

samples were used as the probe image and the remaining four samples were added to the gallery

resulting in a probe setP and gallery setG each containing 1180 face images. In the following

experiments, the match scores were generated using the Verilook SDK. In order to establish the
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Figure 4.5: Interpersonal face images along the continuum from F1 to F2 at different position
whereα = β = (a) 0.2, (b) 0.3, (c) 0.4, (d) 0.5, (e) 0.6, (f) 0.7 and (g) 0.8.

baseline performance, the images inP were matched against those inG. This resulted in a rank-1

accuracy of 98% and an Equal Error Rate (EER) of 5%. To generate the interpersonal face image

from two face imagesF1 andF2, the morphing technique described earlier was utilized andthe

generated face image can be anywhere along the continuum from F1 to F2. But where on this

continuous continuum should the interpersonal face image be?

The position of the interpersonal face on this continuum is specified by the morphing parame-

ters, i.e.,α andβ. Although the two parameters can be different, the best quality of interpersonal

face images along this continuum is observed to be obtained when assigning the same value to

the two factors.

In this chapter, our objective is to generate an interpersonal face image that is unique and

also has an identity subspace close to the identity subspaces of component face images (F1 and

F2). Therefore, the similarity between the interpersonal face images (MF ) that are generated for

different values of morphing parameters (α andβ) and the component face images was examined.

Face images of two different identities inP were randomlypaired. Different interpersonal

face images were generated by morphing the two face images ofeach pair with 7 different values

of α andβ (α = β = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}). This resulted in 7 probe sets and each

probe set consisted of 588 face images (i.e., 147 joint identities with 4 samples for each identity).

The corresponding pairs of face images inG were also mixed with the corresponding values of

α andβ resulting in 7 gallery sets and each gallery set consisted of147 joint identities (each

identity has 4 face image samples).
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Figure 4.6 shows the ROC curves of matching the interpersonal face images against the cor-

responding component imagesF1 andF2, respectively. Based on these curves, and in order to

ensure that the interpersonal face image is influenced to thesame degree by the two component,

α andβ were selected to be 0.5 in the following experiments.
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Figure 4.6: ROC curves of matching interpersonal face images (generated with different values
of α andβ) against the corresponding original images (a)F1 and (b)F2.

Computational time We evaluated the time complexity of the approach usingMatlab R©-2013a

on a PC withIntel R© i7 CPU @2.8GHz and 8GB memory. The elapsed time of mixing two face

images is 2 seconds.

4.3.1 Experimental design

In the following subsections, different experiments are discussed. These experiments were

designed in order to address the following questions:

1. Can two interpersonal faces pertaining to the same joint identity be successfully matched?

2. Are the original faces and the interpersonal face image similar? In this work, note that our

objective is to generate a joint identity that matches with both component identities.

3. If a set of face images are mixed with a common face image, then are the resulting joint iden-
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tities different from one another? The interpersonal face images must be sufficiently different,

even if they share one common face. Another way of looking at this is as follows: if two different

face images,F1 andF2, are fused with the same face imageFm, are the resulting interpersonal

face images,MF1 andMF2, similar? From the perspective of the distinctiveness property of

biometrics, they shouldnotbe similar.

4. Does the degree of similarity of dissimilarity between the two original face images affect the

recognition performance of the mixed face?

5. Can mixing faces be an alternative approach to obscure a demographic attribute of a database

such as the gender of users enrolled in a face recognition system?

4.3.2 Performance metrics

The notion of similarity/dissimilarity is assessed using the match scores generated by a face

matcher. A high degree of similarity is stated to exist between a probe image and a gallery

image, if the similarity match score between the two images is generally higher than (a) the

scores between the probe image andothergallery images, and (b) the scores between the gallery

image andotherprobes. Thus, in the context of identification, a higher rank-1 accuracy would

imply a higher similarity; in the context of verification, a lower Equal Error Rate (EER) would

imply higher similarity. So we use rank-1 accuracy and EER tocharacterize notions of similarity

and dissimilarity.

4.3.3 Experiment 1: Matching two interpersonal face images

In this experiment, the matching performance of interpersonal face images generated by mix-

ing random pairs of faces is reported. The process of mixing random pairs of face images inP

to generateMF P and then mixing the corresponding pairs inG to generateMFG is repeated

20 times. This resulted in twenty differentMF P sets and their correspondingMFG sets. When

matching eachMF P set against the correspondingMFG set, the average of the resultant rank-1

accuracies was∼ 95% and the average of the EERs was∼ 8%. The reasonably good recognition

rates suggest that the interpersonal face images can be usedas biometric indicators for the joint

identities. Figure 4.7 shows examples of mixing pairs of face images.
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Figure 4.7: Examples of interpersonal face images. These face images are generated by mixing
face images that are different in terms of gender (as in (a)),race (as in (a) and (b)), and/or age (as
in (c)).

4.3.4 Experiment 2: Similarity to the original face images

In this experiment, the similarity between the interpersonal face image and the component

face images was evaluated. Recall that the objective of thiswork is to generate a mixed face image

that is sufficiently similar to both component faces. Therefore, the interpersonal face images

generated in Experiment 1 were matched against the originalcomponent images in gallery set

G. Here, a genuine score is generated when the interpersonal face image is matched with either

of the component face images (the rest are impostor scores).The average of resultant rank-1

accuracies was 95% (and the average of EERs was 9%). These results show some evidence

that the original face images are similar to the interpersonal image. The similarity between the

mixed and original faces can be further enhanced by exploring alternate algorithms for mixing

the different face images.

4.3.5 Experiment 3: Mixing with a common face image

The purpose of this experiment was to investigate if mixing two different face images,F1 and

F2, with a common face imageFm, results in interpersonal face imagesMF1 andMF2 that are

sufficiently dissimilar from each other.

For example, the 8 samples ofFm is mixed with the 8 samples ofF1 (i.e., the first face image
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of remaining face images after selectingFm), and the resulted mixed samples (8 samples) are

pertaining to the first joint identityJ1. Then, 4 Samples ofJ1 are added toMF P and the other

4 are added toMFG. Similarly, if samples of the face imageFm is mixed with the 8 samples

of F2 (i.e., the second face image of remaining face images) and the resulted mixed samples (8

samples) are pertaining to the first joint identityJ2. Then, 4 Samples ofJ2 are added toMF P

and the other 4 are added toMFG. Hence, 16 genuine scores will be generated by matching the

4 samples ofJ1 in MF P against the other 4 samples ofJ1 in MFG. Meanwhile, 16 impostor

scores will be generated by matching the 4 samples ofJ1 in MF P against the 4 samples ofJ2 in

MFG.

To achieve the goal of this work, the interpersonal face images must be sufficiently different,

even if they share one common face.

To evaluate this, a face image (Fm) in the probe setP was arbitrarily selected and mixed

with the remaining face images in that set to generate the setMF P . The same pairs of images

were mixed in the gallery setG resulting inMFG. Each set now has 1176 interpersonal face

images for 294 joint identities (i.e., 4 samples for each joint identity). This selection and mixing

process is done 20 times, each time selecting a different face image asFm. This resulted in twenty

differentMF P sets and their correspondingMFG sets. When matching eachMF P set against

the correspondingMFG set, the average of the resultant rank-1 accuracies was∼ 85% and the

average of the EERs was∼ 10%. These numbers suggest that the the interpersonal face images

are sufficiently different, even though they share a common component face image. However, it

must be noted that the distinctiveness has decreased compared to Experiment 2.

4.3.6 Experiment 4: Mixing look-alike face images

The purpose of this experiment is to investigate the effect of mixing look-alike face images

[106]. The purpose here is to determine if the similarity (ordissimilarity) between the face images

to be mixed has any impact on the distinctiveness of the resulting interpersonal face image. The

matching scores are used as a metric to select pairs of face images that look alike.

Experiment 4a: F1 and F2 look alike

To mix look-alike faces, pairs whose matching score is more than an empirical threshold (1/10

* highest impostor score) were selected and mixed resultingin a probe setMF P
1 and a gallery

setMFG
1 . Each set consists of 588 face images (i.e., 147 joint identities with 4 samples for
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each identity) - this number can be changed by altering the empirical threshold. Figure 4.8

shows examples of the generated face images. MatchingMF P
1 againstMFG

1 resulted in a rank-

1 accuracy of∼ 95% and an EER of∼ 8%.

Meanwhile, matchingMFG
1 against the component face images (as in Experiment 2 but here

the components are look-alike faces) resulted in an averageof rank-1 accuracies of∼ 8% and an

average of EERs of∼ 94%.

Figure 4.8: Examples of interpersonal face images generated by mixing pairs of look-alike face
images based on the matching scores.
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Experiment 4b: F1 and F2 do not look alike

To generate mixed face images from pairs of face images whichare dissimilar (i.e., do not look-

alike), pairs whose matching scores equal zero were selected and mixed resulting in a probe set

MF P
2 and a gallery setMFG

2 . Each set consists of 588 interpersonal face images. Matching

MF P
2 againstMFG

2 resulted in a rank-1 accuracy of∼ 95% and an EER of∼ 9%.

MatchingMFG
2 against the component face images (as in Experiment 2 but here the com-

ponents are not look-alike faces) resulted in an average of rank-1 accuracies of∼ 80% and an

average of EERs of∼ 15%.

Upon comparing the results of Experiments 4a and 4b with the results of Experiment 1, we

observe that there is no big difference in the identificationaccuracy and the verification accuracy.

These results demonstrate that the degree of similarity or dissimilarity between the face images to

be mixed has almost no influence on the recognition performance of the generated joint identities.

Nonetheless, the influence is noticeable when the similarity between component face images

and the mixed faces was tested. The mixed faces are more similar to their components if they are

look-alike faces than if they are dissimilar. Note that, in this experiment, the components have

been assigned based on the matching score. This may not be thecause of real scenarios which

have been examined in Experiment 2 by mixing random pairs from a face database.

Results of the 4 experiments are summarized in Table 4.1.

4.4 Summary

In this chapter, it was demonstrated that the concept of “mixing faces” can be utilized to

generate a joint identity. To mix two face images, a face morphing technique was adopted in

this work. The mixed face image lies in the continuum betweenthe two component faces and

its position on this continuum is specified by the mixing parameters. We also investigated the

possibility of generating a mixed face image when the two component images are different in

terms of race, gender and/or age (see Figure 4.7). Further, we determined if the similarity (or

dissimilarity) between the face images to be mixed has any impact on the distinctiveness of

the resulting interpersonal face image. Experiments on theXM2VTS dataset, which have been

summarized in Table 4.1, indicate that (a) the mixed face image representing a new joint identity

can potentially be used as a biometric indicator, (b) the mixed face exhibits similarity with both
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Table 4.1: Results of the experiments

Experiment Description Rank-1 accuracy(%) EER (%) Implication

1 Matching two interpersonal 95 8 Mixed faces can be
face images used as biometric identifiers

2 Similarity to the original 95 9 The mixed face exhibits similarity
face images to both the component faces

3 Mixing with a common 85 10 The mixed faces are reasonably different,
face image even if they share a common face image

4 (a)F1 andF2 look alike 95 8 The degree of similarity between
the original face images to be mixed

(b) F1 andF2 do not look alike 95 9 has almost no influence on
the recognition performance
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the component faces, and (c) the mixing process is not undulyimpacted by differences in gender,

race, age and similarity between component images.

4.4.1 Research Contribution

• Defining the concept of digital joint identity through face images.

• Generating a face image from different face instances.
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Chapter 5

Mixing Irises For Generating Joint

Identities

5.1 Introduction

In this chapter, our goal is to generate a joint identity by mixing two iris images acquired from

two differenteyes. We investigate the possibility of mixing irises in order to generate a realistic

iris image that maintains a close similarity with the original components. In the following, some

of the applications of the proposed approach are discussed.

