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Abstract
This work presents a computationally lightweight motion planner for over-actuated platforms. For this purpose, a general
state-space model for mobile platforms with several kinematic chains is defined, which considers dynamics, nonlinearities
and constraints. The proposed motion planner is based on a sequential multi-stage approach that takes advantage of the warm
start on each step. Firstly, a globally optimal and smooth 2D/3D trajectory is generated using the Fast Marching Method.
This trajectory is fed as a warm start to a sequential linear quadratic regulator that is able to generate an optimal motion
plan without constraints for all the platform actuators. Finally, a feasible motion plan is generated considering the constraints
defined in themodel. In this respect, the sequential linear quadratic regulator is employed again, taking the previously generated
unconstrained motion plan as a warm start. The motion planner has been deployed into the Exomars Testing Rover of the
European Space Agency. This rover is an Ackermann-capable planetary exploration testbed that is equipped with a robotic
arm. Several experiments were carried out demonstrating that the proposed approach speeds up the computation time and
increases the success ratio for a martian sample retrieval mission, which can be considered as a representative use case of
goal-constrained trajectory generation for an over-actuated mobile platform.
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1 Introduction

Motion planning of mobile platforms is a well-known prob-
lem in the literature. It can be defined as finding a feasible
trajectory for each actuator of the platform to perform a goal
task interacting with the real world [1]. This entails many
challenges depending on the characteristics of the platform,
the scenario and the goal task. Nonetheless, it is remark-
able that most systems have a common challenge for the
motion planner: the computational effort. Mobile platforms
computational resources are usually limited, even more for
space [2, 3], air [4] or underwater [5] applications; or small-
sized systems like sub-gram robots [6]. On top of that, the
computational requirements increase substantially accord-
ing to the system complexity, such as platforms that have
redundant Degrees of Freedom (DoF), i.e. have more actua-
tors than actually required to reach a particular pose. These
are commonly called over-actuated platforms, where a clear
example can be found on mobile manipulators, which are
mobile platforms equipped with a robotic arm. The over-
actuation entails the existence of infinite solutions for the
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motion planning problem, since the same final pose can be
reached differently in function of the selected joints to be
moved. Although a drawback in computational terms, over-
actuation is actually an advantage for motion performance,
since there are a great variety of solutions where to look for
the one that best fits the problem needs.

There are multiple techniques that have been used to solve
themotion planning problem, such as optimal control, poten-
tial fields, artificial intelligence or probabilistic algorithms.
One of the most suitable techniques to tackle over-actuation
without excessive computational load are the optimal con-
trol based ones: since there are infinite combinations of joint
movements to reach the goal, the optimization will find at
least the locally optimal one by defining a cost function that
could take into consideration energy consumption, required
time, etc. For instance, theLinearQuadraticRegulator (LQR)
is a well-known method to solve optimal control problems,
which can be executed iteratively to consider nonlineari-
ties, which is commonly called iterative LQR (iLQR) [7]
or Sequential LQR (SLQ) [8]. Nevertheless, these solvers
find a main drawback when considering constraints, because
it increases substantially the complexity of the problem and
the required computational effort [9, 10]. Constraints can be
commonly found in non-holonomic platforms and actuators
limits. Also, problem related requirements are sometimes
considered as constraints, e.g. accomplishingwith a goal pre-
defined trajectory. Different techniques can be found in the
literature to tackle constraints. For example, Lazy Trajectory
Optimization (LTO) was proposed in [11], which is a frame-
work using Graph-Search Planning (GSP) altogether with
Trajectory Optimization (TO) to plan long-term trajectories
for robots. It was used to plan the motion of an over-actuated
six legged robot in very cluttered scenarios, demanding a
considerable computational effort (in the order of 500 s
total planning time) due to considering kinematic, collision
avoidance and equilibrium constraints. Another example can
be found in [12], where the authors presented a particular
modelling method called Virtual Kinematic Chain (VKC),
able to integrate, for mobile manipulators, the kinematics
of the base, arm and the object to be manipulated. It was
applied tomotion planning of daily tasks in a confined house-
hold environment. Using VKCs led to high success rates
of the trajectory optimization, with less than 10 s compu-
tation time when including inequality constraints such as
the mobile manipulation goals, the joint kinematic limits
and collision avoidance. Additionally, in [13] authors pro-
posed the use ofConstrained SLQ [10] as a kinematic planner
for over-actuated non-holonomic platforms, achieving high
replanning frequencies in the order of 50 Hz but only con-
sidering equality constraints like joint position goals or end
effector trajectories.

Even though the aforementioned methods are able to gen-
erate feasible motion plans to perform different tasks, even

considering constraints, most of them make use of only
kinematic models of the over-actuated platform. This simpli-
fication is often sufficient, however, there are use cases which
require to take into consideration the system dynamics, for
instance, torque-controlled or energy constrained systems.
Considering the system dynamics widely increases the com-
putational cost of each optimization iteration, consuming
between 30% and 90% of the CPU time of many state-of-
art motion planners [14]. This can be mitigated by reducing
as much as possible the average number of iterations until
convergence, which is achievable by means of the so-called
warm start. The objective of warm start is to provide the
optimization algorithm with a fast calculated initial solu-
tion of the problem, which is not necessarily feasible, but
is used as a starting point that places the algorithm close to
the convex area surrounding a local (or global) optimal solu-
tion. Hereby, the optimization is boosted to find the solution
faster, inmuch fewer iterations. An example of warm start for
over-actuated platforms was presented in [15], where differ-
ent function approximationmethods like k-Nearest Neighbor
(k-NN), Gaussian Process Regressor (GPR) or Bayesian
Gaussian Mixture Regression (BGMR) were used altogether
to warm start multiple trajectory optimizations in parallel.
This improved noticeably the performance of the motion
planner, reaching 71% success rate and four times faster
convergence when applied to the 34 DoFs humanoid robot
ATLAS (Boston Dynamics) with the goal of reaching a ran-
dom Cartesian pose.

It is also remarkable the use of several stages to warm
start the optimization, as shown in [16], where a sequen-
tial refinement method for optimization was used to generate
trajectories for a mobile manipulator to pick-up parts. This
method keeps introducing problem constraints (grasping
pose, gripper speed, collisions) sequentially to the optimiza-
tion problem, continuously warm-starting and refining the
solution, which improves the performance of the motion
planner in comparison with the cold-started planner. These
results were extended by the authors in [17], where a multi-
staged warm started motion planner for a group of robots
(up to three manipulators or a mobile manipulator with two
robotic arms) was presented, including a deep analysis on
the best sequence of introduction of the problem constraints
(position, velocity, orientation of the end effector, collisions).
The samemulti-stagedwarm startedmotion planner was also
used in [18] for surface disinfection with mobile manipula-
tors, generating first a path to cover the goal area bymeans of
a branch and bound-based tree search. This generated path
was used as a constraint to generate the mobile manipula-
tor actuators trajectory through the motion planner. As can
be observed, these multi-staged warm start approaches have
been applied to path-constrained trajectory generation prob-
lems, i.e. tasks where the end effector trajectory is precisely
known a priori, thus, it is added as a problem constraint
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in terms of end effector position, velocity and orientation.
However, there are other cases where the initial trajectory
is completely unknown or undefined, which can be denom-
inated as goal-constrained trajectory generation problems.
Additionally, the mentioned approaches have a major draw-
back for energy constrained use cases, since the models of
the mobile platform do not consider system dynamics.

Seeing the current state of the art, it is clear that over-
actuated systems are specially difficult to handle by motion
planners, with the computational requirements becoming
a bottleneck as the system constraints and complexity
increases. To tackle this issue, multi-staged warm start arises
as an interesting approach, which has demonstrated promis-
ing results to solve path-constrained trajectory generation
problems.

Thus, in this paper we contribute with the definition of
a novel multi-stage warm start strategy to solve the goal-
constrained trajectory generation problem for over-actuated
mobile platforms, taking into consideration the system con-
straints and dynamics. Two main contributions are stated.
First, a generic model for over-actuated mobile platforms,
that can be applied to systems with several serial kine-
matic chains. This model considers the system dynamics and
external disturbances to later optimize the platform energy
consumption. Second, a novel sequence for multi-staged
warm started motion planning, aimed to solve the goal-
constrained trajectory generation problem on over-actuated
mobile platforms. The first warm start stage is a path planner
that computes an initial trajectory for the mobile platform,
the second stage takes that initial trajectory as warm start
and solves only the unconstrained problem, and the third
stage uses this unconstrained solution as a warm start to
obtain the final motion plan with a constrained optimization
solver. The benefits of this approach are demonstrated with
a mobile manipulation for a martian sample tube retrieval
use case, where the double-Ackermann rover equipped with
a manipulator ExoTeR (Exomars Testing Rover), owned by
the European Space Agency (ESA), was used. A laboratory
test campaign with ExoTeR in the Planetary Robotics Labo-
ratory (PRL) at ESAwas carried out, to evaluate the strengths
and weaknesses of the proposed approach. Additionally, a
tailored replanning methodology was developed, based on
the event-triggered replanning presented in [19], which is
used to ensure that the mobile manipulator properly tracks
the planned motion.

