44 research outputs found

    Scalable Visualization of Semantic Nets using Power-Law Graphs

    Full text link

    Faceted Search of Heterogeneous Geographic Information for Dynamic Map Projection

    Get PDF
    This paper proposes a faceted information exploration model that supports coarse-grained and fine-grained focusing of geographic maps by offering a graphical representation of data attributes within interactive widgets. The proposed approach enables (i) a multi-category projection of long-lasting geographic maps, based on the proposal of efficient facets for data exploration in sparse and noisy datasets, and (ii) an interactive representation of the search context based on widgets that support data visualization, faceted exploration, category-based information hiding and transparency of results at the same time. The integration of our model with a semantic representation of geographical knowledge supports the exploration of information retrieved from heterogeneous data sources, such as Public Open Data and OpenStreetMap. We evaluated our model with users in the OnToMap collaborative Web GIS. The experimental results show that, when working on geographic maps populated with multiple data categories, it outperforms simple category-based map projection and traditional faceted search tools, such as checkboxes, in both user performance and experience

    Ontology specific visual canvas generation to facilitate sense-making-an algorithmic approach

    Get PDF
    Ontologies are domain-specific conceptualizations that are both human and machine-readable. Due to this remarkable attribute of ontologies, its applications are not limited to computing domains. Banking, medicine, agriculture, and law are a few of the non-computing domains, where ontologies are being used very effectively. When creating ontologies for non-computing domains, involvement of the non-computing domain specialists like bankers, lawyers, farmers become very vital. Hence, they are not semantic specialists, particularly designed visualization assistance is required for the ontology schema verifications and sense-making. Existing visualization methods are not fine-tuned for non-technical domain specialists and there are lots of complexities. In this research, a novel algorithm capable of generating domain specialists’ friendlier visualization canvas has been explored. This proposed algorithm and the visualization canvas has been tested for three different domains and overall success of 85% has been yielded

    Visualization of Time-Varying Data from Atomistic Simulations and Computational Fluid Dynamics

    Get PDF
    Time-varying data from simulations of dynamical systems are rich in spatio-temporal information. A key challenge is how to analyze such data for extracting useful information from the data and displaying spatially evolving features in the space-time domain of interest. We develop/implement multiple approaches toward visualization-based analysis of time-varying data obtained from two common types of dynamical simulations: molecular dynamics (MD) and computational fluid dynamics (CFD). We also make application case studies. Parallel first-principles molecular dynamics simulations produce massive amounts of time-varying three-dimensional scattered data representing atomic (molecular) configurations for material system being simulated. Rendering the atomic position-time series along with the extracted additional information helps us understand the microscopic processes in complex material system at atomic length and time scales. Radial distribution functions, coordination environments, and clusters are computed and rendered for visualizing structural behavior of the simulated material systems. Atom (particle) trajectories and displacement data are extracted and rendered for visualizing dynamical behavior of the system. While improving our atomistic visualization system to make it versatile, stable and scalable, we focus mainly on atomic trajectories. Trajectory rendering can represent complete simulation information in a single display; however, trajectories get crowded and the associated clutter/occlusion problem becomes serious for even moderate data size. We present and assess various approaches for clutter reduction including constrained rendering, basic and adaptive position merging, and information encoding. Data model with HDF5 and partial I/O, and GLSL shading are adopted to enhance the rendering speed and quality of the trajectories. For applications, a detailed visualization-based analysis is carried out for simulated silicate melts such as model basalt systems. On the other hand, CFD produces temporally and spatially resolved numerical data for fluid systems consisting of a million to tens of millions of cells (mesh points). We implement time surfaces (in particular, evolving surfaces of spheres) for visualizing the vector (flow) field to study the simulated mixing of fluids in the stirred tank