• Generating Joint Identities: Mixing irises can be utilized to generate a new iris image

by fusing two different iris images acquired from two different eyes. In the context of

iris, image level fusion approaches have been developed to combine different video frames

of the same iris instance to improve the iris recognition performance [49] [50]. Also,

fusing irises has been proposed in Zuo et al.’s work to de-identify normalized iris images

[51]. They proposed a de-identifying function which adds a synthetic iris image to the

original iris image. In this chapter, a new approach to fuse iris images is introduced by

mixing iris images. The objective of this work is to generatea mixed iris image that is

sufficiently similar to both component iris. Therefore, themixed iris image can be used for

authentication of individuals who share a joint bank account.

• Multi-eye Authentication System: Patterns of the left iris of an individual are assumed to

be different from those of right iris in the context of iris recognition systems [107][108].

Therefore, during the enrollment phase of an iris-based authentication system, the oper-
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ator/usermustindicate the iris from which eye is enrolled. Then, during recognition, the

system must capture the iris from the same eye image so that itcan be successfully matched

with the corresponding one in the database. In many deployment scenarios, it is easy for the

operator/user to mislabel the eyes. Mislabeling in this case can lead to a drop in the match-

ing performance as the captured iris image during the recognition will not be matched with

the stored one in the database. In response to this problem, classifiers to determine whether

an eye image is a left or right eye have been developed to detect errors in the labeled data.

One initial approach for differentiating between left and right eyes uses the locations of the

pupil center and the iris center [109]. The pupil is often located on the nasal side of iris

rather than being directly concentric with it. Abiantun andSavvides [110] evaluated five

different methods for detecting the tear duct in an iris image in order to classify eye images

as being left or right: (1) Adaboost algorithm with Haar-like features, (2) Adaboost with

a mix of Haar-like and Gabor features, (3) support vector machines, (4) linear discrimi-

nant analysis, and (5) principal component analysis. Another study [111] used active shape

models (ASMs) to determine the shape of the eye and predict whether an eye is a right or

left eye.

Mixing irises can be considered as an alternative method to alleviate this problem by mix-

ing the left and right irises during the enrollment phase andstoring the mixed iris image.

During the recognition phase, the stored mixed iris will match correctly with the captured

probe iris irrespective of it being the left or right iris image or even the mixed iris image

from both eyes. Therefore, the concept of mixing irises can be utilized in a multi-eye au-

thentication system where the irises from the left and the right eyes of a single individual,

or left irises of two different individuals are mixed to generate a new iris image. This has

benefits in terms of performance by avoiding the enrollment error.

The mixing process (see Figure 5.1) begins by segmenting iris regions for two acquired eyes

and normalizing these segmented regions. Next, the optimalpixels from the two iris images are

copied on to a mixed iris image where the optimality is definedin terms of importance of each

pixel in the iris image. The selected pixels should be connected in such a way that will capture

the dominant features of the irises’ texture. These pixels could be in a single row in the form of

a horizontal bar. However, simply copying horizontal bars seems restrictive and places a hard

constraint on the location of optimal pixels. Hence, copying horizontal seams is proposed. A
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seam is a horizontal 8-connected path that contains only onepixel per column of the optimal

pixels. Extracting seams based on the concept of importancemap has been proposed in [112] for

content-aware resizing of images and is also known as seam carving.

Figure 5.1: Proposed approach for mixing irises.

The rest of the chapter is organized as follows. Section 5.2 presents the proposed approach

for mixing irises. Section 5.3 reports the experimental results and Section 5.4 summarizes the

chapter.

5.2 Mixing Irises: The proposed approach

Our approach to mix irises from two different eyes involves copying the most important

connected pixels, i.e., seams, from the normalized iris images into a new mixed iris image. The

importance of a pixel is defined by an importance map that evaluates the importance of each pixel

based on its contrast with its neighbors. Seams can be eithervertical or horizontal. A horizontal
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seam is a path of pixels connected from left to right in an image with one pixel in each column. A

vertical seam is similar with the exception of the connection being from top to bottom with one

pixel in each row. Here is an outline of the proposed approachto mix two iris images:

1. Generating normalized iris images

2. Constructing importance maps

3. Finding the optimal seams

4. Copying seams

5.2.1 Generating normalized iris images

Given two iris image, the irises have to be localized and isolated from the sclera, pupil, eye-

lids and eyelashes and this can be done by using a segmentation algorithm. In this chapter, we

used an approach that utilizes geodesic active contours [113] to segment the annular region of an

iris image. During the segmentation, a noise mask is generated to record the locations of eyelids

and eyelashes that may be occluding the true iris region. Grabbing pixels from iris regions to

copy them into a mixed iris image is computationally expensive and requires repeated Cartesian-

to-Polar coordinates conversions. Therefore, both the segmented irises and corresponding noise

masks are unwrapped into rectangular regions using Daugmans rubber sheet model [70]. This

allows the mixing irises approach to address pixels in simple rows and columns format. For a

detailed description and review of various eye localization, iris segmentation, and iris unwrap-

ping techniques, see [66], [114], [64] and [65]. Figure 5.2 shows an example of an eye and its

normalized iris and noise mask images.

5.2.2 Constructing importance maps

The next step in mixing irises is locating the important pixels in the original normalized iris

images in order to copy them into the mixed image. This is doneby assigning a value to every

pixel in the normalized iris image, where higher values meanhigher importance. In this work,

every pixel in a normalized iris imageI will have an corresponding value in the importance map

IM , which will be the absolute sum of both gradient components at that pixel.
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(a)

(b)

(c)

Figure 5.2: Iris segmentation and normalization (a) An eye image. (b) The normalized iris image.
(c) The estimated noise mask.

IM = |∂I
∂x

|+ |∂I
∂y

|. (5.1)

Figure 5.3 visualizes the importance map for the normalizediris image in Figure 5.2. This

also shows that using theL1 norm (see Equation 5.1) for computing the importance mapIM

highlighted the edges in the normalized iris texture, i.e.,the pixels along the edges have higher

importance.

Figure 5.3: Estimated importance map (IM) of the normalized iris image in Figure 5.2.
-

5.2.3 Finding the optimal seams

Mixing irises is done by repeatedly determining seams with the maximal importance from

two normalized iris images and copying them into the new mixed iris image. Therefore, once
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the importance map is calculated, the next step is to find the optimal horizontal or vertical seam

in normalized iris image,I. A horizontal (or a vertical) seamsh (sv) is an 8-connected path of

pixels that runs from the left (top) of the image to the right (bottom) with one pixel in each column

(row). The 8-connected property means that for each pixel, during the backtracing process, only

its 8 adjacent neighbors are considered. Based on this definition of a seam and given thatI is

a normalized iris image of sizen × m, wheren is the number of rows andm is the number of

columns, a horizontal seam is defined as [112]:

sh = {(Sh(j), j)}mj=1, s.t.∀j, |Sh(j)− Sh(j − 1)| ≤ 1, (5.2)

whereSh is a mapping function ofsh andSh(j) = 1, . . . , n. Similarly, a vertical seam is defined

by its mapping functionSv as:

sv = {(i, Sv(i))}ni=1, s.t.∀i, |Sv(i)− Sv(i− 1)| ≤ 1, (5.3)

whereSv(i) = 1, . . . , m.

The importance of a seams is defined as the sum of the associated importance values of pixels

lying on that seam in the importance map. Hence, given the importance mapIM , an optimal

horizontal seams∗h is the seam with a mapping functionSh that maximizes its importance.

s∗h = max
sh

m
∑

j=1

IM(Sh(j), j). (5.4)

To find horizontal or vertical optimal seams in order to copy them into the mixed iris images,

the dynamic programming concept is utilized and maximum cumulative importance maps are

created [112]. The maximum cumulative importance maps haveto be created separately for the

horizontal (Figure 5.4 - a) and vertical (Figure 5.4 - b) seams and backtracking is done on these.

For example, to locate the optimal horizontal seam, the horizontal cumulative importance

mapCMh is computed. The first column in the importance mapIM is copied to the first column

in CMh and then,

CMh(i, j) = IM(i, j)+

max{IM(i− 1, j − 1), IM(i, j − 1), IM(i+ 1, j − 1)}.
(5.5)
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(a)

(b)

Figure 5.4: Cumulative importance maps (a) The horizontal map (CMh). (b) The vertical map
(CMv).

The optimal horizontal seam is determined by simply backtracing onCMh the maximum entry.

Figure 5.5 shows an example of a traced optimal seam on a normalized iris.

Figure 5.5: The traced optimal horizontal seam on the normalized iris image in Figure 5.2.

5.2.4 Copying seams

Let I1 andI2 be the two normalized iris images of sizen × m from two different eye im-

ages.IM1 andIM2 are their importance maps, respectively. The following steps are invoked to

generate a mixed iris imageMI by copying horizontal seams fromI1 andI2:

1. MI =MIinitial (MIinitial is an initial image).

2. Find the optimal horizontal seams∗1h in I1.

3. Copy the pixels that make ups∗1h intoMI in the same location as they are inI1.

MI(s∗1h) = I1(s
∗
1h).
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4. Replace the pixels ats∗1h in I1 andIM1 with black pixels.

I1(s
∗
1h) = 0 , IM1(s

∗
1h) = 0.

5. Replace the pixels inI2 andIM2 that are in the same location as the pixels ats∗1h with

black pixels.

I2(s
∗
1h) = 0 , IM2(s

∗
1h) = 0.

6. Find the optimal horizontal seams∗2h in I2.

7. Copy the pixels that make ups∗2h intoMI in the same location as they are inI2.

MI(s∗2h) = I2(s
∗
2h).

8. Replace the pixels ats∗2h in I2 andIM2 with black pixels.

I2(s
∗
2h) = 0 , IM2(s

∗
2h) = 0.

9. Replace the pixels inI1 andIM1 that are in the same location as the pixels ats∗2h with

black pixels.

I1(s
∗
2h) = 0 , IM1(s

∗
2h) = 0.

10. Repeat steps from 2 to 9n times.

There are some remarks the mixing steps.

• Same steps can be used to copy vertical seams from the iris images instead of horizontal

seams. But this requires more iterations because the width of normalized images is much

larger than their height.

• If the mixed iris image was initially set to a blackn × m image, i.e., ifMIinitial is a

black image, the mixed iris image will exhibit black background as shown in Figure 5.6.

Therefore, in this work, the mixed iris image is initializedto I1, i.e., MIinitial = I1.

Figure 5.7 shows examples of mixed iris images whenMIinitial = I1.

• The noise mask of the mixed iris image is the union of the two noise masks of the two

original iris images.
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Figure 5.6: Examples of mixed iris images that were initialized to a black image.

Figure 5.7: Mixed iris images from Figure 5.6 when they are initialized asI1.

Computational time We evaluated the time complexity of the proposed approach usingMatlab R©-

2013a on a PC withIntel R© i7 CPU @2.8GHz and 8GB memory. The elapsed time for mixing

two iris images is 3 seconds.

5.3 Experiments and Discussion

The experiments were conducted on a subset of the CASIA-v3 database [115]. The CASIA-

v3 database consists of gray scale iris images captured using near infrared illumination. The

subset used in our experiments consists of the left eye images of 182 users with 2 samples per user.

The images in this dataset were segmented and normalized using the algorithms proposed by Shah

and Ross [113]. An open source Matlab implementation [116] based on the Daugman’s approach

[117] was used to encode and match the normalized irises. Theperformance of matching irises

is summarized using the Equal Error Rate (EER) and the rank-1identification rate. For each

iris, one sample was added to a probe setP and the other sample was added to a gallery setG

each containing 182 irises. In order to establish the baseline performance, the images inP were

matched against those inG. This resulted in a rank-1 accuracy of 100% and an Equal ErrorRate

(EER) of 1.4%.