The rest of the paper is organized as follows. In Sect. 2 the
motion planning algorithm is presented. In Sect. 3 the use
case and the replanning methodology are shown. In Sect. 4
the experimental results are depicted. InSect. 5 the carried out
experiments are examined in detail. Finally, Sect. 6 concludes
the paper with a final overview, including some comments
on future related work.

Fig. 1 Scheme summarizing the general functioning of themulti-staged
motion planning approach. In the first stage (PPWS) an initial trajec-
tory � is computed using Fast Marching Method (FMM). In the second
stage (USLQ), this trajectory is used to warm start the Sequential Lin-
ear Quadratic (SLQ) optimization algorithm to solve the unconstrained
motion planning problem. If the planned motion x ′(n), u′(n) satis-
fies the constraints, the algorithm finishes. Otherwise, the third stage
(CSLQ) takes the unconstrained solution as warm start and computes
the final motion plan x ′′(n), u′′(n), using again the SLQ optimization
solver but with constraints compliance

2 Multi-staged warm startedmotion
planning

The proposed Multi-staged Warm started Motion Planner
(MWMP) sequence is designed to deal with high complex,
over-actuated systems, looking for an efficient solution of
the motion planning problem without severely impacting the
computational resources of the system. For that purpose, a
sequential warm start procedure is defined in this section,
which reduces substantially the average number of iterations
until convergence and, thereupon, the computational cost of
the planner. A general overview of the functioning of the
algorithm and its evolution through the different stages is
shown in Fig. 1, which is further explained below.

Note that, in the following, any j Pk expresses the pose
of k w.r.t. j , as j Pk = [p φ], i.e. a position vector, in 3D
p = [x y z], and an orientation vector, in 3D φ = [ϕ ϑ ψ],
the roll, pitch, yaw Euler Angles. Assuming a generic mobile
platform composed by a set of K kinematic chains, j Pk is the
pose of the tip link reference frame of the kinematic chain k
w.r.t. j , having w as the world reference frame. For instance,
the center reference frame of a mobile platform would be
wP1, and if it is equippedwith amanipulator, themanipulator
end effector pose w.r.t. the mobile platform would be 1P2.
To increase readability, a summary of all the expressions and
notation used throughout this paper is shown in Table 1.

Each stage is executed in a particular order, sequentially.
The first stage, called Path Planning Warm Start (PPWS),
consists of a path planner based on the FastMarchingMethod
(FMM), although any other path planning algorithm could be
used. FMM has been selected since it provides globally opti-
mal and smooth solutions, with comparable computational

123



Intelligent Service Robotics

Table 1 Nomenclature

Symbol Definition

T Set of time steps

N Number of time steps

�t Time step size

x(n), u(n) State and actuation vectors

x ′(n), u′(n) Unconstrained state and actuation

x ′′(n), u′′(n) Constrained state and actuation

x0, xN Current and goal states of the platform

u0 Initial control plan

Q(n), R(n) State and input quadratic costs

A(n), B(n) State space model matrices

C(n), D(n), r(n) State-input constraint matrices

G(n), h(n) Pure state constraint matrices
j Pk , j Ṗk Pose, speed of k w.r.t j

p = [x y z] Position vector in 3D

φ = [ϕ ϑ ψ] Orientation vector in 3D

w World reference frame
wP1(0), wP1(N ) Platform initial and goal poses

K Set of kinematic chains

qk , q̇k , q̈k Position, speed and acc. of the joints in k

I j Identity matrix with size jx j
j Rk Rotation matrix given j Pk
jJk Jacobian matrix of k w.r.t j

Ik , Vk Inertia and Coriolis matrices of k

ek Actuation effort vector of k

δz External perturbations

f kz Matrix representing the effect of δz into k

βk
z Auxiliary variable, βk

z = −I−1
k f kz

� Optimal path used as warm start


 Cost map of the scenario

x̃ j Nodes of the cost map

x̃0, x̃g Start and goal nodes of the cost map

x̂ Any point inside the cost map

ϒ Cost to go trajectory planning

v Path length from x̃0

J Total cost to go optimal control

�(x(N )) Terminal cost optimal control

L(x(n), u(n), n) Intermediate cost optimal control

x0(n), u0(n) State and input references or targets

Cc(n), Dc(n), Gc(n) Active constraints

x̄0(n), ū0(n) References for current iteration

D̂(n), r̂(n) Aux. constraints predefinition SLQ

Â(n) Aux. state model predefinition SLQ

Q̂(n), R̂(n) Aux. costs predefinition SLQ

x̂0(n), û0(n) Aux. state input predefinition SLQ

Table 1 continued

Symbol Definition

P̂(n), s(n), M̂(n) Aux. backward pass variables SLQ

Cx Set of pure state constraints

c(n), yc(n), hc(n) Aux. matrices pure state constraints SLQ

(c), y(c), H(c) Aux. matrices pure state constraints SLQ

Fc, j (n), F(c, j), ν(c) Aux. matrices pure state constraints SLQ

v̄(n), μ(n) Lagrangian multiplier vectors

λ(n) Lagrangian co-state vector

x̄(n), ū(n) Step plan for current iteration

α Line search appliance step

θd , θs , θm Driving, steering, arm joints

τd , τs , τm Driving, steering, arm actuators torques

g Gravity acceleration

ρ Rolling resistance

m Vehicle mass

dw Wheels diameter

Nw Number of wheels

cost to other non-optimal state-of-the-art planners [20]. As
can be observed in Fig. 1, the path planner requires three
inputs to compute the trajectory: the platform initial and goal
positions w.r.t. the world frame, wP1(0) and wP1(N ) respec-
tively, and a cost map 
 representing the characteristics of
the scenario, with higher costs where the mobile platform
finds difficulties to traverse, like obstacles. Given this infor-
mation, FMM takes two different steps to generate a path:
first, awave expansion, second, the trajectory extraction. This
separation is advantageous, since it allows to generate new
trajectories quickly as long as the goal remains the same, as
will be explained later. As an output, the path planner gen-
erates the global optimal path � to reach the goal wP1(N )

from the platform initial pose wP1(0) on the cost map 
.
In order to accelerate the convergence speed, the extracted

trajectory � is forwarded as a warm start to the next stage,
called Unconstrained SLQ (USLQ), which makes use of an
optimal solver called Sequential LinearQuadratic (SLQ) reg-
ulator [8], which is based on the Riccati equation. Although
many other optimal solvers could also be used, SLQ has been
selected due to its efficiency when solving nonlinear discrete
optimal control problems with near-quadratic convergence,
besides, requiring only first derivative information of the sys-
tem states. As inputs, considering the set of N time steps that
define the planning horizon T = {t0, t1, ... , tn, ... , tN },
the second stage requires the current and goal states of the
platform, x0 and xN , an initial actuation plan u0 usually filled
with zeros, a configuration for the solver, i.e. the quadratic
costs defined by the state matrix Q(n) and the input matrix
R(n), and a linear state space model of the system, rep-
resented by the state transition matrix A(n) and the input
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distribution matrix B(n). USLQ outputs, then, a complete
unconstrained motion plan for the whole time horizon T ,
with x ′(n) the states and u′(n) the actuation.

The above solver does not consider constraints yet, which
implies faster convergence but could lead to unfeasible solu-
tions. Thus, in the third stage, every generated solution is
checked to confirm if the system constraints are satisfied.
If they are, then the unconstrained motion plan is taken as
correct and the planning pipeline finishes, x ′′(n) = x ′(n)

and u′′(n) = u′(n), being x ′′(n) and u′′(n) the final motion
plan states and actuation, respectively. The overall computa-
tional cost of MWMP is reduced noticeably if this happens,
since this third stage, called Constrained SLQ (CSLQ) [10],
is the computationally most expensive. Otherwise, again the
optimal solver is used to consider the system constraints,
using the unconstrained solution x ′(n), u′(n) as a warm start
to boost the CSLQ performance, as will be shown with the
obtained results in Sect. 3. This way CSLQ only has to refine
the unconstrained solution to ensure constraint compliance,
i.e. it already starts in the vicinity of the constrained optimal
solution. Constrained SLQ additionally needs the defini-
tion of the constraints. On one hand, the system state-input
constraints, which indicate actuation caps under particular
system states, for instance joint effort limits, defined by
the state-input constraints distribution matrices, with C(n)

for the state and D(n) for the input, and the state-input
constraints level r(n). On the other hand, the pure state
constraints, representing restrictions on the state vector that
cannot be overcome, for instance joint position limits, defined
by the pure state constraints distribution matrixG(n) and the
pure state constraints level h(n).

