141 research outputs found

    Robust and Flexible Persistent Scatterer Interferometry for Long-Term and Large-Scale Displacement Monitoring

    Get PDF
    Die Persistent Scatterer Interferometrie (PSI) ist eine Methode zur Überwachung von Verschiebungen der Erdoberfläche aus dem Weltraum. Sie basiert auf der Identifizierung und Analyse von stabilen Punktstreuern (sog. Persistent Scatterer, PS) durch die Anwendung von Ansätzen der Zeitreihenanalyse auf Stapel von SAR-Interferogrammen. PS Punkte dominieren die Rückstreuung der Auflösungszellen, in denen sie sich befinden, und werden durch geringfügige Dekorrelation charakterisiert. Verschiebungen solcher PS Punkte können mit einer potenziellen Submillimetergenauigkeit überwacht werden, wenn Störquellen effektiv minimiert werden. Im Laufe der Zeit hat sich die PSI in bestimmten Anwendungen zu einer operationellen Technologie entwickelt. Es gibt jedoch immer noch herausfordernde Anwendungen für die Methode. Physische Veränderungen der Landoberfläche und Änderungen in der Aufnahmegeometrie können dazu führen, dass PS Punkte im Laufe der Zeit erscheinen oder verschwinden. Die Anzahl der kontinuierlich kohärenten PS Punkte nimmt mit zunehmender Länge der Zeitreihen ab, während die Anzahl der TPS Punkte zunimmt, die nur während eines oder mehrerer getrennter Segmente der analysierten Zeitreihe kohärent sind. Daher ist es wünschenswert, die Analyse solcher TPS Punkte in die PSI zu integrieren, um ein flexibles PSI-System zu entwickeln, das in der Lage ist mit dynamischen Veränderungen der Landoberfläche umzugehen und somit ein kontinuierliches Verschiebungsmonitoring ermöglicht. Eine weitere Herausforderung der PSI besteht darin, großflächiges Monitoring in Regionen mit komplexen atmosphärischen Bedingungen durchzuführen. Letztere führen zu hoher Unsicherheit in den Verschiebungszeitreihen bei großen Abständen zur räumlichen Referenz. Diese Arbeit befasst sich mit Modifikationen und Erweiterungen, die auf der Grund lage eines bestehenden PSI-Algorithmus realisiert wurden, um einen robusten und flexiblen PSI-Ansatz zu entwickeln, der mit den oben genannten Herausforderungen umgehen kann. Als erster Hauptbeitrag wird eine Methode präsentiert, die TPS Punkte vollständig in die PSI integriert. In Evaluierungsstudien mit echten SAR Daten wird gezeigt, dass die Integration von TPS Punkten tatsächlich die Bewältigung dynamischer Veränderungen der Landoberfläche ermöglicht und mit zunehmender Zeitreihenlänge zunehmende Relevanz für PSI-basierte Beobachtungsnetzwerke hat. Der zweite Hauptbeitrag ist die Vorstellung einer Methode zur kovarianzbasierten Referenzintegration in großflächige PSI-Anwendungen zur Schätzung von räumlich korreliertem Rauschen. Die Methode basiert auf der Abtastung des Rauschens an Referenzpixeln mit bekannten Verschiebungszeitreihen und anschließender Interpolation auf die restlichen PS Pixel unter Berücksichtigung der räumlichen Statistik des Rauschens. Es wird in einer Simulationsstudie sowie einer Studie mit realen Daten gezeigt, dass die Methode überlegene Leistung im Vergleich zu alternativen Methoden zur Reduktion von räumlich korreliertem Rauschen in Interferogrammen mittels Referenzintegration zeigt. Die entwickelte PSI-Methode wird schließlich zur Untersuchung von Landsenkung im Vietnamesischen Teil des Mekong Deltas eingesetzt, das seit einigen Jahrzehnten von Landsenkung und verschiedenen anderen Umweltproblemen betroffen ist. Die geschätzten Landsenkungsraten zeigen eine hohe Variabilität auf kurzen sowie großen räumlichen Skalen. Die höchsten Senkungsraten von bis zu 6 cm pro Jahr treten hauptsächlich in städtischen Gebieten auf. Es kann gezeigt werden, dass der größte Teil der Landsenkung ihren Ursprung im oberflächennahen Untergrund hat. Die präsentierte Methode zur Reduzierung von räumlich korreliertem Rauschen verbessert die Ergebnisse signifikant, wenn eine angemessene räumliche Verteilung von Referenzgebieten verfügbar ist. In diesem Fall wird das Rauschen effektiv reduziert und unabhängige Ergebnisse von zwei Interferogrammstapeln, die aus unterschiedlichen Orbits aufgenommen wurden, zeigen große Übereinstimmung. Die Integration von TPS Punkten führt für die analysierte Zeitreihe von sechs Jahren zu einer deutlich größeren Anzahl an identifizierten TPS als PS Punkten im gesamten Untersuchungsgebiet und verbessert damit das Beobachtungsnetzwerk erheblich. Ein spezieller Anwendungsfall der TPS Integration wird vorgestellt, der auf der Clusterung von TPS Punkten basiert, die innerhalb der analysierten Zeitreihe erschienen, um neue Konstruktionen systematisch zu identifizieren und ihre anfängliche Bewegungszeitreihen zu analysieren

