
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2013

Motion Primitives and Planning for Robots with
Closed Chain Systems and Changing Topologies
Steven Robert Gray
University of Pennsylvania, stevegray954@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Robotics Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/757
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Gray, Steven Robert, "Motion Primitives and Planning for Robots with Closed Chain Systems and Changing Topologies" (2013).
Publicly Accessible Penn Dissertations. 757.
http://repository.upenn.edu/edissertations/757

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/757?utm_source=repository.upenn.edu%2Fedissertations%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/757
mailto:libraryrepository@pobox.upenn.edu

Motion Primitives and Planning for Robots with Closed Chain Systems
and Changing Topologies

Abstract
When operating in human environments, a robot should use predictable motions that allow humans to trust
and anticipate its behavior. Heuristic search-based planning offers predictable motions and guarantees on
completeness and sub-optimality of solutions. While search-based planning on motion primitive-based
(lattice-based) graphs has been used extensively in navigation, application to high-dimensional state-spaces
has, until recently, been thought impractical. This dissertation presents methods we have developed for
applying these graphs to mobile manipulation, specifically for systems which contain closed chains. The
formation of closed chains in tasks that involve contacts with the environment may reduce the number of
available degrees-of-freedom but adds complexity in terms of constraints in the high-dimensional state-space.
We exploit the dimensionality reduction inherent in closed kinematic chains to get efficient search-based
planning.

Our planner handles changing topologies (switching between open and closed-chains) in a single plan,
including what transitions to include and when to include them. Thus, we can leverage existing results for
search-based planning for open chains, combining open and closed chain manipulation planning into one
framework. Proofs regarding the framework are introduced for the application to graph-search and its
theoretical guarantees of optimality. The dimensionality-reduction is done in a manner that enables finding
optimal solutions to low-dimensional problems which map to correspondingly optimal full-dimensional
solutions. We apply this framework to planning for opening and navigating through non-spring and spring-
loaded doors using a Willow Garage PR2. The framework motivates our approaches to the Atlas humanoid
robot from Boston Dynamics for both stationary manipulation and quasi-static walking, as a closed chain is
formed when both feet are on the ground.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Mechanical Engineering & Applied Mechanics

First Advisor
Vijay Kumar

Second Advisor
Maxim Likhachev

Keywords
closed chain, motion planning

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/757

http://repository.upenn.edu/edissertations/757?utm_source=repository.upenn.edu%2Fedissertations%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages

Subject Categories
Robotics

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/757

http://repository.upenn.edu/edissertations/757?utm_source=repository.upenn.edu%2Fedissertations%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages

MOTION PRIMITIVES AND PLANNING FOR ROBOTS WITH

CLOSED CHAIN SYSTEMS AND CHANGING TOPOLOGIES

Steven R. Gray

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2013

Vijay Kumar, PhD, Supervisor of Dissertation
Professor, Department of Mechanical Engineering and Applied Mechanics

Maxim Likhachev, PhD, Co-Supervisor of Dissertation
Research Assistant Professor, Robotics Institute

Jennifer Lukes, PhD, Graduate Group Chairperson
Associate Professor, Department of Mechanical Engineering and Applied Mechanics

Dissertation Committee:
Mark Yim, PhD, Professor, Mechanical Engineering and Applied Mechanics
Vijay Kumar, PhD, Professor, Mechanical Engineering and Applied Mechanics
Maxim Likhachev, PhD, Research Assistant Professor, Robotics Institute
George Pappas, PhD, Professor, Electrical and Systems Engineering
Sachin Chitta, PhD, Research Scientist, Willow Garage

Acknowledgements

While at the University of Pennsylvania, I worked on many different projects which

let me explore different aspects of robotics. To all those I worked with at Penn,

Carnegie Mellon, Willow Garage, Lockheed Martin, and other partner institutions

and organizations, thank you for helping me learn and experience so much.

I would like to thank my advisors, Vijay Kumar and Maxim Likhachev, for all of

their support and advice. Vijay is a dedicated advisor who has let me choose and

shape my involvement in the projects we worked on together. Max has always been

there to help me with questions and think through solutions to those issues that

inevitably crop up during implementation. I consider myself very fortunate to have

had Vijay and Max as mentors. Additionally, I would like to thank Mark Yim, George

Pappas, and Sachin Chitta for taking the time to serve on my dissertation committee.

I would also like to thank all my friends and colleagues in GRASP for making the lab

a great place to work and for making Philadelphia a great place to have spent these

past six years.

I am immensely grateful to my family for their love and support. My parents

and sister provided constant encouragement and motivation, always believing I could

ii

accomplish whatever I set out to do. My wife, Danielle, has been there for me every

step of the way. She cheers me when I am down, lights a fire under my butt when I

am listless, and I hope she knows how much I love her for it.

iii

ABSTRACT

MOTION PRIMITIVES AND PLANNING FOR ROBOTS WITH

CLOSED CHAIN SYSTEMS AND CHANGING TOPOLOGIES

Steven R. Gray

Vijay Kumar

Maxim Likhachev

When operating in human environments, a robot should use predictable motions

that allow humans to trust and anticipate its behavior. Heuristic search-based planning

offers predictable motions and guarantees on completeness and sub-optimality of

solutions. While search-based planning on motion primitive-based (lattice-based)

graphs has been used extensively in navigation, application to high-dimensional state-

spaces has, until recently, been thought impractical. This dissertation presents methods

we have developed for applying these graphs to mobile manipulation, specifically for

systems which contain closed chains. The formation of closed chains in tasks that

involve contacts with the environment may reduce the number of available degrees-of-

freedom but adds complexity in terms of constraints in the high-dimensional state-space.

We exploit the dimensionality reduction inherent in closed kinematic chains to get

efficient search-based planning.

Our planner handles changing topologies (switching between open and closed-

chains) in a single plan, including what transitions to include and when to include

them. Thus, we can leverage existing results for search-based planning for open

iv

chains, combining open and closed chain manipulation planning into one framework.

Proofs regarding the framework are introduced for the application to graph-search

and its theoretical guarantees of optimality. The dimensionality-reduction is done

in a manner that enables finding optimal solutions to low-dimensional problems

which map to correspondingly optimal full-dimensional solutions. We apply this

framework to planning for opening and navigating through non-spring and spring-

loaded doors using a Willow Garage PR2. The framework motivates our approaches

to the Atlas humanoid robot from Boston Dynamics for both stationary manipulation

and quasi-static walking, as a closed chain is formed when both feet are on the ground.

v

Contents

1 Introduction 1

1.1 Background . 2

1.2 Motivation and Contributions . 4

2 Literature Review 7

2.1 Background on Motion Planning . 7

2.2 Planning for Generic Closed-Chain Systems 9

2.3 Application to Mobile Manipulators 10

2.4 Motion-Primitive Based Graph Planning 16

3 Preliminaries 19

3.1 Graph Search . 19

3.1.1 Dijkstra Search . 21

3.1.2 A∗ Algorithm . 22

3.1.3 Weighted and Anytime Variants 23

3.2 Lattice State-Space . 24

vi

3.3 Closed Chains . 26

4 Planning Framework for Closed Chains and Systems with Changing

Topologies 30

4.1 Abstractions for Closed Chain Systems 31

4.1.1 Planning Problem Formulation 33

4.1.2 Reduced-Dimensional Graph 36

4.1.3 Algorithm . 37

4.1.4 Theoretical Properties . 38

4.2 Proof of Concept . 41

4.2.1 Implementation . 42

4.2.2 Results . 44

4.2.3 Discussion . 49

5 Case Study: Door Opening 50

5.1 Related Works . 53

5.2 Motion Planning . 56

5.2.1 Graph Representation . 57

5.2.2 Precomputation . 61

5.2.3 Cost Function and Heuristic 64

5.2.4 Search . 66

5.3 Implementation . 67

vii

5.4 Simulation Results . 70

5.5 Experimental Results . 73

5.5.1 Experiments at Penn . 73

5.5.2 Experiments at Carnegie Mellon University 77

5.6 Discussion . 80

6 Application to Walking 83

6.1 Atlas Humanoid . 84

6.2 Background . 85

6.3 Balancing Controller . 86

6.3.1 Center of Mass Position and Posture Controller 87

6.3.2 Contact Force Distribution . 88

6.3.3 Balancing for Manipulation 90

6.3.4 Implementation Details . 92

6.4 Extension to Walking . 93

6.4.1 Walking State Machine . 93

6.4.2 Implementation Details . 94

6.5 Results . 95

6.6 Motion Planning . 98

6.6.1 Graph Representation . 99

6.6.2 Implementation . 101

6.6.3 Results . 105

viii

7 Concluding Remarks 108

7.1 Summary of Contributions . 108

7.2 Future Work . 109

Bibliography 113

ix

Chapter 1

Introduction

Interacting with objects in the environment is becoming increasingly important in

robotics. Robots are making inroads into human environments, from cleaning to

patient care [37,45,93]. They are moving beyond the rigidity of assembly lines and

fixed, repetitious motions [53, 94]. However, to effectively interact with the world

around them, including human environments, robots must be able to plan for situations

in which multiple contacts are made with the world. Additionally, when operating in

human environments, a robot should use predictable motions that allow humans to

trust and anticipate its behavior. Heuristic search-based planning offers predictable

motions and guarantees on completeness and sub-optimality of planned trajectories.

While search-based planning on motion primitive-based (lattice-based) graphs has been

used extensively in navigation, application to high-dimensional state-spaces has, until

recently, been thought impractical. We present methods developed for applying these

1

graphs to mobile manipulation, specifically for systems which contain closed chains.

The formation of closed chains in tasks that involve contacts with the environment

may reduce the number of available degrees-of-freedom but adds complexity in terms

of constraints in the high-dimensional state-space. We exploit the dimensionality

reduction inherent in closed kinematic chains to get efficient search-based planning.

1.1 Background

As the complexity of our robotic platforms increases, so does the need to plan

in high-dimensional state-spaces. As little as a decade ago, low degree-of-freedom

wheeled ground vehicles were dominant; now humanoid robots and mobile manipulation

platforms abound. Two popular platforms, the Willow Garage PR2, with its holonomic

wheeled base and dual arms (for a total of 20-degrees-of-freedom), and the humanoid

HUBO, with 38-degrees-of-freedom, are shown in Figure 1.1.

Probabilistic sampling-based planning methods have come to the fore as a tractable

means of searching high-dimensional spaces. However, they have a cost: these methods

trade guarantees on solution completeness (with respect to geometric algorithms) and

optimality (with respect to search-based algorithms) for speed, and must settle for

probabilistic completeness guarantees. While RRT∗ and related works seek to recover

path optimality, they may only do so in an asymptotic fashion; as the number of

samples approaches infinity, they approach the optimal solution [56, 83]. Lately, there

has been an upsurge in recovering optimal (with respect to discretization) solutions.

2

(a) (b)

Figure 1.1: The Willow Garage PR2 (a) with 20-degrees-of-freedom and the Korea

Advanced Institute of Science and Technology (KAIST) HUBO (b) with 38-degrees-of-

freedom are widely-used robotics platforms which require planners capable of handling many

degrees-of-freedom.

3

Search-based planning is being applied to higher degree-of-freedom systems than ever

before, as will be discussed in Chapter 2.

Planning for navigation, whether for field robots or robotic manipulators, typically

involves planning through free space without additional constraints. Even in mobile

manipulation literature, the common paradigm is to plan to get an end-effector near

an object to manipulate, form the appropriate pre-grasp pose, approach the object

to grasp, then move with the object attached, again planning without constraints

[20, 22, 99, 111]. Other works have introduced constraints on manipulated object

poses [7, 9]. However, there are instances when planning for mobile manipulation

cannot be reduced to a series of open-chain planning problems. For instance, when

interacting with an object constrained by or attached to the world in some way.

Examples include opening doors and drawers, using levers and valves, and pushing

objects along a track.

1.2 Motivation and Contributions

This thesis will demonstrate that search-based algorithms are applicable to systems

with many degrees-of-freedom involving closed chains. The closed chains often arise in

the form of contacts with the world, such as in mobile manipulation. Towards that end,

we present a planning framework for search-based planning for mobile manipulators

with changing system topologies; the systems contain closed chains, open chains, and

transitions between the two. The planning framework is applied to the task of opening

4

doors and is used to motivate our approach to bipedal locomotion. Door opening is

an example of planning to manipulate an object along a constrained trajectory. Both

tasks involve making and breaking closed chains.

First, Chapter 2 will provide an overview of the current state of the art in

motion planning, planning for closed chains, and planning for mobile manipulation.

Hierarchical planners and motion primitive-based planners will be covered. The

algorithms involved span the gamut from deterministic, geometry-based planners to

random sampling-based planners with probabilistic completeness guarantees to graph-

based planners with their bounds on suboptimality of solutions. Additional literature

pertaining to applications in later chapters will be discussed in those chapters.

In this thesis, we use search-based-planning algorithms. Chapter 3 begins with an

overview of search-based planning, from Dijkstra’s algorithm up to modern motion

primitive-based approaches. This includes an overview of the A∗, Weighted A∗, and

Anytime Repairing A∗ algorithms. We discuss lattice-based graphs, connected by

motion primitives. Further, Chapter 3 provides descriptions of closed chains, systems

in which they are likely to appear, and what constraints they impose.

Chapter 4 introduces our planning framework for handling open chains, closed

chains, and transitions between them, all in a single planning instance, maintaining the

completeness and optimality guarantees which would have been lost or weakened in a

hierarchical planner. Theoretical guarantees are mentioned along with the necessary

assumptions and conditions to apply the framework. A simple illustrative example is

5

provided.

Chapter 5 covers application of our framework to the task of opening spring-loaded

and non-spring-loaded doors using a mobile manipulator with a holonomic base. The

door is constrained by its attachment to the world via revolute joint and may only

move along a 1-D manifold, though it may move in either direction along that manifold.

The robot must move its base to open the door and pass through the doorway. It may

also switch between contacts with the door during planning and is allowed to contact

the door with either arm, the base, or nothing at all.

Finally, Chapter 6 describes our approach to walking for a humanoid. We detail

our control framework for the DARPA Robotics Challenge, specifically a balancing

controller which has been extended to support quasi-static walking. In the double

stance phase, the lower body forms a closed chain, while the single stance phase is an

open chain. Planning for the humanoid involves abstractions for the complexity of

kinematic chains from the pelvis to each foot. On that note, our planning framework

inspires our work on walking, but the system is complex and the required assumptions

and thus the guarantees of the framework do not apply directly. Our planning and

control are able to successfully negotiate difficult terrain with hills and scattered

obstacles.

6

Chapter 2

Literature Review

2.1 Background on Motion Planning

Motion planning difficulty depends on the dimensionality of the system and the

constraints on the motion. Exact algorithms, which guarantee a solution when one

exists and return failure when one does not, are limited to low-dimensional config-

uration spaces due to computational complexity. For instance, the most efficient

exact algorithm has exponentially increasing complexity in dimensionality [17]. When

considering the history of motion planning, we see that with exact methods infea-

sible, it was necessary to sacrifice exact completeness in order make the planning

problem tractable. Discretization of dimension and configuration parameters was

introduced. In general, algorithms based on an approximated cell decomposition of

the free configuration-space [62] are resolution complete: they are complete for a given

7

discretization size. In fact, narrow passageways smaller than the discretization size

are guaranteed to be missed. Efficient heuristic algorithms have been developed based

on the potential field approach [58]; these perform gradient descent on the potential

field and may become trapped at local minima. Thus, the design of the potential

function is crucial, but difficult for non-convex and high-dimensional spaces. All of the

above approaches are applicable in practice to systems involving only a few variables,

typically four or less.

Sampling-based planners, satisfying a weaker form of completeness but capable of

handling high-dimensional configuration spaces, were introduced in the 1990s [57,64].

These planners, probabilistic roadmaps (PRMs) and rapidly-exploring random trees

(RRTs) guarantee probabilistic completeness; the planners sample randomly (or

in a biased random fashion) from the configuration space. Such planners are not

guaranteed to find a solution if it exists, often the case in the narrow passage problem,

though variants have been introduced to handle such cases. There is also a drive to

derandomize the sampling to improve coverage properties [63].

Lattice-based planners, used in this thesis, allow for planning as graph search.

Such planners allow us to leverage results in graph search literature (A∗, D∗ and their

variants), previously applied to cell-decomposition methods. These methods have

recently been shown to be applicable to high-dimensional state-spaces, as discussed in

Section 2.4.

8

2.2 Planning for Generic Closed-Chain Systems

A number of planning methods exist specifically for closed kinematic chains. The

works discussed below address planning for closed chain systems consisting of rigid

links in 2-D (revolute and prismatic joints only) or 3-D (also includes ball joints).

Complete planners suffer from high computational complexity and difficult im-

plementations. Some works, such as [103], are complete, but the path returned is

not optimal by any metric. The cited work is valid for closed kinematic chains with

spherical joints and will use at most n − 2 accordion moves to reach the desired

configuration. The accordion moves are not optimal with respect to distance traveled

nor any other metric. These works do not handle self-collisions or obstacles. An

extension allowing point obstacles is limited to planar chains [67].

Early sampling-based methods for closed-chains were slow because the vast majority

of generated samples did not satisfy the loop-closure constraints and so were rejected.

A later sampling method, [112], applied to closed chains of a single cycle. It broke the

closed chains into sub-chains, one of which used standard random sampling techniques,

and the other which was populated using inverse kinematics to enforce the closure

constraints. This method was applied to mobile manipulators and employed a two-

stage PRM strategy. The first stage was generating a PRM for the manipulator at a

single base location, and the second stage was replicating the PRM at different base

locations and connecting them.

The work of [113] handled closed chains of any number of cycles. Each cycle was

9

broken apart and gradient descent applied to minimize the sum of squares Euclidean

distances between joints that should be collocated to satisfy the kinematic closure

constraint. While samples could thusly be modified to satisfy the closure constraint,

this was a time-consuming endeavor. In [101], the authors propose planning with

reachable distances, precomputing and sampling directly from the subspace that

satisfies the closure constraints. Closed chain systems are represented as a hierarchy

of sub-chains; the corresponding reachable range of each can be computed using the

triangle inequality. The method can be applied to most sampling-based planners, such

as PRMs and RRTs. It has so far been applied to abstract chains in simulation.

The sampling-based works above have been applied to mobile manipulators, but

do not allow for constraints on the motion of a manipulated object. The geometric

methods have not been applied to mobile manipulation and cannot, for example,

account for nonholonomic constraints of a robot base.

2.3 Application to Mobile Manipulators

As a central idea of this thesis is planning for closed-chain systems with specific

application to mobile manipulation, we include an overview of other methods used in

that field.

The idea of decomposing the motion of mobile manipulators into mobility and

manipulation dates back to the first discussions of such systems in the 1980s. In [18],

the task planning problem was formulated as a nonlinear optimization problem. Base

10

and end-effector configurations were considered separately, and the optimization

problem was solved for a sequence of manipulator and base configurations which

minimized the cost function. Controls-based approaches have been used to drive a

robot base in a manner that enables following specified end-effector trajectories [35].

Given a path for the end-effector, a feasible path is planned for the base such that

the end-effector trajectory is always in the dexterous workspace. In this work, the

dexterous workspace is always projected onto the ground plane, ignoring the height.