After finding a constraint-compliant solution, the com-
plete motion plan x ′′(n), u′′(n) is ready to be followed by the
platform. Any tracking or control algorithm could be used to
accurately follow the planned motion and compensate dis-
turbances. For instance, Model Predictive Control (MPC),
Event-triggered replanning or other procedures could be ade-
quate for this purpose, in function of the platform andmission
requirements.

Finally, the main prerequisite to use the motion planner is
to obtain a state spacemodel of the mobile platform, defining
A(n) and B(n). Hence, a generic procedure for modelling
over-actuated mobile platforms including several kinematic

chains is presented below. Afterwards, the twomainmethods
used in the motion planner are analyzed in detail, FMM as a
path planner in the first stage and SLQ as an optimal solver
for motion planning in the second and third stages.

2.1 State spacemodel for a mobile platform

Let us define a state spacemodel under linear discrete approx-
imations as depicted in (1):

x(n + 1) = A(n)x(n) + B(n)u(n) (1)

Where A(n) and B(n) are the state transition and input distri-
bution matrices, respectively, and x(n) and u(n) are the state
and actuation vectors of the system, respectively, at time step
n. As aforementioned, a generic mobile platform is repre-
sented as a set of K kinematic chains, with the pose of its
tip link reference frame represented as j Pk . The position of
all the actuation joints belonging to kinematic chain k are
denoted as vector qk , including rotational and translational
joints. Thus, the corresponding state vector x(n) of a generic
mobile platform is defined as (2).

x(n) = [
wP1

w Ṗ1 · · · wPK
w ṖK

1P2
1 Ṗ2 · · · K−1PK

K−1 ṖK q1 q̇1 q̈1 q2 q̇2 q̈2 · · · qK q̇K q̈K
]T (2)

With w Ṗk the speed of the kinematic chain k w.r.t. the world
reference frame; k−1 Ṗk the speed of the kinematic chain k
w.r.t. the kinematic chain k − 1; and q̇k , q̈k the speed and
acceleration, respectively, of each actuation joint of k. Con-
versely, assuming a force/torque controlled platform, the
actuation vector u(n) is defined as (3).

u = [
e1 e2 · · · eK δ1 · · · δZ

]T
(3)

Where ek represents the actuation effort vector, i.e. forces
or torques of the joints of k, and δz are external disturbances
applying forces to the system, for instance, gravity. Note that,
even though the external disturbances δz are included in the
model inside the actuation vector, doubtlessly they are not
under control of the system, hence, they should remain fixed
to their expected values.
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A(n) =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

I6 0 · · · 0 0 0 0 · · · 0 0 0 wJ1�t 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 wJ1 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...

0 0 · · · I6 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 wRK−1
K−1JK�t 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 wRK−1
K−1JK 0

0 0 · · · 0 0 I6 0 · · · 0 0 0 0 0 0 1J2�t 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 1J2 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...

0 0 · · · 0 0 0 0 · · · I6 0 0 0 0 0 0 0 · · · 0 K−1JK�t 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 K−1JK 0

0 0 · · · 0 0 0 0 · · · 0 0 Iq1 Iq1�t 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 Iq1 − I−1
1 V1�t 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 −I−1
1 V1 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 Iq2 Iq2�t 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 Iq2 − I−1
2 V2�t 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 −I−1
2 V2 0 · · · 0 0 0

...
...

. . .
...

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
...

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · IqK IqK �t 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 IqK − I−1
K VK�t 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 −I−1
K VK 0

⎤
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(4)

Once defined the state and input vectors, a generic repre-
sentation of the state transition matrix A(n) is shown in (4),
where I j represents the identitymatrix with size ( jx j), j Rk a
rotation matrix given the pose defined in j Pk , jJk the Jaco-
bian matrix relating articular with cartesian speeds for the
kinematic chain k w.r.t. j , Ik and Vk the inertia and Corio-
lis/centrifugal matrices of k, respectively, and �t the time
step size. On the other hand, the input distribution matrix
B(n) is depicted in (5), with βk

z = −I−1
k f kz , and f kz a matrix

representing the effect of the perturbation δz into the joints
of kinematic chain k. It is crucial to remark that, with this
definitions of A(n) and B(n), some of their terms could be
nonlinear, which would eventually hinder the proper func-
tioning of the motion planner. For that purpose, the use of
Taylor Series Linearization (TSL) on those terms is recom-
mended.

B(n) =

⎡
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0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0

I−1
1 �t 0 · · · 0 β1

1�t · · · β1
Z�t

I−1
1 0 · · · 0 β1

1 · · · β1
Z

0 0 · · · 0 0 · · · 0

0 I−1
2 �t · · · 0 β2

1�t · · · β2
Z�t

0 I−1
2 · · · 0 β2

1 · · · β2
Z

...
...

. . .
...

...
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K �t βK
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Z

⎤
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⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎦

(5)
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Finally, it is key to define the system limits, via state-input
and pure state constraints. On the one hand, the actuation
effort ek limits have to be specified as state-input constraints,
where C(n) is filled with zeros, since this constraints do not
depend on the states, D(n) indicateswith ones or zeroswhich
actuation effort limit is being defined, and r(n) includes the
actual limit values. On the other hand, as pure state con-
straints it is important to define the kinematic chains world
w Ṗk and relative k−1 Ṗk speed limits, and the position qk ,
velocity q̇k and acceleration q̈k limits of the actuation joints.
Particularly,G(n) indicateswhich state limit is being defined,
filled adequately with ones or zeros, and h(n) includes the
values of those limits.

Considering this general definition of x(n), u(n), A(n)

and B(n), themotion planning problem for amobile platform
with K serial kinematic chains can be redefined as finding
a set of actuation efforts (forces/torques) ek that generate a
motion profile (qk , q̇k , q̈k) for each joint of the platform, in
order to place the tip link of the last kinematic chain in certain
poses (wPK , w ṖK ), given the effect of external perturbations
(δ j ) and the system limits, expressed through the state-input
constraints (C(n), D(n) and r(n)) and the pure state con-
straints (G(n) and h(n)). Note that some of the states are not
strictly necessary in the model (w Ṗk , k−1 Ṗk , q̈k), but, as will
be explained later, are helpful to set desired behaviours by
tuning their corresponding costs, or to establish system con-
straints as aforementioned. Also bear in mind that, although
required for an appropriate behavior of the motion plan-
ner, the linearization with A(n) and B(n) induces execution
errors. These errors significance depend on the time step size
�t , being them negligible if �t is sufficiently small, as it is
demonstrated in Sect. 5.

2.2 Trajectory planning with FMM

The goal of the first stage, PPWS, is to generate an ini-
tial reference trajectory for the mobile platform to reach
the goal, which will be later used as a warm start of the
optimization algorithm to accelerate its convergence, as can
be seen in Fig. 1. In particular, we propose Fast Marching
Method (FMM) [20] as the warm start path planner, since,
considering the scenario in form of a cost map, it extracts a
globally optimal, smooth and continuous path to reach the
goal. Remark that FMM has been widely used in the liter-
ature as a path planner [21] for different applications, that
span from Unmaned Surface Vehicles (USVs) [22] to plane-
tary rovers [23].

First of all, as aforementioned, FMM requires a proper
representation of the scenario as an input cost map 
. The
cost map 
 is a discrete 2D or 3D grid, where each regularly
scattered node x̃ j has an associated cost
(x̃ j ) that represents
how easy and safe is for the platform to be placed in that posi-
tion. Subsequently, obstacles should have the highest costs,

and traversable areas the lowest ones. Areas surrounding
obstacles should also have high costs, to avoid the platform
getting close to them. Additionally, any other feature that
influences the platform behaviour should be considered in
the cost map. For instance, slopes and terramechanic prop-
erties of the soil in the case of Unmanned Ground Vehicles
(UGVs).

FMM numerically solves a particular nonlinear Partial
DerivativeEquation (PDE) called theEikonal equation,mod-
elling the rate of propagation of a wave. This wave expands
on the cost map 
 from the goal node x̃g visiting each node
x̃ j to generate the cost to go ϒ(x̃ j , x̃g), which indicates the
accumulation of cost required to reach the goal x̃g from the
node x̃ j . As indicated in (6), the rate of propagation of the
wave at a certain node is equal to the cost at that node
(x̃ j ).

∇ϒ(x̃ j , x̃g) = 
(x̃ j ) ∀x̃ j ∈ 
 (6)

The higher the cost 
(x̃ j ) the slower the propagation of the
wave on that node x̃ j . In this case, thewave propagation starts
from the goal x̃g , therefore the cost to go of the goal node is
zero (ϒ(x̃ j = x̃g, x̃g) = 0).