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Sea Ice Extraction via Remote Sensed Imagery: Algorithms, Datasets, Applications and Challenges

    Full text link
    The deep learning, which is a dominating technique in artificial intelligence, has completely changed the image understanding over the past decade. As a consequence, the sea ice extraction (SIE) problem has reached a new era. We present a comprehensive review of four important aspects of SIE, including algorithms, datasets, applications, and the future trends. Our review focuses on researches published from 2016 to the present, with a specific focus on deep learning-based approaches in the last five years. We divided all relegated algorithms into 3 categories, including classical image segmentation approach, machine learning-based approach and deep learning-based methods. We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets and others. The applications are presented in 4 aspects including climate research, navigation, geographic information systems (GIS) production and others. It also provides insightful observations and inspiring future research directions.Comment: 24 pages, 6 figure

    Automated and robust geometric and spectral fusion of multi-sensor, multi-spectral satellite images

    Get PDF
    Die in den letzten Jahrzehnten aufgenommenen Satellitenbilder zur Erdbeobachtung bieten eine ideale Grundlage für eine genaue Langzeitüberwachung und Kartierung der Erdoberfläche und Atmosphäre. Unterschiedliche Sensoreigenschaften verhindern jedoch oft eine synergetische Nutzung. Daher besteht ein dringender Bedarf heterogene Multisensordaten zu kombinieren und als geometrisch und spektral harmonisierte Zeitreihen nutzbar zu machen. Diese Dissertation liefert einen vorwiegend methodischen Beitrag und stellt zwei neu entwickelte Open-Source-Algorithmen zur Sensorfusion vor, die gründlich evaluiert, getestet und validiert werden. AROSICS, ein neuer Algorithmus zur Co-Registrierung und geometrischen Harmonisierung von Multisensor-Daten, ermöglicht eine robuste und automatische Erkennung und Korrektur von Lageverschiebungen und richtet die Daten an einem gemeinsamen Koordinatengitter aus. Der zweite Algorithmus, SpecHomo, wurde entwickelt, um unterschiedliche spektrale Sensorcharakteristika zu vereinheitlichen. Auf Basis von materialspezifischen Regressoren für verschiedene Landbedeckungsklassen ermöglicht er nicht nur höhere Transformationsgenauigkeiten, sondern auch die Abschätzung einseitig fehlender Spektralbänder. Darauf aufbauend wurde in einer dritten Studie untersucht, inwieweit sich die Abschätzung von Brandschäden aus Landsat mittels synthetischer Red-Edge-Bänder und der Verwendung dichter Zeitreihen, ermöglicht durch Sensorfusion, verbessern lässt. Die Ergebnisse zeigen die Effektivität der entwickelten Algorithmen zur Verringerung von Inkonsistenzen bei Multisensor- und Multitemporaldaten sowie den Mehrwert einer geometrischen und spektralen Harmonisierung für nachfolgende Produkte. Synthetische Red-Edge-Bänder erwiesen sich als wertvoll bei der Abschätzung vegetationsbezogener Parameter wie z. B. Brandschweregraden. Zudem zeigt die Arbeit das große Potenzial zur genaueren Überwachung und Kartierung von sich schnell entwickelnden Umweltprozessen, das sich aus einer Sensorfusion ergibt.Earth observation satellite data acquired in recent years and decades provide an ideal data basis for accurate long-term monitoring and mapping of the Earth's surface and atmosphere. However, the vast diversity of different sensor characteristics often prevents synergetic use. Hence, there is an urgent need to combine heterogeneous multi-sensor data to generate geometrically and spectrally harmonized time series of analysis-ready satellite data. This dissertation provides a mainly methodical contribution by presenting two newly developed, open-source algorithms for sensor fusion, which are both thoroughly evaluated as well as tested and validated in practical applications. AROSICS, a novel algorithm for multi-sensor image co-registration and geometric harmonization, provides a robust and automated detection and correction of positional shifts and aligns the data to a common coordinate grid. The second algorithm, SpecHomo, was developed to unify differing spectral sensor characteristics. It relies on separate material-specific regressors for different land cover classes enabling higher transformation accuracies and the estimation of unilaterally missing spectral bands. Based on these algorithms, a third study investigated the added value of synthesized red edge bands and the use of dense time series, enabled by sensor fusion, for the estimation of burn severity and mapping of fire damage from Landsat. The results illustrate the effectiveness of the developed algorithms to reduce multi-sensor, multi-temporal data inconsistencies and demonstrate the added value of geometric and spectral harmonization for subsequent products. Synthesized red edge information has proven valuable when retrieving vegetation-related parameters such as burn severity. Moreover, using sensor fusion for combining multi-sensor time series was shown to offer great potential for more accurate monitoring and mapping of quickly evolving environmental processes