5.3.1 Matching performance

In this experiment, the matching performance of generatingmixed irises from random pairs

of irises is reported. Random pairs of iris images inP were mixed in order to generateMIP

and then the corresponding pairs inG were mixed to generateMIG. As the mixed iris can be
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generated by copying horizontal or vertical seams, the results are reported for both cases below

by matchingMIP set against the correspondingMIG set.

Results of mixing by copying horizontal seams

The resultant rank-1 accuracy was∼ 96% and the EER was∼ 1.5%. The reasonably high

recognition rate indicates the possibility of mixing irises and suggests that the mixed iris can be

used as a biometric indicator. Figure 5.8 shows examples of mixed irises based on the copying of

horizontal seams.

Figure 5.8: Examples of mixed irises by copying horizontal seams from the original components.
Mixed iris images are initialized withI1.

Results of mixing by copying vertical seams

The resultant rank-1 accuracy was∼ 0% and the EER was∼ 40%. The degradation in the

performance, in comparison with the previous experiment, indicates that mixing irises by copying

vertical seams may be not viable. This is because, during feature extractions the 1D log Gabor

filter is convolved with each row of the normalized iris image. In other words, the encoding and

matching process is row-based which causes a drop in the performance in case of mixing irises

based on vertical seams.
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5.3.2 Similarity to the original iris images

In this experiment, the objective of generating a mixed iristhat is similar to both the original

iris images is investigated. The mixed images (MI) in the probe set (MIP ), which are generated

in the previous experiment by copying horizontal seams fromthe original irises, were matched

against the corresponding original images (I1 andI2) in the gallery set ofG.

a. MatchingMI againstI1 resulted in rank-1 accuracy of∼ 100% and EER of∼ 1.5%.

b. MatchingMI againstI2 resulted in rank-1 accuracy of∼ 97% and EER of∼ 1.9%.

The high matching performance suggests that the original identity is sufficiently similar to

the mixed image. Note that there is a performance differencebetween the two cases since the

mixed image, in both cases, is initialized toI1 prior to copying the seams and this biases the

mixed image with respect toI1. The same difference in the performance is encountered if the

mixed image is initialized toI2, but this biases the mixed image with respect toI2.

5.4 Summary

In this chapter, the possibility of generating a mixed iris by mixing two distinct irises is

explored. It was demonstrated that the concept of “mixing irises” can be utilized to (a) generate a

virtual identity and (b) generate mixed images that are similar to the original iris images. To mix

two irises, horizontal seams are copied from normalized iris images into a new iris image after

sorting them based on their importance in the images. Experiments on a CASIA-v3 dataset show

that (a) the mixed iris representing a joint identity can potentially be used for authentication,and

(b) the mixed iris is similar to the original irises.

5.4.1 Research Contribution

• Defining the concept of digital joint identity through iris images.

• Generating a mixed iris image from different instances.
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Chapter 6

Decomposing Faces For Privacy Protection

6.1 Introduction

A face recognition system operates by acquiring face image from a subject, extracting a fea-

ture set from the data (e.g., eigen-coefficients) and comparing the feature set against the templates

stored in a database in order to identify the subject or to verify a claimed identity. The template

of a person in the database is generated during enrollment and is often stored along with the

original face image. This has heightened the need to accord privacy∗ to the subject by adequately

protecting the contents of the database.

For protecting the privacy of an individual enrolled in a biometric database, Davida et al.

[29] and Ratha et al. [30] proposed storing a transformed face image instead of the original

image in the database. This was referred to as a private template [29] or a cancelable biometric

[30]. Feng et al. [118] proposed a three-step hybrid approach that combined the advantages

of cryptosystems and cancelable biometrics. Apart from these methods, various image hiding

approaches [119][120][121] have been suggested by researchers to provide anonymity to the

stored biometric data.

For according privacy to face images present in surveillance videos, Newton et al. [122]

and Gross et al. [123] introduced a face de-identification algorithm that minimized the chances

of performing automatic face recognition while preservingdetails of the face such as expression,

gender and age. Bitouk et al. [124] proposed a face swapping technique which protected the iden-

tity of a face image by automatically substituting it with replacements taken from a large library

of public face images. However, in the case of face swapping and aggressive de-identification

∗The term ”privacy” as used in this chapter refers to the de-identification of biometric data.
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the original face image can be lost. Recently, Moskovich andOsadchy [125] proposed a method

to perform secure face identification by representing a private face image with indexed facial

components extracted from a public face database.

In this chapter, Visual Cryptography techniques will be used to preserve privacy. Hence, the

privacy of a face image will be accorded by decomposing the original image into two face images

in such a way that the original image can be revealed only whenboth images are mixed; further,

the individual component images do not reveal any information about the original image. Figure

6.1 shows a block diagram of the proposed approach. In this approach, a private face image is

decomposed into two independent public host images; thus, the private image can be viewed as

being encrypted into two host face images.

During the enrollment process, the private face image is sent to a trusted third-party entity.

Once the trusted entity receives it, the biometric data is decomposed into two images and the

original data is discarded. The decomposed components are then transmitted and stored in two

different database servers such that the identity of the private face image is not revealed to either

server. During the authentication process, the trusted entity sends a request to each server and

the corresponding sheets are transmitted to it. Sheets are mixed (i.e., superimposed) in order to

reconstruct the private image thereby avoiding any complicated decryption and decoding com-

putations that are used in watermarking [119][120], steganography [121] or cryptosystem [27]

approaches. Once the matching score is computed, the mixed face image is discarded. Further,

co-operation between the two servers is essential in order to reconstruct the original face image.

Decomposing the private face image into face images as hosts(as opposed to using random

noise or other natural images) has several benefits in the context of biometric applications. First,

the demographic attributes of the private face images such as age, gender, ethnicity, etc. can

be retained in the host images thereby preserving the demographic aspects of the face while

perturbing its identity. Alternately, these demographic attributes, as manifested in an individual’s

face, can also be deliberately distorted by selecting host images with opposite attributes as that

of the private image. Second, a set of public face images (e.g., those of celebrities) may be used

to host the private face database. In essence, a small set of public images can be used to encrypt

the entire set of private face images. Third, using non-faceimages as hosts may result in visually

revealing the existence of a secret face as can be seen in Figure 6.3. Finally, while decomposing

the face image into random noise structures may be preferable, it can pique the interest of an
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Figure 6.1: Proposed approach for de-identifying and storing a face image

eavesdropper by suggesting the existence of secret data.

Additionally, the proposed approach addresses the following template protection require-

ments [27][126].

(1) Diversity: Since different applications can adopt different sets of host images for encrypting

the same private face image, cross-matching across applications to reveal the identity of a private

face image will be difficult.

(2) Revocability: If the private data is deemed to be compromised, then it can bedecomposed

again into two new sheets based on new host images. However, in reality, break-ins to a server

are very hard to detect when the attacker simply steals certain information without modifying the

stored data. To strengthen security, the decomposing operation can be periodically invoked at

regular time intervals.

(3) Security: It is computationally hard to obtain the private biometric image from the individual

stored sheets due to the use of visual cryptography. Furthermore, the private image is revealed

only when both sheets are simultaneously available. By using distributed servers to store the

sheets, the possibility of obtaining the original private image is minimized. There have been

numerous efforts in the literature to guarantee that the data stored in distributed databases are

protected from unauthorized modification and inaccurate updates (e.g., [127]).

(4) Performance:As will be shown in the experiments section, the recognitionperformance due
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to the reconstructed image is not significantly degraded after decryption.

The rest of the chapter is organized as follows. In Section 6.2 a basic introduction to visual

cryptography and its extensions are presented. Section 6.3discuss the proposed approach for face

images. Section 6.4 reports the experimental results and Section 6.5 summarizes the chapter.

6.2 Visual Cryptography

One of the best known techniques to protect data such as biometric templates [128] is Cryp-

tography. It is the art of sending and receiving encrypted messages that can be decrypted only by

the sender or the receiver. Encryption and decryption are accomplished by using mathematical

algorithms in such a way that no one but the intended recipient can decrypt and read the mes-

sage. Naor and Shamir [129] introduced the Visual Cryptography Scheme (VCS) as a simple

and secure way to allow the secret sharing of images without any cryptographic computations.

VCS is a cryptographic technique that allows for the encryption of visual information such that

decryption can be performed using the human visual system. The basic scheme is referred to

as thek-out-of-n visual cryptography scheme which is denoted as(k, n) VCS [129]. Given an

original binary imageT , it is encrypted inn images, such that:

T = Sh1
⊕ Sh2

⊕ Sh3
⊕ . . .⊕ Shk

(6.1)

where⊕ is a boolean operation,Shi
, hi ∈ 1, 2, ...., k is an image which appears as white

noise,k ≤ n, andn is the number of noisy images. It is difficult to decipher the secret imageT

using individualShi
’s [129]. The encryption is undertaken in such a way thatk or more out of

then generated images are necessary for reconstructing the original imageT .

In the case of(2, 2) VCS, each pixelP in the original image is encrypted into two sub-pixels

called shares. Figure 6.2 denotes the shares of a white pixeland a black pixel. Note that the choice

of shares for a white and black pixel is randomly determined (there are two choices available for

each pixel). Neither shares provide any clue about the original pixel since different pixels in

the secret image will be encrypted using independent randomchoices. When the two shares are

superimposed, the value of the original pixelP can be determined. IfP is a black pixel, we get

two black sub-pixels; if it is a white pixel, we get one black sub-pixel and one white sub-pixel.
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Therefore, the reconstructed image will be twice the width of the original secret image and there

will be a 50% loss in contrast [129]. However, the original image will become visible.

Figure 6.2: Illustration of a 2-out-of-2 VCS scheme with 2 sub-pixels construction

In 2002, Nakajima and Yamaguchi [11] presented a 2-out-of-2Extended Visual Cryptogra-

phy Scheme for natural images. They suggested a theoreticalframework for encoding a natural

image in innocuous images as illustrated in Figures 6.3 and 6.4. This is known as the Gray-level

Extended Visual Cryptography Scheme (GEVCS). In this work,the extended visual cryptogra-

(a) (b) (c)

(e) (f) (g)

Figure 6.3: Encryption of a private face image in two standard host images. (a) Camera-man
image. (b) Lena image. (c) A private face image. (e) and (f) The two host images after visual
encryption (two sheets). (g) Result of superimposing (e) and (f)

phy scheme for grayscale images is used to secure face imagesby decomposing a private face

image into two host images. Then, mixing, i.e., overlying the host images reveals the secret im-

age. The basic Visual Cryptography scheme and its extension(GEVCS) are discussed in detail

below.
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(a) (b) (c)

(e) (f) (g)

Figure 6.4: Encryption of a private face image in two pre-aligned and cropped face images. (a)
and (b) are two host images. (c) is a private face image. (e) and (f) are the host images after
visual encryption (two sheets). (g) is the result of mixing (e) and (f)

6.2.1 Visual Cryptography Scheme

There are a few basic definitions which need to be provided before formally defining the VCS

model and its extensions.

(1) Secret image (O): The original image that has to be hidden. In our application,this is the

private face image.

(2) Hosts (H ′s): These are the face images used to encrypt the secret image using the Gray-level

Extended Visual Cryptography Scheme (GEVCS). In our application, these correspond to the

face images in the public dataset.

(3) Sheets (S ′s): The secret image is encrypted inton sheet images which appear as random

noise images (in the case of(k, n) VCS) or as a natural host image (in the case of GEVCS).