Stability for the base and end-effector trajectory-following controllers is proven.

Finding the appropriate base position for manipulation tasks is not a trivial

problem. Some work has applied probabilistic methods like rapidly-exploring random

trees and probabilistic roadmaps to plan motions for mobile manipulators taking

inverse kinematics and base position into account. For instance, [77] addresses the

problem of motion planning along a specified end-effector path for a mobile manipulator

with a nonholonomic wheeled base and kinematically redundant manipulator. For a

given initial configuration, a path is assigned and a feasible solution generated using

probabilistic methods. Redundant variables are chosen in advance; when sampling,

values for these redundant variables are randomly generated, then the remaining

variables are solved analytically. The redundant variables may also be generated by

forward-integrating the equation of motion for the system using a random pseudo-

velocity. Unlike our work, there are no optimality guarantees and only probabilistic

completeness guarantees.

11

Probabilistic roadmaps (PRMs) have been used to solve multiple-query problems

for mobile manipulators. Similar to RRTs, randomly sampled states are checked for

feasibility, then connections between states are evaluated for feasibility. Unlike RRTs,

a tree structure is not required; cycles are allowed and in fact add robustness. Work

has gone to speeding this process up by only evaluating necessary connections between

states (those required as the graph search is in progress), called Lazy PRM [11]. Lastly,

it has been recognized that the probabilistic sampling is often unnecessary, leading to

regularly-sampled versions, called LRMs [63].

In [104], solutions for dual-arm manipulation tasks are addressed for a fixed-base

robot. First, the robot’s reachability workspace is precomputed; it is represented

by voxels in 6-D pose space and each voxel contains a probability of successfully

answering an inverse kinematics (IK) query, i.e, solving for joint angles that produce

the desired end-effector pose. Gradient descent is used to find a local maximum

in the reachability space and combined with random sampling of free parameters.

Then RRT-based motion planning algorithms are applied, interleaving finding IK

solutions with searching for a collision-free trajectory. The work of [114] analyzes the

manipulator reachability by discretizing the workspace with a regularly spaced spheres.

On each sphere n-points are uniformly distributed, then frames are generated for each

point on the sphere and serve as the tool center point for the inverse kinematics of

the robot. Cross-correlation is used to decide the best base location for carrying out a

predefined manipulator trajectory by mapping the trajectory to the closest frames on

12

the spheres. In this work, the trajectory is required to be completely contained in the

reachable workspace from a specific base location.

Berenson et. al introduce constrained bi-directional RRT for planning in configura-

tion spaces with multiple constraints [10]. Pose constraints are handled by projecting

sampled states onto configuration-space manifolds. The most common projection tech-

nique is the the Jacobian pseudo-inverse, in which the required workspace displacement

to place the configuration back onto the manifold boundary is first calculated, then

mapped into the joint space of the manipulator using the Jacobian inverse for square

Jacobians or the Moore-Penrose pseudo-inverse for non-square Jacobians. The planner

is able to handle moving heavy objects using sliding surfaces which support part of an

object’s weight. Dragging an object along a surface becomes an additional constraint

manifold; if the object is not near a sliding surface but is too heavy to be lifted by

the manipulator, the configuration is rejected. The advantage of our search-based

method over this is that we may use the constraints to reduce the dimensionality of

the state-space we are searching; the constraints enable a faster search.

CHOMP [92] is a trajectory optimization method that creates a naive initial

trajectory from start to goal (unconstrained, it does not need to be a feasible trajectory),

then runs a modified gradient descent on the cost function. The cost function typically

has two components, one which is a cost for points along the arm which increases

as they approach obstacles (this requires precomputation of a signed distance field)

and one which enforces smoothness. Both of these are soft constraints; it is necessary

13

to check the output of CHOMP for feasibility, i.e., being collision-free. The result of

CHOMP is dependent on the initial trajectory given, as it may get caught in local

minima. STOMP [54] is a similar approach which adds random noise to attempt to

avoid local minima.

In contrast, [98] presents a trajectory optimization method which combines sequen-

tial convex optimization with a novel formulation of the collision avoidance constraint

considering swept volumes. Rather than requiring precomputation of a signed distance

field for the environment, this work requires either an approximate convex decomposi-

tion or a simplified mesh. Results compare favorably to CHOMP and STOMP. The

work of Vernaza et al. focuses on identifying the low-dimensional Lagrangian structure

of physical systems and applying this knowledge to aid in high-dimensional motion

planning [105–107]. The algorithm learns and exploits the structure of holonomic

motion planning problems using spectral analysis and iterative dynamic programming

and is able to solve problems in higher dimensions than known methods for optimal

motion planning. The quality of solutions found compares favorably to those obtained

via sampling-based planning and smoothing.

RRT∗ is a recent development building upon RRT which converges to an optimal

path as the number of samples tends to infinity. It adds a cost function which is used

to calculate cost between vertices. When adding vertices to the tree, the edges are

rearranged such that each vertex is reached using a minimum cost path from the

tree root. The work of [83] extends RRT∗ to mobile manipulation tasks with many

14

degrees-of-freedom by combining RRT∗ with the Ball Tree Algorithm. Other attempts

to use probabilistic planners on costmaps include [6]. In this work, transitions to

an increased cost state were allowed with a probability that depended on a thermal

energy analog. When many subsequent expansions were rejected, the energy increased.

This work does not provide guarantees on path optimality, but has a tendency to

explore connected low-cost regions first and as such is appropriate for what the authors

deem cost space chasms, narrow regions of low cost surrounded by higher cost, often

of lower-dimensionality than the state-space and so unlikely to be found by naive

sampling.

Hierarchical planning schemes have been proposed to reduce complexity by sepa-

rating planning into smaller, simpler problems. Typically, a high-dimensional local

planner is combined with a low-dimensional global planner. The typical benefit of a

multi-level scheme is a significant reduction in planning time. Local planners have

been implemented using various techniques, including reactive obstacle avoidance [102]

and dynamic windows [15, 85]. While these types of planners can result in difficulties

with suboptimality and mismatches between the local and global levels, our approach

avoids these problems altogether by generating optimal plans in a low-dimensional

space that maps to much higher-dimensional optimal solutions. Our representation

has an additional advantage of incorporating a parameter to describe the contact

state of the mobile manipulator and object being manipulated, allowing one plan to

incorporate switching between open and closed- chain topologies while maintaining

15

optimality.

2.4 Motion-Primitive Based Graph Planning

A key motivation of this thesis is to utilize lattice-based search for mobile manipulation.

The advantage of search-based plans is bounded solution suboptimality, as well as

determinism of solutions and completeness with respect to the discretization.

Searching motion primitive-based graphs has been applied to a variety of planning

problems in robotics, including navigation problems [65]. Specifically, this work

included planning dynamically-feasible maneuvers for vehicles at high speeds over

large distances. Motion primitives searches have also been used for planning trajectories

for UAVs [61,68].

Formulation of motion primitives is key in [88]. In order to allow backward searches

such as D∗, it is necessary to make sure the motion primitives can be connected forwards

and backwards. Towards this end, they are constrained to begin and end on regularly

discretized grid-cell centers. Motion primitives are pruned to generate near-minimal

spanning action spaces by representing longer primitives as combinations of other

primitives when possible. The work has also been extended to handle dynamics [89]

by solving the corresponding two-point boundary value problem. The method has

been shown to be valid for low-dimensional systems like wheeled vehicles, and has

recently been extended to quadrotors [90].

Recently, heuristic search-based planners have been shown to be feasible for high-

16

dimensional problems, specifically manipulation problems [23]. Planning times are

lessened by combining informative but quickly computable heuristics (a Dijkstra

search over the voxelized 3-D workspace), a small number of motion primitives, and an

anytime, incremental graph search, Anytime Repairing A∗ (ARA∗). An extension [25]

incorporates motion primitives with variable dimensionality; these lower-dimensional

primitives move a subset of the joints and are only used when near the goal end-effector

position. Motion primitives which use inverse-kinematics to directly move from the

current position to the goal are also used when near the goal. Additional constraints

present in two-arm manipulation have been used to plan in a lower-dimensional

graph [24]. A similar approach is used by [21], but their system lacks the ability to

push and pull spring-loaded doors or make and break contact points with the doors.

More recently, experience graphs have used results from previous searches have been

incorporated to bootstrap solutions for new queries [86, 87].

Recent work has also been conducted on search-based planning with adaptive

dimensionality [38, 39]. This uses the intuition that while planning in full-dimensional

state-space is sometimes necessary, for large portions of the robot’s workspace it is not.

An adaptive-dimensional state-space and corresponding transition set is iteratively

constructed that that consists mainly of low-dimensional states and transitions, using

high-dimensional states only where necessary to ensure a feasible path. We incorporate

this approach in our work on mobile manipulation with closed chains.

Search-based navigation planning for multiple robots has been addressed in the M∗

17

algorithm [110]. Instead of planning for all robots in a configuration space containing

the union of all robot configuration spaces, each robot is planned for separately. The

configuration spaces are appended only if the robots are found to interact. In a process

termed subdimensional expansion, the algorithm searches a lower-dimensional graph

embedded in the full graph representing all the robots. Only when robots are found

to interact are higher-dimensional state transitions back-propagated.

In this thesis, we consider a variety of closed-chain mobile manipulation tasks,

including opening doors. This thesis represents the first work, to the author’s knowl-

edge, to incorporate transitions in system topology into search-based planning with

motion primitives. The additional constraints from closed-chains are used to reduce

system dimensionality in regions where the topology includes closed-chains, enabling

efficient search. In contrast with the works above, the planning framework herein

handles the transitions between open and closed chains in a single plan, including

what transitions to include and when to include them. It does so while maintaining

completeness and optimality guarantees over the entire plan, and the results share the

determinism and repeatability inherent in graph-based search.

18

Chapter 3

Preliminaries

3.1 Graph Search

In this thesis, motion planning problems are represented by graph searches. Given a

finite graph, we need an efficient way to search it for a solution path. We will now

provide a brief review of graph search methods. We note that our planning framework

with its dimensionality reduction is independent of the graph search chosen, though

the specific guarantees of solution optimality do depend on the properties of the chosen

search method.

Depending on the search space, the easiest method for constructing a graph is to

discretize the state-space. For example, considering the 2-D search space in Figure 3.1,

we can easily uniformly discretize the space, yielding a grid. Each discretized state

corresponds to the center of a grid cell, and the edges represent motions from one cell

19

Start

Goal

(a)

Start

Goal

(b)

(c)

Figure 3.1: A 2-D state-space example. A configuration-space map (a) is uniformly

discretized (b) and the underlying 8-connected grid is shown on a close-up view (c).

20

to another. Each edge has a weight which corresponds to the distance between cells.

It is easy to envision using a 4- or 8-connected grid representation for the discretized

space, as shown in the close-up in Figure 3.1(c).

Regardless of underlying representation, we discuss the planning problem as a

graph, G = [S, T], where S is the vertex set and T is the edge set. We define a set

of transitions T = {ai,j|si, sj ∈ S}, where ai,j is a transition from state si to state sj.

Each transition is associated with a non-negative cost c(ai,j), also written as c(si, sj).

The objective of the planner is to find the least-cost path in G from start state sstart

to goal state sgoal. Let π(si, sj) denote a path from si to sj, and let π∗(si, sj) denote

the least cost path. The path cost is the sum of the transitions along the path,∑
i,j∈π c(ai,j), denoted as c(π(si, sj)).

3.1.1 Dijkstra Search

Dijkstra’s algorithm [33] solves the single-source shortest path problem for a graph

with non-negative edge weights. The g-value of a given state, g(s), represents the

current lowest cost path to reach that state. The search is initialized with g(sstart) = 0,

and all other g-values set to infinity to show the search has not yet reached them.

The start state is added to the OPEN set. Then, at each iteration, the state with

the smallest g-value is removed from the OPEN set, and all the states connected

to it (the possible successor states) have their g-values updated if the current state

represents a lower cost way of reaching them. If so, the successor states are added to

21

the OPEN set. The process repeats until g(sgoal) is updated. The least cost path can

be reconstructed by working backwards from the goal, always choosing the predicate

state with the lowest g-value plus transition cost. Visualized on a 4 or 8-connected

grid, Dijkstra’s algorithm can be likened to a wavefront propagating outward from

the start location.

Dijkstra’s Algorithm

g(sstart) = 0, all other states set to g(s) =∞
OPEN = {sstart}
while g(sgoal) ==∞ do

remove s with smallest g(s) from OPEN
for each successor s′ of s do

if g(s′) > g(s) + c(s, s′) then
g(s′) = g(s) + c(s, s′)
Insert s′ in OPEN if not already present

3.1.2 A∗ Algorithm

A∗ search is a popular graph search algorithm [46], improving upon Dijkstra’s algorithm

by utilizing a heuristic to focus the search toward the goal. The search introduces the

h- and f -values for a given state, where the h-value is the heuristic estimate of the

cost to reach the goal and f(s) = g(s) + h(s). The search is very similar to Dijkstra,

except (1) the state removed from the OPEN set each iteration is now the one with

the lowest f -value and (2) the f -value is updated when the g-value is updated. The

h-values must be an underestimate of the least cost path from the current state to the

goal (admissibility) in order to ensure that the algorithm returns the optimal path.

To ensure that no state is expanded more than once, the h-values must be consistent.

22

That is, for any two states where s′ is a successor of s, h(s) ≤ c(s, s′) + h(s′).

A∗ Algorithm

g(sstart) = 0, all other states set to g(s) =∞
OPEN = {sstart}
while g(sgoal) ==∞ do

remove s with smallest f(s) from OPEN
for each successor s′ of s do

if g(s′) > g(s) + c(s, s′) then
g(s′) = g(s) + c(s, s′)
f(s′) = g(s′) + h(s′)
Insert s′ in OPEN if not already present

3.1.3 Weighted and Anytime Variants

The weighted version of A∗ works by biasing the sampling of new states toward the

goal. For a given admissible heuristic function, multiplying the heuristic by a constant

ε > 1 and then performing the search as usual produces a solution with cost at most

ε times the least cost solution [82]. In many domains, using the inflated heuristic

greatly reduces the number of states expanded by the search before finding a solution.

While A∗ is able to find optimal plans, it can fail to find solutions when deliberation

time is limited. Anytime planners, on the other hand, aim to find the best plan they

can in the time allowed [28]. A (possibly) highly suboptimal plan is found and then

improved and until either times runs out or the optimal solution is recovered.

In this thesis work, we have chosen to use an anytime heuristic search algorithm

called Anytime Repairing A∗ (ARA∗) [66]. The algorithm has control over the

suboptimality bound of the solution it produces, which it uses to achieve the anytime

23

property: it uses a loose bound to quickly find an initial solution, then tightens the

bound progressively as time allows. Given enough time, it arrives at the optimal

solution. ARA∗ reuses previous search efforts as it reduces ε and, thus, is more efficient

than other anytime search methods. In comparison, a similar method called Anytime

A∗ does not control ε directly (aside from setting the maximum ε during the first

search) [115]. Instead, it continues to expand and re-expand states after the first

solution is found by pruning states with f -values larger than the best cost solution so

far.

3.2 Lattice State-Space

A state lattice, as described in [88], is a discretization of the configuration-space into a

set of states and the connections between those states. Unlike the simple 8-connected

grid representation of Figure 3.1, connections in the state lattice are required to be

feasible motions of the system. Thus, any solution found while searching a lattice

graph will also be feasible; the planner does not need to consider differential constraints

directly.

The searches of this thesis are applied to regular lattices of states. Regularly

sampled lattices provide translational invariance, in that a control or motion primitive

connecting two states arranged in a certain way will also connect all other pairs of

states arranged in the same way. Starting at a given location and applying the set of

controls to all paths joining any discrete state state to its neighbors, one can form

24

a roadmap or graph containing all trajectories possible given the discretization and

choice of controls. The controls do not need to connect all adjacent states in the

discretized space, but it is required that the states they connect are separated by

multiples of the discretization value. These controls can be precomputed offline and

stored as a canonical set of allowed motions. Barring obstacles, these motions encode

the connectivity of the search space.

Motion primitives are defined as the smallest feasible motions that connect the

discretized states in the graph. When planning a kinematic path, they are defined

as small, kinematic displacements able to be tracked by the controller. Such is the

case in [23–25]. When planning a kinodynamic path, the primitives correspond to

known control inputs. Motion primitives can be designed by sampling the control

space. Most such works attempt to do so in such a way as to result in good sampling

in state-space in terms of discrepancy, dispersion or path diversity [13, 36, 44, 81].

In general, designing primitives this way is difficult due to the complexity of the

relationship between the robot’s control-space and state-space given the constraints

upon the system. Finding control inputs that drive the system from one state to

another can also be approached as solving a two-point boundary value problem for

systems where that is possible [88,89].

Similarly to how the state-space is discretized, we can think of discretizing the

continuum of motions available to the system at a given state. This discrete set of

motion primitives comprises the action space. There exists trade-off between including

25

a wider variety of motion primitives and increased planning times. Smaller primitives

may help the planner find paths in narrow passageways, while longer primitives

may have faster planning times because fewer expansions are required. Ideally, the

action space for each state in the lattice would contain a sufficient variety of motion

primitives that every possible feasible path through the lattice could be constructed

by combining sequences of these actions. Realistically, including a large number

of primitives increases the branching factor of the graph to be searched and thus

negatively affects the time required for each expansion, which is proportional to the

total number of primitives. The best choice is often domain-dependent.

3.3 Closed Chains

A closed chain refers to a linkage whose kinematic structure contains one or more

cycles. Compared to an open chain of the same number of links, closed chains have

fewer degrees-of-freedom due to loop closure constraints. Namely, the product of all

frame transformations around the chain must yield the identity tranformation.

T1 · · ·Tn = I

An open chain is considered kinematically redundant if it has more than the

minimally required degrees-of-freedom to span the space. For planar manipulators,

this value is 2; for spatial manipulators, it is 6. Consider a closed chain with one link

held rigidly immobile. If the chain is kinematically redundant, the rest of the link will

26

be able move; the valid motions of the closed chain comprise the self-motion manifold.

Internal motions are those motions along the self-motion manifold and must satisfy

J(θ)θ̇ = 0

where J is the Jacobian and θ the vector of joint angles.

Consider, for example, a linkage consisting of 5-revolute joints with parallel axes

of revolution as shown in Figure 3.2(a). This planar 5-R linkage is kinematically

redundant and has 2 degrees-of-freedom taking the loop closure constraint into account.

If the linkage is equilateral, the configuration-space will look like Figure 3.2(b). For

visualization, the configuration-space has been plotted as a function of three of the

linkage joint angles, though it is actually a 2-D manifold. This manifold is the

self-motion manifold; any trajectory along it will satisfy the loop closure constraint.

Ignoring joint limits and self-collisions, the configuration-space can be endlessly

replicated, forming a complicated structure without discontinuity but with numerous

holes and thus many possible paths in different homotopy classes.

Because the space of valid configurations is a 2-D manifold, there is effectively no

chance of randomly sampling a valid configuration if sampling for all 5 joint angles.