    Precise orbit determination of LEO satellites : a systematic review

    Get PDF
    The need for precise orbit determination (POD) has grown significantly due to the increased amount of space-based activities taking place at an accelerating pace. Accurate POD positively contributes to achieving the requirements of Low-Earth Orbit (LEO) satellite missions, including improved tracking, reliability and continuity. This research aims to systematically analyze the LEO–POD in four aspects: (i) data sources used; (ii) POD technique implemented; (iii) validation method applied; (iv) accuracy level obtained. We also present the most used GNSS systems, satellite missions, processing procedures and ephemeris. The review includes studies on LEO–POD algorithms/methods and software published in the last two decades (2000–2021). To this end, 137 primary studies relevant to achieving the objective of this research were identified. After the investigation of these primary studies, it was found that several types of POD techniques have been employed in the POD of LEO satellites, with a clear trend observed for techniques using reduced-dynamic model, least-squares solvers, dual-frequency signals with undifferenced phase and code observations in post-processing mode. This review provides an understanding of the various POD techniques, dataset utilized, validation techniques, and accuracy level of LEO satellites, which have interest to developers of small satellites, new researchers and practitioners.© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.fi=vertaisarvioitu|en=peerReviewed

    Télédétection spatiale de dépôts d'avalanche pour le suivi de zones à risque avalancheux

    Get PDF
    La surveillance du manteau neigeux, la prévision de son évolution et l'estimation du risque d'avalanche qui en découle font partie des missions de Météo-France. L'hétérogénéité des montagnes induite par le relief rend la prévision nivo-météorologique de ces territoires particulièrement difficile. A cela s'ajoute une forte demande sociétale de disposer de prévisions fiables de l'enneigement et du risque d'avalanche avec un niveau d'exigence sans cesse en accroissement tant sur la qualité des prévisions que sur leur forme et leur étendue géographique. La mise à disposition aux prévisionnistes nivologues et aux autres acteurs de montagne d'observation systématique sur l'activité avalancheuse permettrait une meilleure qualification des situations prévues par rapport aux événements passés et contribuerait à l'amélioration de la gestion du risque avalancheux. La localisation et l'estimation de taille des dépôts d'avalanches sont d'une grande importance pour les études de stabilité du manteau neigeux. Les avancées en matière de télédétection spatiale offrent la possibilité aux chercheurs et acteurs de montagne de suivre au plus près l'évolution du manteau neigeux. Dans cette thèse, nous exploitons les données d'observations satellitaires de Sentinel-1 couvrant l'intégralité des Alpes pour détecter les zones de débris avalancheux et pour suivre l'évolution de l'activité avalancheuse à l'échelle d'une région d'intérêt. Une méthode est développée permettant de détecter automatiquement les zones de débris d'avalanche de neige en utilisant une technique de segmentation novatrices des images Sentinel-1. Plusieurs autres développements algorithmiques sont menés pour améliorer les détections impliquant des méthodes de filtrage de fausses détection et de classification pour passer d'un ensemble de pixels avalancheux à un événement avalancheux. Les estimations de débris sont étudiées et leurs dépendances selon la direction de l'orbite, les caractéristiques du terrain (pente, altitude, orientation) examinées. La méthode de détection est également évaluée avec succès à l'aide d'une base de données indépendante issues d’identifications de débris d’avalanches sur une image optique de haute résolution. Par la suite, nous dérivons des indicateurs spatialisés à l'échelle des massifs de l'activité avalancheuses. Il s'agit de lignes de débris d'avalanches estimées par pente et par bandes d'altitudes. Ces indicateurs sont comparés à des données d'observations in-situ. Ce travail de thèse permet le développement de nouveaux produits à valeur ajoutée et est l'occasion d'initier une réflexion sur les besoins pour la prévision du risque d'avalanche et notamment le besoin de disposer d'indicateurs « synthétisables » sur des fenêtres temporelles d'intérêts (hebdomadaire, mensuelle, saisonnière) à des échelles allant de l'échelle locale (de l'événement) à l'échelle du massif