(4) Target (T ): The image reconstructed by mixing (i.e., superimposing) the sheets.

(5) Sub-pixel: Each pixelP is divided into a certain number of sub-pixels during the encryption

process.

(6) Pixel Expansion (m): The number of sub-pixels used by the sheet images to encode each

pixel of the original image.
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(7) Shares: Each pixel is encrypted byn collections ofm black-and-white sub-pixels. These

collections of sub-pixels are known as shares.

(8) Relative Contrast (α): The difference in intensity measure between a black pixel and a white

pixel in the target image.

(9) OR-ed m-vector (V ): An n × m matrix is transformed to anm-dimensional vector by

applying the booleanOR operation across each of them columns.

(10) Hamming weight (H(V )): The number of ‘1’ bits in a binary vectorV .

Thek-out-of-n VCS deals with binary images. Each pixel is reproduced asn shares with each

share consisting ofm sub-pixels. This can be represented and described by ann × m boolean

matrixB= [bij ] wherebij = 1 if and only if thejth sub-pixel in theith share is black. TheB

matrix is selected randomly from one of two collections ofn ×m boolean matricesC0 andC1;

the size of each collection isr. If the pixelP in the secret image is a white pixel, one of the

matrices inC0 is randomly chosen; if it is a black pixel, a matrix fromC1 is randomly chosen.

Upon overlaying these shares, a gray level for the pixelP of the target image becomes visible and

it is proportional to the Hamming weight,H(V ), of theOR-edm-vectorV for a given matrixB.

It is interpreted visually as black ifH(V ) ≥ d and as white ifH(V ) < d − αm for some fixed

threshold1 ≤ d ≤ m and relative differenceα > 0. The contrast of the target is the difference

between the minimumH(V ) value of a black pixel and the maximum allowedH(V ) value for a

white pixel, which is proportional to the relative contrast(α) and the pixel expansion (m). The

scheme is considered valid if the following three conditions are satisfied.

Condition (1) For any matrixB inC0, theOR operation on anyk of then rows satisfiesH(V ) <

d− αm.

Condition (2): For any matrixB in C1, theOR operation on anyk of the n rows satisfies

H(V ) ≥ d.

Condition (3): Consider extractingq rows,q < k, from two matrices,B0 ∈ C0 andB1 ∈ C1

resulting in new matricesB′
0 andB′

1. Then,B′
0 andB′

1 are indistinguishable in that there exists

a permutation of columns ofB′
0 which would result inB′

1. In other words, anyq × m matrix

B0 ∈ C0 andB1 ∈ C1 are identical up to a column permutation.

Conditions (1) and (2) define the image contrast due to VCS. Condition (3) imparts the security

property of a(k, n) VCS which states that the careful examination of fewer thank shares will

not provide information about the original pixelP . Therefore, the important parameters of the
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scheme are the following. First, the number of sub-pixels ina share (m); this parameter represents

the loss in resolution from the original image to the resultant target image and it needs to be as

small as possible such that the target image is still visible. In addition, them sub-pixels need to

be in the form of av × v matrix wherev ∈ N in order to preserve the aspect ratio of the original

image. Second,α, which is the relative difference in the Hamming weight of the combined shares

corresponding to a white pixel and that of a black pixel in theoriginal image; this parameter

represents the loss in contrast and it needs to be as large as possible to ensure visibility of the

target pixel. Finally, the size of the collection ofC0 andC1, r, which represents the number of

possibilities forB. This parameter does not directly affect the quality of the target image.

The scheme can be illustrated by a(2, 2) VCS example which is shown in Figure 6.5. One

pixel of the original image corresponds to four pixels in each share. Therefore, six patterns of

shares are possible. Based on this, the following collection of matrices are defined:

C0 = {all the matrices obtained by permuting the columns of

[

1 1 0 0

1 1 0 0

]

}

C1 = {all the matrices obtained by permuting the columns of

[

1 1 0 0

0 0 1 1

]

}

This 2-out-of-2 visual cryptography scheme has the parametersm = 4, α = 1/2 andr = 6. A

secret image is encrypted by selecting shares in the following manner. If the pixel of the secret

binary image is white, the same pattern of four pixels for both shares is randomly selected which

is equivalent to randomly selecting a boolean matrixB from the collectionC0. If the pixel of the

original image is black, a complementary pair of patterns israndomly picked which is equivalent

to selecting a boolean matrixB from the collectionC1. Condition (1) and (2) can be easily tested

to validate this (2,2) VCS. The last condition which is related to the security of the scheme can

be verified by taking any row fromB0 ∈ C0 andB1 ∈ C1 and observing that they have the same

frequency of black and white values.

6.2.2 Gray-level Extended Visual Cryptography Scheme (GEVCS)

VCS allows one to encode a secret image inton sheet images, each revealing no information

about the original. Since these sheets appear as a random setof pixels, they may pique the cu-

riosity of an interceptor by suggesting the existence of a secret image. To mitigate this concern,

the sheets could be reformulated as natural images as statedby Naor and Shamir [129]. Ateniese



Asem A. Othman Chapter 6. Decomposing Faces For Privacy Protection 92

Figure 6.5: Illustration of a 2-out-of-2 scheme with 4 sub-pixel construction

et al. [130] introduced such a framework known as the Extended Visual Cryptography scheme.

Nakajima and Yamaguchi [11] proposed a theoretical framework to apply Extended Visual Cryp-

tography on grayscale images (GEVCS) and also introduced a method to enhance the contrast of

the target images. The Gray-level Extended Visual Cryptography Scheme (GEVCS) operates by

changing the dynamic range of the original and host images, transforming the gray-level images

into meaningful binary images (also known as halftoned images) and then applying a boolean

operation on the halftoned pixels of the two hosts and the original image. However, some of

these pixels (in the host and the original) have to be furthermodified. This is explained in more

detail below.

Digital Halftoning and Pixel Expansion

Digital Halftoning is a technique for transforming a digital gray-scale image to an array of

binary values represented as dots in the printing process [131]. Error diffusion is a type of halfton-

ing technique in which the quantization error of a pixel is distributed to neighboring pixels which

have not yet been processed. Floyd and Steinberg [132] described a system for performing error

diffusion on digital images based on a simple kernel. Their algorithm could also be used to pro-

duce output images with more than two levels. So, rather thanusing a single threshold to produce

a binary output, the closest permitted level is determined and the error, if any, is diffused to the

neighboring pixels according to the chosen kernel. Therefore, grayscale images are quantized to

a number of levels equalling the number of sub-pixels per share,m. During the dithering process
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at the pixel level, any continuous tone pixel is expanded to amatrix of black and white sub-pixels

defined by the gray level of the original pixel. The proportion of white sub-pixels in this matrix is

referred to as pixel transparency. In our application, the host images used for encrypting a private

face image and the private image itself are converted to halftoned images.

Encryption

The encryption process is applied on a pixel-by-pixel basisusing the three halftoned images

(the two hosts and the original image). The arrangement of the sub-pixels in the shares of both the

hosts has to be controlled such that the required transparency (the number of white sub-pixels)

of the target pixel is obtained. The arrangement is determined based on the pixel transparencies

triplet. (t1, t2, tT ). t1, t2 andtT are transparencies of the entire sub-pixel region for share1, share

2 and the target, respectively.

Figure 6.6: Examples of sub-pixel arrangement

The security of the scheme is also important. Therefore, during encryption, a Boolean matrix

B is randomly selected from a set of 2 xm Boolean matricesCt1,t2
tT

for every pixel in the original

image. This is the primary difference between this scheme and Naor-Shamir’s scheme: in the

latter only a single collection of matrices is required which depends on the number of hosts and

the pixel expansion (m). Nakajima and Yamaguchi describe in detail the method to compute this

collection of Boolean matrices [11].

Figure 6.7: Example of impossible arrangements
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However, as shown in Figure 6.7, there are cases when the required transparency for the

corresponding pixel in the target image cannot be obtained,no matter how the shared sub-pixels

are rearranged. Therefore, to determine if it is possible toobtain the target transparency by

rearranging the transparent (white) sub-pixels in the shares, the target transparency must be within

the following range (condition (T1)) [11]:

tT ∈ [max(0, (t1 + t2 − 1)), min(t1, t2)], (6.2)

where,t1, t2 andtT (∈ [0, 1]) are the transparencies of the entire pixel region for share 1, share

2 and the target, respectively. The range of each of these transparencies for the entire image

corresponds to the dynamic range of the pixel intensities ofthe respective images. Assuming that

the dynamic ranges of the transparencies of the two sheets are the same,[L, U ] ⊆ [0, 1], all the

triplets, (t1, t2, tT ), would satisfy condition (T1) if and only if the dynamic range of the target

fulfils condition (T2) [11]:

tT ∈ [max(0, (2U − 1)), L]. (6.3)

Nakajima and Yamaguchi [11] described a method to enhance the image quality (contrast) and

decrease the number of violated triplets by performing an adaptive dynamic range compression.

In their method, the dynamic range of the sheets and the target are modified ast1, t2 ∈ [L, L +

K] ⊆ [0, 1]andtT ∈ [0, K] ⊆ [0, 1], respectively, whereL denotes the lower bound of the sheets’

dynamic range andK is a fixed value. It is clear that 0 is the most appropriate value for the

lower bound of the target to ensure that the target is darker than both sheets [11]. However, after

enhancing the contrast, it is necessary to consider condition (T1) again before encryption. Thus,

if a triplet violates condition (T1), the gray levels of the conflicting triplets are adjusted and the

resulting errors diffused to the nearby pixels. Consequently, both halftoning and encryption are

done simultaneously to facilitate this adjustment.

To perform this adjustment, a3D-space is defined using the transparencies of the pixels in the

three images: thex-axis represents the transparencies of the pixels in share 1, they-axis repre-

sents the transparencies of the pixels in share 2 and thez-axis represents the transparencies of the

pixels in the target image. Any point in this space is characterized by a triplet representing trans-

parencies in the three images. The volume corresponding to the points for which reconstruction is

possible (Figure 6.6) is determined. Every point outside this volume is adjusted. Assume a point



Asem A. Othman Chapter 6. Decomposing Faces For Privacy Protection 95

p′(t′1, t
′
2, t

′
T ) outside the determined volume. To encrypt this triplet without degrading the images,

p′ will be replaced withp” wherep”(t”1, t”2, t”T ) is the closest point top′ in the constructed

volume. Thus, the transparencies of the corresponding pixels in share 1, share 2, and target will

becomet”1, t”2 andt”T , respectively. If condition (T1) is violated, the errors are calculated and

diffused using an error-diffusion algorithm to the nearby pixels. These steps are summarized in

Figure 6.8.
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Figure 6.8: Flowchart for illustrating GEVCS at the pixel-level

6.3 Securing A Private Face Image by Mixing Host Images

Let P = {H1, H2, . . . , HN} be the public dataset containing a set of candidate host images

that can hide the assigned private face image,O. The first task is to select two host imagesHi and

Hj, i 6= j andi, j = 1, 2, . . .N from P . Note that due to variations in face geometry and texture

between the images in the public dataset and the private faceimage, the impact of the target

image on the sheet images and vice versa may become perceptible. This issue can be mitigated

if the host images for a particular private image are carefully chosen. Figure 6.9 shows the block

diagram that illustrates the key steps of the proposed approach. These steps will be explained in
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more detail in the following sub-sections.

Figure 6.9: Block diagram of the proposed approach for storing and matching face images

6.3.1 Active Appearance Model

The proposed approach essentially selects host images thatare most likely to be compatible

with the private image based on geometry and appearance. Butthe similarity measures from an

automated face recognition systems are not adequate to select the compatible host face images

from a public dataset. In this work, the Verilook SDK† is used to generate the similarity scores.