The cost to go between the starting x̃0 and the goal nodes
x̃g is the minimum possible if 
(x̃ j ) always returns positive
nonzero values. Thus, following the Dynamic Programming
(DP) principles, any point x̂ ∈ 
 is placed in the optimal path
connecting the starting and goal nodes, �(x̃0, x̃g), if the sum
of the costs to go from the starting node to the pointϒ(x̃0, x̂)
and from the point to the goal node ϒ(x̂, x̃g) is equal to the
minimum cost to go ϒ(x̃0, x̃g), as expressed in (7).

ϒ(x̃0, x̂)+ϒ(x̂, x̃g) = ϒ(x̃0, x̃g) ∀x̂ ∈ �(x̃0, x̃g) ∈ 
 (7)

Hence, the objective of FMM is to solve the optimiza-
tion problem defined in (8–9), i.e. finding the optimal path
�(x̃0, x̃g) thatminimizes the cost accumulated along the path

(�(x̃0, x̃g, v)), being �(x̃0, x̃g, v) a continuous function
that returns a point x̂ ∈ 
 given the path length v from the
starting node x̃0, with vg the total length of the path.

Minimize
�(x̃0, x̃g)

ϒ(x̃0, x̃g) =
∫ vg

0

(�(x̃0, x̃g, v)) dv (8)

with ϒ(x̃ j = x̃g, x̃g) = 0 (9)

Considering 1 as the kinematic chain defining the mobile
platform, then x̃0 = wP1(0) and x̃g = wP1(N ). Conse-
quently, the warm start trajectory � is used as a reference for
the pose of the platform wP1 at each time step n. It is bene-
ficial, besides, to enrich the generated path with some more
information. On one hand, the orientation of the platform at
each waypoint is computed to also warm start the orientation
states of the system. This is particularly helpful for platforms
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with non-holonomic constraints, since including the yaw in
the trajectory gives the mobile platform a big hint on how to
properly follow the path, being the yaw obtained geometri-
cally known the position of two consecutive waypoints. On
the other hand, each waypoint should be timestamped, which
can be easily done by interpolating the total expected time
for finishing the operation tN at each time step n. Note that
there are many different approaches to estimate tN according
to the characteristics of the system, its nominal speed or the
use case, which is out of the scope of this paper.

To finalize, remark that the wave propagation is, for
FMM, the most computationally expensive step, being the
trajectory extraction computationally negligible. This is very
convenient for replanning the motion, since a new opti-
mal trajectory from the current pose of the platform can be
obtainedquickly, i.e.without recomputing the cost to go.This
only needs to be done once, offline, or in case that the goal
changes. Refer to [23] formore details about the FMM-based
path planner.

2.3 Sequential linear quadratic (SLQ) optimal solver

The next stages of MWMP make use of an optimal solver,
which tackles the unconstrained problem in stage two
(USLQ) and the constrained one in stage three (CSLQ), to
generate a motion plan for the platform, as shown in Fig. 1.
As aforementioned, the solver is called Sequential Linear
Quadratic (SLQ) regulator [8, 10].

Considering the set of N time steps that define theplanning
horizon T = {t0, t1, ..., tn, ..., tN }, the standard formulation
of a discrete-time optimal control problem is shown in (10–
13).

Minimize
u(n), x(n)

J = �(x(N )) +
N−1∑

n=0

L(x(n), u(n), n) (10)

subject to x(n + 1) = f (x(n), u(n)), x(0) = x0 (11)

C(n)x(n) + D(n)u(n) + r(n) ≤ 0 (12)

G(n)x(n) + h(n) ≤ 0 (13)

Where x(n) is the state vector at time step n, noticeably, x(0)
is the initial state and x(N ) is the final one, and u(n) is the
actuation vector; x0 defines the initial state of the system,
at time step t0 = 0. Additionally, (12) represents the state-
input inequality constraints with the constraints distribution
matrices C(n), D(n) and the constraints level vector r(n),
and (13) the pure state constraints with the constraints distri-
bution matrix G(n) and the constraints level vector h(n), as
aforementioned.

In this formulation, J is defined as the total cost to
go, and it is composed of �(x(N )), the terminal cost,
and L(x(n), u(n), n), the intermediate cost. Assuming a

quadratic performance index, these are defined in (14) and
(14) respectively.

�(x(N )) = 1

2
[x(N ) − x0(N )]T Q(N )[x(N ) − x0(N )]

(14)

L(x(n), u(n), n)

= 1

2
[x(n) − x0(n)]T Q(n)[x(n) − x0(n)]

+[u(n) − u0(n)]T R(n)[u(n) − u0(n)] (15)

With Q(n), R(n) defined as the state and input quadratic
cost matrices, respectively, at time step n, and x0(n), u0(n)

the state and input references or targets. Note that x0(N ) =
xN is the terminal state goal and Q(N ) the terminal state cost
matrix,which is usually configured to have considerably high
costs to ensure that the goal is accomplished. Note also the
importance of properly tuning Q(n) and R(n) to precisely
represent the desired behaviour of the system.

Solving the aforementioned discrete-time optimal control
problem, the objective of the algorithm is to generate the
motion plan, x(n) and u(n), for the whole time horizon T .
To that purpose, several inputs are required. On one hand,
the current state of the system x0 and the desired goal state
xN are needed. On the other hand, as extensively explained
above, an initial trajectory � is fed to the solver to acceler-
ate the convergence speed. Consequently, the corresponding
intermediate state costs Q(wP1, n)must be tunedwith appro-
priate costs at every time step. These have to be high enough
to help the solver, guiding it closer to the globally optimal
path, but low enough to avoid forcing the solver to follow
exactly the provided trajectory, which would reduce the vari-
ety of possible solutions to be explored.

Additionally, obstacle avoidance is always a requirement
for any mobile platform. Although the warm start trajectory
already considers the presence of obstacles in the scenario,
another layer of obstacle avoidance is required, since the
solver will draw a probably similar but new trajectory. Thus,
USLQ and CSLQ need the same cost map 
 used in FMM
at PPWS. 
(wP1(n)) corresponds to a repulsive cost that
gets the system away from danger, which means that the cost
increases as the system gets closer to obstacles. This way the
generated trajectories for the platform base pose wP1 dynam-
ically get away from obstacles during the motion planning
process in function of the cost map 
, meanwhile trying to
follow the warm start trajectory �. The intermediate cost
defined above in (14) needs, then, to be reformulated, adding
the repulsive cost 
(wP1(n)), i.e. the cost value associated
to the platform pose wP1 at time step n. Remark that it is
key to maximize the continuity and linearity of the cost map,
otherwise the solver will find difficulties to converge when
encountering nonlinearities in the costs.
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Algorithm 1 SLQ solver: Part 1
1: Initialization
2: x(0) ← getCurrentState()
3: u(n) ← getCurrentControlPlan()
4: x0(wP1) ← getWarmStartTrajectory()
5: C(n), D(n), r(n),G(n), h(n) ← getConstraints()
6: repeat
7: Linearization and quadratization
8: x(n) ← forwardSimulateSystem(x(0), u(n))
9: Q(n), R(n) ← getQuadraticCosts()
10: A(n), B(n) ← getLinearizedSystem(x(n))
11: 
 ← getObstaclesRepulsiveCost()
12: Cc(n),Dc(n),Gc(n) ← get ActiveConstraints(C(n),D(n),r(n),

G(n), h(n), x(n), u(n))
13: Reference tracking
14: x̄0(n) ← Q(n)(x(n) − x0(n))

15: ū0(n) ← R(n)(u(n) − u0(n))

16: Predefinitions
17: D̂(n) ← (Dc(n)R(n)−1Dc(n)T )−1

18: r̂(n) ← −Dc(n)R(n)−1ū0(n)

19: Â(n) ← A(n) − B(n)R(n)−1Dc(n)T D̂(n)Cc(n)

20: R̂(n) ← B(n)R(n)−1[I − Dc(n)T D̂(n)Dc(n)R(n)−1]B(n)T

21: Q̂(n) ← Q(n) + Cc(n)T D̂(n)Cc(n)

22: x̂0(n) ← x̄0(n) + Cc(n)T D̂(n)r̂(n)

23: û0(n) ← −B(n)R(n)−1[ū0(n) + Dc(n)T D̂(n)r̂(n)]
24: Backward Pass - Riccati matrix difference equation
25: P̂(N ) ← Q(N )

26: s(N ) ← 
(wP1(N )) + x̄0(N )

27: for n ← (N − 1); n in T do
28: M̂(n) ← (I + R̂(n)P̂(n + 1))−1

29: P̂(n) ← Q̂(n) + Â(n)T P̂(n + 1)M̂(n) Â(n)

30: s(n) ← Â(n)T M̂(n)T s(n + 1)+
ÂT (n)P̂(n + 1)M̂(n)û0(n) + x̂0(n) + 
(wP1(n))

31: end for
32: State constraints (c) management
33: if not isUnconstrained() then
34: for c ∈ Cx = c1, ..., cS do
35: c(tc) ← Gc(tc)
36: yc(tc) ← 0
37: for n ← (tc − 1); n − −; n > 0 do
38: c(n) ← c(n + 1)M̂(n) Â(n)

Finally, an overview of the functioning of the solver for the
discrete-time optimal control problem defined in (10–13) is
depicted in Algorithms 1 and 2. Summarizing, given the cur-
rent state x0, the current actuation plan u(n), the warm start
trajectory �, the quadratic costs Q(n) and R(n), the system
model A(n) and B(n), the cost map of the scenario 
, the
state-input C(n), D(n), r(n) and the pure state G(n), h(n)

constraints, this solver computes efficiently the motion plan
x(n), u(n) by iteratively obtaining step plans x̄(n), ū(n) to
be applied to the current solution. To do so, the current active
constraints are stored in Cc(n), Dc(n) and Gc(n), which are
later used to consider the constraints during the LQR solu-
tion computation. In particular, the state-input constraints are
directly handled within the Predefinitions step, meanwhile
the pure state constraints are managed later within the State
constraints management step.

