138 research outputs found

    Human-robot Interaction For Multi-robot Systems

    Get PDF
    Designing an effective human-robot interaction paradigm is particularly important for complex tasks such as multi-robot manipulation that require the human and robot to work together in a tightly coupled fashion. Although increasing the number of robots can expand the area that the robots can cover within a bounded period of time, a poor human-robot interface will ultimately compromise the performance of the team of robots. However, introducing a human operator to the team of robots, does not automatically improve performance due to the difficulty of teleoperating mobile robots with manipulators. The human operator’s concentration is divided not only among multiple robots but also between controlling each robot’s base and arm. This complexity substantially increases the potential neglect time, since the operator’s inability to effectively attend to each robot during a critical phase of the task leads to a significant degradation in task performance. There are several proven paradigms for increasing the efficacy of human-robot interaction: 1) multimodal interfaces in which the user controls the robots using voice and gesture; 2) configurable interfaces which allow the user to create new commands by demonstrating them; 3) adaptive interfaces which reduce the operator’s workload as necessary through increasing robot autonomy. This dissertation presents an evaluation of the relative benefits of different types of user interfaces for multi-robot systems composed of robots with wheeled bases and three degree of freedom arms. It describes a design for constructing low-cost multi-robot manipulation systems from off the shelf parts. User expertise was measured along three axes (navigation, manipulation, and coordination), and participants who performed above threshold on two out of three dimensions on a calibration task were rated as expert. Our experiments reveal that the relative expertise of the user was the key determinant of the best performing interface paradigm for that user, indicating that good user modiii eling is essential for designing a human-robot interaction system that will be used for an extended period of time. The contributions of the dissertation include: 1) a model for detecting operator distraction from robot motion trajectories; 2) adjustable autonomy paradigms for reducing operator workload; 3) a method for creating coordinated multi-robot behaviors from demonstrations with a single robot; 4) a user modeling approach for identifying expert-novice differences from short teleoperation traces

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    General Concepts for Human Supervision of Autonomous Robot Teams

    Get PDF
    For many dangerous, dirty or dull tasks like in search and rescue missions, deployment of autonomous teams of robots can be beneficial due to several reasons. First, robots can replace humans in the workspace. Second, autonomous robots reduce the workload of a human compared to teleoperated robots, and therefore multiple robots can in principle be supervised by a single human. Third, teams of robots allow distributed operation in time and space. This thesis investigates concepts of how to efficiently enable a human to supervise and support an autonomous robot team, as common concepts for teleoperation of robots do not apply because of the high mental workload. The goal is to find a way in between the two extremes of full autonomy and pure teleoperation, by allowing to adapt the robots’ level of autonomy to the current situation and the needs of the human supervisor. The methods presented in this thesis make use of the complementary strengths of humans and robots, by letting the robots do what they are good at, while the human should support the robots in situations that correspond to the human strengths. To enable this type of collaboration between a human and a robot team, the human needs to have an adequate knowledge about the current state of the robots, the environment, and the mission. For this purpose, the concept of situation overview (SO) has been developed in this thesis, which is composed of the two components robot SO and mission SO. Robot SO includes information about the state and activities of each single robot in the team, while mission SO deals with the progress of the mission and the cooperation between the robots. For obtaining SO a new event-based communication concept is presented in this thesis, that allows the robots to aggregate information into discrete events using methods from complex event processing. The quality and quantity of the events that are actually sent to the supervisor can be adapted during runtime by defining positive and negative policies for (not) sending events that fulfill specific criteria. This reduces the required communication bandwidth compared to sending all available data. Based on SO, the supervisor is enabled to efficiently interact with the robot team. Interactions can be initiated either by the human or by the robots. The developed concept for robot-initiated interactions is based on queries, that allow the robots to transfer decisions to another process or the supervisor. Various modes for answering the queries, ranging from fully autonomous to pure human decisions, allow to adapt the robots’ level of autonomy during runtime. Human-initiated interactions are limited to high-level commands, whereas interactions on the action level (e. g., teleoperation) are avoided, to account for the specific strengths of humans and robots. These commands can in principle be applied to quite general classes of task allocation methods for autonomous robot teams, e. g., in terms of specific restrictions, which are introduced into the system as constraints. In that way, the desired allocations emerge implicitly because of the introduced constraints, and the task allocation method does not need to be aware of the human supervisor in the loop. This method is applicable to different task allocation approaches, e. g., instantaneous or time-extended task assignments, and centralized or distributed algorithms. The presented methods are evaluated by a number of different experiments with physical and simulated scenarios from urban search and rescue as well as robot soccer, and during robot competitions. The results show that with these methods a human supervisor can significantly improve the robot team performance

    Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Get PDF
    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Multirobot Systems: A Classification Focused on Coordination

    Full text link

    Trust in Robots

    Get PDF
    Robots are increasingly becoming prevalent in our daily lives within our living or working spaces. We hope that robots will take up tedious, mundane or dirty chores and make our lives more comfortable, easy and enjoyable by providing companionship and care. However, robots may pose a threat to human privacy, safety and autonomy; therefore, it is necessary to have constant control over the developing technology to ensure the benevolent intentions and safety of autonomous systems. Building trust in (autonomous) robotic systems is thus necessary. The title of this book highlights this challenge: “Trust in robots—Trusting robots”. Herein, various notions and research areas associated with robots are unified. The theme “Trust in robots” addresses the development of technology that is trustworthy for users; “Trusting robots” focuses on building a trusting relationship with robots, furthering previous research. These themes and topics are at the core of the PhD program “Trust Robots” at TU Wien, Austria

    Human-Robot Collaborations in Industrial Automation

    Get PDF
    Technology is changing the manufacturing world. For example, sensors are being used to track inventories from the manufacturing floor up to a retail shelf or a customer’s door. These types of interconnected systems have been called the fourth industrial revolution, also known as Industry 4.0, and are projected to lower manufacturing costs. As industry moves toward these integrated technologies and lower costs, engineers will need to connect these systems via the Internet of Things (IoT). These engineers will also need to design how these connected systems interact with humans. The focus of this Special Issue is the smart sensors used in these human–robot collaborations
    corecore