We found that the similarity score between the private imageand a candidate host image in a

public dataset is small or almost equal zero, because it is animpostor score form the preceptive

of a face matcher. So using a face matcher are not the suitableway to select compatible hosts.

Therefore, an Active Appearance Model (AAM) [133] that characterizes the shape and texture

of the face is utilized to determine the similarity between the private face image and candidate

host images (Figure 6.9). The steps for building the AAM and using it for locating predefined

landmarks on face features, as shown in Figure 6.10, is discussed in detail in [134] and [133] and

†http://www.neurotechnology.com
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is summarized below.

Figure 6.10: Example of an annotated face

Building the Active Appearance Model

Four steps are needed for building a basic Active AppearanceModel (AAM) from a set of

training images.

Annotate the training set First, for each face image in the training dataset, its face features

are annotated manually by landmarks of a pre-defined shape. Each shapeXj is stored in a vector

format, wherej ∈ 1, .., s ands is the number of training images. This representation does not

include any information about the connection between landmarks. Thus,

Xj = [x1j , x2j , x3j , . . . , xnj, y1j, y2j, y3j, . . . ynj]
T , (6.4)

wheren is the number of landmarks used to locate and annotate face features.

Building the shape model A shape alignment process is performed to remove the effectsof

affine transformations (translation, scaling and rotation). Then the Principle Component Analysis

(PCA) is used to construct a simple linear model of shape variability across the training images:

X = X̄+ Φsbs. (6.5)
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Here,X̄ is the mean shape vector,Φs is a matrix describing the modes of variation derived

from the training set andbs is the shape model parameters vector.

Building the texture model All images in the training set are warped to the mean shape by

utilizing the annotated landmarks. Next, the pixel values in each warped image is consolidated

to create a texture vector. Then, a photometric normalization is used to minimize the effects of

lighting changes on the texture vector. The normalized texture vector isg:

g = [g1, g2, g3 . . . gm]
T , (6.6)

wherem is the number of pixels within the image. Then, PCA is used to linearly model the

texture vectors as in equation6.7.

g = ḡ + Φgbg. (6.7)

Here,ḡ is the mean texture vector,Φg is the modes of variation matrix andbg is the texture

model parameter vector.

Building the combined Active Appearance Model (AAM) Shape and texture are often corre-

lated [134] and, so, PCA is once again used to construct a compact model fromX andg resulting

in a set of combined parametersC. This helps in synthesizing an image with a given shapeX

and textureg using one set of parametersC as shown below.

X = X̄+ ΦsC, (6.8)

g = ḡ + ΦgC. (6.9)

Annotating an Image

A randomly selected template model is initially generated and an image based on the corre-

sponding model parameters is synthesized. The error between the input image (Iimage, that has

to be annotated) and the synthesized image (Isynthesized) needs to be minimized. The solution

is found by varying two sets of parameters: the combined model parametersC and the pose

parameters (translation, scaling and rotation).
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6.3.2 Selection of Hosts

For selecting compatible hosts, the cost of registering (aligning) each image in the public

dataset with the private image is computed asTc. These costs are sorted in order to locate two

host images,Hs1 andHs2, which have the smallest registration cost. However, as will be shown

in the experiments section, this cost alone is not sufficient. So the texture is used as an additional

criteria and the cost associated with this is denoted asAc. Therefore, the final costFc, which

is associated with each host image, is the sum of the normalized transformation costTc and

the normalized appearance costAc. The simple min-max normalization technique is used to

normalize both costs.

Transformation Cost Tc

This cost measures the amount of geometric transformation necessary to align two images

based on the annotated landmarks generated by the AAM. Giventhe set of correspondences

between these finite sets of points on two face images, a transformationT : R
2 → R

2 can

be estimated to map any point from one set to the other. While there are several choices for

modeling this geometric transformation, the thin plate spline (TPS) model is used [135]. The

transformation cost,Tc, is the measure of how much transformation is needed to alignthe two

face images by utilizing the thin plate spline model, which is the bending energy necessary to

perform the transformation.

Appearance CostAc

First, the private face image(O) and the host image(H) are normalized by warping them

to the mean shape,̄X, resulting in shape-free texture imagesO′ andH ′. Figures 6.11 shows

an example of a shape-free image for a private face image. This normalization step uses the

mean shape computed during the AAM training phase. Each shape-free image is represented as

a texture vector (equation 6.6).

BothO′ andH ′ can be expressed by the texture model parameter vector,bg. In order to get

these basis vectors, each image is projected onto the texture space by using the stored modes of

variation,Φg:

bg = Φ−1
g · {g− ḡ} (6.10)
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Figure 6.11: The shape-free image of annotated face image inFigure 6.10

The appearance cost,Ac, is defined as the Manhattan distance between the basis vectors corre-

sponding toO′ andH ′.

6.3.3 Image Registration and Cropping

In this step, the global affine transformation component of the thin plate spline model is used

to align the two selected host images (Hs1 ,Hs2) with the secret image (O). Next, the aligned hosts

and the secret image are cropped to capture only the facial features which have been located by

AAM as illustrated in Figure 6.10.

6.3.4 Secret Encryption and Reconstruction By Mixing Host Images

GEVCS is used to hide the secret image,O, in the two host imagesHs1 andHs2 resulting in

two sheets denoted asS1 andS2, respectively.S1 andS2 are mixed by superimposing them in

order to reveal the secret private image. The final target image is obtained by the reconstruction

process that reverses the pixel expansion step to retain theoriginal image size.

6.4 Experiments and Results

The performance of the proposed technique was tested on two different databases: the IMM

and XM2VTS databases. These databases were used since the facial landmarks of individual

images were annotated and available online. These annotations were necessary for the AAM

scheme. The IMM Face Database [136] is an annotated databasecontaining 6 face images each

of 40 different subjects; 3 of the frontal face images per subject were used in the experiments. 27
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subjects were used to construct the private dataset and the remaining 13 were used as the public

dataset. The XM2VTS frontal image database [105] consists of 8 frontal face images each of

295 subjects. 192 of these subjects were used to construct the private dataset and 91 subjects

were used to construct the pubic dataset. The remaining subjects were excluded because several

of their face images could not be processed by the commercialmatcher. The composition of the

public dataset is shown in Figure 6.12. Figure 6.13 shows examples of the proposed approach

when dataset D in Figure 6.12 is used as the public dataset (here [L = 0, K = 0.75] and the pixel

expansion valuem is 36). The AAM for each database was constructed using the face images

(one per subject) from the public dataset.

In the following experiments, the match scores were generated using the Verilook SDK‡. In

order to establish a baseline, the images in the private database were first matched against each

other. This resulted in an EER of∼ 6% for the IMM database and∼ 2% for the XM2VTS

database.

Computational time We evaluated the time complexity of the approach usingMatlab R©-2013a

on a PC withIntel R© i7 CPU @2.8GHz and 8GB memory. The elapsed time of decomposing a

private face image into two host image is 1.5 seconds.

6.4.1 Experiment 1

In this experiment, the impact of varying the number of images in the public dataset was

investigated (datasets A, B, C, D and E were used). The selection of hosts from the public dataset

was based only on the transformation cost. The experiment consisted of matching the mixed

private images against each other. EERs using the 5 public datasets are shown in Tables 6.1 and

6.2. For the IMM database in Table 6.1, it is clear that addingmore images to the public dataset

initially improves the result. However, dataset E results in the worst EER with respect to the

other datasets. This drop in performance could be attributed to the inclusion of an individual with

a beard in the public dataset: the absence of the appearance cost led to the selection of this host

image even for those private face images that did not possessa beard, thereby affecting the mixed

images.

‡http://www.neurotechnology.com
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(a) IMM Database

(b) XM2VTS Database

Figure 6.12: Images in the public datasets for both the IMM and XM2VTS databases

Table 6.1: Equal Error Rates (%) when using different publicdatasets withK = 0.567 andm=16

Dataset IMM Database XM2VTS Database
A 9.7 21.9
B 7.7 21.8
C 6.3 21.7
D 5.6 21.4
E 11.4 22
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Figure 6.13: Illustration of the proposed approach using images from the IMM Database

Table 6.2: Equal Error Rates (%) when using different publicdatasets withK = 0.875 andm=36

Dataset IMM Database XM2VTS Database
A 2.2 6.4
B 2.1 6.4
C 2 6.2
D 2 6
E 3.4 10.2
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6.4.2 Experiment 2

In this experiment, the appearance cost was added to the criterion to select the host images

and it is clear that this solves the problem encountered in experiment 1. Dataset E is used in this

experiment to select the hosts (H1, H2). Tables 6.3 and 6.4 show the EERs of the mixed images

when host images are selected using (a) the transformation costTc only and (b) the sum of the

normalized transformation costTc and appearance costAc.

From both the above experiments it is also apparent thatK = 0.875 andm=36 results in better

matching performance.

Table 6.3: Equal Error Rates (%) when different selection criteria are used withK = 0.567 and
m=16

Selection Criteria IMM Database XM2VTS Database
Tc 11.4 22

Tc + Ac 8 21

Table 6.4: Equal Error Rates (%) when different selection criteria are used withK = 0.875 and
m=36

Selection Criteria IMM Database XM2VTS Database
Tc 3.4 10.2

Tc + Ac 2 6

6.4.3 Experiment 3

The purpose of this experiment was to determine if the mixed face images upon reconstruction

could be successfully matched against the original privateface images. To evaluate this, the

public Dataset A in Figure 6.12, consisting of two fixed face images as hosts, was used. For

each subject in the private dataset, one frontal face image was selected§ as the secret image to

be encrypted by mixing the two host face images. The visual cryptography scheme was invoked

with contrastK = 0.875 and a pixel expansion factor ofm = 36. The mixed images were

observed to match very well with the original images resulting in an EER of∼ 0% in the case of

the IMM database and 0.5% in the case of the XM2VTS database. On other hand, when either of

the sheets were matched against the original images, the resultant EERs were greater than 45%.

§In the case of IMM database, the face sample exhibiting neutral expression and diffuse light was selected
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6.4.4 Experiment 4

The purpose of this experiment was to determine if the mixed face images could be success-

fully matched against those images in the private dataset that were not used in Experiment 3. To

establish this, for each subject in the reconstructed dataset,N frontal face images were chosen

from the private database to assemble the gallery (N = 2 for IMM and N = 3 for XM2VTS).

The matching exercise consisted of comparing the reconstructed face images (from Experiment

1) against these gallery images (not used in Experiment 1). An EER of∼ 2% was obtained for

the IMM database. This performance, in this case, was even better than that of the original im-

ages (EER∼ 6%). The improvement could be due to the contrast enhancement of the private

face images that occurs when increasing the dynamic range ofthe sheets resulting in improved

quality of the reconstructed secret image. For the XM2VTS database, the obtained EER was∼
6% which is still comparable with the 2% obtained when matching the original images.

6.4.5 Experiment 5

By using public Dataset D andm = 16 and 36, sheet images were created with different con-

trast values:K = 0.567, 0.6888, 0.75, 0.875. Table 6.5 reports the Equal Error Rates (EERs) for

these different values ofK. Here, the matching procedure was the same as that of Experiment 4.

For both databases,K = 0.875 results in better performance than the other values. This improve-

ment could be due to the contrast enhancement of the target images that occurs by increasing the

dynamic range of the sheets and, consequently, the quality of the mixed image.