Algorithm 2 SLQ solver: Part 2

39: yc(n) ← yc(n+1)+c(n+1)M̂(n)[û0(n)− R̂(n)z(n+1)]
40: end for
41: H(c), (c), y(c) ← hc(tc), c(0), yc(0)
42: for j ∈ Cx = j1, ..., jS do
43: n ← min(c − 1, j − 1)
44: Fc, j (n + 1) ← 0
45: for i ← n; i ≥ 0 do
46: Fc, j (i) ← Fc, j (i+1)−c(i+1)M̂(i)R̂(i) j (i+1)T

47: end for
48: F(c, j) ← Fc, j (0)
49: end for
50: end for
51: ν ← F−1[− x̄(n) + y + H ]
52: for n ← 0, ..., N do
53: s(n) ← s(n) + ∑

c∈Cx ;c≥n T
c (n)ν(c)

54: end for
55: end if
56: Forward Pass
57: for n ← 0; n in T do
58: v̂(n) ← M̂(n)(û0(n) − R̂(n)s(n + 1))
59: x̄(n + 1) ← v̂(n) + M̂(n) Â(n)x̄(n)

60: λ(n + 1) ← s(n + 1) + P̂(n + 1)x̄(n + 1)
61: μ(n) ← D̂(n)[Cc(n)x̄(n)−Dc(n)R−1(n)B(n)T λ(n+1)+r̂(n)]
62: ū(n) ← −R−1(n)[BT (n)λ(n + 1) + Dc(n)Tμ(n) + ū0(n)]
63: end for
64: Computed step plan appliance
65: if checkConstraints(x(n), x̄(n), u(n), ū(n),

C(n), D(n), r(n),G(n), h(n)) or isUnconstrained() then
66: α ← computeLineSearch(x(n), x0(n),

u(n), u0(n), ū(n))
67: else
68: α ← satisfyConstraints(x(n), x̄(n),

u(n), ū(n),C(n), D(n), r(n),G(n), h(n))
69: end if
70: x(n) ← x(n) + α x̄(n)

71: u(n) ← u(n) + αū(n)

72: Termination conditions
73: convergence← checkTermination(x(n),x0(n),u(n),u0(n),ū(n),α)
74: until convergence

Algorithms 1–2 are based on the SLQ solver presented in
[8] and [10], with a few differences. First, the state target
sequence x0(n) is initialized with the warm start trajec-
tory, as aforementioned. Second, the obstacles repulsive cost

(wP1(n)) is included into the backward pass. Third, at
each iteration the constraints compliance is checked. If no
new constraint is violated, then a standard Line Search for
α is performed. The line search consists in finding the best
α, which is the step size used to apply the step solutions
x̄(n) and ū(n), in order to reduce to the minimum the total
cost to go J at each iteration of the solver. Otherwise, if
any constraint is violated, α is generated particularly to sat-
isfy the constraints. Fourth, several termination conditions
are defined, on top of the algorithm convergence itself. In
particular, one of these conditions checks that the last kine-
matic chain pose wPK is close enough to the goal pose
wPK (N ) to perform the desired task, depending on a given
threshold, and another one ensures that the motion plan is
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thoroughly safe. Note that Algorithms 1 and 2 encompass
both the unconstrained and the constrained solvers, with
[C(n), D(n), r(n),G(n), h(n),Cc(n), Dc(n),Gc(n)] = 0
in the unconstrained case, which means that Â(n) = A(n),
R̂(n) = B(n)R(n)−1B(n)T , Q̂(n) = Q(n), x̂0(n) = x̄0(n),
û0(n) = −B(n)R(n)−1ū0(n) and μ(n) = 0. Besides, as can
be observed, for the unconstrained case the State constraints
management is not required, and the Computed step plan
appliance is reduced to the first Line Search.

3 Use case: Martian sample tube retrieval

Planetary exploration vehicles are requiring more and more
autonomy since remote teleoperation from Earth hinders to
perform complex tasks such as navigation and manipulation
[24]. A common strategy to increase autonomy for mid-long
range traverses in planetary surfaces is a Guidance, Naviga-
tion and Control (GNC) architecture [2], which allows the
rover to plan a path to the goal and navigate safely to it
avoiding any intermediate hazard. Nevertheless, recent Mars
vehicle concepts demand a further effort on the autonomous
capabilities of the system, to satisfy the time and energy con-
straints imposed by the mission. For instance, Sample Fetch
Rover (SFR) [25] was designed to collect several soil sample
tubes, left by the PerseveranceMars2020 rover, to eventually
bring them back to the Earth, with the requirement of going
to the samples location, retrieving the samples and coming
back to the lander within 150 sols [26]. Considering this crit-
ical time restriction, the necessity of performing the sample
retrieval operations autonomously and efficiently arises, to
increase the overall navigation speed of the system.

A sample tube retrieving rover is a highly over-actuated
mobile platform, composed of a mobile base with multiple
actuators (mainly driving and steering joints), and a robotic
arm with several DoF. Considering, besides, the energy
and time efficiency requirements of a planetary exploration
mission, a martian sample tube retrieval is the perfect use
case to demonstrate the advantages of the proposed opti-
mal motion planning methodology. In particular, this paper
focuses on a prototype of the Rosalind Franklin ExoMars
rover from the Planetary Robotics Laboratory of the Euro-
pean Space Agency (ESA-PRL), called ExoTeR (Exomars
Testing Rover) [27]. It is a triple-bogie, non-holonomic and
double-Ackermann steered rover, equipped with a 5 DoF
manipulator, which is modelled following the aforemen-
tioned generic over-actuated mobile platform state space
model.

Finally, to test the generated motion plans in the real plat-
form, it is besides necessary to include amotion plan follower
in the loop. This follower filters any external disturbance or
error during the execution of the motion plan, by replanning
the motion when significant deviations are measured. Thus,

Fig. 2 Detail of the experimental setup with ExoTeR approaching a
sample tube, including its actuators (driving, walking, steering and
manipulator joints, two-fingers gripper) and its exteroceptive sensors
(LocCam, NavCam). Besides, ExoTeR is equipped with an Inertial
Measurement Unit (IMU) to estimate its orientation and several Vicon
Markers to precisely locate it inside the Martian Analogue Testbed of
the Planetary Robotics Laboratory, ESA-ESTEC

an analysis on the platform characteristics, a depiction on the
developed state space model of the mobile manipulator and a
detailed description of the tailored replanning methodology
are presented in this section.

3.1 Mobile platform description

Within the research and development carried out at the Plane-
tary Robotics Laboratory, Automation and Robotics Section,
of the European Space Agency (ESA-PRL), the design and
testing of planetary rover testbeds stands out. This is the
case of ExoTeR [27], which conceptually mimics the early
model of theRosalind Franklin ExoMars rover,with a scaled-
down concept. ExoTeR is a triple-bogie, double-Ackermann
rover, with a locomotion system of 6 × 6 × 4 + 6. This
means 6 wheels with 6 driving actuators, 4 of them steerable
(the front and rear ones), which permits double-Ackermann
steering or spot turns. Additionally, all 6 wheels include
a walking actuator, as depicted in Fig. 2, where ExoTeR
is shown at the Martian Analogue Testbed at ESA-PRL.
ExoTeR is also equipped with a 5 DoF manipulator, called
MA5-E. Its five joints are rotational, with a Roll-Pitch-Pitch-
Pitch-Roll configuration, being the first joint placed looking
towards themovement direction of the platform. Its end effec-
tor has attached a two-fingered gripper for sample retrieval
purposes. For localization and perception, ExoTeR has two
stereo cameras, a close range LocCam and a long range
NavCam. Finally, ExoTeR has also an Inertial Measurement
Unit (IMU) for sensing the platform 3D orientation, and has
appended several Vicon markers for ground-truth localiza-
tion inside the martian testbed.