    Model driven design and data integration in semantic web information systems

    Get PDF
    The Web is quickly evolving in many ways. It has evolved from a Web of documents into a Web of applications in which a growing number of designers offer new and interactive Web applications with people all over the world. However, application design and implementation remain complex, error-prone and laborious. In parallel there is also an evolution from a Web of documents into a Web of `knowledge' as a growing number of data owners are sharing their data sources with a growing audience. This brings the potential new applications for these data sources, including scenarios in which these datasets are reused and integrated with other existing and new data sources. However, the heterogeneity of these data sources in syntax, semantics and structure represents a great challenge for application designers. The Semantic Web is a collection of standards and technologies that offer solutions for at least the syntactic and some structural issues. If offers semantic freedom and flexibility, but this leaves the issue of semantic interoperability. In this thesis we present Hera-S, an evolution of the Model Driven Web Engineering (MDWE) method Hera. MDWEs allow designers to create data centric applications using models instead of programming. Hera-S especially targets Semantic Web sources and provides a flexible method for designing personalized adaptive Web applications. Hera-S defines several models that together define the target Web application. Moreover we implemented a framework called Hydragen, which is able to execute the Hera-S models to run the desired Web application. Hera-S' core is the Application Model (AM) in which the main logic of the application is defined, i.e. defining the groups of data elements that form logical units or subunits, the personalization conditions, and the relationships between the units. Hera-S also uses a so-called Domain Model (DM) that describes the content and its structure. However, this DM is not Hera-S specific, but instead allows any Semantic Web source representation as its DM, as long as its content can be queried by the standardized Semantic Web query language SPARQL. The same holds for the User Model (UM). The UM can be used for personalization conditions, but also as a source of user-related content if necessary. In fact, the difference between DM and UM is conceptual as their implementation within Hydragen is the same. Hera-S also defines a presentation model (PM) which defines presentation details of elements like order and style. In order to help designers with building their Web applications we have introduced a toolset, Hera Studio, which allows to build the different models graphically. Hera Studio also provides some additional functionality like model checking and deployment of the models in Hydragen. Both Hera-S and its implementation Hydragen are designed to be flexible regarding the user of models. In order to achieve this Hydragen is a stateless engine that queries for relevant information from the models at every page request. This allows the models and data to be changed in the datastore during runtime. We show that one way to exploit this flexibility is by applying aspect-orientation to the AM. Aspect-orientation allows us to dynamically inject functionality that pervades the entire application. Another way to exploit Hera-S' flexibility is in reusing specialized components, e.g. for presentation generation. We present a configuration of Hydragen in which we replace our native presentation generation functionality by the AMACONT engine. AMACONT provides more extensive multi-level presentation generation and adaptation capabilities as well aspect-orientation and a form of semantic based adaptation. Hera-S was designed to allow the (re-)use of any (Semantic) Web datasource. It even opens up the possibility for data integration at the back end, by using an extendible storage layer in our database of choice Sesame. However, even though theoretically possible it still leaves much of the actual data integration issue. As this is a recurring issue in many domains, a broader challenge than for Hera-S design only, we decided to look at this issue in isolation. We present a framework called Relco which provides a language to express data transformation operations as well as a collection of techniques that can be used to (semi-)automatically find relationships between concepts in different ontologies. This is done with a combination of syntactic, semantic and collaboration techniques, which together provide strong clues for which concepts are most likely related. In order to prove the applicability of Relco we explore five application scenarios in different domains for which data integration is a central aspect. This includes a cultural heritage portal, Explorer, for which data from several datasources was integrated and was made available by a mapview, a timeline and a graph view. Explorer also allows users to provide metadata for objects via a tagging mechanism. Another application is SenSee: an electronic TV-guide and recommender. TV-guide data was integrated and enriched with semantically structured data from several sources. Recommendations are computed by exploiting the underlying semantic structure. ViTa was a project in which several techniques for tagging and searching educational videos were evaluated. This includes scenarios in which user tags are related with an ontology, or other tags, using the Relco framework. The MobiLife project targeted the facilitation of a new generation of mobile applications that would use context-based personalization. This can be done using a context-based user profiling platform that can also be used for user model data exchange between mobile applications using technologies like Relco. The final application scenario that is shown is from the GRAPPLE project which targeted the integration of adaptive technology into current learning management systems. A large part of this integration is achieved by using a user modeling component framework in which any application can store user model information, but which can also be used for the exchange of user model data

    On cross-domain social semantic learning

    Get PDF
    Approximately 2.4 billion people are now connected to the Internet, generating massive amounts of data through laptops, mobile phones, sensors and other electronic devices or gadgets. Not surprisingly then, ninety percent of the world's digital data was created in the last two years. This massive explosion of data provides tremendous opportunity to study, model and improve conceptual and physical systems from which the data is produced. It also permits scientists to test pre-existing hypotheses in various fields with large scale experimental evidence. Thus, developing computational algorithms that automatically explores this data is the holy grail of the current generation of computer scientists. Making sense of this data algorithmically can be a complex process, specifically due to two reasons. Firstly, the data is generated by different devices, capturing different aspects of information and resides in different web resources/ platforms on the Internet. Therefore, even if two pieces of data bear singular conceptual similarity, their generation, format and domain of existence on the web can make them seem considerably dissimilar. Secondly, since humans are social creatures, the data often possesses inherent but murky correlations, primarily caused by the causal nature of direct or indirect social interactions. This drastically alters what algorithms must now achieve, necessitating intelligent comprehension of the underlying social nature and semantic contexts within the disparate domain data and a quantifiable way of transferring knowledge gained from one domain to another. Finally, the data is often encountered as a stream and not as static pages on the Internet. Therefore, we must learn, and re-learn as the stream propagates. The main objective of this dissertation is to develop learning algorithms that can identify specific patterns in one domain of data which can consequently augment predictive performance in another domain. The research explores existence of specific data domains which can function in synergy with another and more importantly, proposes models to quantify the synergetic information transfer among such domains. We include large-scale data from various domains in our study: social media data from Twitter, multimedia video data from YouTube, video search query data from Bing Videos, Natural Language search queries from the web, Internet resources in form of web logs (blogs) and spatio-temporal social trends from Twitter. Our work presents a series of solutions to address the key challenges in cross-domain learning, particularly in the field of social and semantic data. We propose the concept of bridging media from disparate sources by building a common latent topic space, which represents one of the first attempts toward answering sociological problems using cross-domain (social) media. This allows information transfer between social and non-social domains, fostering real-time socially relevant applications. We also engineer a concept network from the semantic web, called semNet, that can assist in identifying concept relations and modeling information granularity for robust natural language search. Further, by studying spatio-temporal patterns in this data, we can discover categorical concepts that stimulate collective attention within user groups.Includes bibliographical references (pages 210-214)

    Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data

    Get PDF
    This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and

    Promoting Data Journalism with Purpose-Made Systems: A case study of the benefits of purpose-made data journalism systems among Norwegian Data Journalists

    Get PDF
    The research project presented in this thesis is a case study investigating the usefulness of purpose-made data journalism systems. The study consists of two investigations, the first informal and exploratory, and the other more extensive and rigorous. The study features interviews with Norwegian data journalists based in the city of Bergen, which constitutes the main source of data. As part of the research, a prototype purpose-made data journalism system has been developed, based on preliminary findings from the exploratory investigation. The research carried out indicates that there is potential for developing computer systems designed to solve certain specific data journalism systems, concluding with a proposed application.Masteroppgave i informasjonsvitenskapINFO390MASV-IKTMASV-INF
    corecore