Table 6.5: Equal Error Rates (%) for different values ofK andm = 16. The choice ofK is based
on [11]

K IMM Database XM2VTS Database
0.567 10.7 21.4
0.6888 6.5 17.5
0.75 7.8 16
0.875 5.9 15

6.4.6 Experiment 6

Next, the effect of pixel expansion on the final reconstructed image was tested. Figure 6.14

shows that details of the sheets can appear on the final image for higher values ofm. The impact
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of m on matching performance is shown in Table 6.7. Here, the matching procedure was the

same as that of Experiment 4. The host images were selected from Dataset D withK = 0.567.

As shown in Figure 6.14, the pixel expansion value affects the number of gray-levels in the

reconstructed image, and this impacts the amount of detail appearing in it. Therefore, whenm is

100, the visual details of the sheet images appear on the reconstructed image resulting in a drop

in overall performance.

(a) m=4 (b) m=16 (c) m=36 (d) m=100

Figure 6.14: Examples of mixed images for a subject with different values for the pixel expansion
factor,m

6.4.7 Experiment 7

In this experiment, the possibility of exposing the identity of the secret image by using the

sheet images in the matching process is investigated. For this experiment, the sheet images for 3

Table 6.6: Equal Error Rates (%) for different values ofK andm = 36. The choice ofK is based
on [11]

K IMM Database XM2VTS Database
0.567 5.3 12.6
0.6888 5 6.5
0.75 4 6.3
0.875 2 6

Table 6.7: Equal Error Rates for different values ofm (%)
m IMM Database XM2VTS Database
4 23.5 41
16 10.7 21.4
36 5.3 12.6
100 8 11
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different face samples of the same subject were first computed. Next, the mixed images and the

corresponding sheets were independently used in the matching process (i.e., sheet image 1 of all

the private images were matched against each other; sheet image 2 of all the private images were

matched against each other; mixed images of all the private images were matched against each

other). Figure 6.15 shows that each subject in the private dataset has three reconstructed images.

The public datasets used in this experiments were datasets A, F and G. This experiment resulted

in three EERs: the first was a result of using the reconstructed mixed images for matching, while

the second and the third EERs were a result of using the first sheet and second sheet, respectively,

for matching. The results in Table 6.8 confirm the difficulty of exposing the identity of the secret

face image by using the sheets alone.

Note that experiment 7 involves automatic host selection from the public dataset based on the

registration cost,Fc, described earlier. The positive impact of automatic host selection is seen in

Figure 6.15 where the selected host images (sheets) and the secret image are observed to have

compatible expressions.

6.4.8 Experiment 8

Different applications may employ different public datasets for host image selection. Thus,

the hosts selected for encrypting an individual’s face image can differ across applications. This

experiment seeks to confirm that cross-matching of the stored sheets across applications (and

inferring identities) will not be feasible. To demonstratethis, the possibility of using host images

from differentpublic databases for encrypting the same identity (i.e., face image) was investi-

gated. The experiment was set up as follows. Two face samplesof each of the 192 subjects in

the XM2VTS private dataset were randomly selected. For an arbitrary subject, letO1 andO2

denote the two face samples that were selected. Further, letO1 be encrypted into sheetsSIMM
1

andSIMM
2 using a public dataset from the IMM database. Similarly, letO2 be encrypted into

sheetsSXM2V TS
1 andSXM2V TS

2 using a public dataset from the XM2VTS database. LetT1 and

T2 denote the reconstructed face images pertaining toO1 andO2, respectively. The following

matching exercises were conducted: (a)SIMM
1 againstSXM2V TS

1 ; (b) SIMM
1 againstSXM2V TS

2 ;

(c) SIMM
2 againstSXM2V TS

1 ; (d) SIMM
2 againstSXM2V TS

2 ; (e)T1 againstT2. The public datasets

used in this experiment was the same as Experiment 7 (i.e., Datasets A , F and G). Table 6.9

shows the EERs for these matching experiments and it is clearthat it is difficult to perform cross-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.15: Examples from experiment 7 where (a), (d) and (g) are the first sheets and (b), (e)
and (h) are the second sheets. (c), (f) and (i) are the corresponding mixed face images
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Table 6.8: Equal Error Rates (%) for Experiment 7. Experiments confirm the difficulty of using
sheet images to reveal the secret image

EER (%)
Mixed vs Mixed 2.4

Sheet 1 vs Sheet 1 44.7
Sheet 2 vs Sheet 2 44.2
(a) IMM Database: Dataset A

EER (%)
Mixed vs Mixed 6.2

Sheet 1 vs Sheet 1 36.0
Sheet 2 vs Sheet 2 33.8

(b) XM2VTS Database: Dataset A
EER (%)

Mixed vs Mixed 7.4
Sheet 1 vs Sheet 1 35.7
Sheet 2 vs Sheet 2 40
(c) IMM Database: Dataset F

EER (%)
Mixed vs Mixed 8.2

Sheet 1 vs Sheet 1 31.7
Sheet 2 vs Sheet 2 38.3

(d) XM2VTS Database: Dataset F
EER (%)

Mixed vs Mixed 6.8
Sheet 1 vs Sheet 1 33.8
Sheet 2 vs Sheet 2 39.5
(e) IMM Database: Dataset G

EER (%)
Mixed vs Mixed 9.2

Sheet 1 vs Sheet 1 37.8
Sheet 2 vs Sheet 2 39.3

(f) XM2VTS Database: Dataset G



Asem A. Othman Chapter 6. Decomposing Faces For Privacy Protection 110

matching across different applications. However, when thecorresponding reconstructed images

(m = 36 andK = 0.875) are compared, the resulting EER suggests the possibility of successful

matching.

Table 6.9: Equal Error Rates (%) for Experiment 8
Matching EER (%)

SIMM
1 vsSXM2V TS

1 47.4
SIMM
1 vsSXM2V TS

2 48.2
SIMM
2 vsSXM2V TS

1 50
SIMM
2 vsSXM2V TS

2 46.3
T1 vsT2 13.6

(a) Datasets A
Matching EER (%)

SIMM
1 vsSXM2V TS

1 49
SIMM
1 vsSXM2V TS

2 49.5
SIMM
2 vsSXM2V TS

1 49
SIMM
2 vsSXM2V TS

2 48.5
T1 vsT2 4.4

(b) Datasets F
Matching EER (%)

SIMM
1 vsSXM2V TS

1 48.3
SIMM
1 vsSXM2V TS

2 50
SIMM
2 vsSXM2V TS

1 48.6
SIMM
2 vsSXM2V TS

2 50
T1 vsT2 4.8

(c) Datasets G

6.5 Summary

This chapter explored the possibility of decomposing facesfor imparting privacy to private

face images. The contribution of this chapter includes a methodology to protect the privacy of a

face database by decomposing an input private face image into two independent face images such

that the private face image can be reconstructed by mixing these modified host face images. The

proposed algorithm selects the host images that are most likely to be compatible with the secret

image based on geometry and appearance. GEVCS is then used toencrypt the private image

in the selected host images. It is observed that when the encrypted host images (i.e., sheets)

are mixed they are similar to the original private images. The study on the effect of various

parameters (K andm) on the matching performance suggests that there is indeed arelation
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between the quality of the reconstructed secret and these parameters. Finally, experimental results

demonstrate the difficulty of exposing the identity of the secret image by using only one of the

sheets; further individual sheets cannot be used to performcross-matching between different

applications. Increasing the pixel expansion factor,m, can lead to an increase in the storage

requirements for the sheets. In the recent literature therehave been some efforts to develop a

visual cryptography scheme without pixel expansion [137] [138]. But no such scheme currently

exists for generating sheets that are not random noisy images. Thus, more work is necessary to

handle this problem.

6.5.1 Research Contribution

• Introducing a new privacy structure for de-identifying face images.

• Proposing an approach to utilize visual cryptography schemes for face privacy.
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Chapter 7

Finger’iris’print

7.1 Introduction

In the previous chapters we discussed different approachesto generate a mixed biometric

image. The mixed images have the following properties: (a) incorporate characteristics from

component images, and (b) can be used directly in the featureextraction and matching stages

of an existing biometric system. However, we only discussedapproaches to mix images of a

single biometric trait (i.e., mixing fingerprints, faces and irises). In this chapter, we demonstrate

that the concept of mixing biometrics can be extended to mixdifferentbiometric traits such as

fingerprints with irises. By mixing samples from these two different traits, a new, unique, and

revocable biometric image can be generated. Specifically, the goal here is generating a new mixed

image that inherits its uniqueness from a finger impression and an iris image. The uniqueness

of a fingerprint is determined by the topographic relief of its ridge structure and the presence of

certain ridge irregularities termed as minutiae. Whereas the human iris, which is the annular part

between the pupil and the white sclera, contains intricate textural details. The iris and fingerprint

patterns are believed to be unique to each eye and to each finger, respectively. Therefore, the

process of iris or fingerprint recognition is done by analyzing these patterns and comparing it

with that of an entry in the gallery.

The mixing process of fingerprint and iris begins by decomposing the fingerprint image into

two different components, viz., the continuous and spiral components. The continuous com-

ponent defines the local ridge orientation, and the spiral component characterizes the minutiae

locations [74]. Next, the spiral component of the iris is computed by locating minutiae on the iris
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texture; in order to avoid loss of information due to normalization [66], a segmented iris image

(i.e., annular region) is used directly in the minutiae determination step. A Gabor filter is applied

to capture the iris texture and the minutiae considered to bethe centroids of iris regions that result

in consistent filter responses. Finally, the continuous component of the fingerprint is combined

with the spiral of the iris image to create a new biometric image. This new and unique biometric

image appears as a fingerprint image and has been denoted in this work as afing’iris’print .

Figure 7.1: Illustration of the proposed approach to generate afing’iris’print .

This work confirms that (a) a new biometric image (i.e., fing’iris’print) can be created by

fusing two different biometric traits (i.e., a fingerprint and an iris); (b) the new fing’iris’print can

potentially be used for authentication; and (c) it can be used to obscure the information present in

an individual’s fingerprint and iris images, and can be stored in a central database instead of the

original templates. Therefore, this approach can be used togenerate a cancelable template (i.e.,

the template can be reset if the fing’iris’print is compromised), and different applications can mix

different fingers with an iris image from the right or left eye, thereby ensuring that the identities

enrolled in one application cannot be matched against the identities in another application.

Section 7.2 presents the proposed approach of generating a fing’iris’print by fusing a finger-

print with an iris image. Section 7.3 reports the experimental results and section 7.4 summarizes

the chapter.

7.2 Generating Fing’iris’print

Fingerprints have been fused with irises at the feature [139, 140], score [141], rank [142]

levels. The only work, based on our knowledge, that generates an image by fusing the raw
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data of different biometric traits is Noore et al.’s work [58]. They developed a fusion algorithm

based on multi-level discrete wavelet transform to fuse images of four biometric traits (i.e., face,

iris, fingerprint, and signature). The resultant image [58]is a scrambled image that cannot be

used directly in the matching step; therefore, special reconstruction procedures are needed to

reconstruct the original images and to perform authentication. This exposes the original biometric

templates to eavesdroppers during every identification/verification attempt.

In contrast, the mixed image generated in our work (i.e., fing’iris’print) has the following

properties: (a) incorporates characteristics from the fingerprint and iris images, (b) can be used

directly in the feature extraction and matching stages of anexisting fingerprint system, and (c)

obscures the identity of the component images. As shown in Figure 7.1, there are three distinct

phases in the generation of a fing’iris’print: determining continuous phase of the fingerprint,

determining minutiae of the iris, and mixing.