    Volcanic deformation and degassing:the role of volatile exsolution and magma compressibility

    Get PDF
    Integrating multi-parameter observations of volcanic processes is crucial for volcano monitoring. Qualitative models demonstrate that combining observations of volcanic deformation, gas emissions, and other parameters enhances the detection of volcanic unrest and provide insights into the magma plumbing system. Despite the progress made in this field, quantitative models that link these observations are still lacking. Thermodynamic models have been used to constrain the characteristics of magma properties and its plumbing system. In this thesis, I develop models based on melt inclusion data and thermodynamics to reconstruct magma properties such as compressibility, and investigate how magmatic volatile content and magma storage conditions influence observations of volcanic deformation and SO2 degassing.By comparing mafic systems in arc and ocean island settings, I provide evidence for the lack of deformation observed during water-rich arc eruptions. In contrast, despite having low magmatic volatile content, ocean island eruptions have high SO2 emissions due to their high diffusivity, which results in co-eruptive degassing. By comparing model predictions and observations, I show that all magmatic systems experience a certain degree of outgassing prior to an eruption, consistent with current conceptual models of transcrustal magmatic systems. Additionally, integrating time series of deformation, degassing, and extrusion flux can reveal the evolution of magma properties. Using this framework, I provide evidence for the increase in bulk magma compressibility following the removal of the degassed magma during the 2004 eruption of Mount St. Helens. This study contributes to the better understanding of the effects of magmatic volatile content and pre-eruptive gas segregation on the physicochemical properties of magma, and provides a framework for modelling magma properties that can be applied to global volcano monitoring.</div

    Precise Distributed Satellite Navigation: Differential GPS with Sensor-Coupling for Integer Ambiguity Resolution

    Full text link
    Precise relative navigation is a critical enabler for distributed satellites to achieve new mission objectives impossible for a monolithic spacecraft. Carrier phase differential GPS (CDGPS) with integer ambiguity resolution (IAR) is a promising means of achieving cm-level accuracy for high-precision Rendezvous, Proximity-Operations and Docking (RPOD), In-Space Servicing, Assembly and Manufacturing (ISAM) as well as satellite formation flying and swarming. However, IAR is sensitive to received GPS signal noise, especially under severe multi-path or high thermal noise. This paper proposes a sensor-fusion approach to achieve IAR under such conditions in two coupling stages. A loose coupling stage fuses through an Extended Kalman Filter the CDGPS measurements with on-board sensor measurements such as range from cross-links, and vision-based bearing angles. A second tight-coupling stage augments the cost function of the integer weighted least-squares minimization with a soft constraint function using noise-weighted observed-minus-computed residuals from these external sensor measurements. Integer acceptance tests are empirically modified to reflect added constraints. Partial IAR is applied to graduate integer fixing. These proposed techniques are packaged into flight-capable software, with ground truths simulated by the Stanford Space Rendezvous Laboratory's S3 library using state-of-the-art force modelling with relevant sources of errors, and validated in two scenarios: (1) a high multi-path scenario involving rendezvous and docking in low Earth orbit, and (2) a high thermal noise scenario relying only on GPS side-lobe signals during proximity operations in geostationary orbit. This study demonstrates successful IAR in both cases, using the proposed sensor-fusion approach, thus demonstrating potential for high-precision state estimation under adverse signal-to-noise conditions.Comment: 15 pages, 20 figures, IEEE AERO 2024 (pre-print

    Implementation of Sensors and Artificial Intelligence for Environmental Hazards Assessment in Urban, Agriculture and Forestry Systems

    Get PDF
    The implementation of artificial intelligence (AI), together with robotics, sensors, sensor networks, Internet of Things (IoT), and machine/deep learning modeling, has reached the forefront of research activities, moving towards the goal of increasing the efficiency in a multitude of applications and purposes related to environmental sciences. The development and deployment of AI tools requires specific considerations, approaches, and methodologies for their effective and accurate applications. This Special Issue focused on the applications of AI to environmental systems related to hazard assessment in urban, agriculture, and forestry areas
    corecore