There are methods that address this by breaking the closed chain into sub-chains and

only sampling for one of them. Because there are 2 degrees-of-freedom in this chain,

the active sub-chain will have 2 degrees-of-freedom and can use standard random

sampling techniques, while the passive sub-chain with 3 joints and will be solved using

inverse kinematics to enforce the closure constraints [112]. Alternatively, it is possible

27

(a) (b)

(c) (d)

Figure 3.2: Example showing the configuration-space of a planar, equilateral 5-R linkage

(a). The configuration-space is plotted as a function of the first three linkage joint angles.

The robot has two degrees-of-freedom and so the configuration-space is a 2-D manifold, with

black lines indicating stationary configurations (b). Ignoring joint limits and collisions, the

configuration-space can be replicated endlessly (c). Standard planning methods, such as

RRTs, can be applied to the manifold (d).

28

to sample directly in the space that satisfies the closure constraints [101] or to drive

the full-dimensional samples to the constraint manifold [6, 113].

In screw theory, a stationary configuration occurs when any k joint screws belong

to a screw system of order less than k where k must be less than the number of

joints in the chain and greater than 1 [60]. In case of the 5-R example, stationary

configurations occur when 3 or 4 of the joints are coplanar (though only 3 can be

coplanar if the linkage is equilateral). Stationary configurations are shown with black

lines in Figure 3.2(b). When 3 joints are coplanar, they have an instantaneous mobility

of 1, and the other two joints are constrained so they only have one independent

degree-of-freedom. Thus, if only those 2 joints were actuated, it would be impossible

to navigate the control singularity. When 4 joints are coplanar, the remaining joint is

transitorially inactive and cannot be used to control the robot through the singularity.

Thus, when actuating closed chains, choosing which joints to actively control and

which to make passive is very important.

Closed chains often arise in the form of contacts with the world, such as in mobile

manipulation. When such systems makes and break contacts, they transition between

open and closed chains. Bipedal walking is one example, in which the ground becomes

the link which closes the chain formed by the pelvis and legs. When a bipedal robot

is pushing against a wall with both hands, multiple closed chains arise; from each

hand to each foot, hand to hand, and foot to foot. All these chains are closed by the

external world.

29

Chapter 4

Planning Framework for Closed

Chains and Systems with

Changing Topologies

Motion primitive-based graph planning in high-dimensional systems is time consuming

as planning times increase exponentially with increasing dimensionality. This is

particularly a problem for mobile manipulation where the number of degrees-of-

freedom is quite large. In addition, contacts between the robot and the environment

result in the formation of closed chain linkages. A closed chain linkage is one whose

kinematic structure forms a cycle. Such cycles introduce complex kinematic constraints,

but can also be used to reduce the dimensionality of the planning problem. Examples

of planning solely for closed chains are found in [67,101,103,112,113].

30

We propose a planning framework that handles systems with changing topologies,

working with open chains, closed chains, and transitions between them. We propose

abstracting away the complexity of closed chain systems to reduce the dimensionality

of the planning problem in state-space regions where the closed chains exist, and give

the conditions for completeness and optimality of solutions. For example, in the case

of motion constrained to a plane, we may replace the manipulator with a two-degree-

of-freedom linkage with two prismatic links but with a finite workspace and ignore the

specifics of the manipulator in the abstraction. More generally, complex constraints

associated with closed chains are replaced by abstractions that model the key aspects

of the contact with the environment, removing unnecessary degrees-of-freedom and

enabling switching between open and closed chain topologies within a single planner

for mobile manipulation.

Several theoretical results provide the justification for the method and guarantees

on optimality. The benefits of this planning methodology are verified through results

and statistics from simulations involving a mobile platform with a planar arm moving

an object along a plane. Applications to opening doors and walking are shown in

Chapters 5 and 6, respectively.

4.1 Abstractions for Closed Chain Systems

Consider a mobile manipulation platform consisting of an n-degree-of-freedom ma-

nipulator atop a differential-drive base as shown in Figure 4.1. Let X ⊂ SE(2)

31

n-dof

(a) (b)

Figure 4.1: Example of an abstraction. Planning for an end-effector motion along a

constrained manifold (a) may be simplified by planning only for the base and end-effector

(b), then reconstructing the higher-dimensional path afterwards.

represent the set of configurations of the mobile base, Y ⊂ S1 × S1 × . . . × S1 the

set of manipulator arm configurations, and Z ⊂ SE(3) the set of manipulated object

configurations. W = {0, 1} may be used to indicate whether or not the manipulator

is in contact with and constrained by the object or the environment. The standard

planning paradigm is to plan in SE(2)×Rn (where we have replaced S1 with R), with

appropriate constraints on end-effector motion. However, in many settings, mobile

manipulation tasks may be encoded solely (but not uniquely) by the motion of the

object being manipulated and the motion of the base.

Indeed, for a redundant manipulator, there may be infinite motions for the arm

satisfying the end-effector motion. But it is clear that a sufficing plan can be found by

restricting the search to X×Z provided that, for every sufficing plan, feasible motions

in Y may be calculated, for example, using inverse kinematics methods. We note

32

that this is feasible in general as long as the reachable arm configurations for a given

pair (X,Z) define a path-connected set, ensuring the existence of transitions between

consecutive inverse kinematics solutions (see Assumption 1 later in this chapter). For

manipulators that do not satisfy this condition, and thus whose feasible configurations

are in disconnected sets, we must limit ourselves to one such set. In the case of an

n ≤ 6 degree-of-freedom manipulator interacting with objects in SE(3), replacing the

manipulator in Rn with the object motion in SE(3) does not reduce the dimensionality

of the state-space. However, the proposed abstractions help in systems with n > 6 or

when n = 6 but the object motion is only in SE(2).

4.1.1 Planning Problem Formulation

We represent the full-dimensional planning problem as a graph, Gf = [Sf , T f], where

Sf is the vertex set and T f is the edge set. Let us define the full-dimensional (of

dimensionality h) discretized finite state-space Sf as the 3-tuple (X,Y,Z), where

X ∈ X,Y ∈ Y,Z ∈ Z. As in Figure 4.1, X ⊂ SE(2) is the set of configurations of the

mobile base, Y ⊂ Rn the set of manipulator arm configurations, and Z ⊂ SE(3) the

set of manipulated object configurations. We emphasize that Y is finite, containing

all valid manipulator configurations associated with positions chosen from X and Z.

We define a set of transitions T f = {afi,j|s
f
i , s

f
j ∈ Sf}, where afi,j is a transition

from state sfi to state sfj . Each transition is associated with a cost c(afi,j), bounded

from below by a positive constant δ. We have an edge-weighted graph Gf with vertex

33

set Sf and edge set T f . The objective of the planner is to find the least-cost path in

Gf from start state sfS to goal state sfG. Let π(sfi , s
f
j) denote a path from state i to

state j, and let π∗(sfi , s
f
j) denote the least cost path. The path cost is the sum of the

transitions along the path,
∑

i,j∈π c(a
f
i,j), denoted as c(π(sfi , s

f
j)).

We note that the 3-tuple Sf is over-defined when an object is attached to the

manipulator; {(X,Y)|X ∈ X,Y ∈ Y} maps to a unique Z ∈ Z using the forward

kinematics mapping f :

f(X,Y) = Z.

In this thesis, we use a lattice-based graph representation to define the transitions

between states, allowing motion planning problems to be formulated as graph searches,

as discussed in Chapter 3. Lattices are well-suited to planning for constrained robotic

systems because, unlike other graph-based representations such as n-connected grids,

the feasibility requirement ensures that any solutions found using a lattice will also be

feasible. We define a set of motion primitives as a set of precomputed kinodynamically

feasible atomic actions. See Figure 4.2 for an example. We define a transition from

the set T f to be the result of a motion primitive applied to a state sf . Let AX be

the set of motion primitives for X ⊂ SE(2) and AZ the set of motion primitives for

Z ⊂ SE(3). Let AY be the set of corresponding motion primitives of Y ⊂ Rn that make

the transition in X,Z feasible when the manipulator is grasping an object. AY are

defined as relative displacements and are dependent on the starting arm configuration

Y. When no object is being manipulated, we shall assume the manipulator moves

34

X

Y

Z

A

A

A

Figure 4.2: Example motion primitives for a mobile manipulator attached to an object. AX

is the set primitives belonging to a mobile base with X = (x, y, θ) constrained to move along

an 8-connected grid or turn in place. AZ is the set belonging to an object with Z = (x, y),

constrained to move on an 8-connected grid. In this case, AY is the set of arm motions which

keep the end-effector on the object during all transitions chosen from the feasible portion of

AX ∪AZ. The shaded region represents reachable workspace of the manipulator.

35

freely. In the full-dimensional state-space, we define a motion primitive af as a 3-tuple

member of the set Af(Y) = {(aX, aY, aZ)|aX ∈ AX, aZ ∈ AZ, aY applied to Y enables

(aX, aZ)}.

4.1.2 Reduced-Dimensional Graph

Let us also define a reduced-dimensional (of dimensionality l) discretized finite state-

space Sl as the 2-tuple (X,Z). The crux of this work is that we may also represent

the same mobile manipulation motion planning problem as a graph on the reduced-

dimensional state-space Gl = [Sl, T l], where Sl is the vertex set and T l is the edge set.

Sl is a projection of Sf onto the lower-dimensional manifold. We define a many-to-one

mapping γ : Sf → Sl, in which γ((X,Y,Z)) = (X,Z), dropping the manipulator

configuration Y. We also define the inverse mapping γ−1 : Sl → Sf , a one-to-many

mapping. When an object is grasped by the manipulator,

γ−1((X,Z)) = {(X,Y,Z)|Y ∈ Y, f(X,Y) = Z}.

Otherwise, when no object is grasped (i.e., the manipulator forms an open chain),

γ−1((X,Z)) = {(X,Y,Z)|Y ∈ Y}.

There is also a many-to-one mapping ϕ : af → al, where al is a 2-tuple of the set

Al(Y) =
{

(aX, aZ)|aX ∈ AX, aZ ∈ AZ,

∃ aY,Y s.t. (aX, aY, aZ) ∈ Af (Y)
}

(4.1.1)

36

We require that edge costs be such that for every pair of states

c(π∗(sfi , s
f
j)) ≥ c(π∗(γ(sfi), γ(sfj))) (4.1.2)

The least cost path between any two states in the high-dimensional state-space is

at least the cost of the least-cost path between their images in the low-dimensional

state-space. The transition cost in the high-dimensional graph is

c(π(sfi , s
f
j)) = c1(π(sfi , s

f
j)) + c2(π(sfi , s

f
j)) (4.1.3)

the sum of two terms that are not interrelated. The first term in Equation 4.1.3 is

also the transition cost function of the lower-dimensional state-space; it is a function

of only X, Z, aX, and aZ. The additive second term is a positive cost as a function of

Y and aY.

4.1.3 Algorithm

The overall algorithm is to construct and search the reduced-dimensional graph for

a least-cost path from start to goal, then use that path to reconstruct one of the

corresponding least-cost full-dimensional paths. This decouples the planning for the

manipulator from the planning for the mobile platform. Reconstruction is done by

traversing the path in the lower-dimensional space. Beginning with the first state, a Y

is generated such that sf1 = (X,Y,Z) is a valid configuration. Then the set of Af is

examined to find those transitions that produce the desired (X,Z) of the next state in

the path. A Y is generated such that sf2 = (X,Y,Z) is a valid configuration, and then

37

any aY that produces sf2 and satisfies Equation 4.1.1 is selected (either by planning or

interpolation of inverse kinematics solutions).

When constructing the reduced-dimensional graph, we must verify the existence

of some aY such that (aX, aY, aZ) ∈ Af(Y) . This check can either be done using an

inverse kinematics query at plan time, or done in advance as a precomputation (which

is our chosen option). The precomputation is also used eliminate transitions with

self-collisions. When constructing the graph during planning, we also must check

transitions for collisions with the world. It is worth noting that both the high- and

low-dimensional graphs include explicit transitions between grasping and not grasping

an object.

ConstructFullDimPath(π∗(slstart, s
l
goal))

set sfstart to initial robot configuration
while sln 6= slgoal do

compute Yn using IK seeded with Yn−1

set aY = Yn − Yn−1

n = n+ 1
if transition (aX, aY, aZ) ∈ Af (Y), then continue
else compute aY using arm planner

4.1.4 Theoretical Properties

We proceed to show that a graph search on Gl is sound, complete, and optimal.

First, for convenience, let us define σ : π(sli, s
l
j)→ π(sfi , s

f
j), which maps a path in the

lower-dimensional state-space to a set of corresponding paths in the higher-dimensional

state-space.

38

Assumption 4.1.1. We assume that when the manipulator is connected to the object,

the set Y of feasible manipulator arm configurations for a given lower-dimensional state

sli occupies a path-connected set. For manipulators that do not satisfy this condition,

and thus the feasible configurations are in disconnected sets, we limit ourselves to one

such set.

That is, for any given sli = (Xi,Zi), any corresponding feasible Yi can be reached

from any other feasible Yj. Y forms a fully-connected set, though the connections are

not required to be enumerated as part of aY ∈ AY. When no object is grasped in the

manipulator, Y contains all possible manipulator configurations.

Theorem 4.1.2. Soundness. Any path π(sli, s
l
j) in Gl can be executed in the full-

dimensional space. That is, every π(sli, s
l
j) corresponds to at least one path π(sfi , s

f
j)

given by σ(π(sli, s
l
j)).

Proof. As our base case, we know the starting configuration may be mapped to the

full-dimensional space. Assume the mapping σ exists and has produced π(sfi , s
f
n),

with j > n > i, terminating in (Xn,Yn,Zn). From the lower-dimensional path, we

have aln,n+1 = (aXn , a
Z
n) and sln+1 = (Xn+1,Zn+1). By Equation 4.1.1, there exists an aY

such that for some starting configuration (Xn,Yj,Zn), there is (aXn , a
Y, aZn) ∈ Af(Yj).

However, Yj may not be equal to Yn. Assumption 1 maintains that Yj and Yn are

path connected, so we may transition from Yn to Yj. Then, by definition, applying

(aXn , a
Y, aZn) produces a valid state sfn+1 = (Xn+1,Yj+1,Zn+1). Thus, by induction, the

entire corresponding path is given by σ(π(sli, s
l
j)).

39

Theorem 4.1.3. Completeness. If there exists a path π(sfi , s
f
j) in the Gf , then there

exists a corresponding path π(sli, s
l
j) in Gl.

Proof. As our base case, we know the starting configuration may be mapped to the

lower-dimensional space by dropping the Y component. Assume the mapping σ−1

exists and has produced π(sli, s
l
n), with j > n > i, terminating in (Xn,Zn). From the

full-dimensional path, we have afn,n+1 = (aXn , a
Y
n, a

Z
n) and sfn+1 = (Xn+1,Yn+1,Zn+1).

The existence of aln,n+1 = (aXn , a
Z
n) is indicated by Equation 4.1.1, because aYn exists.

Applying aln,n+1 to sln results in the retrieval of the next state sln+1 = (Xn+1,Zn+1).

Thus, by induction, the entire corresponding path is given by σ−1(π(sfi , s
f
j)).

Theorem 4.1.4. The cost of a least-cost path from start to goal in Gl is a lower

bound on the cost of a least-cost path in Gf .

c(π∗(slS, s
l
G)) ≤ c(π∗(sfS, s

f
G))

Proof. Theorem 2 established that the path π∗f (sfS, s
f
G) can be mapped onto the lower-

dimensional state-space Sl. Given the restrictions on edge costs in Equation 4.1.2, the

costs of any transition in Gl are bounded from above by the cost of any transition it

maps to in Gf . Thus, with all transitions comprising the path bounded from above,

the cost of a least-cost path from start to goal in Gl is a lower bound on the cost of a

least-cost path in Gf .

Theorem 4.1.5. Optimality. If c(π(sfi , s
f
j)) does not depend on Y or aY (the second

term in Equation 4.1.3 is zero), the mapping of the least-cost lower-dimensional path

40

into the higher-dimensional state-space σ(π∗(slS, s
l
S)), is also (one of) the optimal cost

path(s) c(π∗(sfi , s
f
j)) in Gf .

Proof. Theorem 4.1.2 established the mapping π(sfi , s
f
j) = σ(π(sli, s

l
j)). Because

transition costs are independent of Y and aY, and because the full-dimensional states

and transitions are mapped to the reduced-dimensional system by dropping only the

Y and aY terms, the costs remain unchanged. Thus, the lowest cost path in Gl is one

of multiple lowest cost paths in Gf due to the multiplicity of the mapping.

By similar arguments, the paths in Gl that are ε-suboptimal (are of at most ε-times

the cost of the least-cost path) are guaranteed to map to ε-suboptimal paths in Gf .

This result is important when using ε-suboptimal searches like Anytime Repairing A∗,

used in the experiments in this chapter.

4.2 Proof of Concept

To demonstrate the benefits of our method, we test extensively in simulation on a

system like that shown in Figures 4.1 and 4.2. We use a mobile base (X ⊂ SE(2)) with

an n-degree-of-freedom planar arm (Y ⊂ Rn) to move an object around the ground

plane (the object has no notion of directionality, so Z ⊂ R2). The configuration

space has been inflated so the robot and object can be represented as points. The

manipulator may attach and detach from the object, switching between open and

closed chains, so W = {0, 1}. The object can be thought of as a cylinder with

41

omnidirectional wheels; the planar arms make contact with the cylinder at a height

greater than the height of any world obstacles. Thus, obstacles can collide with the

mobile base and the object being moved, but not with the arms. When the arm makes

contact with the cylinder, we assume it is rigidly attached.

Any state in the full-dimensional state-space is given by

sf = (xr, yr, θr︸ ︷︷ ︸
X

, θ1, . . . , θn︸ ︷︷ ︸
Y

, xo, yo︸ ︷︷ ︸
Z

, m︸︷︷︸
W

)

where (xr, yr, θr) ∈ X is the mobile base pose, (θ1, . . . , θn) is the joint angles of the

arm, (xo, yo) ∈ Z is the cylinder location, and m is a binary value indicating if the

object is attached to the manipulator. A state in the reduced-dimensional state-space

is given by

sl = (xr, yr, θr︸ ︷︷ ︸
X

, xo, yo︸ ︷︷ ︸
Z

, m︸︷︷︸
W

)

4.2.1 Implementation

The goal of the planner is to get the object to a desired location on the 2-D grid.

The robot must navigate to the object, attach it to the manipulator, then move it

along the plane to the goal while avoiding obstacles. There is no fixed goal for the

location of the robot base. The heuristic function used to guide the search is the

distance between the robot and object plus the distance between the object location

and the goal. When the robot is connected to the object, only the latter is used. Both

distances are calculated for the entire map during precomputation using 2-D Dijkstra

searches.

42

The cost function is:

c(ali,j) = (ccostmap(a
X,X) + 1)(cmovement(a

X) + cobj(a
Z,Z))

where ccostmap(a
X,X) represents the maximum cost cell traversed during the transition,

cmovement(a
X) the cost associated with moving the robot, and cobj(a

Z,Z) the cost

associated with moving the object. The cost is independent of manipulator motion,

satisfying Theorem 4.1.5. The units for the cost functions are seconds; the movement

cost for forward or backwards motion is the distance divided by nominal velocity of

the robot and the cost for turning in place is the angular distance divided by the

nominal angular velocity. The cost for moving the object is similarly a distance divided

by nominal velocity for the object (one could think of it as the speed at which the

object may be moved without tipping). The costmap is unitless with a value of 0 for

unoccupied space and 254 for the obstacles themselves.