Focusing first on the mobile platform base, ExoTeR is a
double-Ackermann rover with steering joints at the front and
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Table 2 MA5-E joints characteristics

Joint 1 2 3 4 5

Type Rot. Rot. Rot. Rot. Rot.

Orientation Z Y Y Y Z

Range (◦) ±45 ±170 ±170 ±170 ±170

Speed (◦/s) 0.57 0.57 0.57 0.57 0.57

Power (W ) 0.75 0.75 0.75 0.75 0.75

Gear ratio 83200:1 83200:1 83200:1 83200:1 83200:1

Efficiency 0.5 0.5 0.5 0.5 0.5

rear wheels. The central wheels do not steer, which implies
that the rover cannot move in every direction depending on
the system orientation, i.e. non-holonomic constraints. This
is a significant non-linearity, which is tackled inside the sys-
tem model. The platform minimum turn radius is 0.6 m, due
to the geometric distribution of the wheels and the range
limit of ±50◦ in the steering joints, although it can perform
point turns (change its orientation with zero linear velocity).
Finally, its nominal traslational speed is 5 cm/s, with a 2.85
Nm maximum torque of the driving actuators.

Regarding the robotic arm, MA5-E, its main character-
istics are outlined in Table 2. As can be observed, MA5-E
joints have huge gear ratios, which allows it to handle heavy
payloads, 2kg, in comparison to the arm weight, 2.4kg, and
considering the jointmotors power (6W ). The dynamic effect
of external disturbances is consequently negligible, i.e. grav-
ity and the rover base movements. Nevertheless, the gears
also imply an important drawback: the joints move very
slowly, with a maximum rotational speed of 0.57◦/s.

The fully extended arm lengths 0.527m, with additional
0.14m taking into account the gripper. The arm end effector
reachability is restricted by each joint position limit, as can be
observed in Table 2.Doubtlessly, the armmovements are also
limited by the rover body itself and the ground. Regarding the
end effector, it cannot reach any orientation because of the
limitation of the 5 DoF configuration. This issue hinders any
manipulation task, especially a sample retrieval operation,
since the end effector cannot always approach the sample
completely perpendicular to the ground, with the appropriate
gripper yaw w.r.t. the sample tube.

3.2 Double-Ackermannmobile manipulator model

As a mobile manipulator, ExoTeR is modelled with two dif-
ferent kinematic chains: the full-Ackermannmobile base and
the robotic arm. The dynamics coupling between them is
ignored, seeing that the movements of both the platform and
the manipulator are very slow, generating negligible dynam-
ics effects between them. Additionally, the effect of gravity

into the manipulator joints is also disregarded, considering
the huge gear ratios as aforementioned.

Following the generic state space model explained before,
the state vector x(n) for ExoTeR is defined in (16).

x(n) = [
wP1

w Ṗ1
wP2

1P2
1 Ṗ2 q1 q̇1 q̈1 q2 q̇2 q̈2

]T
(16)

Where the kinematic chain 1 represents the mobile base and
2 the manipulator, thus, q1 corresponds to the mobile base
joints, i.e. the wheel driving θd and steering θs joints, and
q2 corresponds to the manipulator joints θm , which are all
rotational as aforementioned. As a result, the state transition
matrix A(n) is extracted straightforwardly from the generic
one, but specifically for a platformwith twokinematic chains.
In particular, I1, V1 and wJ1 refer to the inertia, Corio-
lis/centrifugal and Jacobian matrices of the full-Ackermann
non-holonomic mobile base, as well as I2, V2 and 1J2 refer
to the 5DoF manipulator. Remark that, as aforementioned,
the mobile base Jacobian wJ1 is linearized by means of a
TSL considering the notable non-linearity that appears due
to the non-holonomic constraints.

The actuators of the system are the six driving and four
steering joints of the wheels of the mobile base and the five
rotational joints of themanipulator. As external disturbances,
gravity acts on themobile platform as a constant acceleration.
Thus, the actuation vector u(n) is defined in 17.

u(n) = [
τd τs τm g

]T
(17)

Where τd , τs and τm are the actuation torques to the driving,
steering and manipulator joints, respectively, and g is the
gravity acceleration. Note that ExoTeR joints only receive
position and velocity commands, nevertheless, using the
whole dynamics model allows to generate torque-efficient
motions. Later on, the joint position and speed commands
are directly extracted from the state vector x(n).

Once more, the input distribution matrix B(n) is directly
obtained using the generic one presented in Sect. 2 but with
only one external disturbance, the gravity g. On one hand,
the effect of g into the mobile base, f 11 , generates a wheel-
soil friction, which is modeled in a simplified way by means
of the rolling resistance of the terrain as expressed in (18),
with ρ the rolling resistance coefficient of the terrain, dw the
diameter of the wheels,m the mass of the vehicle andNw the
number of wheels of the rover. On the other hand, the effect
of g into the manipulator, f 21 is ignored, as aforementioned,
considering the huge gear ratio of the arm joints.

f 11 = ρ
dw

2

m

Nw

(18)

Finally, several constraints have been defined to consider
ExoTeR limits. On the one hand, the maximum actuation
torque for the driving (τd ), steering (τs) andmanipulator (τm)
joints are included as state-input constraints. On the other
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hand, the limits on the velocity and acceleration of the driv-
ing (θ̇d , θ̈d ), the steering (θ̇s , θ̈s) and the manipulator (θ̇m , θ̈m)
joints are defined as pure state constraints. Additionally, the
position limits of the steering θs and manipulator θm joints
are also included as pure state constraints.

3.3 Replanning capability

Given a feasible motion plan, i.e. the state x(n) and actuation
u(n) vectors for the complete planning horizon T , a separate
component needs to bring it to the mobile platform, ensuring
it is properly followed until reaching the goal. If there are
deviations from what was planned, then this component has
to take the right decisions to ensure that the goal is reached.
This deviations can be caused by different means, like the
model intrinsic errors because of the discretization and the
linearization. But it is also pertinent to consider the effect of
other agents into the system, such as external disturbances
not considered initially in the model, e.g. the platform local-
ization error, the goal pose estimation error or the non-ideal
behaviour of the actuators. In planetary exploration use cases
the rover localization has a certain error, which, in the par-
ticular case of sample tube retrieval, adds up to the sample
positioning error induced by the sample detection and local-
ization subsystem. This sample positioning error is expected
to be higher as further the rover is from the sample, arising the
necessity of replanning the motion as the positioning error
gets smaller, i.e. as the system gets close to the sample.

Therefore, a motion plan follower has been developed,
which implements a replanning capability similar to the
Event-triggered one proposed in [19], in the following man-
ner. First, the motion plan follower sends sequentially the
next actuation command to the platform (or the first one ini-
tially). Second, it checks if the goal pose has changed. If this
is the case, then the system returns to the wave expansion of
stage one (PPWS) and replans the whole motion. If not, a
third step checks if there is too much drift in any of the con-
trolled states. This would lead to returning to the trajectory
extraction of stage one, which uses the current platform pose
to replan the motion. Fourth, if no replan is needed and the
goal is reached, the follower finishes the execution. Other-
wise, it continues sending actuation commands in accordance
to the already generated motion plan, and starts again the
sequence.

In case one of the states drifts from the planned motion,
the behaviour of the replanning capability is exemplified in
Fig. 3. Starting with a planned motion (dark blue) from t0
to tN , with N number of time steps of �t size, and given
the time evolution of a controlled state x(n) (dark green) in
accordance to a given actuation plan u(n) (dark red), this
evolution may differ from the plan, increasingly accumulat-
ing error. When this error surpasses a certain threshold at
time step tn , the predicted behaviour of x(n) is completely

Non-receding 
planning  horizon

Precedent interval

tn

t

t0 tN

tn-1 tn+1

x

u

Maximum 
allowed error

Goal

Previous op�mal state plan
New op�mal state plan
Real state behaviour
Expected state behaviour
Previous op�mal control plan
New op�mal control plan

Previous op�mal state plan
New op�mal state plan
Real state behaviour
Expected state behaviour
Previous op�mal control plan
New op�mal control plan

Fig. 3 Graph exemplifying the replanning capability. The behaviour
of a controlled state x(n) is continuously checked (dark green). If a
considerable deviation from the previous plan (dark blue) is detected, a
new global motion plan (light blue) is computed from the time step tn
onwards. The new state and actuation plans (light red) allow the system
to reach the goal smoothly correcting the previously accumulated error

undesired (light green), thus, a replan is launched using the
previousmotion plan, from tn onwards (dark blue), as awarm
start. Thus, the replannedmotion (light blue) compensates the
accumulated drift in x(n) by slightly modifying the previous
optimal actuation plan u(n) (dark red), generating a new one
(light red) in the neighbourhood of the previous solution. In
this way, the state x(n) will still reach the goal as long as the
new motion plan is properly followed.

