156 research outputs found

    Vision-based Global Path Planning and Trajectory Generation for Robotic Applications in Hazardous Environments

    Get PDF
    The aim of this study is to find an efficient global path planning algorithm and trajectory generation method using a vision system. Path planning is part of the more generic navigation function of mobile robots that consists of establishing an obstacle-free path, starting from the initial pose to the target pose in the robot workspace.In this thesis, special emphasis is placed on robotic applications in industrial and scientific infrastructure environments that are hazardous and inaccessible to humans, such as nuclear power plants and ITER1 and CERN2 LHC3 tunnel. Nuclear radiation can cause deadly damage to the human body, but we have to depend on nuclear energy to meet our great demands for energy resources. Therefore, the research and development of automatic transfer robots and manipulations under nuclear environment are regarded as a key technology by many countries in the world. Robotic applications in radiation environments minimize the danger of radiation exposure to humans. However, the robots themselves are also vulnerable to radiation. Mobility and maneuverability in such environments are essential to task success. Therefore, an efficient obstacle-free path and trajectory generation method are necessary for finding a safe path with maximum bounded velocities in radiation environments. High degree of freedom manipulators and maneuverable mobile robots with steerable wheels, such as non-holonomic omni-directional mobile robots make them suitable for inspection and maintenance tasks where the camera is the only source of visual feedback.In this thesis, a novel vision-based path planning method is presented by utilizing the artificial potential field, the visual servoing concepts and the CAD-based recognition method to deal with the problem of path and trajectory planning. Unlike the majority of conventional trajectory planning methods that consider a robot as only one point, the entire shape of a mobile robot is considered by taking into account all of the robot’s desired points to avoid obstacles. The vision-based algorithm generates synchronized trajectories for all of the wheels on omni-directional mobile robot. It provides the robot’s kinematic variables to plan maximum allowable velocities so that at least one of the actuators is always working at maximum velocity. The advantage of generated synchronized trajectories is to avoid slippage and misalignment in translation and rotation movement. The proposed method is further developed to propose a new vision-based path coordination method for multiple mobile robots with independently steerable wheels to avoid mutual collisions as well as stationary obstacles. The results of this research have been published to propose a new solution for path and trajectory generation in hazardous and inaccessible to human environments where the one camera is the only source of visual feedback

    Bilateral Teleoperation of Mobile Robot over Delayed Communication Network: Implementation

    Get PDF
    In a previous paper we proposed a bilateral teleoperation framework of a wheeled mobile robot over communication channel with constant time delay. In this paper we present experimental results. Our goal is to illustrate and validate the properties of the proposed scheme as well as to present practical implementation issues and the adopted solutions. In particular, the bilaterally teleoperated system is passive and the system is stable in the presence of time delay. Internet has been used as the communication channel and a buffer has been implemented to maintain a constant time delay and to handle packet order

    Multi-stage warm started optimal motion planning for over-actuated mobile platforms

    Get PDF
    This work presents a computationally lightweight motion planner for over-actuated platforms. For this purpose, a general state-space model for mobile platforms with several kinematic chains is defined, which considers dynamics, nonlinearities and constraints. The proposed motion planner is based on a sequential multi-stage approach that takes advantage of the warm start on each step. Firstly, a globally optimal and smooth 2D/3D trajectory is generated using the Fast Marching Method. This trajectory is fed as a warm start to a sequential linear quadratic regulator that is able to generate an optimal motion plan without constraints for all the platform actuators. Finally, a feasible motion plan is generated considering the constraints defined in the model. In this respect, the sequential linear quadratic regulator is employed again, taking the previously generated unconstrained motion plan as a warm start. The motion planner has been deployed into the Exomars Testing Rover of the European Space Agency. This rover is an Ackermann-capable planetary exploration testbed that is equipped with a robotic arm. Several experiments were carried out demonstrating that the proposed approach speeds up the computation time and increases the success ratio for a martian sample retrieval mission, which can be considered as a representative use case of goal-constrained trajectory generation for an over-actuated mobile platform.This work has been partially funded by the EU-H2020 project entitled “Cooperative Robots for Extreme Environments” (CoRob-X) under grant agreement: 101004130. Funding for open access charge: Universidad de Málaga / CBUA”

    Teleoperated and cooperative robotics : a performance oriented control design

    Get PDF

    Underwater Robots Part I: Current Systems and Problem Pose

    Get PDF
    International audienceThis paper constitutes the first part of a general overview of underwater robotics. The second part is titled: Underwater Robots Part II: existing solutions and open issues

    Legged Robots for Object Manipulation: A Review

    Get PDF
    Legged robots can have a unique role in manipulating objects in dynamic, human-centric, or otherwise inaccessible environments. Although most legged robotics research to date typically focuses on traversing these challenging environments, many legged platform demonstrations have also included "moving an object" as a way of doing tangible work. Legged robots can be designed to manipulate a particular type of object (e.g., a cardboard box, a soccer ball, or a larger piece of furniture), by themselves or collaboratively. The objective of this review is to collect and learn from these examples, to both organize the work done so far in the community and highlight interesting open avenues for future work. This review categorizes existing works into four main manipulation methods: object interactions without grasping, manipulation with walking legs, dedicated non-locomotive arms, and legged teams. Each method has different design and autonomy features, which are illustrated by available examples in the literature. Based on a few simplifying assumptions, we further provide quantitative comparisons for the range of possible relative sizes of the manipulated object with respect to the robot. Taken together, these examples suggest new directions for research in legged robot manipulation, such as multifunctional limbs, terrain modeling, or learning-based control, to support a number of new deployments in challenging indoor/outdoor scenarios in warehouses/construction sites, preserved natural areas, and especially for home robotics.Comment: Preprint of the paper submitted to Frontiers in Mechanical Engineerin

    Modelado de sensores piezoresistivos y uso de una interfaz basada en guantes de datos para el control de impedancia de manipuladores robóticos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Arquitectura de Computadores y Automática, leída el 21-02-2014Sección Deptal. de Arquitectura de Computadores y Automática (Físicas)Fac. de Ciencias FísicasTRUEunpu

    Motion Primitives and Planning for Robots with Closed Chain Systems and Changing Topologies

    Get PDF
    When operating in human environments, a robot should use predictable motions that allow humans to trust and anticipate its behavior. Heuristic search-based planning offers predictable motions and guarantees on completeness and sub-optimality of solutions. While search-based planning on motion primitive-based (lattice-based) graphs has been used extensively in navigation, application to high-dimensional state-spaces has, until recently, been thought impractical. This dissertation presents methods we have developed for applying these graphs to mobile manipulation, specifically for systems which contain closed chains. The formation of closed chains in tasks that involve contacts with the environment may reduce the number of available degrees-of-freedom but adds complexity in terms of constraints in the high-dimensional state-space. We exploit the dimensionality reduction inherent in closed kinematic chains to get efficient search-based planning. Our planner handles changing topologies (switching between open and closed-chains) in a single plan, including what transitions to include and when to include them. Thus, we can leverage existing results for search-based planning for open chains, combining open and closed chain manipulation planning into one framework. Proofs regarding the framework are introduced for the application to graph-search and its theoretical guarantees of optimality. The dimensionality-reduction is done in a manner that enables finding optimal solutions to low-dimensional problems which map to correspondingly optimal full-dimensional solutions. We apply this framework to planning for opening and navigating through non-spring and spring-loaded doors using a Willow Garage PR2. The framework motivates our approaches to the Atlas humanoid robot from Boston Dynamics for both stationary manipulation and quasi-static walking, as a closed chain is formed when both feet are on the ground
    corecore