A valid configuration of the arm, Y, when not connected to the object is any

configuration not in self-collision. A valid Y when connected to the object must satisfy

the (X,Z) pair. Such pairs are constrained such that the object is at least one arm link

length distant from the base, but no more than the total length of the arm. The arm

is assumed to be above the height of the obstacles and so cannot collide with them.

This, coupled with the distance constraint, satisfies the path connectivity requirement

of Y.

The reduced-dimensional lattice is constructed using 12 motion primitives, of which

8 are for moving the object in a 8-connected grid, 2 for turning base in place, and 2

43

for forward and backwards movement. The robot arm is allowed to connect to the

object, but not to disconnect from it. ARA∗ is first run on the reduced-dimensional

state-space representation, initially with suboptimality bound ε = 5.0 and continued

until ε = 1.0. Full-dimensional paths are generated by populating the arm joint angles

using inverse kinematics (using an iterative method, seeded with the previous state’s

joint angles). If the interpolation fails to connect two solutions without self-collision, a

random arm configuration is generated, checked for collision, then used as the seed for

the inverse kinematics call. This method succeeded in generating a full-dimensional

path in all trials.

4.2.2 Results

We tested the graph planner with closed chain abstractions on 100 randomly-generated

maps of size 100 by 100 cells, 10 cm on a side. 50 of these were pseudo-outdoor

environments (random circular obstacles) and 50 were pseudo-indoor environments

(grid obstacles). Robots with planar arms of 3 or 10-links were used; the 3-link arms

had link lengths of 10 cm, while the 10-link arms had link lengths of 4 cm. The graph

planner results were compared against those found by a sampling-based planner,

RRT [57,64]. The RRT was implemented as two successive searches; the first (S1) was

to bring the robot end effector into contact with the object and the second (S2) to

move the robot end effector, now with object attached, to the goal location. The RRT

was unidirectional, with the root at the robot start location. At each iteration, the

44

START

GOAL OBJECT

START

GOAL

OBJECT

START

GOAL

OBJECT
START GOAL

OBJECT

START

GOAL
OBJECT

START

GOAL

OBJECT

START

GOAL

OBJECT
START GOAL

OBJECT

Figure 4.3: Comparison of indoor plans between RRT (top row) and graph planner (bottom

row). Environments are 100 by 100 cells with 10 cm cell sides. The robot has a 10-link arm,

with each link being 4 cm in length. The robot must approach an object, pick it up with the

manipulator, and bring it to the goal. The green indicates the robot base trajectory and the

red indicates the trajectory of the object when attached to the manipulator. The arms are

not shown.

probability of sampling from the goal region was 0.02. Goal sampling was accomplished

by sampling within an annulus determined by the distance constraints of the object or

object goal, then using inverse kinematics to get feasible arm joint angles. Any sample,

after being checked for collision (between the robot base or object and obstacles) and

self-collision, was connected to the nearest state in the tree provided the interpolation

between the two was also collision-free.

For the graph search, planning times and number of states expanded are shown for

45

START

GOAL

OBJECT

START

GOAL

OBJECT

START

GOAL

OBJECT

START

GOAL

OBJECT

START

GOAL

OBJECT

START

GOAL

OBJECT

START

GOAL

OBJECT

START

GOAL

OBJECT

Figure 4.4: Comparison of outdoor plans between RRT (top row) and graph planner

(bottom row). Environments are 100 by 100 cells with 10 cm cell sides. The robot has

a 10-link arm, with each link being 4 cm in length. The robot must approach an object,

pick it up with the manipulator, and bring it to the goal. The green indicates the robot

base trajectory and the red indicates the trajectory of the object when attached to the

manipulator. The arms are not shown.

the initial plan with ε = 5.0 and the final plan with ε = 1.0. The reduced-dimensional

planning time is given by LD, and the full-dimensional path reconstruction from the

reduced-dimensional path is listed under FD. Reconstruction was only done for the

ε = 1.0 paths. Results for indoor and outdoor environments are shown in Tables 4.1

and 4.2, respectively. Sample runs (with the arms not pictured for clarity) are shown

in Figures 4.3 and 4.4.

It is worth noting the RRT failed to plan in under 30 seconds for the 10-link chain

46

Graph Search

Arm Subopt. Planning Times (s)
Expansions Success

DOFs Bound ε LD FD

3
5 < 0.01± < 0.01 N/A 287± 139

50/50
1 2.30 ± 2.45 < 0.01± < 0.01 3.2× 105 ± 3.0× 105

10
5 < 0.01± < 0.01 N/A 288 ± 164

50/50
1 3.48 ± 3.19 0.023± 0.012 4.78× 105 ± 4.17× 105

RRT

Arm Planning Times (s)
Success

DOFs S1 S2

3 0.13±0.12 0.11±0.09 50/50

10 2.81±3.28 4.24±6.08 47/50

Table 4.1: Graph planner and RRT planner comparison for simulated indoor environments.

Graph Search

Arm Subopt. Planning Times (s)
Expansions Success

DOFs Bound ε LD FD

3
5 < 0.01± < 0.01 N/A 280± 154

50/50
1 1.39±1.63 < 0.01± < 0.01 2.36× 105 ± 2.71× 105

10
5 < 0.01± < 0.01 N/A 253±139

50/50
1 2.57 ± 2.50 0.024 ± 0.013 3.39× 105 ± 3.19× 105

RRT

Arm Planning Times (s)
Success

DOFs S1 S2

3 0.20±0.44 0.14±0.27 50/50

10 1.87±1.95 1.29±1.03 46/50

Table 4.2: Graph planner and RRT planner comparison for simulated outdoor environments.

in 4 outdoor trial environments, and 3 indoor trial environments. These environments

featured narrow passageways that a vanilla RRT is ill-equipped to handle (though

variants such as [96] help handle such regions). The outdoor environments are shown

in Figure 4.5. The graph search was successful on all environments in the same time

limit.

Path length comparisons were done on a specific indoor environment, with the

47

Graph Search RRT

Arm Base Path Object Path Base Path Object Path
DOFs Length Length Length Length

3 8.60 ± 0.53 4.86 ± 0.41 19.88± 4.07 13.61± 3.53

10 8.46 ± 0.53 4.81 ± 0.40 18.53± 2.89 12.33± 2.50

Table 4.3: Graph planner and RRT planner comparison of path lengths for the robot base

in perturbations of a simulated indoor environment.

START

GOAL

OBJECT

START

GOAL
OBJECT

START

GOAL

OBJECT

START

GOAL

OBJECT

Figure 4.5: Environments in which the RRT fails to find a solution in under 30 seconds, but

the graph planner succeeds. These environments are characterized by narrow passageways

the robot must traverse.

start and goal perturbed slightly each time. Results from these runs are given in

Table 4.3 and highlight the benefits of the graph search, determinism and repeatability.

Similar problems will have consistent, similar, optimal solutions. The graph search

path lengths for the base and the object are less than half of those for the RRT,

and the corresponding standard deviations are less than one-fifth that of their RRT

counterparts.

48

4.2.3 Discussion

We have proposed a methodology for reducing the dimensionality of search-based

planning problems for mobile manipulators by creating lower-dimensional abstractions

for state-space regions which contain closed chains. The methodology is able to

handle transitions between open and closed chains in a single plan and, in fact, the

planner inserts those transitions as necessary. For mobile manipulators, the central

idea is to only retain the configuration space of the mobile base and the objects in the

environment without explicitly modeling the configuration of the arm or the constraints

associated with closed-chain systems that are formed when the arm contacts objects in

the environment. The mathematical formulation for our approach allows us to prove

optimality and completeness under reasonable assumptions. While we have illustrated

the results in a simple scenario, the framework and approach are applicable to a wide

variety of mobile manipulation tasks involving contact with the world.

49

Chapter 5

Case Study: Door Opening

In this chapter, we apply, explore applications, study the scalability, and validate the

motion planning framework from Chapter 4 on the problem of opening doors. Opening

doors is necessary in order to enhance and expand the set of tasks an autonomous robot

can perform indoors. The majority of commercial doors are equipped with automatic

mechanisms to ensure closure. These types of doors are typically called spring-loaded

doors, whereas doors that do not close automatically are known as non-spring-loaded.

Autonomously planning for opening both spring- and non-spring-loaded doors is

essential to provide the functionality required of a useful indoor robot. One must

tackle several problems in order to build an integrated door opening implementation

for a mobile manipulation platform, such as detecting the type of door and the location

of the handle, building a kinematic model of the door, and coordinating the arm and

base of the robot to open the door with respect to space constraints in the immediately

50

surrounding area. Our focus is on the last issue, i.e., planning for and coordinating

the motion of the arm and the base to approach, open, and pass through doors.

Although door opening in indoor environments has been widely addressed in recent

work for mobile manipulation systems, [21,52,59,74,76], opening and moving through

doors is still a challenging problem. Doors vary with respect to size, shape, space

constraints, and handles; therefore, hard-coded and precomputed motions designed

to open doors can easily fail when designing a robust system. Reactive approaches

and low-level controllers may fail to consider obstacles and may need to be modified

to handle doors with different parameters. Opening and navigating through doors,

especially spring-loaded doors, requires making and breaking contacts with the door,

making it well-suited to our planning framework. For spring-loaded doors, the robot

must maintain contact with the door and actively counteract the spring to keep it

from closing. For doors in cluttered or confined environments, it is often necessary

to switch the side of the door the robot contacts. This thesis contains, to the best

of the authors’ knowledge, the first planning framework that handles non-spring and

spring-loaded doors, functions in cluttered or confined workspaces, and plans the

approach to the door, pushing or pulling it open, and passing through. The plan is

generated in a unified search space, including transitions between different robot-door

contacts (for example, base against the door as well as gripper on the door handle),

finding a least-cost solution for traversing doors. This is important because it allows

the planner to decide the best location and time to transition from opening the door

51

Figure 5.1: The PR2 pushing open a spring-loaded door. Once the base is in contact with

the door, the arm can let go of the door and use the base to keep pushing the door open as

it moves through.

to moving through it. In contrast, disjoint approaches like hierarchical planners will

specify but not modify the transitions.

Our approach to motion planning starts with using a low-dimensional, graph-based

representation of the problem in order to plan a door-opening procedure quickly and

reliably. This provides several advantages including the ability to quickly plan for

opening various doors and account for walls or other obstacles in the surrounding

environment. If necessary, contact must be transferred very carefully between the arms

52

and the base of the robot to open and maintain the position of the door throughout

execution of the opening action. Our planning algorithm can take into account which

(if any) part of the robot is currently holding the door open and allows for transitions

between arms as well as using the base to push against the door. We note that,

particularly for pulling spring-loaded doors, it is very difficult to open the door and

maneuver such that the base is in position to hold the door open as it passes through

the door frame. Our planner handles this difficult situation.

A robotics platform for use in door opening is greatly aided by having some method

for manipulating the door from both sides. For the purposes of this work, we assume

a dual-arm mobile manipulator is used. Our approach is validated by an extensive

set of experiments performed using the PR2 robot, a platform used extensively for

navigating and acting within indoor environments [70, 72]. Our experiments involved

multiple tests for opening a variety of doors (pulling and pushing both spring- and

non-spring-loaded doors).

5.1 Related Works

Robotic door opening has received a fair amount of attention in recent years. Within

the overall task of robots opening doors, research can involve visual identification

of doors and door handles [3, 5, 59, 80] or the physical action of opening the door.

We simplify door identification since our contribution relates to the planned robotic

motion required for door opening; door detection is outside the scope of this work.

53

We chose a simple visual identification system based on the ARToolKit [34], but any

other can be used.

Recent work has seen a number of robotic platforms addressing door opening.

Early experiments [74, 76] have led to a number of systems designed for this task.

However, as we mentioned in [21], many of these systems have not completely solved

the door opening problem. Some do not pull open doors [59,72,79,80]. Others such

as [97] use impedance control to open doors while learning the kinematic model, but

may hit obstacles and do not move the robot base.

Purely reactive approaches such as [84,95] will not work in complex environments

and for multiple contacts. Planning algorithms provide a way to take into account

factors that may not have been considered when designing a completely precomputed

action or a reactive controller. There are also planning approaches that do not include

motion of the robot base while opening doors. [30] plans manipulation motions for

the opening of cabinet doors, allowing switching between different caging grasps,

but the base of the robot remains stationary. Task space regions can accommodate

pose constraints [9], but have not been used to simultaneously plan arm and base

trajectories for door opening.

There have been other recent approaches to door-opening systems. However, none

of these combine all of the following: switching contacts to allow end effectors or the

body of the robot to brace the door; the ability to handle spring-loaded doors; and

combining the approach to the door, including selecting an initial contact with the

54

door, and opening/passing through the door as a single plan. A number of trajectory

planners which take into account external wrenches on the end-effector have been

developed both for wheeled platforms [55,91] and humanoid platforms [4,32]. However,

these methods only allow pushing doors and cannot switch contact locations. In [109],

the authors create a behavior-based system able to push and pull doors open, but do

not deal with spring-loaded doors and obstacles. In [2], the authors estimate door

parameters and pull open a door with a modular re-configurable robot featuring passive

and active joints, but cannot pass through spring-loaded doors. In [27], Dalibard et al.

introduce random sampling planning algorithms for humanoid robots to move through

a doorway while also opening and closing the door. They have demonstrated results

using both arms of the robot to move through the door and avoid obstacles, but are

unable to pass through spring-loaded doors. In [52], Jain and Kemp extend previous

work in which a robot could successfully open doors and drawers to include motion of

the robot base. Their work does not include switching contact locations and would

not allow the robot to brace open and pass through a spring-loaded door.

We build on the prior work of Chitta, Cohen, and Likhachev [21], in which collision-

free trajectories were generated for opening non-spring-loaded doors. The previous

system was limited to a single contact, the end-effector upon the door handle. We

build upon this by adding transitions between robot-door contacts, including planning

for the initial contact with the door. Pushing and pulling spring-loaded doors are

handled by incorporating additional constraints on maintaining contact with the door.

55

State feasibility is determined by checking against a precomputed map of the force-

workspace. In contrast to previous work, the entire plan from approach, to opening,

to moving through doors is computed in a single search. This allows a least-cost

solution to be found that ensures the feasibility of contact transitions. Results have

been shown at [40–42].

5.2 Motion Planning

We solve the planning problem for approaching, pushing and pulling open both non-

spring and spring-loaded doors, and moving through them. The approach is most

beneficial for doors that cannot be fully opened while the base remains stationary, but

is also useful for other doors in constrained spaces. When attached to the door, we

constrain the motion of the manipulator to a 1-D manifold traced by the path of door

handle.

The door-opening problem is to find a configuration path such that:

1. The robot passes through the door

2. The robot avoids self-collision and collision with obstacles

3. The path is feasible with respect to kinematic constraints

Spring-loaded doors have additional constraints:

1. Once contact is made, some part of the robot is in contact with the door at all

times

56

2. Keeping the door open cannot violate joint torque limits

Our planning algorithm operates by constructing and searching a graph of prede-

fined and dynamically generated motion primitives [23]. The graph search uses the

constructed graph to find a path from the start state (corresponding to the current

position of the robot with respect to the door and the current door angle) to any state

satisfying the goal conditions, specifically opening the door such that the robot can

pass through the door frame by moving forward.

In the following sections, we explain the algorithm, covering the state-space

representation, motion primitives, cost function and heuristics, and graph search.

5.2.1 Graph Representation

The graph is constructed using a lattice-based representation, as described in Chapter

3. A lattice is a discretization of the configuration space into a set of states and

connections between those states, where every connection represents a feasible path.

With respect to the framework of Chapter 4, and without loss of generality, let

us consider the reduced-dimensional graph without the the superscript l for cleaner

notation. Let G = (S, T) denote the graph G we construct, with S the set of states

and T the set of transitions between states. To discuss the states in S, let us first

consider the motion of a mobile manipulator opening a door. Let (xb, yb, θb) ⊂ SE(2)

represent the configuration of the base, and θd ⊂ R the set of possible door angles.

One additional variable is needed to store the free angle of the manipulator. This

57

produces states of 5 continuous variables. Storing the side of the door the robot is

contacting, as well as the part of the robot in contact with the door, takes additional,

though discrete, variables. We consider right end-effector on handle, left end-effector

on handle, and base against door contacts.

As we mentioned in [21], it is sufficient to use a more compact representation of

the door angle. Instead of storing the door angle θd directly, we utilize a discrete

variable, d, called the door interval. Door intervals are illustrated in Figure 5.2. The

door interval is 0 when the door is at an angle where it may be fully closed without

colliding with the robot. A door interval of 1 denotes that the door is at an angle

where it may be fully opened without colliding with the base. The two intervals are

separate if the body of the robot intersects the swept area of the door, as is the case in

Figure 5.2a. If the robot is far enough from the door, as in Figure 5.2b, these intervals

overlap, denoted with a value of 2. We note that, though the door angle is not stored,

the planner has the ability to quickly reconstruct the set of door angles for a robot

pose p, Λ(p), feasible given the current contacts.

Additionally, instead of storing the free angle of the manipulator, it is sufficient to

place restrictions on the manipulator. We chose to restrict it to elbow-down configu-

rations. Conservative collision checking can be done against the swept volume of the

arm, which can be precomputed for end-effector poses. In our compact representation,

a state in the state-space used by the planner, s ∈ S, is given by

s = (xb, yb, θb, d, h, v)

58

Robot

Footprint
Interval 0

Interval 1
Door

Closed

Door

Open

�

�

(a)

Intervals

Overlap

Door

Open

Door

Closed

�

�

(b)

Figure 5.2: Door intervals do not overlap when the robot intersects the area swept by the

door (a), but do overlap as the robot moves further away (b).

where d is the door interval, h is the side of the door whose handle is being grasped,

and v indicates the part of the robot in contact with the door. v takes 4 possible

values, corresponding to no contact, left end-effector on door handle, right end-effector

on door handle, and base against door.

With respect to the framework of Chapter 4, any state in the full-dimensional

state-space, sf ∈ Sf , can thus be represented by including the corresponding arm

angles, and is given by

sf = (xb, yb, θb︸ ︷︷ ︸
X

, θ1, . . . , θn︸ ︷︷ ︸
Y

, d, h︸︷︷︸
Z

, v︸︷︷︸
W

)

We use a lattice-based planning representation [65,88] to define the set of transitions

T between states. A motion primitive is a discretized, finite-length feasible path

between neighboring states. It can be defined as a discretized path of intermediate

offsets of (xb, yb, θb) and transitions in d, h, v, or some subset thereof. The lattice

59

graph is dynamically constructed by the graph search as it expands states.