4 Results

The proposed method for motion planning was validated by
means of several tests with the sample tube retrieval use case.
On one hand, a deep performance analysis of the motion
planner was performed with a benchmark between different
layouts of the approach, i.e. using different combination of
the already explained stages. This comparison confirmed that
the proposed warm-start sequence is the most convenient,
with a path planning warm start, a first unconstrained stage
and a final constrained stage. On the other hand, several labo-
ratory tests were performed with the Exomars Testing Rover
(ExoTeR) in the Martian Analogue Testbed of the Planetary
Robotics Laboratory (PRL) of the European Space Agency
(ESA). Using MWMP and the proposed replanning proce-
dure, ExoTeR was capable of successfully reach a martian
sample tube and retrieve it with its manipulator. The source
code of theMWMP library usedwithin these tests is available
in MatLab1 and C++,2 under MIT open source license.

Note that ExoTeR has a series of system constraints,
as explained in Sect. 3, which arise the necessity of using
MWMP. First, a coupled arm-base motion solves the arm
joints velocity issues, generating optimal motions where the

1 https://github.com/spaceuma/MWMP-MatLab.
2 https://github.com/spaceuma/MWMP-Cpp.
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arm is already prepared to perform the desired task once
the base has reached the objective. Second, the rover DoFs
can be used to place the manipulator in a certain manner to
effectively retrieve the sample, i.e. aligning the manipulator
first joint and the sample tube, performing completely per-
pendicular retrieval operations. This is achieved by properly
tuning the costs associated to the goal pose of the end effector,
including its orientation, as will be clarified below.

Thereupon, this section is divided into different subsec-
tions. First, the experimental setup, the scenario and the
motion planner configuration are thoroughly detailed. Sec-
ond, the performance benchmark is exposed. Third, the
laboratory tests are presented.

4.1 Experimental setup

Thegoal of the performed laboratory testswas to demonstrate
that ExoTeR can reach and retrieve a martian sample tube
in a completely autonomous way. For that purpose, these
tests were carried out in the Martian Analogue Testbed at the
ESA-PRL, which can be observed in Fig. 2. This is a 9x9 m
experimental terrain which is highly representative of a real
martian environment, including different types of soil (sandy,
rocky), rocks or small slopes.

The tests include real martian autonomous navigation
restrictions in order to perform an illustrative emulation
of a sample tube retrieval mission. Therefore, two addi-
tional subsystems were integrated in the platform, apart from
the presented MWMP and replanning algorithms. First, an
autonomous sample detection and localization subsystem
based on Convolutional Neural Networks (CNNs), which
uses the LocCam stereo images to locate the sample tube
with an average under 5cm position and 5◦ orientation errors
[28]. Second, a visual odometry algorithm for the platform
localization, using the LocCam stereo camera and the IMU,
with 7.5% average localization drift in position and less than
2◦ orientation error [29]. The Vicon markers were also used
to obtain the ground-truth localization, not online but for data
logging and post-processing purposes.

It was necessary to properly configure the motion planner
for the tests. First of all, the cost map of the scenario was gen-
erated by processing a 2cm resolution Digital ElevationMap
(DEM) of the PRL. This cost map considers obstacles, slopes
and roughness, for more information about the cost map gen-
eration see [30]. The tests time horizon tN was 160 s, with a
time step�t of 0.8s. For the motion planner to converge, the
maximum allowed position error was set-up to 1 cm and the
orientation error to 10◦. It was considered that the algorithm
had converged if the norm of the stepped actuation ū(n) was
lower than 1 % of the norm of the whole actuation vector
u(n). The particular costs which configured the LQR cost
matrices Q(n), R(n) are defined in Table 3. Note that the
cost of modifying the input gravity disturbance g in R(n)

Table 3 Quadratic costs configuration

Type Variable Cost

Goal state Q(N ) EE pose wP2 1011

Platform speed w Ṗ1 106

End effector speed 1 Ṗ2 106

State full motion Q(n) Platform pose wP1 20

Driving wheels speed θ̇d 100

Driving wheels acc. θ̈d 104

Arm joints speed θ̇m 3 · 105
Arm joints acceleration θ̈m 3 · 105

Input full motion R(n) Wheels driving torque τd 105

Steering joints torque τs 8 · 104
Arm joints torque τm 1011

Gravity g 1015

is the largest, to ensure that it remains as a constant gravity
acceleration of 9.81m/s2 precisely following the reference
u0. This gravity disturbance is ignored for the manipulator,
as aforementioned. Additionally, to ensure that the sample
was retrieved perpendicularly to the ground, the goal pose
orientation wφ2(N )was filled with roll wϕ2(N ) = 0, and the
pitch wϑ2(N ) and yaw wψ2(N ) were computed depending
on the estimated sample orientation.

Lastly, the replanning was launched in accordance to cer-
tain errors when following the planned motions. In the first
place, if the platform driftedmore than 4cm from the planned
path. In the second place, if any of the controlled joints devi-
ated more than 2.29◦ from the plan. Additionally, every time
the goal sample pose differed more than 3 cm or 17.19◦
from the previous estimation, a complete motion replan was
launched.

4.2 Motion planner performance analysis

The performance of the proposed motion planning approach
was analyzed using the aforementioned use case and setup,
to showcase its advantages w.r.t. any possible layout of the
stages, for instance, cold started or single-staged versions of
the motion planner. For that purpose, six different layouts of
the motion planner were defined, which include every possi-
ble combination of the three stages (USLQ, PPWS+USLQ,
CSLQ, PPWS+CSLQ, USLQ+CSLQ) and the complete
approach (PPWS+USLQ+CSLQ = MWMP). For every lay-
out, the same 21 motion plans were launched, using the PRL
scenariowith theExoTeRmodel and the sample tube retrieval
use case, changing the initial rover pose and the goal sample
pose.

Three main parameters were measured within the tests.
First, the success rate, as a percentage. This represents the
ratio of finding a successful motion plan in the 21 tests, i.e.
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Fig. 4 Measured success and feasibility ratios on the performance tests.
For every layout, 21 different motion plans were launched. Note that
the layouts that include the constrained stage (CSLQ) have the same
percentage of successful and feasible motion plans, since this stage
ensures feasibility if the algorithm converges

Fig. 5 Measured iterations and execution time on the performance tests.
For every layout, 21 different motion plans were launched. Average
measurements are shown, including the standard deviation on the sam-
ples

when the algorithm converges in less than 100 iterations,
which is shown in Fig. 4. Second, the feasibility rate, which
represents the percentage of constraint compliant motion
plans in the 21 tests, which is also shown in Fig. 4. Clearly,
the feasibility rate encompasses the success rate, given that
a motion plan can only be feasible if the solver converges,
i.e. if the motion plan is successful. Hence, every layout that
makes use of theCSLQstagehas equal success and feasibility
rates, since the algorithmonly converges if the constraints are
fulfilled. Third, the average number of iterations until conver-
gence. If several stages are established, then the total number
of iterations is used. The extracted results regarding the num-
ber of iterations are shown in Fig. 5. Note that the number of
iterations is employed in the following as a measure of the
convergence speed, since the computational time spent is not
representative due to its dependency on external factors, such
as the hardware, the quality of the software implementation
or the CPU usage. Besides, the computational time spent is
nearly proportional to the number of iterations, as an exam-
ple, spending approximately 25ms per iteration in these tests,
run on a single core of an Intel(R)Core(TM) i7-10750HCPU
(2.60 GHz).

4.3 Lab tests

Regarding the laboratory tests campaign, four of the most
representative tests are analyzed in this paper, andoneof them
is shown in a summarizing video3 of the lab tests campaign.
Each test starts from a different rover location, also with a
different pose of the sample tube. Additionally, an example
of the evolution of the tests is also shown in Fig. 6.

The experimentswere run as follows. First, it was assumed
that the sample was inside ExoTeR’s LocCam Field of View
(FoV). Therefore, the sample detection and localization sub-
system was launched at the beginning to provide the initial
estimation of the sample pose. Then, the sample pose was
translated into an end effector goal pose, just above the sam-
ple and approaching the groundperpendicularly, and this goal
pose was fed to MWMP to compute a global initial motion
plan. This was sent to themotion plan follower, which started
to send the control commands at each time step, and receive
the robot measured state. As explained in Sect. 3, the fol-
lower continuously checked if any of the controlled states
was accumulating too much drift, given the defined thresh-
olds. Then, if necessary, the motion was replanned using the
lastmotion plan as awarmstart to accelerate the computation.
Additionally, the sample detection and localization subsys-
tem was launched repeatedly with a frequency of 0.1 Hz, in
order to keep improving the sample pose estimation and fil-
tering the localization error due to the use of visual odometry,
eventually triggering additionalmotion replans.Once the end
effector had reached its goal pose, the executionwas finished,
and a separate sample retrieval component was launched just
to perform the final sample grasping movement.