7.2.1 Continuous Phase Determination

The ridge flow of a fingerprint can be represented as a 2D Amplitude and Frequency Modu-

lated (AM-FM) signal [74]:

F (x, y) = a(x, y) + b(x, y)cos(ΨF (x, y)) + n(x, y), (7.1)

whereF (x, y) is the intensity of the original image at(x, y), a(x, y) is the intensity offset,b(x, y)

is the amplitude,ΨF (x, y) is the phase andn(x, y) is the noise. Based on the Helmholtz Decom-

position Theorem [75], the phase can be uniquely decomposedinto the continuous phase and the

spiral phase,ΨF i(x, y) = ψF
c (x, y)+ψF

s (x, y). As shown in Figure 7.2, the cosine of the contin-

uous phase, i.e., the continuous componentcos(ψF
c (x, y)), defines the local ridge orientation, and

the cosine of the spiral phase, i.e., the spiral componentcos(ψF
s (x, y)), characterizes the minutiae

locations.

Since ridges and minutiae can be completely determined by the phase [74], we are only

interested inΨF (x, y). The other three parameters in Equation (7.1) contribute tothe realistic

textural appearance of the fingerprint. To mix a fingerprint with an iris, first, the phaseΨF (x, y)

of the component fingerprint must be reliably estimated; this is termed as demodulation [74]

[143]. Next, the phase (ΨF (x, y)) of the fingerprint image is decomposed into a continuous



Asem A. Othman Chapter 7. Finger’iris’print 115

(a)

(b) (c)

Figure 7.2: Decomposing a fingerprint. (a) A fingerprint image. (b) Continuous component,
cos(ψF

c (x, y)). (c) Spiral component,cos(ψF
s (x, y)). The blue and pink dots represent ridge

endings and ridge bifurcations, respectively.

phase (ψF
c (x, y)) and a spiral phase (ψF

s (x, y)) [75]. The continuous phaseψF
c (x, y) pertaining

to the fingerprint will be added during the mixing process to the generated spiral phase (ψI
c (x, y))

from the iris image in order to construct the fing’iris’printimage. In the following sub-section,

the detailed steps for locating iris minutiae, in order to generate the spiral phase (ψI
s (x, y)) of an

iris image, is described.

7.2.2 Iris Minutiae

Before discussing our proposed approach for determining iris minutiae, the properties of ideal

iris minutiae is defined below.

Repeatability Given two iris images of the same eye, acquired during different sessions, the

determined minutia should be found in the same position in both images. Specifically, determi-

nation of iris minutiae should be invariant and robust regardless of the presence of noise (e.g.,

eyelids, eyelashes, reflections, or occlusions); the use ofdifferent sensors; and the different image

properties like size, compression, or format.
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Distinctiveness Given two iris images of two different eyes, the determined minutiae should

have good discriminatory ability over different eyes. Specifically, any two persons should be

sufficiently different in terms of iris minutiae.

Quantity The number of determined iris minutiae should be sufficient,such that the generated

fing’iris’print has a reasonable number of minutiae to be processed by a fingerprint matcher.

Specifically, the average number of minutiae of fing’iris’prints should be close to the average

number of minutiae in the original fingerprints (i.e., for FVC2002-db2, which is the database

used in our experiments, the average number of minutiae is 45). Ideally, the number of detected

minutiae should be adaptable over a large range by simple andintuitive parameters. Also they

should reflect the textural content of an iris image to provide a compact representation.

In fingerprint literature [35], there are many well established techniques that extract “ ideal”∗

minutiae from fingerprint images. These techniques are reasonably stable and robust to fin-

gerprint impression conditions.But the texture of an iris is varied, random, and scrambled in

comparison with the texture of a fingerprint; so it is difficult to use the same minutiae-extraction

approaches that are widely used in fingerprint recognition systems. Therefore, rather than using a

few typical minutial structures to describe the local texture information, our approach will utilize

existing iris processing methods.

Daugman’s phase encoding technique is the most common and promising among the different

iris recognition approaches [64] [65] [69]. Figure 7.3 shows the processing chain of the tradi-

tional iris recognition system following Daugman’s approach [70]. First, a camera acquires an

image of an eye and the iris annular region is segmented. Next, the annular iris is geometrically

normalized, i.e., unwrapped from raw image coordinates to pseudo-polar coordinates. A texture

filter is applied to the normalized iris image, and the filter responses are quantized into a binary

representation (i.e., iris code). The comparison between two iris codes is done by computing the

fractional hamming distance as a dissimilarity measure.

In this chapter, the same technique will be utilized to extract the local features of the iris

image, i.e., iris minutiae. However, in our approach, the filter will be applied to the annular iris

region due to the following reasons.

• During the mixing step (see section 7.2.3), the fingerprint component (i.e., the continuous

∗Based on the enumerated properties of ideal minutiae.
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Figure 7.3: Diagram of Daugman’s approach for encoding an iris image.

phase) is pre-aligned to a common coordinates, such that itscore (where ridge orientation

changes abruptly) is at the center of the new image. Therefore, by using the annular iris

image, after the mixing process, the locations of the iris minutiae points will be around the

core point of the fing’iris’print which will be similar to thedistribution of minutiae in a

fingerprint†.

• Unwrapping the annular iris into normalized image can be regarded as a sampling process,

with the inherent possibility of aliasing that may deteriorate the discriminability of the iris’s

texture.

The steps for extracting iris minutiae from annular iris images are described below.

Applying a Gabor filter on the annular iris

A log-Gabor filter is used for capturing the local feature of the annular iris image. So, first, a

Fourier transform is applied to the iris image, and then the values are multiplied by the log-Gabor

filter. The frequency response of a log-Gabor filter is given as;

G(f) = exp
−(log(f/f0))

2

(log(σ/f0))2
, (7.2)

†Zhu et al. [144] show that minutiae are not uniformly distributed but tend to cluster around core points.
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wherefo represents the center frequency andσ is the bandwidth of the filter [116]. Next, an

inverse Fourier transform is applied, yielding a complex-valued filter response for each point

in the image (see Figure 7.4). In a traditional iris recognition system, each complex number is

quantized to two bits; the first bit is set to one if the real part of the complex number is positive,

and the second bit is set to one if the imaginary part is positive. In our work, the goal is finding key

responses that can be noted as iris minutiae from the responses of the whole image. Therefore, we

applied a sequence of pruning steps on the iris responses in order to locate consistent responses

that will be utilized to locate iris minutiae.

Pruning filter responses

Our goal is to prune the phase responses to find the most consistent and reliable points that

can be marked as iris minutiae. The concept that some responses are less consistent than others

was first mentioned by Bolle et al. [145]. Since then, many researchers have investigated and

studied the consistence (i.e., fragility) of the phase responses [146]. Hollingsworth et al. [146]

demonstrated that by masking responses near the axes of the complex plane could dramatically

decrease the false rejection rate of an iris template. Note that, the inconsistency of the responses

does not measure the stability or robustness of the iris texture. The inconsistency of an iris region

occurs when the inner product between the log-Gabor filter and a particular region of the annular

iris produces a response with a value close to the complex plane axes [147] [146].

Therefore, as shown in Figure 7.4, to prune the responses of an iris as suggested in [147]

[146], a series of adaptive thresholding was performed (seeFigure 7.4). The first pruning step

eliminated responses corresponding to a portion of filter responses (thc%) closest to the axes.

Then, to exclude the outliers that, in some cases, are due to the specular highlights, a second

threshold parameter (tho) is set for that purpose: real and imaginary responses greater thantho%

of the filter responses are eliminated.

The final pruning is done by considering responses only in a portion of the first quadrant of the

complex plane. Specifically, the responses with angles outside the intervalαθ were eliminated.

In this work, we have empirically set the values of these parameters to be as follows:thc = 90%,

tho = 99%, andαθ = [30, 60].
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(a)

(c) (d)

Figure 7.4: Polar plots of the complex-valued responses of an annular iris image after (b) applying
the filter, (c) pruning usingthc andtho, and (d) pruning usingαθ.
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Locating the minutiae

After pruning, the number of remaining responses is still large because of the rich detailed

texture of the iris image. Figure 7.5-b shows the remaining responses on the annular iris image.

To resolve this, the remaining responses have to be broken upinto meaningful subsets. Therefore,

a hierarchical clustering algorithm that constructs clusters based on distance connectivity, where

the cutoff distance is 5, is used to cluster the remaining iris responses. Finally, the barycenter of

these clusters is considered to be the iris minutiae.

(a) (b)

Figure 7.5: Annotating the phase responses on the annular iris after (a) pruning (i.e., red dots)
and (b) finding the barycenter of their clusters (i.e., blue dots).

Constructing the iris spiral phase (ψI
s )

To mix an iris with the continuous phase of a fingerprint, a spiral phase,ψI
s (x, y) which

corresponds to the minutiae of the iris has to be computed:

ψI
s (x, y) =

N
∑

n=1

pn tan
−1((x− xn)/(y − yn)), (7.3)

wherepn is the polarity value,xn andyn denote the coordinates of thenth minutia, andN denotes

the total number of iris minutiae.

Appending this function to a continuous phase of a fingerprint image will cause phase jumps

resulting in minutiae. Depending upon the polarity value (+1 or -1), a minutia is generated on

the ridge pattern. The relation between the polarity,pn, and the occurrence of ridge ending or

bifurcation is dependent on the gradient direction of the cosine of the continuous phase. Hence,
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the spiral phase causes an abrupt change in the local fringe density by either inserting or deleting

a ridge based on the polarity and the appending location within the continuous phase. In this

work, the polarity value will be set to +1. This means that thetype of a fing’iris’print minutia

(i.e., ending or bifurcation) will be based on the fingerprint pattern at the appending location of

an iris minutia.

Moreover, as shown in Figure 7.6-a, appending the spiral phase of an annular iris to a con-

tinuous phase of a fingerprint can result in a visually unrealistic fingerprint image. This is due

to difference in the spatial distribution and frequencies of iris minutiae and real fingerprint minu-

tiae. To resolve this issue (see Figure 7.6-b), the spiral phase of each iris minutia is tuned to the

corresponding local ridge frequency and orientation of thefingerprint component by using Gabor

bandpass filters [78].

The form of the Gabor elementary function that is oriented atan angle0◦ is given as;

G(x, y) = exp

{

−1

2

[

x2

δ2x
+
y2

δ2y

]}

cos(2πfx), (7.4)

wheref represents the local ridge frequency of the fingerprint where iris minutia will be ap-

pended, andδx andδy are the space constants of the filter envelope alongx andy axes, respec-

tively. Their values determine the trade between enhancement and spurious artifacts. In this

work, we have empirically set the values ofδx andδy to be 5 (as suggested in [78]). Note that

the filters have been tuned to the corresponding local ridge orientation of fingerprint component

at the appended iris minutiae by rotating the elementary kernel.

7.2.3 Mixing

Prior to mixing, the continuous component of the fingerprintimage is pre-aligned to a com-

mon coordinate system by utilizing a reference point and itsorientation. In this work, Nilsson

et al.’s [148][149] approach to detect the reference pointswas adopted. This approach has the

advantage of being able to extract the position and spatial orientation of the reference point si-

multaneously. The reference point is used to translate the component to the center of the annular

iris image and its orientation is used to find a rotation angleabout the reference point. This angle

rotates the fingerprint component to make the reference orientation orthogonal to the horizontal

axis.
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(a) (b)

Figure 7.6: (a) An example of a fing’iris’print that looks unrealistic. (b) Enhancing the appear-
ance by using Gabor bandpass filters tuned to the orientationand frequency of the continuous
component.

Let F andI be a fingerprint and an annular iris image, respectively,ψF
c (x, y) be the continu-

ous component determined fromF , andψI
s (x, y) be the spiral component determined fromI. A

fing’iris’print (MFI) can be generated as:

MFI = cos(ψc + ψs). (7.5)

The continuous phase ofF is combined with the spiral phase ofI which generates a new biomet-

ric imageMFI.