We use two different types of motion primitives that connect a state s to a successor

state, s′ ∈ succ(s). The first primitives describe motions for the mobile base. For a

holonomic base they represent forward and backward translational motion, rotation in

place, strafing, and moving forward and backward while turning. For a nonholonomic

base, they satisfy the nonholonomic constraints on its motion. These primitives are

augmented with transitions between door interval values d, generated at runtime

because changes in d are a result of moving the base with respect to the door. The

second set of primitives do not include motion for the base. Instead, these are

transitions between discrete variables representing the part of the robot in contact

with the door v and the side of the door being grasped h. Because these primitives do

not include motion of the mobile base, they cannot transition between values for the

door interval d.

Before a successor of state s, s′, can be added to the lattice graph, it must first

be checked for feasibility. For a successor to be valid, for every pose p along the

discretized motion primitive, the set of valid door angles Λ(p) must overlap between

adjacent poses. The corresponding door intervals for adjacent poses must also be the

same (or include the overlapping door interval, d = 2). This way, the base can move

along the motion primitives from one pose to another while continuously contacting

the door. Additionally, the robot base and conservative arm estimate must be collision

free, noting that the conservative arm collision check and check of the door handle

60

against the reachable workspace are done when generating Λ(p). The allowed contact

transitions for the planner are as follows: (1) when the robot is not yet in contact

with the door, it may contact the door with either arm or the base, provided the valid

door angles for the new contact overlap with the valid door angles of the old contact;

(2) when an end-effector is on a handle, the planner may transition to using the other

arm on the other side of the door, or bring the base into contact with the door, again

provided the valid angles for old and new contact overlap. If the robot is not yet in

contact with the door, its only valid angle is the door closed angle. Additionally, if

the door is to come into contact with the base, the valid door angles are such that the

door is no more than 5 cm from the base.

5.2.2 Precomputation

Finding the valid door angle ranges Λ(s) for a given state s can be expensive, motivating

moving as much computation as possible offline. To check whether a given door angle

is valid requires checking for valid inverse kinematics solutions or checking that the

end-effector pose is within the (precomputed) robot’s reachable workspace. Further,

for spring-loaded doors, the ability to exert a given force normal to the door can

be checked by referencing the robot’s force workspace, similar to force workspace

approach presented in [69]. The force workspace precomputation also functions as a

reachable workspace precomputation, returning the reachable workspace when the

query is set to regions where the allowable force is greater than zero. For our purposes,

61

�

�

�

�

�

�

(a) (b)

Figure 5.3: (a) Values used for the precomputation discretization. α and θ are the angles

of the shoulder-handle vector and exerted force vector relative to the x-axis of the base,

while r is the magnitude of the shoulder-handle vector. (b) Force workspace computation for

the right arm, (for α ∈ [−1.9, 0.6] and r ∈ [0.45, 0.85]) with color representing the minimum

normal force the arm can apply in a given direction, with light blue near the center containing

the greatest force at 34.4 N and red at the sides being the least. Values shown for θ = 0.

the force workspace precomputation only has to be done for a horizontal plane at the

height of the door handle. It is worth noting that we assume that the door is moving

relatively slowly so the quasi-static assumption is appropriate.

We precompute the force workspace values for a range of robot positions and door

angles. Possible door handle locations in the robot base frame can be described by

three values as shown in Figure 5.3a. The angles α and θ represent the angles of the

62

shoulder-gripper vector and the gripper applied force relative to the x-axis of the base.

The distance between shoulder and end-effector is given by r. For a given inverse

kinematics solution for the arm, (specifying a value for the free angle) we can calculate

the maximum force the arm is able to exert normal to the door in the θ direction.

To do so, we require the end-effector Jacobian, defined as df(q)/dq where f(q) is the

forward kinematics solution for the arm given joint angles q.

The end-effector Jacobian is used in the following relation:

τ = JTFe (5.2.1)

where τ is the vector of joint torques and Fe is the wrench applied at the end effector.

Referring to Figure 5.3, F is specified as the force component of the wrench Fe in the

direction indicated by the angle θ in a plane parallel to the ground plane.

We exploit the linear relationship between τ and F to scale the value of F by

mini∈joints τi,MAX/τi, where τi,MAX is the upper limit on the torque for joint i, to get

the maximum allowed force for that configuration. Because the arm is redundant

and multiple inverse kinematics solutions exist for a given desired end-effector pose,

this process is repeated for twenty elbow-down inverse kinematics solutions and the

minimum force across all these solutions is selected. If no inverse kinematics solution

exists, we record the allowed force as zero. Values for θ = 0 are shown in Figure 5.3b.

63

5.2.3 Cost Function and Heuristic

The cost of a transition in our graph representation is defined as the sum of the two

terms,

c(s, s′) = cmovement × ccostmap + cdoor

In the first term, cmovement is the cost associated with moving the robot through a

given base motion primitive. This term depends on the time it takes to execute the

motion primitive. It also allows the user to minimize the use of certain primitives,

such as moving backward. ccostmap is given by using the maximum cost of the 2-D

costmap cells traced by the robot footprint along the transition. The costmap projects

world obstacles to a 2-D grid and represents proximity to obstacles with increased

costs. The second term, cdoor, is proportional to the change in door angle nearest the

center of the robot’s reachable workspace from state to state. To enable this, for each

state we record a door angle deemed λ(s) which minimizes a function designed to

punish deviation from a nominal shoulder-handle distance rc and angle αc:

λ(s) = min
θd∈Λ(s)

(
1− 1

1 + (r − rc)2(α− αc)2

)
(5.2.2)

where r and α are defined in Figure 5.3 and rc and αc correspond to the center of

the reachable workspace for the arm being used. Of course, if the robot has not

yet contacted the door or the base is in contact, this term is ignored. Transitions

associated with switching between robot-base contacts have fixed costs determined by

the user, allowing the user to penalize switching if desired.

64

Figure 5.4: Heuristic cost function used in planning. The heuristic penalizes the remaining

angle needed to fully open the door and distance to the door. Within a radius of rlen of the

door, the second term is zero.

The purpose of the heuristic is to guide the search towards a solution using domain-

specific knowledge, making it more efficient by reducing the number of unnecessary

states explored. The heuristic must be admissible (underestimate the least cost path

from the current state to the goal) for the algorithm to return the optimal path; the

heuristic must be consistent to ensure that no state is explored more than once. Since

part of the condition for a state s to be considered a goal state is that Λ(s) overlaps

with the fully open door angles, we set the first term of the heuristic to estimate

the remaining angle the door needs to be opened before it is considered fully open,

|λ(s)− λopen|. The second term in the heuristic is a term for the distance of the robot

to a circle of radius rlen around the door,

max(0,
√

(xrobot − xdoorcenter)2 + (yrobot − ydoorcenter)2 − rlen).

We set rlen to the length of the door from hinge to handle plus the length of the

65

end-effector. The purpose of this term is to estimate the cost of the plan to drive to the

door and make contact. Both of these terms are admissible and consistent. When the

robot is further than rlen from the door, the first term remains at its maximum value.

When the robot is able to contact the door, it is closer than rlen and so the second

term is zero. Because of this, the sum of the terms is an admissible and consistent

heuristic.

5.2.4 Search

Given a graph as defined above, composed of states linked by motion primitives, we

need an efficient way to search it for a solution path. A∗ search is a very popular

method for graph search that finds an optimal path, which may not be possible

if deliberation time is limited [46]. Instead, we use an anytime variant, Anytime

Repairing A∗ (ARA∗) [66], as described in Chapter 3. The algorithm generates an

initial, possibly suboptimal solution then focuses on improving the solution while

time remains. The algorithm is provably complete for a given graph G and provides

theoretical bounds on suboptimality of solutions. It works by inflating the heuristic by

a value ε ≥ 1. Given additional time, the graph search is able to decrease the bound ε

to 1.0 and provide the optimal solution.

66

5.3 Implementation

The door-opening task consists of two main stages: first detecting the door and

determining its parameters, followed by planning and executing the door-opening

motion. Door detection is outside the scope of this work; for determining the door

and handle sizes and positions, we use a priori knowledge of the door being used

either in simulation or real-life trials. The initial position and relative open angle

are determined using the ARToolKit [34], which provides a framework for tracking

fiducial markers. Each door is measured in advance and several door properties

are recorded, including the distance from each marker to the edge of the door, the

distance to the door handle, the depth of the door handle, the side with the hinge, the

direction of swing, and the necessary force at the handle to open the door. We make

the assumption that the required force remains constant throughout the trajectory,

though [51] shows that the required force diminishes as the door opens.

Our testbed is a Willow Garage PR2, as shown in Figure 5.5. The robot has two

arms with 7 degrees-of-freedom, an omni-directional base, a pan-tilt head, and an

adjustable height torso. We use a Hokuyo scanning laser rangefinder attached to the

base and a tilting laser scanner to generate a 3-D collision map and 2-D costmap

for navigation. The left camera of the wide stereo-camera pair is used to detect the

ARToolKit markers.

The planner yields a trajectory of n states of the form s = (xb, yb, θb, d, h, v). Before

the path can be executed on the robot, the inverse kinematics at each position must be

67

(a) (b)

Figure 5.5: ARToolKit detection of the door using one of the wide-stereo cameras (a) and

a visualization of the door (b). The inflated 2-D costmap is in pink.

68

5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Min reachable angle
Max reachable angle
QP solution

D
o
o
r

A
n
g
le

Motion Primitive

Figure 5.6: The door angle trajectory from the the quadratic problem solution, plotted

alongside the maximum and minimum reachable door angles at each step.

resolved, requiring the door angles. Because for each state there may be many feasible

door angles in a given door interval, it is desirable to minimize the motion of the door.

We formulate and solve the following quadratic problem as a post-processing step:

min
∑

i≤n ||θi − θi−1||22

s.t. θi,LB < θi < θi,UB

(5.3.1)

solving for the door angle at each step i, where θi,UB and θi,LB are the upper and lower

bounds are given by maximum and minimum angles in Λ(si). An example solution is

shown in Figure 5.6. With the door angles known, the door handle locations and thus

end-effector poses are known. Combined with the trajectory for the base, we have

sufficient information to generate the joint space trajectory for the arms by solving

69

the inverse kinematics for the arm at each step (or at least those steps in which an

arm is attached to the door). For any states in which an arm is not attached to

the door, we assume the arm joint angles remain unchanged from the previous state.

Because of the force workspace precomputation and conservative collision checking,

we know an inverse kinematics solution exists. To resolve the kinematic redundancy

of the arm, the inverse kinematics solver uses an initial seed value for one of the joint

angles, then analytically solves the remaining 6 degrees-of-freedom. In some situations,

such as an interior corner door, the presence of walls may separate inverse kinematics

solutions into disjoint sets (elbow-up and elbow-down). We handled this by only using

elbow-down configurations. Transitions between arms involve calls to an arm-specific

planner using sampling-based motion planning [26]. At this point, a trajectory for

the base and joint angle trajectories for the arms are known; we have mapped the

solution from the reduced-dimensional state-space to the full-dimensional space.

5.4 Simulation Results

We have tested our planner on a simulated PR2 and on the physical robot. For all

of the experiments, the environments are discretized at a resolution of 2.5 cm. The

robot base heading is discretized at 22.5 degrees; 13 motion primitives associated with

motion of the base are given for each heading. Path lengths of the primitives range

from 2.5 cm to 20 cm. Typical plans were between 20 and 110 motion primitives in

length.

70

Two of our simulated environments are shown in Figure 5.7. The first set of

simulated tests, with results in Tables 5.1 and 5.2, shows how the number of states

expanded and planning time vary between open and tight spaces. The corner hinge

and corner edge environments refer to the narrow hallway environment of Figure 5.7b,

minus the right or left wall, respectively. As for the office environment, Figure 5.7a,

the obstacle along the left wall is placed at different distances to the door. The corner

hinge case is relatively open and simple for the planner to solve; the robot may move

through the door as soon as the door open angle is large enough for it to pass through.

However, a wall placed on the other side of the door as in the corner edge case requires

the robot to open the door further before it can transition to holding the other side of

the door and pass through. The narrow hallway is quick to solve because walls on

both sides greatly limit the possible states. Conversely, when starting further from

the door, as in the office door case shown in Figure 5.8, the fixed cost of transitions

to contact the door lead to more states being expanded prior to the contact. With

more room (as the obstacle is further and further away from the door) more and more

states are expanded. The resulting paths are of decreasing cost as more direct routes

from the start to the door become obstacle-free.

The second set of tests, shown in Table 5.3, illustrates the effects of changing the

force required to open spring-loaded doors. From the same start state, the plans for

1 N and 10 N are identical; joint torque limits were not a limiting factor at under 10 N.

However, moving to 15 N, some of the transitions in the previous plans are infeasible

71

Planning Time (s) Expansions Final
Door First Final First Final Soln.

Soln. Soln. Soln. Soln. Cost
ε = 5.0 ε = 1.0 ε = 5.0 ε = 1.0 ε = 1.0

Corner Hinge 0.97 2.23 2249 6838 551
Corner Edge 3.32 6.17 11267 25790 880
Narrow Hall 0.13 0.21 873 1160 822
Office (1.0m) 0.74 1.79 2148 6115 707
Office (1.2m) 0.80 2.13 2513 7512 707

Table 5.1: Simulation: Planning times, expanded states, and costs for pulling doors

open.

Planning Time (s) Expansions Final
Door First Final First Final Soln.

Soln. Soln. Soln. Soln. Cost
ε = 5.0 ε = 1.0 ε = 5.0 ε = 1.0 ε = 1.0

Corner Hinge 1.07 4.97 7468 31448 775
Corner Edge 4.06 8.79 26516 55134 1076
Narrow Hall 0.17 0.41 1347 1855 750
Office (0.8m) 3.93 6.69 21859 37937 2085
Office (1.0m) 5.03 9.69 26540 48897 1685
Office (1.2m) 6.03 11.11 32879 60032 1463

Table 5.2: Simulation: Planning times, expanded states, and costs for pushing doors

open.

Planning Time (s) Expansions Final
Normal First Final First Final Soln.

Force (N) Soln. Soln. Soln. Soln. Cost
ε = 5.0 ε = 1.0 ε = 5.0 ε = 1.0 ε = 1.0

1.0 0.97 2.23 2249 6838 551
10.0 1.00 2.24 2249 6838 551
15.0 4.30 5.95 14948 24905 871

Table 5.3: Simulation: Planning times, expanded states, and costs for pulling requiring

different normal forces at the handle.

72

(a) (b)

Figure 5.7: Simulated environments include an office door with nearby obstacles (a) and a

narrow hallway (b).

so the search must expand more states to route around the infeasible regions. This

leads to a longer, higher cost solution. For 20 N and above, no solution exists for

pulling open doors; the arms of the PR2 are not strong enough to hold such doors

open to allow transitioning from contacts on one side of the door to the other.

5.5 Experimental Results

5.5.1 Experiments at Penn

Next, we discuss results on the physical PR2 for pushing and pulling both spring-loaded

and non-spring-loaded doors at the University of Pennsylvania. These results were

gathered prior to a recent normalizing of the cost and heuristic functions and have

much higher costs. They also specify the initial contact with the door. The results

of running twenty planning trials on a few doors for both pulling and pushing are

73

Figure 5.8: Frames from a successful test in the office environment. The left obstacle

is 1.2 m from the door frame. The last image shows a trace of the base and end-effector

locations throughout the motion. Note from the base trajectory (red) that the robot backs

up and turns as it initially pulls open the door.

74

listed in Table 5.4 and Table 5.5, respectively. The testbed (shown in Figure 5.5a)

and conference room door were not spring-loaded. The kitchen door required 15 N

normal force at the handle to open, while the office door required 27 N. In between

trials, we moved the starting location of the base by a few centimeters and the initial

orientation varied but was kept within ±20 degrees of normal to the door. On average,

both pushing and pulling plans took under 6 seconds to find an initial solution, in

most cases, much less. The cost of pushing plans is higher, as the robot must plan

through a narrow passageway in the costmap, most likely with nonzero costs. Pulling

plans allow the robot to withdraw from the door into open space of the costmap.

The testbed door was also narrower than the kitchen door, requiring the robot to

pass through higher cost cells in the costmap, but reducing the number of expansions

(states added to the graph during planning) and thus yielding faster planning times.

The conference room door, the longest to plan, bordered directly on a wall.

Images from the PR2 pushing open a spring-loaded door and pulling a non-spring-

loaded door are shown in Figures 5.9 and 5.10. Twenty trials total were carried out

past the planning stage. The gripper managed to slide off the handle when pushing

the kitchen door open, but the robot was able to successfully pass through the door;

these trials have been counted as successes. As long as the robot was initially able to

grasp the door handle (i.e., aside from door detection issues), the robot never failed

to pull open a door which required 15 N or less normal force at the handle, and only

once failed to push a door requiring less than 27 N of normal force at the handle. The

75

Planning Time (s) Expansions Final
Door First Final First Final Soln.

(Force, N) Soln. Soln. Soln. Soln. Cost
ε = 5.0 ε = 1.0 ε = 5.0 ε = 1.0 ε = 1.0

Testbed 0.249 0.485 79.8 99.3 135,340
(0) ±0.201 ±0.244 ±75.0 ±68.6 ±141, 760

Kitchen 2.22 2.95 370 465 12, 841
(15) ±1.59 ±2.10 ±265 ±347 ±7, 683

Conference 3.50 5.59 601 942 29, 032
(0) ±1.06 ±2.76 ±175 ±486 ±21, 696

Table 5.4: Planning times, expanded states, and costs for pulling doors open. Contains

averages and standard deviations for 20 trials on each door.

Planning Time (s) Expansions Final
Door First Final First Final Soln.

(Force, N) Soln. Soln. Soln. Soln. Cost
ε = 5.0 ε = 1.0 ε = 5.0 ε = 1.0 ε = 1.0

Testbed 0.292 2.04 86.2 649 418,310
(0) ±0.069 ±0.467 ±20.8 ±162 ±38, 174

Kitchen 2.20 3.03 916 1, 228 94, 809
(15) ±0.301 ±0.245 ±116 ±80.9 ±70, 150

Office 0.636 1.92 195 589.6 441, 890
(27) ±0.132 ±0.251 ±41.6 ±91.8 ±61, 484

Table 5.5: Planning times, expanded states, and costs for pushing doors open. Contains

averages and standard deviations for 20 trials on each door.

one failure, due to an issue with the costmap, generated a path which collided with

the door frame.

Failures outside the scope of the planning occurred due to poorly estimated door

parameters. Such errors resulted in missed grasps of the door handle, as happened

in eight additional trials. Errors in handle and hinge detection can generate large

internal forces in the arm during the motion; the end-effector slipped off the door

76

handle in three successful trials.

5.5.2 Experiments at Carnegie Mellon University

The following trials were carried out at Carnegie Mellon University. The trials at

multiple universities illustrate the robustness and validation of the door opening

solution we have presented. Trials were carried out on 5 unique doors inside room 1612

Newell-Simon Hall at Carnegie Mellon’s campus. Due to space limitations around each

door, not every door was tested for both pushing and pulling. Two non-spring-loaded

doors were pulled open, three non-spring-loaded doors were pushed open, and one

spring-loaded door was also pushed open. The spring-loaded door was not pulled open

because the PR2 arms were too weak to do so. Detailed results from the planner (i.e.,

solution cost and number of state expansions during the search) were not recorded;

total execution time was recorded.