5 Discussion

The carried out experiments, both performance and labora-
tory tests, are examined in detail in the following. On the
one hand, concerning the performance tests, their results
are summarized in Figs. 4 and 5. As can be observed,
the path planner warm start (PPWS+USLQ, PPWS+CSLQ,
PPWS+USLQ+CSLQ) always reduces the average number
of iterations w.r.t. the cold started versions (USLQ, CSLQ,
USLQ+CSLQ), reducing also the convergence speed vari-
ability. This means that themotion planner behaviour is more
predictable. Additionally, the fastest layouts are the uncon-
strained ones (USLQ, 19.85 it; PPWS+USLQ, 14.65 it), as
expected and aforementioned. Although these layouts have
really high success ratios (USLQ, 95.24%; PPWS+USLQ,
95.24%), they can not guarantee constraints compliance, thus
they also have the lowest feasibility ratios (USLQ, 38.10%;
PPWS+USLQ, 57.14%). The slowest layouts are the con-

3 https://youtu.be/xDFv4Ho4KZs.
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Fig. 6 Motion evolution of ExoTeR during two different sample tube
retrieval tests, using a decoupled motion planning approach (a–d) or
MWMP (e–h). The decoupled solution is not prepared to retrieve the
sample once it reaches it (b), and cannot retrieve the sample perpen-
dicularly to the ground (c), with the result of a defective grasp (d). On

the other hand, MWMP generates an optimal motion, leaving the arm
prepared to the retrieval operation as soon as the base stops (f), being
it placed in a certain pose which allows the manipulator to retrieve the
sample perpendicularly (g), with a high quality grasp (h)

strained ones (CSLQ, 46.645 it; PPWS+CSLQ, 34.31 it),
and they still do not reach high feasibility ratios (CSLQ,
52.38%; PPWS+CSLQ, 47.62%), due to convergence dif-
ficulties considering the high over-actuation and number
of constraints. Finally, the unconstrained-constrained lay-
outs have an intermediate convergence speed (USLQ+CSLQ,
31.13 it; MWMP, 24.95 it), having the complete approach
(MWMP) a comparable convergence speed to the uncon-
strained layouts. Besides, these layouts also have the highest
feasibility ratios (USLQ+CSLQ, 76.19%;MWMP, 90.48%),
thanks to the successive warm start procedure.

Summarizing, the performance tests demonstrate that
the proposed multi-staged approach (MWMP) improves the
behaviour of the optimal motion planner, increasing notice-
ably the average number of feasible motion plans (90.48%)
maintaining a considerably low average number of iterations
until convergence (24.95 it).

On the other hand, the results of four of the lab tests are
summarized in Table 4. First, the initial motion plan number
of iterations (20 it. avg) matches what it is expected, seeing
the results of the performance tests (25 it. avg). Furthermore,
the average number of iterations in each test case, i.e. mean
of iterations required by the planner to converge in each par-
ticular test case considering the initial plan and the replans,
is generally lower than the first plan iterations. This confirms
that using the last motion plan as a warm start accelerates
the motion planning procedure, although it did not happen
in case 4, since a sharp turn was required and the steering
joints were repeatedly reaching their limits. It is remarkable
that the average errors w.r.t. the planned motion of the con-
trolled states, i.e. the arm joints (0.3896◦ avg) and the steering
joints (0.7105◦ avg), are negligible,whichmeans that the pre-

dictedmotionwas accurate and the linearization errors do not
severely impact the system behaviour, thanks to a sufficiently
small time step �t . Besides, most of the required replans
were performed due to the low accuracy of the sample pose
estimator (16 out of 25), which changed the goal pose sub-
stantially several times during the tests, as it can be observed
in Table 4. Regarding the non directly controlled states, the
errors of the rover base (0.0236 m, 0.6417◦ avg) and the end
effector (0.0484 m, 13.3556◦ avg) final poses are also small,
therefore, it is confirmed that the systemmodel is representa-
tive despite of the linearization, and that the motion planner
is accurate enough to ensure a successful sample retrieval,
considering the 7cm full opened gripper width. Note also
that the end effector final pose error is caused mainly by the
sample pose estimator, being minimal the errors induced by
the motion planner itself.

Finally, the evolution of the Test Case 2 is shown
in Fig. 6a–h, in comparison to another sample retrieval
test in Fig. 6a–d, performed with a standard non-optimal
and decoupled motion planning approach [31]. As can be
observed, although both approaches start from similar situa-
tions (Fig. 6a and e),MWMP leaves themanipulator prepared
for the retrieval operation as soon as the rover reaches
the sample (Fig. 6f), meanwhile the decoupled solution yet
requires tomove the arm once the rover stops (Fig. 6b). Addi-
tionally, the decoupled solution does not place the rover base
in a good position considering the posterior retrieval oper-
ation, thus, the gripper orientation is not perpendicular to
the ground and does not match the sample yaw (Fig. 6c),
which, in the end, generates a defective grasp (Fig. 6d). Con-
versely, the optimal motion planner uses all the system joints
(rover and manipulator), placing the base to leave the arm in
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Table 4 Lab test results

Sample tube retrieval test case 1 2 3 4

First plan number of iterations 17 20 29 13

Number of replans (after goal changed) 6 (6) 5 (3) 7 (2) 7 (5)

Average number of iterations in the test case 13.43 16.60 25.62 60.33

Average arm joints position error (◦) 0.2521 0.2235 0.9167 0.1719

Average steering joints position error (◦) 2.6471 0.0521 0.0997 0.0555

Rover base final pose error (m, ◦) 0.0023, 2.0798 0.036, 0.4183 0.02, 0.0 0.0361, 0.0630

End effector final pose error (m, ◦) 0.0942, 15.8996 0.0221, 12.4332 0.0441, 0.1833 0.0332, 24.9007

Sample pose estimation error (m, ◦) 0.0908, 15.7964 0.0150, 12.0035 0.0220, 0.6303 0.0030, 24.8893

a perfectly perpendicular pose w.r.t. the sample. Therefore,
the gripper is orientated perpendicularly to the ground and
matching the sample yaw (Fig. 6g), being the quality of the
grasp, thus, much higher (Fig. 6h).

6 Conclusion

In this paperMWMP is presented, a motion planner for over-
actuated mobile platforms capable of dealing with system
dynamics and constraints, such as non-holonomic constraints
or joints limits,without severely impacting the computational
resources of the system. This is achieved bymeans of amulti-
staged warm start approach, which initializes in several steps
the optimal solver, SLQ. In particular, a novel pipeline with
three different stages is used: first, a FMM-based path plan-
ner; second, an unconstrained SLQ motion planner; third,
a constrained SLQ motion planner. This complete approach
has been demonstrated to improve the performance of the
motion planner in comparison with any other combination
of the stages, since the algorithm converges faster and the
probability of finding a feasible solution is the highest (up to
twice as fast and 40% more feasible solutions in comparison
with the standard Constrained SLQ).

Furthermore, a generic state spacemodel for over-actuated
mobile platforms has been presented, which can model
platforms composed of several kinematic chains in a straight-
forward way. This model is particularized for the ExoTeR
rover, composed by a mobile base and a robotic arm, which
is later used to perform some laboratory tests to validate the
motion planner. For that purpose, a tailored event-triggered
replanning capability has been included, which allows the
system to precisely follow the generated motion plans. The
performed laboratory tests emulate a martian sample tube
retrieval mission, showcasing the advantages of the pre-
sented motion planner to generate accurate motions for
over-actuated and constrained platforms, in this case, allow-
ing ExoTeR to retrieve a sample tube with a high quality
grasp, even considering the rover and sample localization
errors.

The proposed multi-staged warm start sequence has
demonstrated to improve the motion planner convergence
speed and the feasibility of its solutions, nevertheless, it has
only been tested with the SLQ solver. Testing if the proposed
sequence also boosts other optimization solvers is planned as
futurework. Furthermore, as done in relatedworks, the inclu-
sion of the constraints sequentially inside the CSLQ stage
can boost even further the convergence speed specially for
highly constrained and cluttered use cases, which remains
to be tested. Finally, it is expected the use of this motion
planner in further use cases, including 3D platforms with
faster dynamics and multiple external disturbances. Thus, a
benchmark of the proposed motion planner and the replan-
ning capability with other methodologies, such as existing
MPC controllers, is also planned as future work.
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