7.3 Experiments and Discussion

The proposed approach to generate fing’iris’prints was tested using a fingerprint and an iris

dataset. The iris dataset was taken from the UPOL‡ iris database. The UPOL database has high

quality iris images of the left and right eye of 64 users whichare mostly unoccluded by eyelids or

lashes. The used dataset consists of 2 samples of the left eyeresulting in a total of 128 iris images

which were manually segmented and converted to grayscale. In order to establish a baseline

performance, an open source Matlab implementation [116] based on the Daugman’s approach

‡http://www.inf.upol.cz/iris/
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[117] was used to encode and match the irises. For each iris, one image was added to the probe

set (PI) and the other one was added to the gallery,GI . Matching the probe set against the gallery

set resulted in a rank-1 accuracy of∼ 99% and EER of∼ 0%.

The fingerprint dataset was taken from the FVC2002-DB2 database. In this work, we used

the first 2 impression of the first 64 fingers in the FVC2002-DB2database resulting in a total

of 128 fingerprint images (as in the case of the iris dataset).The baseline performance of the

fingerprint dataset was determined by adding one impressionof each finger to the probe set and

the other to the gallery set. Matching the probe set (PF ) against the gallery set (GF ) by using the

verifinger SDK§ resulted in a rank-1 accuracy of∼ 99% and EER of∼ 0%.

With regards to generating fing’iris’prints for obscuring the original component images, the

following key questions are raised:

1. Can two mixed impressions pertaining to the same identitybe successfully matched?

2. Can the original fingerprint and the fing’iris’print be linked?

3. Can the original iris and the fing’iris’print be linked?

It is essential to assure that the proposed approach prevents identity linking, by preventing the

possibility of successfully matching the original fingerprint or iris image with the mixed image.

Computational time We evaluated the time complexity of the proposed approach usingMatlab R©-

2013a on a PC withIntel R© i7 CPU @2.8GHz and 8GB memory. As shown in Figure 7.1, there

are three main steps for generating a fing’iris’print: Continuous phase Determination, Iris Minu-

tiae Determination and Mixing. Table 7.1 shows the elapsed time of each step.

Table 7.1: Elapsed time of generating a fing’iris’print as shown in Figure 7.1
Task Time (seconds)

Continuous phase Determination 10

Iris Minutiae Determination 0.5

Mixing 1

Total 11.5

§http://www.neurotechnology.com
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7.3.1 Matching Performance

The purpose of this experiment was to report the matching performance of fing’iris’print. The

annular iris of each eye in the probe setPI were mixed with a fingerprint image from the probe

setPF resulting in a new probe setMFIP consisting of 64 fing’iris’prints. The corresponding

pairs of fingerprints inGF were also mixed with annular iris inGI resulting in a new gallery

setMFIG consisting of 64 fing’iris’prints. Figure 7.7 shows examples of mixed image. In this

work, the parameters of the log-Gabor filter, i.e., (1/fo) the center wavelength and (σ/fo) the

bandwidth of the filter, were set to be 12 and 0.5, respectively. By matching the probe and gallery

sets of fing’iris’prints, the obtained rank-1 accuracy was∼ 92% and the EER was∼ 10%. This

indicates the possibility of matching fing’iris’prints. However, further work should be done to

improve the rank-1 accuracy. Currently, different parameters values (i.e.,thc, tho, αtheta, and

clustering cutoff) along with different methods to locate iris minutiae are being examined. Note

that the Gabor filter parameters have no noticeable effect onthe results as shown in Tables 7.2

and 7.3.

Table 7.2: Equal Error Rates for different values of the center wavelength
1/fo EER (%)

6 10.3
12 10
18 11
24 11.7

Table 7.3: Equal Error Rates for different values of the bandwidth of the filter
σ/fo EER (%)
0.25 10.2
0.5 10
1.5 11
2 12

7.3.2 Exposing the original identities from fing’iris’prin ts

In this experiment, the possibility of exposing the identity of the FVC2002-DB2 fingerprint

image or UPOL iris image by using the fing’iris’print images was investigated.
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Figure 7.7: Examples of fing’iris’print where fingerprints are from the FVC2002-DB2 dataset
and irises are from UPOL dataset.

First, the impressions inMFIG were matched against the original fingerprint images inPF .

The resultant rank-1 accuracy was 0% and the EER was more than43%. Second, the annular

iris in PI was matched against fing’iris’print impressions inMFIG. But the mixed images are

fingerprint images that share only the minutiae locations ofthe annular iris images. Therefore,

to perform the experiment, the minutiae location of the fing’iris’print and the annular iris were

matched using a point pattern matching algorithm utilizingthe RANdom SAmple Consensus

(RANSAC) method [150]. The resultant rank-1 accuracy was 0%and the EER was 48%.

These results suggest that the original identity cannot be easily deduced from the mixed im-

age. However, more formal analysis of different security aspects (such as the non-invertiblity and

cancelability of the approach) is necessary.

7.4 Summary

In this chapter, the concept of mixing biometrics was exploited in the context of mixing

different biometric traits, i.e., fingerprints with irises. A fingerprint image and an annular iris

image are mixed in order to generate a fing’iris’print image.This mixed image incorporates
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characteristics from the original fingerprint impression and the orignal iris image, and can be used

directly in the feature extraction and matching stages of anexisting fingerprint system. To mix a

fingerprint with an iris, the fingerprint is decomposed into two components, viz., the continuous

and spiral phases , and iris minutiae is extracted in order togenerate the iris spiral phase. In

the final step of mixing, the continuous phase of the fingerprint is combined with the spiral

phase of the annular iris image resulting in a new fingerprintimage. Our experiments conducted

on fingerprint and iris datasets show that (a) the new biometric image (i.e., fing’iris’print) can

potentially be used for authentication, and (b) the original fingerprint and iris images cannot be

easily matched with the mixed image.

7.4.1 Research Contribution

• Designing a new cancelability structure for fingerprint andiris templates.

• Generating a fingerprint image from a fingerprint and iris image.

• Proposing an approach to extract iris minutiae by utilizingthe concept of bit fragility.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The emergence of biometrics has facilitated the rapid authentication of individuals based on

their biological traits. In a biometric system, each reference template stored in the database is

usually associated with only a single individual. While individuals can be independently authenti-

cated based on their respective biometric templates, in this thesis we investigated whether a single

biometric template can be generated from multiple individuals. In other words, we explored the

possibility of generating a biometric template representing a joint identity that inherits its char-

acteristics from two different individuals. Mixing biometrics refers to the process of generating

a new biometric signal by fusing signals of different biometrics instances pertaining to a single

individual or different individuals. The generated mixed image incorporates characteristics from

the original biometrics images, and can be used directly in the feature extraction and matching

stages of an existing biometric system. The utility of mixing biometrics was demonstrated in

two different applications. The first application dealt with the issue of generating a joint digital

identity. The second application dealt with the issue of biometric privacy, where the concept of

mixing was used for de-identifying or obscuring biometric images.

After introducing the concept of mixing biometrics and its benefits in the first chapter, in the

second chapter we gave a brief introduction to biometric traits considered in this thesis.

In the third chapter, a method to mix fingerprint images was presented. It was demonstrated

that the concept of “mixing fingerprints” could be utilized to (a) generate a new identity by mixing

two distinct fingerprints and (b) de-identify a fingerprint by mixing it with another fingerprint.
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In the fourth chapter, a method to mix face images was introduced. It was demonstrated that

the concept of “mixing faces” could be used to generate virtual identities. The mixed face image

is the mid-face in the morphing continuum between the two component faces and its position on

this continuum is specified by the mixing parameters. Our experiments showed that (a) the mixed

face representing a new identity can potentially be used forauthentication, (b) the mixed face has

similarities with both the original faces, and (c) the proposed method can be utilized to generate

a database of virtual identities.

In the fifth chapter, iris images were mixed in order to (a) generate a virtual identity and (b)

generate mixed images that have similarities with both the component iris images. To mix two

irises, horizontal seams were copied from normalized iris images after sorting them based on

their importance in the images. Experiments on the CASIA-v3dataset show that (a) the mixed

iris representing a new identity can potentially be used forauthentication, (b) the mixed iris is

similar to the original irises, and (c) the proposed method can be utilized to generate a database

of virtual identities from a fixed iris dataset.

In the sixth chapter, we explored the possibility of decomposing faces for imparting privacy

to private face images. We proposed a novel method to protectthe privacy of a face database

by decomposing an input private face image into two independent face images such that the

private face image can be reconstructed by mixing these modified host face images. The proposed

algorithm selects the host images that are most likely to be compatible with the private image

based on geometry and appearance. The difficulty of exposingthe identity of the private image

by using only one of the modified hosts was demonstrated; further, individual hosts cannot be

used to perform cross-matching between different applications.

Finally, we extended the concept of mixing to mix instances of different biometric traits.

Specifically, a fingerprint image and an annular iris image were mixed in order to generate a

fing’iris’print. To mix a fingerprint with an iris, the fingerprint was decomposed into two compo-

nent, viz., the continuous and spiral phases, and iris minutiae was extracted in order to generate

the iris spiral phase. Extracting the iris minutiae was doneby using a one-dimensional log-Gabor

filter. The ensuing iris responses were pruned in order to locate a few iris points that were labeled

as iris minutiae. In the final step of mixing, the continuous phase of the fingerprint is combined

with the spiral phase of the annular iris image resulting in anew fingerprint image. Experiments

showed that (a) the new biometric image (i.e., fing’iris’print) can potentially be used for authen-
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tication, and (b) the original fingerprint and iris images cannot be easily matched with the mixed

image.

8.2 Future Research

We conclude this thesis by suggesting possible ways in whichthe research presented here

may be expanded.

• The concept of mixing can be further generalized to develop agroup authentication system

[151]. In such a system, biometric images of a group of individuals can be used for authen-

tication. The group authentication can be designed for group-oriented applications. This

could be used in scenarios where the authentication is no longer based on a single individ-

ual unlike most of the conventional biometric systems. In group authentication, access is

granted only ifk or more of the authorized individuals are simultaneously providing their

biometric traits.

• The performances of mixing fingerprints and generating fing’iris’print can be enhanced

and improved by exploring alternate algorithms for pre-aligning the biometric images, and

for decomposing and representing the texture of fingerprints and irises.

• In the fourth chapter, we discussed a technique to mix face images to generate an inter-

personal face image that is similar to the original face images. As future work, different

approaches can be investigated to generate a face image thatis dissimilar to the original

face images. Also, the possibility of combining more than two face images has to be stud-

ied. Another application would be the deliberate distortion of the soft biometric attributes

such as age, gender, race, etc. of a person’s face image by mixing it with a public face

image (e.g., a celebrity) that has opposite attributes, as shown in Figure 8.1. While this

perturbs the soft biometric attributes of the face, the mixed image can still be used to match

with another face image of the person. But a more formal analysis is needed to derive a

privacy measure that can be utilized to validate the usability of the technique.

• In chapter 7, the experimental results suggested that the identity corresponding to the orig-

inal iris and fingerprint images cannot be easily deduced from the mixed image. However,
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Figure 8.1: Examples of interpersonal face images. Here, the images to be mixed have different
soft biometric attributes.
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a more formal analysis of different security aspects (such as the non-invertiblity and cance-

lability of the approach) is necessary. Further, more investigation is needed to study if the

similarity (i.e., compatibility) between the extracted iris minutiae and the component fin-

gerprint minutiae could leak any information about the original fingerprint (i.e., the original

identity). Therefore, in order to increase security and minimize the linkage, the similarity

between the iris minutiae and the fingerprint should be measured and if there is a possibility

to select between different pairs of irises and fingers, the pair with the least compatibility

measure should be mixed.
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Dissemination of Research Results
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