The PR2 was able to successfully open each type of door. 22 of 31 trials were

successful in opening the door and moving the robot through. Four of the failures

occurred during the 15 trials of pushing a non-spring-loaded door (11 of 15 = 73%

success rate). One failure occurred during the 5 trials on the spring-loaded door. Four

of the failures were on the 11 trials on pulling non-spring-loaded doors (7 of 11 = 64%

success rate). Of the above failures, 2 were caused by the robot colliding with the

door frame (in one case, the base collided, while in the other it was the arm). The

rest of the failures were caused by incorrect door localization, not our area of research.

77

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Image sequence from pushing open a kitchen door requiring 15 N normal

force at the handle (a-f). Initially the left arm is on the door handle (a-d), then the plan

transitions to pushing the door with the base (e-f).

78

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.10: Image sequence from pulling open a non-spring-loaded door (a-h). The robot

is initially not contacting the door (a), makes contact with the left arm and begins pulling

the door open (b-d), transitions to contact using the right arm (e), then transitions to

bracing with the left arm (f-g) and then base as it moves through the door (h).

79

The time from detecting the door to grasping the handle ranged from 24 to 51

seconds, for an across-the-board average of 39 seconds. Planning times were typically

under 3 seconds, taking up to a maximum of 6. When pushing, the average plan time

was 3.1 seconds; the average time for pulling was 1.3 seconds. Spring-loaded pushing

was an average of 4.3 seconds. The length of the planning time is heavily influenced

by the obstructions near the door; a narrower region to plan in (as long as it contains

a feasible path) means fewer possibilities to expand and often a lower planning time.

Total execution times ranged from 84 to 145 seconds. Pulling trials, with the scripted

arm transition at the end, took longer than pushing, averaging 131 seconds compared

to 94. The spring-loaded pushed door averaged 85 seconds from start to finish.

5.6 Discussion

Detection of the ARToolkit markers turned out to be a nontrivial problem. Image

thresholding parameters had to be adjusted based on light levels in different rooms.

Even so, incorrect or slightly off detections resulted in the failure to grasp the door

handle, the cause of 7 of the 9 failures at CMU and 8 unsuccessful grasps at Penn.

Additionally, the controller framework of the PR2 caused difficulties synchronizing

the execution of arm and base motions. A half-second delay for the base motion was

empirically chosen to address this. The trajectories generated for the PR2 include zero

joint velocity for the arms after each motion. Even with smoothing, the motions are

still noticeably jerky, but current inability to smooth the motion of the base and arms

80

in a linked fashion limits the amount of smoothing possible. Because the planning is

done for the door and robot base, with the arm configurations generated afterward

using inverse kinematics, there are sometimes issues with the arm contacting the door

frame. An approximation to the arm configuration is used when planning, which

mitigates this issue, but integration of the inverse kinematics into the planning will

address the issue.

We showed that the PR2 could be used to pull open spring-loaded doors up to

roughly 20 N, but spring-loaded doors often require around 60 N to open [51]. When

using a PR2 or similar robot, alternative approaches must be employed. For instance,

the robot could pull open much heavier doors by extending the arm to a singular

configuration so the force at the end-effector then depends on the strength of the base.

However, the robot would then have to release the door and quickly move through to

make sure it passes through the door before it closes. This could be used in concert

with dynamic motions, whipping the door open and immediately moving through.

Another similar approach wraps the arm around the robot’s front, so the robot is

facing away from the door with its end-effector on the handle, bracing the arm so that

the base is used to pull open the door [1]. The arm can be unwrapped and the body

used to brace the door as the robot passes through.

This work marks the first time that door opening with changing chain topologies

has been handled by a single planner, including which transitions to include and

when to include them. We have demonstrated the effectiveness of our framework; this

81

represents a significant step in our ability to generate multi-contact and switching-

contact plans, all while maintaining the repeatability and optimality of search-based

planning that make it attractive for use in human environments.

82

Chapter 6

Application to Walking

This chapter addresses control and planning for humanoid balancing and quasistatic

locomotion. As the robot walks, closed chains are created when both feet are on the

ground and destroyed as soon as one foot is no longer in contact. The motion of the

robot can be described by the locations of the feet, abstracting away the complexity

of the closed chain of the lower body, making it a good fit for our framework. On that

note, our framework inspires our work on walking, but the system is complex and the

required assumptions and thus the guarantees of the framework do not apply directly.

This work was motivated by our participation in the DARPA Robotics Challenge,

a research competition with the goal of advancing humanoid robotics [29]. We used

an Atlas robot developed by Boston Dynamics [12], an approximately human-sized

humanoid, representative of a growing number of humanoid robot platforms. The

first round of the competition used a simulated Atlas robot; this is where we focused

83

our efforts. The Virtual Robotics Competition (VRC) featured three tasks; entering

and driving a vehicle, locomoting across rough terrain (including a mud pit, hills, and

strewn cinderblocks) and manipulation (attaching a hose to a standpipe and turning

a valve). The balancing controller herein is used for our manipulation and the initial

phases of our vehicle ingress. The walking controller is used for crossing rough terrain.

We present modifications to a grasping-inspired balancing controller developed

in [78] which allow it to work on the Atlas humanoid. We then present an extension

to quasistatic walking, able to follow a given trajectory for the center of mass or given

footstep locations. The primary benefit of the quasistatic approach over a dynamic

walking gait is that the approach is robust to walking on unknown terrain as well as

poor force sensing, albeit at the cost of overall movement speed.

6.1 Atlas Humanoid

The simulated Atlas humanoid developed by Boston Dynamics is shown in Figure

6.1 [12]. It features 6 degrees-of-freedom in each arm, 3 at the shoulder, 1 at the

elbow, and 2 in the wrist (roll and pitch). Similarly, each leg has 6 degrees-of-freedom,

with 3 at the hip, 1 at the knee, and roll and pitch at the ankle. The total mass of

the robot is approximately 98 kg, 63 kg of which corresponds to the upper body. The

robot has inertial measurement units (IMUs) mounted in the pelvis and head as well

as head-mounted stereo cameras and scanning laser rangefinder. The ankles contain a

multi-axis force-torque sensor, measuring the the force along the ankle Z-axis and the

84

Figure 6.1: The simulated Atlas robot developed by Boston Dynamics.

torque along the roll and pitch. The feet do not contain pressure or contact sensors

(at least not in the simulated version of Atlas).

6.2 Background

For a robot to statically balance, the projection of the center-of-mass to a plane

perpendicular to the gravity vector (for simplicity, we will call this the ground plane)

must lie within the support polygon of the robot. For a robot on flat ground, the

support polygon can be defined as the convex hull of all contacts with the ground.

When frictional contacts are made upon sloped surfaces, the center of mass must lie

above a nonlinear convex set that depends on the properties of the contacts; see [14]

for a detailed treatment.

85

A majority of biped walking and balancing works rely on Zero Moment Point

(ZMP), surveyed in [108]. The gist of the ZMP method is that for the point on the

foot where the ground reaction force is acting, the the roll and pitch components of

the moment must be zero. Force sensors in the feet are typically used in order to

implement a ZMP control loop and ensure the desired contact state between the robot

and ground is maintained. This allows the robot to dynamically balance and adapt

to unknown external perturbations. Balancing controllers based on ZMP are found

in [50, 75, 100]. In this work we do not use ZMP methods, but rather a balancing

approach adapted from the field of robot grasping; the choice was motivated by the

lack of required sensors for ZMP control on the feet of the simulated robot.

6.3 Balancing Controller

We will first outline the balancing controller described in [78]. The method is based on

frictional grasping; forces f are applied at contact points P to generate a net wrench

F on the on the object being grasped sufficient to keep it restrained. In the case of

balancing, the desired wrench is applied to the robot center of mass (COM) and is

used to track a desired pelvis orientation and COM location; i.e., the robot should

remain relatively upright, compensating for gravity, with its projected COM within

the support polygon. The contact forces used to do this are those on the feet of the

robot.

86

Torque
Control

Robot
Dynamics

Force
Mapping

COM Wrench
Generation

Forward
Kinematics
and COM

Contact Force
(Optimization)

Simulation
(Gazebo)

Figure 6.2: Overview of the balancing controller.

6.3.1 Center of Mass Position and Posture Controller

The desired center of mass (COM) force is given by

fdCOM = mg −KP (rCOM − rdCOM)−KD(ṙCOM − ṙdCOM)

where the gravity compensation term contains m the total mass of the robot and g

the gravity vector, while the latter terms are a PD feedback law to drive the COM to

a desired location. KP , KD > 0 are proportional and differential gain matrices, and

rdCOM , ṙdCOM are the desired position and velocity of the COM.

The desired COM torque is used to track a desired pelvis orientation. Let Rb be the

current and Rd be the desired pelvis orientation. From the quaternion representation

of RT
dRb = (x, y, z, w), let δ = w and ε = (x, y, z). Then an orientation controller for

pelvis orientation is given by

τ dCOM = −Rb(2(δI + ε̂)Krε+ Dr(ω − ωd))

87

where Kr, Dr are symmetric, positive definite stiffness and damping matrices, respec-

tively. This controller acts as a damped spring to align the current orientation Rb

with the desired Rd, as shown in [16]. Together, fdCOM and τ dCOM comprise the desired

COM wrench, Fd
COM .

6.3.2 Contact Force Distribution

Now that we have a desired wrench to apply at the COM, we need to find the contact

forces at the feet that will produce it. The following is a brief review of multi-contact

grasping. The contact forces at the feet are subject to the positivity restriction; they

can push but not pull the ground. Coulomb’s friction model is used, stating that the

contacts do not slip when

f t ≤ µfn

where fn is the magnitude of the normal component of the contact force, f t the

tangential component, and µ the coefficient of friction. In R3, this restricts the set

of allowable contact forces to a cone called the friction cone, whose axis is along the

surface normal with a semi-angle of φ = atan(µ).

The total wrench on the object, Fo, is the sum of the wrenches from all of the

contacts expressed in the object’s coordinate frame, O. For a system with η contacts,

let fc be a vector stacking all the individual contact forces, fc = (f1 · · · fη)T . Then the

expression for the total wrench is

Fo = Gf c

88

where G is the grasp map, mapping the wrenches from the local contact point

coordinate frame Pi to the object frame O and multiplying by the wrench basis

characterizing the contact model. For more information, see [73]. With all frictional

point contacts, the grasp map becomes

G =

 Rp1 · · · Rpη

r̂p1Rp1 · · · r̂pηRpη


where Rpi and r̂pi represent the orientation and cross product matrix of the position

of the contact i in the object reference frame O.

When standing, the grasp map G is known and we need to solve for the contact

forces fc at the feet. Because the problem is underconstrained, we cast this problem

as a quadratic optimization.

min α1||Fd
COM −GCOM fc||22 + α2f

T
c fc

s.t. fci =
∑k

j=1 σijnij, σij ≥ 0 i = 1 . . . η

The constraints above come from approximating the friction cone as a polyhedron; nij

is the j-th edge of the convex cone at the i-th contact point. The first term of the cost

function penalizes distance between the effective COM wrench FCOM = GCOM fc and

the desired COM wrench; the second term attempts to evenly distribute the contact

forces. Weights α1 and α2 are chosen such that α1 >> α2 > 0.

Now that we have the contact forces at the feet, we can find the equivalent wrenches

in each foot’s frame. The wrenches can then be mapped to joint torques using the

89

Jacobian for each leg, using

Jc = Jb −RFPJCOM

τ = JTc F

where Jb is the body Jacobian for each foot with the pelvis as the root link, RFP is

the rotation from foot to pelvis, JCOM the center of mass Jacobian for each leg, and

τ the joint torque vector.

6.3.3 Balancing for Manipulation

The balancing controller is designed to keep the COM in the desired location, but

because the COM location is a function of all joint angles, the original controller

from [78] makes a poor platform upper body manipulation. As the upper body

reconfigures, the lower body must adjust and move the pelvis to keep the COM over

the support polygon, as shown in Figure 6.3. The solution is to wrap another feedback

control loop around the pelvis position. Rather than the COM wrench generation

tracking the center of the support polygon and the desired COM height, feedback

control is used to drive the COM to a set point based on the pelvis tracking error.

Thus, the modified controller attempts to maintain the desired pelvis pose by allowing

the projected center of mass to traverse the support polygon. If the projected center

of mass is about to leave the support polygon, the pelvis is allowed to move to keep

the robot balanced.

90

Figure 6.3: Testing the balancing controller by moving the arms to random configurations.

The desired orientation of the pelvis is vertical and the desired center of mass location is at

the geometric center of the support polygon. The lower body adapts to keep the center of

mass from shifting more than 3.4 cm during the run.

91

6.3.4 Implementation Details

The controller requires measurement of the robot’s COM and pelvis orientation with

respect to the world frame. The orientation is given by an inertial measurement unit

(IMU) in the pelvis. Forward kinematics are used to determine the location of the

robot COM with respect to the stance foot location, and hence the support polygon.

The following gain matrix values are used the balancing controller:

Kr =


1000 0 0

0 1000 0

0 0 1000

 Dr =


150 0 0

0 150 0

0 0 150



Kp =


3000 0 0

0 4000 0

0 0 1500

 Kd =


1500 0 0

0 1500 0

0 0 1000



The constrained optimization problem to determine forces at contact points was

solved using CVXGEN, an online tool that generates fast, custom C code for small,

QP-representable convex optimization problems [71]. We used weights α1 = 0.99 and

α2 = 0.01 for the optimization. The friction cone approximation used is given as:

n1 =


−0.0990

−0.0990

0.9901

 n2 =


0.0990

−0.0990

0.9901

 n3 =


0.0990

0.0990

0.9901

 n4 =


−0.0990

0.0990

0.9901



92

6.4 Extension to Walking

The simulated Atlas contains no contact or pressure sensors on the foot; the only

sensors present are in the ankle and they provide roll and pitch torque as well as force

along the ankle positive Z-axis. The relative lack of sensory information from the

foot makes calculating the center of pressure, needed for implementing ZMP walking,

difficult. Additionally, quasistatic walking is well suited to imperfect knowledge of the

terrain ahead of the robot. Because the COM remains over the stance foot until the

swing foot is placed, the swing foot is able to conform to the terrain as it is lowered.

6.4.1 Walking State Machine

Walking lends itself well to the use of a state machine, always transitioning from a

single-support phase (resting upon the stance foot), to double-support when both

feet are on the ground, and back to single-support. As laid out in Figure 6.4, a new

footstep command is received when the robot is in double-support. The COM shifts

to rest over the new stance foot and the swing foot lifts up and breaks contact with

the ground. The swing leg follows a joint trajectory to place the foot into the desired

location. As soon as the swing foot makes detectable contact with the ground, we send

a query to get the next commanded footstep and enter the double support phase again.

If no further command is received, the robot remains in double support. Footsteps

were generated at runtime to move the foot forward while rotating it to track a desired

heading.

93

Right
Stance

Get Next
Command

Left
Stance

Double
Support /
Shift COM COM over

left foot
COM over
right foot

Left foot
contact

Right foot
contact

Start

Figure 6.4: Overview of the walking controller state machine.

6.4.2 Implementation Details

The balancing controller utilizes 8-contacts when in double-support and 4-contacts

during single support. Contacts are located at the corners of the feet. In order to

minimize the difference in contact forces when adding or removing contacts, we modify

the objective function to add in a term that penalizes the difference between the

contact forces from the previous controller iteration:

min α1||Fd
COM −GCOM fc||22 + α2f

T
c fc + α3||fcprev − fc||22

s.t. fci =
∑k

j=1 σijnij, σij ≥ 0 i = 1 . . . η

In practice, we used weights α1 = 0.9, α2 = 0.01, and α3 = 0.09. To handle the foot

transitions, the previous contact forces for a given foot were defined as zero if the foot

was not in contact with the ground during the previous cycle, and also zero if the foot

had just lost contact with the ground (as it could support no weight). In all other

cases, the recorded contact forces from the last iteration’s optimization were used.

Motion of the free leg can be achieved by planning a desired trajectory for the full

94

leg, using inverse kinematics with a desired foot trajectory, or using Jacobian motions.

We chose to use the Moore-Penrose pseudo-inverse of the Jacobian to update the

desired joint angles for the first four joints of the leg each controller iteration.

dθ = (JTJ)−1JTdx

The resulting desired joint angles were tracked by a PID plus damping controller. The

remaining two joints of the leg correspond to the ankle pitch and roll; these are used

to keep the swing foot parallel to the stance foot. Detection of ground contact was

achieved by running the ankle force through a low-pass filter with outlier rejection

then applying a threshold.

6.5 Results

In our implementation, visual odometry updating at 30Hz was used to localize the

robot with respect to the world. The desired yaw for the swing foot was set to the

desired heading; the pelvis yaw tracked the midpoint between swing and stance foot

yaws. This approach was used in a teleoperation setup for the Virtual Robotics

Challenge. The user was able to view a point cloud of the environment and command

appropriate heading changes to the robot, as shown in Figure 6.5.

Tracking the heading also allows the Atlas to track desired pelvis trajectories.

We do not offer specific guarantees on the tracking of a reference pelvis trajectory.

Performance depends on how closely the footsteps follow the turns in the path; i.e., a

95

Figure 6.5: The user interface shown above allows the operator to specify a desired heading

to track. In this mode, Atlas will walk forward along that heading until a new command is

received.

96

(a) (b)

Figure 6.6: The balancing and walking controllers tested on terrain other than horizontal.

In (a) the balancing controller is tested on a platform whose tilt increases over time, failing

on a 43 degree slope. In (b) the walking controller is tested walking over hills. The controller

expects four contacts with the terrain on each foot; situations with fewer contacts than

expected produce jitter.

97

turn that occurs mid-step will not be tracked as closely as a turn that occurs right at

a step. Smaller steps will thus improve tracking performance at the cost of overall

speed. Performance also depends on the roughness of the terrain; hills and uneven

surfaces hinder tracking performance.

Demonstrations of balancing and walking on surfaces that are not horizontal are

shown in Figure 6.6. With the friction cone approximation given in Section 6.3.4,

the robot is able to balance on a rotating platform until a 43-degree slope is reached.

Narrower friction cone approximations are unable to reach the same tilt, as they

are unable to provide the required tangential forces. In practice, this leads to the

optimizer failing to converge when the desired COM wrench cannot be produced by

the frictional point contacts. As for the walking, the controller is able to reliably

ascend and descend inclined surfaces up to a 31-degree slope. The controller expects

four contacts with the terrain on each foot. Fewer contacts, at the crests of hills for

example, will produce jitter until four contacts are made. The end result is a robust

walking behavior capable of executing motions resulting from our planning framework.

6.6 Motion Planning

For trajectory planning, we extended a three degree-of-freedom ARA∗ planning

implementation to handle terrain with various slopes. Had we desired trajectories

including foot locations, we could have built upon the methods developed in [48,49].

The methods used in those papers, however, are only applicable to horizontal terrain.

98

If we utilized the same approach as planning for door opening from Chapter 5, we

would ultimately get a full-dimensional plan including all joint angles for the legs and

attempt to use position control to execute it. However, because the terrain we are

operating on is only partially known and because falling would present an irrecoverable

failure, some of the mapping to the full-dimensional plan was moved to the walking

controller. Thus, the robot is likely to remain balanced despite uncertainty in contacts

and ground reaction forces.

6.6.1 Graph Representation

The graph is constructed using a lattice-based representation, as described in Chapter

3. A lattice is a discretization of the configuration space into a set of states and

connections between those states, where every connection represents a feasible path.

With respect to the framework of Chapter 4, let X ⊂ SE(3) represent the pelvis

pose, Y ⊂ Rn represent the set of leg configurations, Z ⊂ SE(3)× SE(3) represent

the poses of the feet, and W ∈ {0, 1, 2} represent whether the left foot, right foot,

or both are in contact with the terrain. We emphasize that Y contains all valid

leg configurations associated with poses chosen from X and Z. Any state in the

full-dimensional state-space, sf ∈ Sf , can thus be represented by

sf = (xp, yp, zp, ψp, φp, θp︸ ︷︷ ︸
X

, ql1 , . . . , ql6 , qr1 , . . . , qr6︸ ︷︷ ︸
Y

,

xr, yr, zr, ψr, φr, θr, xl, yl, zl, ψl, φl, θl︸ ︷︷ ︸
Z

, k︸︷︷︸
W

)

99

where (x, y, z, ψ, φ, θ) is a generic 6-degree-of-freedom pose, ql and qr are the leg

joint angle vectors, and k represents the foot in contact. Thus, neglecting the joint

angles for the upper body (we will assume these to be kept constant), we have a

31-degree-of-freedom state-space.

Again with respect to the framework of Chapter 4, and without loss of generality,

let us consider the reduced-dimensional graph without the the superscript l for cleaner

notation. Let G = (S, T) denote the graph G we construct, with S the set of states

and T the set of transitions between states. To discuss the states in S, let us first

consider the motion of a humanoid walking and constraints we can apply to reduce

the dimensionality of the space. Let (xp, yp, θp) ⊂ SE(2) represent the location and

yaw of the pelvis. The height of the pelvis will handled by the controller, tracking a

nominal height above the stance foot, and the roll and pitch are to be tracked are zero.

If the terrain were flat, given the relative foot and pelvis positions, the joint angles for

both 6-degree-of-freedom legs could be calculated using inverse kinematics; this is the

abstraction of removing Y from the lower-dimensional planning state. However, at

plan time, our knowledge of distant terrain is inexact; we assume values for height

and surface normals are noisy. Instead of using the relative locations of the feet to

recover a full-dimensional plan for the lower half of the robot in advance, we use them

to inform the search via the costmap as discussed in a following section, effectively

removing Z from our planning as well.

Accordingly, a state in the reduced-dimensional state-space used by the planner,

100

s ∈ S, is given by

s = (xp, yp, θp) ⊂ SE(2)

for the planar location and yaw of the pelvis. The height of the pelvis is tracked

by the controller, and the roll and pitch set to zero. One could consider successive

levels of mapping back to higher-dimensional state-spaces. The first such mapping

could be appending the relative footprint locations, with the next higher being the

full joint states of the legs. The key difference between this application and that of

opening doors is that for opening doors, the full-dimensional plan was first generated

from the lower-dimensional plan and then executed verbatim. Here, rather than the

mapping taking place in our planner, the planner is created such that the mapping

is guaranteed to exist (i.e., infinite cost assigned to states where it would not exist),

but the execution in and mapping to full-dimensional space is handled by the walking

controller.

6.6.2 Implementation

As with opening doors, we use Anytime Repairing A∗ (ARA∗) [66] to incrementally

generate and search the graph. The algorithm generates an initial, possibly suboptimal

solution then focuses on improving the solution while time remains. Here we provide

additional details on the search setup.

101

Motion primitives

The environment has been discretized into 10 cm cells and the yaw into 22.5◦ bins.

Thus, each primitive must be an integer multiple of 10 cm and 22.5◦. Being kinematic

motion primitives, all that is required is to interpolate between each start and goal

location. Five primitives are used: 10 cm motion forward, an 80 cm motion forward

while moving to the left 10 cm and turning left 22.5◦, the preceding primitive turning

to the right, and turning in place left or right. Each primitive is assigned an additional

action cost multiplier; this is multiplied by the path length to get the total cost to

execute the motion primitive in free space. The multipliers for the five primitives

listed are: 1, 5, 5, 15, 15.

Costmap

We construct a 2-D costmap for the 3-D terrain using the following cost function:

ccostmap = α|D|+ β|dH|

where D is the slope of the terrain with respect to the horizontal and H is the height

of the terrain the robot is standing on with respect to the height at the starting

position. The reachable workspace of the legs (shown in Figure 6.7) was examined to

determine traversable terrain height and gradient changes, which in turn informed the

weights α and β. Areas above a certain height were also automatically classified as

impassible obstacles, forcing the path to avoid the crests of hills. Sample costmaps for

hilly terrain are shown in Figure 6.9.

102

Figure 6.7: The reachable workspace for the Atlas’s right foot is shown in orange.

Cost Function

The cost of a transition in our graph representation is defined as the product of two

terms:

c(s, s′) = cmovement × (ccostmap + 1)

In the first term, cmovement is the cost associated with moving the robot through a

given base motion primitive. This term depends on the time it takes to execute the

motion primitive. It also allows the user to minimize the use of certain primitives

by assigning them higher costs. ccostmap is given by convolving the robot footprint

in the 2-D costmap as it executes the motion (the swept path). Because the motion

primitives are precomputed, so are their paths. The relative set of cost map cells

occupied by the robot during the motion are stored for each primitive. The occupied

cells are also used to perform collision checking; an infeasible motion will have an

infinite ccostmap.

We have calculated the reachable workspace of the Atlas’s 6-degree-of-freedom legs

103

using OpenRAVE [31]. Using this information, we precompute trajectories through

the reachable workspace for new footsteps. We command the robot to execute the

same open-loop lifting motion regardless of the coming terrain. The motion is always

the same during leg raise, then deformed to place the foot above the new desired

location at the same height as the stance foot. The pelvis begins to lower as the swing

foot is lowered, allowing stepping down onto lower terrain while still succeeding on

raised or level terrain. In this way, the stepping motion is robust to the upcoming

terrain height. The leg raise motion, being known, is used to inform the costmap

generation. Specifically, differences in terrain height that would cause collision lead to

those regions being assigned infinite cost.

Heuristic

We use a simple heuristic, a 2-D Dijkstra search originating from the goal state, using

the underlying grid at the resolution of the discretization. Because (many of) the

motion primitives are larger than the discretization and may take any path, this will

be an approximation of the remaining distance to the goal. It is worth noting that the

motion primitive cost is a multiple of the Euclidean distance and thus the distance

remains an underestimate of the cost.

104

6.6.3 Results

We used the ARA∗ planner to successfully generate COM trajectories then used

the walking controller to follow them using a lookahead of 35 cm (approximately 1.5

step-lengths). Figure 6.8 shows that the robot is able track a desired trajectory to

within 20 cm on each axis. The error is roughly sinusoidal, as follows from the pelvis

oscillating back and forth across the trajectory when switching from foot to foot. Table

6.1 provides the planning times, expanded states, and relative solution costs for plans

to the five goal locations shown in Figure 6.9c. For reference, the costmap is 40 cm by

16 m in size, containing 1,024,000 possible states. Initial solutions for larger values of

ε are found quickly, in under 2 seconds, with the amount of time taken proportional

to the number of expansions required to find the first solution, which is related to the

distance to the goal and goal accessibility (not all primitives may make it through a

narrow passageway). The final ε = 1 solutions took up to 3 seconds, but since ARA∗

is an anytime method, the planner could have stopped anytime after the first solution

if allowed time expired. For all the goals, the final solution after additional expansions

is very near in cost or identical to the first solution, so truncating the search after the

first solution would not have negatively impacted the resulting plans.

105

Planning Time (s) Expansions Path Cost
Goal First Final First Final First Final

Soln. Soln. Soln. Soln. Soln. Soln.
ε = 5.0 ε = 1.0 ε = 5.0 ε = 1.0 ε = 5.0 ε = 1.0

1 1.83 2.69 413,029 565,937 573,104 572,646
2 0.21 2.83 42,147 470,427 367,832 367,062
3 0.03 0.85 6,922 142,370 224,548 224,548
4 0.14 1.59 32,775 262,665 239,430 239,430
5 0.05 1.02 16,922 174,991 232,492 228,888

Table 6.1: Planning times, expanded states, and costs for paths through the hilly terrain.

Goal locations are shown in Figure 6.9(c).

0 10 20 30 40 50 60 70 80
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (sec)

Walking Tracking Error

X error
Y error

E
rr

o
r

(m
)

Figure 6.8: X,Y tracking error walking from the start position to the fourth goal location.

106

(a) (b)

(c) (d)

Figure 6.9: Stills from the planner operating in hilly terrain. (a) shows the Atlas robot

standing before hills in the Gazebo simulation, (b) the voxelized representation of the world

used to create the costmap, (c) the costmap given to the planner, with the goal locations

used to generate Table 6.1, and (d) the costmap with a trajectory for the COM shown in

green, leading to goal 4.

107

Chapter 7

Concluding Remarks

7.1 Summary of Contributions

Motion primitive-based (lattice-based) graphs have many desirable properties: they

are optimal (or boundedly-suboptimal) for a given cost function and they return

consistent, deterministic paths. However, their application to high-dimensional state-

spaces has remained limited because of computational complexity. We have shown

how to use lattice-based graphs in mobile manipulation with closed chains, exploiting

the dimensionality reduction inherent in closed kinematic chains to enable efficient

search.

This thesis contains two key contributions. First, to reduce complexity, we introduce

abstractions for mobile manipulation with closed chains. The abstractions provide the

dimensionality reduction to help make search-based planning tractable and also provide

108

guarantees for generating an optimal full-state plan from the correspondingly optimal

reduced-dimensional plan. The framework is structured such that transitions between

contacts and changes between open and closed chains can be accommodated in a single

planner. Second, this is the first time that motion plans for have been automatically

generated by a single, unified planner for mobile manipulators performing such tasks

as opening doors with switching contacts. These tasks include hybrid dynamics and

constraints on forces/torques that can be applied. Our approach to door opening is

validated by an extensive set of experiments performed using the PR2 robot, opening

multiple doors (pulling and pushing both spring- and non-spring-loaded doors) in

different buildings and universities in over 30 trials.

7.2 Future Work

During the course of working on this thesis, multiple challenges arose and were

addressed, but warrant further study. One challenge is how to quickly generate

code for each search space. Currently, each space has to be hand-coded, with the

designer choosing which variables to include for the full and reduced-dimensional states.

Another challenge is how to recognize modifications to the search space that lead to a

more compact graph representation of the problem. For instance, when planning for

doors, using a binary variable for the door interval rather than the multiple values a

discretized door angle would require led to a dramatic reduction in planning times.

Similarly, there remains the trade-off between including a wider variety of motion

109

primitives and planning times. Smaller primitives may help the planner find paths in

narrow passageways, while longer primitives may have faster planning times because

fewer expansions are required. The best choice is often domain-dependent. Of course,

including a large number of primitives, both long and short, negatively affects the time

required for each expansion which is proportional to the total number of primitives.

One promising avenue for automatically finding lower dimensional representations

is the work of Vernaza et al. [105–107]. Vernaza’s work focuses on identifying the

low-dimensional Lagrangian structure of physical systems and applying this knowledge

to aid in high-dimensional motion planning. The algorithm learns and exploits the

structure of holonomic motion planning problems using spectral analysis and iterative

dynamic programming and is able to solve problems with very high dimensions, with

examples up to 990 dimensions.

The framework for combined open and closed-chain planning for manipulation

presented here required the manipulator motions to be a path-connected set. In

implementation, this required that, when confronted with possible disparate sets, the

planner limited itself to one of them. This restriction can be eliminated by modifying

the algorithm such that the planning is iterative: the entire path is first planned

in the reduced-dimensional space, then reconstructed in the high-dimensional space

piece-by-piece. If the higher-dimensional plan cannot be reconstructed at a given state,

a higher-dimensional region is inserted into the low-dimensional representation. The

low-dimensional planning is rerun, now with one or more higher-dimensional regions

110

inside. This approach is similar to the adaptive dimensionality work of [38,39].

One could also imagine applying this methodology to a problem which is continuous

by nature. It has recently been suggested that we consider the problem of planning for

a manipulator folding cloth. Creases may be inserted anywhere; there is no pre-defined

crease pattern. The manipulator is limited to grabbing an edge of the cloth. To use our

approach here, we must decide upon a discretization underlying the space. A natural

choice for this is a regular pattern of creases, seen for instance in [43,47], or perhaps

a different pattern motivated by prior knowledge. According to our framework, we

can think of X being the manipulator base location (most likely fixed), Y the set of

manipulator arm configurations, Z the cloth crease state, and W encoding the specific

contact locations (also discretized). Finding the valid transitions for the cloth crease

state will involve combinatorial search, motivating a coarse crease pattern.

Lastly, a number of difficulties arise when attempting to execute planned paths

in the real world. Findings in planning for uncertainty [8, 19] should be applied to

this work, as well as further investigation into increasing robustness of plan execution.

Specific difficulties for door opening included door localization, synchronized execution

of base and arm motions, and difficulties in smoothing arm motions along with those

of the base. Detection of the ARToolkit markers turned out to be a nontrivial problem;

image thresholding parameters had to be adjusted based on light levels in different

rooms. Even so, incorrect or slightly off detections resulted in the failure to grasp

the door handle or poor grasps that were prone to slip. Additionally, the controller

111

framework of the PR2 caused difficulties synchronizing the execution of arm and

base motions. The trajectories generated for the PR2 include zero joint velocity for

the arms after each motion. Even with smoothing, the motions are still noticeably

jerky, but current inability to smooth the motion of the base and arms in a linked

fashion limits the amount of smoothing possible. While we showed that the PR2 could

be used to pull open spring-loaded doors up to roughly 20 N, spring-loaded doors

often require around 60 N to open [51] and necessitate alternative approaches. For

instance, the robot could pull open much heavier doors by extending the arm to a

singular configuration so force at the end-effector depends on the strength of the base.

However, the robot would then have to release the door and quickly move to make

sure it passes through the door before it closes. This could be used in concert with

dynamic motions, flinging the door open and immediately moving through. Specific

difficulties for the simulated humanoid included dealing with unknown terrain and

tracking exact footstep locations without knowledge of ground truth.

Extending the framework and improving execution robustness will provide inter-

esting and immediate benefits for the work in this thesis. Further study of motion

primitive-based planning will undoubtedly make design choices easier for those crafting

their own searches. My work has established a framework for using lattice-based

graphs in mobile manipulation with closed chains, which will eventually lead to

robots navigating our buildings and opening doors, moving furniture, and otherwise

interacting with human environments.

112

Bibliography

[1] A. E. Leeper A. T. Pratkanis and J. K. Salisbury, Replacing the office intern: An

autonomous coffee run with a mobile manipulator, IEEE International Conference

on Robotics and Automation, 2013.

[2] Saleh Ahmad and Guangjun Liu, A door opening method by modular re-

configurable robot with joints working on passive and active modes, IEEE Inter-

national Conference on Robotics and Automation, 2010, pp. 1480–1485.

[3] D. Anguelov, D. Koller, E. Parker, and S. Thrun, Detecting and modeling doors

with mobile robots, IEEE International Conference on Robotics and Automation,

2004.

[4] Hitoshi Arisumi, Jean-Rémy Chardonnet, and Kazuhito Yokoi, Whole-body

motion of a humanoid robot for passing through a door, IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2009, pp. 428–434.

[5] Eliana P. L. Aude, Ernesto P. Lopes, Cristiano S. Aguiar, and Mario F. Martins,

Door crossing and state identification using robotic vision, 8th International

113

IFAC Symposium on Robot Control, September 2006.

[6] D. Berenson, T. Simeon, and S.S. Srinivasa, Addressing cost-space chasms

in manipulation planning, IEEE International Conference on Robotics and

Automation, May 2011, pp. 4561–4568.

[7] Dmitry Berenson and Siddhartha Srinivasa, Probabilistically complete planning

with end-effector pose constraints, IEEE International Conference on Robotics

and Automation, 2010.

[8] Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner, Addressing pose

uncertainty in manipulation planning using task space regions, IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, October 2009.

[9] Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner, Task space regions:

A framework for pose-constrained manipulation planning, International Journal

of Robotics Research (2011).

[10] Dmitry Berenson, Siddhartha S. Srinivasa, Dave Ferguson, and James J. Kuffner,

Manipulation planning on constraint manifolds, IEEE International Conference

on Robotics and Automation, May 2009, pp. 625–632.

[11] R. Bohlin and L.E. Kavraki, Path planning using lazy PRM, IEEE International

Conference on Robotics and Automation, vol. 1, 2000, pp. 521–528.

114

[12] Boston Dynamics Incorporated, Atlas The Agile Anthropomorphic Robot, 2013,

http://www.bostondynamics.com/robot Atlas.html.

[13] Michael S Branicky, Ross A Knepper, and James J Kuffner, Path and trajectory

diversity: Theory and algorithms, IEEE International Conference on Robotics

and Automation, pp. 1359–1364.

[14] Timothy Bretl and Sanjay Lall, Testing static equilibrium for legged robots, IEEE

Transactions on Robotics 24 (2008), no. 4, 794–807.

[15] O. Brock and O. Khatib, High-speed navigation using the global dynamic window

approach, IEEE International Conference on Robotics and Automation, 1999,

pp. 341–346.

[16] F. Caccavale, C. Natale, B. Siciliano, and L. Villani, Six-dof impedance con-

trol based on angle/axis representations, IEEE Transactions on Robotics and

Automation 15 (1999), no. 2, 289–300.

[17] J.F. Canny, The complexity of robot motion planning, MIT Press, Inc., 1988.

[18] W.F. Carriker, P.K. Khosla, and B.H. Krogh, An approach for coordinating mo-

bility and manipulation, IEEE International Conference on Systems Engineering,

1989, pp. 59–63.

115

[19] Andrea Censi, Daniele Calisi, Alessandro De Luca, and Giuseppe Oriolo, A

Bayesian framework for optimal motion planning with uncertainty, IEEE Inter-

national Conference on Robotics and Automation, May 2008.

[20] Lillian Y Chang, Siddhartha S Srinivasa, and Nancy S Pollard, Planning

pre-grasp manipulation for transport tasks, IEEE International Conference on

Robotics and Automation, 2010, pp. 2697–2704.

[21] Sachin Chitta, Benjamin Cohen, and Maxim Likhachev, Planning for au-

tonomous door opening with a mobile manipulator, IEEE International Confer-

ence on Robotics and Automation, 2010.

[22] Matei Ciocarlie, Kaijen Hsiao, E Gil Jones, Sachin Chitta, Radu Bogdan Rusu,

and Ioan A Sucan, Towards reliable grasping and manipulation in household

environments, International Symposium on Experimental Robotics, 2010, pp. 1–

12.

[23] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev, Search-based planning

for manipulation with motion primitives, IEEE International Conference on

Robotics and Automation, 2010.

[24] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev, Search-based planning

for dual-arm manipulation with upright orientation constraints, IEEE Interna-

tional Conference on Robotics and Automation, 2012.

116

[25] Benjamin Cohen, Gokul Subramanian, Sachin Chitta, and Maxim Likhachev,

Planning for manipulation with adaptive motion primitives, IEEE International

Conference on Robotics and Automation, 2011.

[26] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki, The open motion planning

library, IEEE Robotics & Automation Magazine 19 (2012), no. 4, 72–82.

[27] Sébastien Dalibard, Alireza Nakhaei, Florent Lamiraux, and Jean-Paul Laumond,

Manipulation of documented objects by a walking humanoid robot, IEEE-RAS

International Conference on Humanoid Robots, 2010, pp. 518–523.

[28] T. L. Dean and M. Boddy, An analysis of time-dependent planning, National

Conference on Artifical Intelligence, 1988.

[29] Defense Advanced Research Projects Agency, The DARPA Robotics Challenge,

2013, http://theroboticschallenge.org/.

[30] R. Diankov, S. Srinivasa, D. Ferguson, and J. Kuffner, Manipulation planning

with caging grasps, IEEE-RAS International Conference on Humanoid Robots,

December 2008.

[31] Rosen Diankov, Automated construction of robotic manipulation programs, Ph.D.

thesis, Carnegie Mellon University, Robotics Institute, August 2010.

117

[32] G. Digioia, H. Arisumi, and K. Yokoi, Trajectory planner for a humanoid robot

passing through a door, IEEE-RAS International Conference on Humanoid

Robots, December 2009, pp. 134–141.

[33] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische

Mathematik, no. 1, 1959, pp. 269–271.

[34] G. Dumonteil, ARToolKit package for ROS, August 2011,

www.ros.org/wiki/artoolkit.

[35] N. Egerstedt and Xiaoming Hu, Coordinated trajectory following for mobile

manipulation, IEEE International Conference on Robotics and Automation,

vol. 4, 2000, pp. 3479–3484.

[36] Lawrence H Erickson and Steven M LaValle, Survivability: Measuring and ensur-

ing path diversity, IEEE International Conference on Robotics and Automation,

IEEE, 2009, pp. 2068–2073.

[37] RIKEN-TRI Collaboration Center for Human-Interactive Robot Re-

search, RIBA robot for interactive body assistance, 2013,

http://rtc.nagoya.riken.jp/RIBA/index-e.html.

[38] Kalin Gochev, Benjamin Cohen, Jonathan Butzke, Alla Safanova, and Maxim

Likhachev, Path planning with adaptive dimensionality, Fourth International

Symposium on Combinatorial Search, 2011.

118

[39] Kalin Gochev, Alla Safonova, and Maxim Likhachev, Planning with adaptive

dimensionality for mobile manipulation, IEEE International Conference on

Robotics and Automation, 2012.

[40] Steven Gray, Sachin Chitta, Vijay Kumar, and Maxim Likhachev, A single

planner for a composite task of approaching, opening and navigating through

non-spring and spring-loaded doors, IEEE International Conference on Robotics

and Automation, 2013.

[41] Steven Gray, Christopher Clingerman, Sachin Chitta, Vijay Kumar, and Maxim

Likhachev, Search-based planning for autonomous spring-loaded door opening,

Robotics: Science and Systems (RSS) Workshop on Mobile Manipulation: Gen-

erating Robot Motion for Contact with the World, 2012.

[42] Steven Gray, Christopher Clingerman, Sachin Chitta, and Maxim Likhachev,

PR2: Opening spring-loaded doors, IEEE-RSJ International Conference on

Intelligent Robots and Systems, PR2 Workshop, 2011.

[43] Steven Gray, Nathan Zeichner, Vijay Kumar, and Mark Yim, A simulator

for origami-inspired self-reconfigurable robots, Origami 5: Fifth International

Meeting of Origami Science, Mathematics, and Education, CRC Press, 2011,

p. 323.

[44] Colin J Green and Alonzo Kelly, Toward optimal sampling in the space of paths,

Robotics Research, Springer, 2011, pp. 281–292.

119

[45] M Hans, B Graf, and RD Schraft, Robotic home assistant care-o-bot: Past-

present-future, IEEE International Workshop on Robot and Human Interactive

Communication, 2002, pp. 380–385.

[46] P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuristic

determination of minimum cost paths, IEEE Transactions on Systems, Science,

and Cybernetics SSC-4 (1968), no. 2, 100–107.

[47] Elliot Hawkes, B An, NM Benbernou, H Tanaka, S Kim, ED Demaine, D Rus,

and RJ Wood, Programmable matter by folding, Proceedings of the National

Academy of Sciences 107 (2010), no. 28, 12441–12445.

[48] Armin Hornung, Andrew Dornbush, Maxim Likhachev, and Maren Bennewitz,

Anytime search-based footstep planning with suboptimality bounds, IEEE-RAS

International Conference on Humanoid Robots, November 2012.

[49] Armin Hornung, Daniel Maier, and Maren Bennewitz, Search-based footstep

planning, IEEE International Conference on Robotics and Automation: Work-

shop on Progress and Open Problems in Motion Planning and Navigation for

Humanoids (Karlsruhe, Germany), May 2013.

[50] Sang-Ho Hyon, Joshua G Hale, and Gordon Cheng, Full-body compliant human–

humanoid interaction: Balancing in the presence of unknown external forces,

IEEE Transactions on Robotics 23 (2007), no. 5, 884–898.

120

[51] A. Jain, Hai Nguyen, M. Rath, J. Okerman, and C. C. Kemp, The complex

structure of simple devices: A survey of trajectories and forces that open doors

and drawers, IEEE-RAS and EMBS International Conference on Biomedical

Robotics and Biomechatronics, September 2010, pp. 184–190.

[52] Advait Jain and Charles C. Kemp, Pulling open doors and drawers: Coordinating

an omni-directional base and a compliant arm with equilibrium point control,

IEEE International Conference on Robotics and Automation, 2010, pp. 1807–

1814.

[53] Stefan Jörg, Jörg Langwald, Ciro Natale, Johannes Stelter, and Gerd Hirzinger,

Flexible robot-assembly using a multi-sensory approach, IEEE International

Conference of Robotics and Automation, 2000, pp. 3687–3694.

[54] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, Stomp:

Stochastic trajectory optimization for motion planning, IEEE International

Conference on Robotics and Automation, May 2011, pp. 4569–4574.

[55] Ju-Hyun Kang, Chang-Soon Hwang, and Gwi Tae Park, A simple control method

for opening a door with mobile manipulator, International Conference on Control,

Automation and Systems, 2003.

[56] S. Karaman and E. Frazzoli, Incremental sampling-based optimal motion plan-

ning, Robotics: Science and Systems, 2010.

121

[57] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars, Probabilistic

roadmaps for path planning in high-dimensional configuration spaces, IEEE

Transactions on Robotics and Automation 12 (1996), no. 4, 566–580.

[58] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots,

International Journal of Robotics Research 5 (1986), no. 1, 90–98.

[59] E. Klingbeil, A. Saxena, and A. Y. Ng, Learning to open new doors, Robotics:

Science and Systems Workshop on Robot Manipulation: Intelligence in Human

Environments, 2008.

[60] Vijay Kumar, Instantaneous kinematics of parallel-chain robotic mechanisms,

Journal of Mechanical Design 114 (1992), 349.

[61] Aleksandr Kushleyev, Brian MacAllister, and Maxim Likhachev, Planning for

landing site selection in the aerial supply delivery, IEEE-RSJ International

Conference on Intelligent Robots and Systems, Sept. 2011, pp. 1146–1153.

[62] J-C. Latombe, Robot motion planning, Kluwer Academic Publishers, 1991.

[63] S.M. LaValle, M.S. Branicky, and S.R. Lindemann, On the relationship between

classical grid search and probabilistic roadmaps, International Journal of Robotics

Research (2003).

122

[64] Steven M Lavalle, Rapidly-exploring random trees: A new tool for path planning,

Tech. Report 98-11, Computer Science Department, Iowa State University,

October 1998.

[65] M. Likhachev and D. Ferguson, Planning long dynamically-feasible maneuvers

for autonomous vehicles, International Journal of Robotics Research (2009).

[66] M. Likhachev, G. Gordon, and S. Thrun, ARA*: Anytime A* with provable

bounds on sub-optimality, Advances in Neural Information Processing Systems,

Cambridge, MA: MIT Press, 2003.

[67] G.F. Liu, J.C. Trinkle, and R.J. Milgram, Complete path planning for a planar 2-

R manipulator with point obstacles, IEEE International Conference on Robotics

and Automation, vol. 4, May, 2004, pp. 3263–3269.

[68] Brian MacAllister, Jonathan Butzke, Alex Kushleyev, Harsh Pandey, and Maxim

Likhachev, Path planning for non-circular micro aerial vehicles in constrained

environments, IEEE International Conference on Robotics and Automation,

2013.

[69] A. Madhani and S. Dubowsky, Motion planning of mobile multi-limb robotic

systems subject to force and friction constraints, IEEE International Conference

on Robotics and Automation, May 1992, pp. 233–239.

123

[70] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, The

office marathon: Robust navigation in an indoor office environment, IEEE

International Conference on Robotics and Automation, 2010.

[71] J.E. Mattingley, S.P. Boyd, M.A. Saunders, Y. Ye, and Stanford University. Dept.

of Electrical Engineering, Code generation for embedded convex optimization,

Stanford University, 2011.

[72] W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, P. Mihelich, E. Marder-

Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. B. Rusu, B. Marthi,

G. Bradski, K. Konolige, B. Gerkey, and E. Berger, Autonomous door opening and

plugging in using a personal robot, IEEE International Conference on Robotics

and Automation, 2010.

[73] Richard M. Murray, S. Shankar Sastry, and Li Zexiang, A mathematical intro-

duction to robotic manipulation, 1st ed., CRC Press, Inc., Boca Raton, FL, USA,

1994.

[74] K. Nagatani and S. Yuta, An experiment on opening-door-behavior by an au-

tonomous mobile robot with a manipulator, IEEE/RSJ International Conference

on Intelligent Robots and Systems, 1995, pp. 45–50.

[75] Shigeki Nakaura and Mitsuji Sampei, Balance control analysis of humanoid

robot based on ZMP feedback control, IEEE-RSJ International Conference on

Intelligent Robots and Systems, vol. 3, 2002, pp. 2437–2442.

124

[76] G. Niemeyer and J. Slotine, A simple strategy for opening an unknown door,

IEEE International Conference on Robotics and Automation, 1997.

[77] Guiseppe Oriolo and Christian Mongillo, Motion planning for mobile manipula-

tors along given end-effector paths, IEEE International Conference on Robotics

and Automation, 2005.

[78] C. Ott, M.A. Roa, and G. Hirzinger, Posture and balance control for biped robots

based on contact force optimization, IEEE-RAS International Conference on

Humanoid Robots, 2011, pp. 26–33.

[79] Christian Ott, Berthold Bäuml, Christoph Borst, and Gerd Hirzinger, Employing

cartesian impedance control for the opening of a door: A case study in mobile

manipulation, IEEE/RSJ International Conference on Intelligent Robots and

Systems Workshop on Mobile Manipulators: Basic Techniques, New Trends &

Applications, 2005.

[80] Christian Ott, Berthold Bäuml, Christoph Borst, and Gerd Hirzinger, Au-

tonomous opening of a door with a mobile manipulator: A case study, IFAC

Symposium on Intelligent Autonomous Vehicles, 2007.

[81] S. Pancanti, L. Pallottino, D. Salvadorini, and A. Bicchi, Motion planning

through symbols and lattices, IEEE International Conference on Robotics and

Automation, vol. 4, 2004, pp. 3914–3919.

125

[82] J. Pearl, Heuristics: Intelligent search strategies for computer problem solving,

Addison-Wesley, 1984.

[83] Alejandro Perez, Sertac Karaman, Alexander Shkolnik, Emilio Frazzoli, Seth

Teller, and Matthew R. Walter, Asymptotically-optimal path planning for manip-

ulation using incremental sampling-based algorithms, IEEE-RSJ International

Conference on Intelligent Robots and Systems, Sept. 2011, pp. 4307–4313.

[84] L. Petersson, D. Austin, and D. Kragic, High-level control of a mobile manipulator

for door opening, IEEE-RSJ International Conference on Intelligent Robots and

Systems, vol. 3, 2000, pp. 2333–2338.

[85] R. Philippsen and R. Siegwart, Smooth and efficient obstacle avoidance for a

tour guide robot, IEEE International Conference on Robotics and Automation,

2003, pp. 446–451.

[86] Mike Phillips, Benjamin Cohen, Sachin Chitta, and Maxim Likhachev, E-graphs:

Bootstrapping planning with experience graphs, Robotics: Science and Systems,

2012.

[87] Mike Phillips, Andrew Dornbush, Sachin Chitta, and Maxim Likhachev, Anytime

incremental planning with E-graphs, IEEE International Conference on Robotics

and Automation, 2013.

126

[88] M. Pivtoraiko and A. Kelly, Generating near minimal spanning control sets for

constrained motion planning in discrete state spaces, IEEE-RSJ International

Conference on Intelligent Robots and Systems, Aug. 2005, pp. 3231–3237.

[89] Mihail Pivtoraiko and Alonzo Kelly, Kinodynamic motion planning with state

lattice motion primitives, IEEE-RSJ International Conference on Intelligent

Robots and Systems, Sept. 2011, pp. 2172–2179.

[90] Mihail Pivtoraiko, Daniel Mellinger, and Vijay Kumar, Quadrotor maneuver

generation using motion primitives, IEEE International Conference on Robotics

and Automation, 2013.

[91] José P. Puga and Luciano E. Chiang, Optimal trajectory planning for a redundant

mobile manipulator with non-holonomic constraints performing push-pull tasks,

Robotica 26 (2008), 385–394.

[92] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa,

Chomp: Gradient optimization techniques for efficient motion planning, IEEE

International Conference on Robotics and Automation, May 2009, pp. 489–494.

[93] Ulrich Reiser, Christian Connette, Jan Fischer, Jens Kubacki, Alexander Bubeck,

Florian Weisshardt, Theo Jacobs, Christopher Parlitz, M Hagele, and Alexander

Verl, Care-o-bot R© 3-creating a product vision for service robot applications

by integrating design and technology, IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2009, pp. 1992–1998.

127

[94] Rethink Robotics, Baxter: A Unique Robot with Unique Features, 2013,

http://www.rethinkrobotics.com/index.php/products/baxter.

[95] C. Rhee, W. Chung, M. Kim, Y. Shim, and H. Lee, Door opening control using

the multi-fingered robotic hand for the indoor service robot, IEEE International

Conference on Robotics and Automation, 2004.

[96] S. Rodriguez, Xinyu Tang, J. M. Lien, and Nancy M. Amato, An obstacle-based

rapidly-exploring random tree, IEEE International Conference on Robotics and

Automation, 2006.

[97] T. Ruhr, J. Sturm, D. Pangercic, M. Beetz, and D. Cremers, A generalized frame-

work for opening doors and drawers in kitchen environments, IEEE International

Conference on Robotics and Automation, 2012.

[98] John Schulman, Alex Lee, Ibrahim Awwal, Henry Bradlow, and Pieter Abbeel,

Finding locally optimal, collision-free trajectories with sequential convex opti-

mization, Robotics: Science and Systems, 2013.

[99] Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani, Manipula-

tion planning with probabilistic roadmaps, The International Journal of Robotics

Research 23 (2004), no. 7-8, 729–746.

[100] Tomomichi Sugihara and Yoshihiko Nakamura, Whole-body cooperative balancing

of humanoid robot using cog jacobian, IEEE-RSJ International Conference on

Intelligent Robots and Systems, vol. 3, 2002, pp. 2575–2580.

128

[101] Xinyu Tang, S. Thomas, and N.M. Amato, Planning with reachable distances:

Fast enforcement of closure constraints, IEEE International Conference on

Robotics and Automation, April 2007, pp. 2694–2699.

[102] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Henning,

T. Hofmann, M. Krell, and T. Schmidt, Map learning and high-speed navigation

in RHINO, AI-based Mobile Robots: Case Studies of Successful Robot Systems

(D. Kortenkamp, R.P. Bonasso, and R Murphy, eds.), MIT Press, 1998.

[103] J.C. Trinkle and R.J. Milgram, Motion planning for planar n-bar mechanisms

with revolute joints, IEEE-RSJ International Conference on Intelligent Robots

and Systems, vol. 3, 2001, pp. 1602–1608.

[104] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann, Humanoid

motion planning for dual-arm manipulation and re-grasping tasks, IEEE-RSJ

International Conference on Intelligent Robots and Systems, Oct. 2009, pp. 2464–

2470.

[105] Paul Vernaza and Daniel D Lee, Learning dimensional descent for optimal

motion planning in high-dimensional spaces, AAAI, 2011.

[106] Paul Vernaza and Daniel D Lee, Learning and exploiting low-dimensional struc-

ture for efficient holonomic motion planning in high-dimensional spaces, The

International Journal of Robotics Research 31 (2012), no. 14, 1739–1760.

129

[107] Paul Vernaza, Daniel D Lee, and Seung-Joon Yi, Learning and planning high-

dimensional physical trajectories via structured Lagrangians, IEEE International

Conference on Robotics and Automation, 2010, pp. 846–852.

[108] Miomir Vukobratović and Branislav Borovac, Zero-moment pointthirty five years

of its life, International Journal of Humanoid Robotics 1 (2004), no. 01, 157–173.

[109] B. J. W. Waarsing, M. Nuttin, and H. Van Brussel, Behaviour-based mobile

manipulation: The opening of a door, International Workshop on Advances in

Service Robotics, 2003, pp. 168–175.

[110] Glenn Wagner and Howie Choset, M*: A complete multirobot path planning

algorithm with performance bounds, IEEE-RSJ International Conference on

Intelligent Robots and Systems, Sept. 2011, pp. 3260–3267.

[111] Jason Wolfe, Bhaskara Marthi, and Stuart Russell, Combined task and motion

planning for mobile manipulation, International Conference on Automated

Planning and Scheduling, 2010, pp. 254–258.

[112] Dawen Xie and N.M. Amato, A kinematics-based probabilistic roadmap method

for high DOF closed chain systems, IEEE International Conference on Robotics

and Automation, vol. 1, May 2004, pp. 473–478.

[113] J.H. Yakey, S.M. LaValle, and L.E. Kavraki, Randomized path planning for

linkages with closed kinematic chains, IEEE Transactions on Robotics and

Automation 17 (2001), no. 6, 951–958.

130

[114] F. Zacharias, W. Sepp, C. Borst, and G. Hirzinger, Using a model of the

reachable workspace to position mobile manipulators for 3-D trajectories, IEEE-

RAS International Conference on Humanoid Robots, Dec. 2009, pp. 55–61.

[115] Rong Zhou and Eric A Hansen, Multiple sequence alignment using Anytime

A*, Proceedings of the National Conference on Artificial Intelligence, 2002,

pp. 975–977.

131

	University of Pennsylvania
	ScholarlyCommons
	1-1-2013

	Motion Primitives and Planning for Robots with Closed Chain Systems and Changing Topologies
	Steven Robert Gray
	Recommended Citation

	Motion Primitives and Planning for Robots with Closed Chain Systems and Changing Topologies
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	tmp.1408637311.pdf.2v5Uf

