91 research outputs found

    Team semantics for the specification and verification of hyperproperties

    Get PDF
    We develop team semantics for Linear Temporal Logic (LTL) to express hyperproperties, which have recently been identified as a key concept in the verification of information flow properties. Conceptually, we consider an asynchronous and a synchronous variant of team semantics. We study basic properties of this new logic and classify the computational complexity of its satisfiability, path, and model checking problem. Further, we examine how extensions of these basic logics react on adding other atomic operators. Finally, we compare its expressivity to the one of HyperLTL, another recently introduced logic for hyperproperties. Our results show that LTL under team semantics is a viable alternative to HyperLTL, which complements the expressivity of HyperLTL and has partially better algorithmic properties

    Expressiveness and Decidability of Temporal Logics for Asynchronous Hyperproperties

    Get PDF
    Hyperproperties are properties of systems that relate different executions traces, with many applications from security to symmetry, consistency models of concurrency, etc. In recent years, different linear-time logics for specifying asynchronous hyperproperties have been investigated. Though model checking of these logics is undecidable, useful decidable fragments have been identified with applications e.g. for asynchronous security analysis. In this paper, we address expressiveness and decidability issues of temporal logics for asynchronous hyperproperties. We compare the expressiveness of these logics together with the extension S1S[E] of S1S with the equal-level predicate by obtaining an almost complete expressiveness picture. We also study the expressive power of these logics when interpreted on singleton sets of traces. We show that for two asynchronous extensions of HyperLTL, checking the existence of a singleton model is already undecidable, and for one of them, namely Context HyperLTL (HyperLTL_C), we establish a characterization of the singleton models in terms of the extension of standard FO[<] over traces with addition. This last result generalizes the well-known equivalence between FO[<] and LTL. Finally, we identify new boundaries on the decidability of model checking HyperLTL_C

    Set Semantics for Asynchronous TeamLTL: Expressivity and Complexity

    Get PDF
    We introduce and develop a set-based semantics for asynchronous TeamLTL. We consider two canonical logics in this setting: the extensions of TeamLTL by the Boolean disjunction and by the Boolean negation. We relate the new semantics with the original semantics based on multisets and establish one of the first positive complexity theoretic results in the temporal team semantics setting. In particular we show that both logics enjoy normal forms that can be utilised to obtain results related to expressivity and complexity (decidability) of the new logics

    Hypernode Automata

    Get PDF
    We introduce hypernode automata as a new specification formalism for hyperproperties of concurrent systems. They are finite automata with nodes labeled with hypernode logic formulas and transitions labeled with actions. A hypernode logic formula specifies relations between sequences of variable values in different system executions. Unlike HyperLTL, hypernode logic takes an asynchronous view on execution traces by constraining the values and the order of value changes of each variable without correlating the timing of the changes. Different execution traces are synchronized solely through the transitions of hypernode automata. Hypernode automata naturally combine asynchronicity at the node level with synchronicity at the transition level. We show that the model-checking problem for hypernode automata is decidable over action-labeled Kripke structures, whose actions induce transitions of the specification automata. For this reason, hypernode automaton is a suitable formalism for specifying and verifying asynchronous hyperproperties, such as declassifying observational determinism in multi-threaded programs

    Expressiveness and Decidability of Temporal Logics for Asynchronous Hyperproperties

    Get PDF
    Hyperproperties are properties of systems that relate different executions traces, with many applications from security to symmetry, consistency models of concurrency, etc. In recent years, different linear-time logics for specifying asynchronous hyperproperties have been investigated. Though model checking of these logics is undecidable, useful decidable fragments have been identified with applications e.g. for asynchronous security analysis. In this paper, we address expressiveness and decidability issues of temporal logics for asynchronous hyperproperties. We compare the expressiveness of these logics together with the extension S1S[E] of S1S with the equal-level predicate by obtaining an almost complete expressiveness picture. We also study the expressive power of these logics when interpreted on singleton sets of traces. We show that for two asynchronous extensions of HyperLTL, checking the existence of a singleton model is already undecidable, and for one of them, namely Context HyperLTL (HyperLTLC), we establish a characterization of the singleton models in terms of the extension of standard FO[<] over traces with addition. This last result generalizes the well-known equivalence between FO[<] and LTL. Finally, we identify new boundaries on the decidability of model checking HyperLTL

    Logical and deep learning methods for temporal reasoning

    Get PDF
    In this thesis, we study logical and deep learning methods for the temporal reasoning of reactive systems. In Part I, we determine decidability borders for the satisfiability and realizability problem of temporal hyperproperties. Temporal hyperproperties relate multiple computation traces to each other and are expressed in a temporal hyperlogic. In particular, we identify decidable fragments of the highly expressive hyperlogics HyperQPTL and HyperCTL*. As an application, we elaborate on an enforcement mechanism for temporal hyperproperties. We study explicit enforcement algorithms for specifications given as formulas in universally quantified HyperLTL. In Part II, we train a (deep) neural network on the trace generation and realizability problem of linear-time temporal logic (LTL). We consider a method to generate large amounts of additional training data from practical specification patterns. The training data is generated with classical solvers, which provide one of many possible solutions to each formula. We demonstrate that it is sufficient to train on those particular solutions such that the neural network generalizes to the semantics of the logic. The neural network can predict solutions even for formulas from benchmarks from the literature on which the classical solver timed out. Additionally, we show that it solves a significant portion of problems from the annual synthesis competition (SYNTCOMP) and even out-of-distribution examples from a recent case study.Diese Arbeit befasst sich mit logischen Methoden und mehrschichtigen Lernmethoden für das zeitabhängige Argumentieren über reaktive Systeme. In Teil I werden die Grenzen der Entscheidbarkeit des Erfüllbarkeits- und des Realisierbarkeitsproblem von temporalen Hypereigenschaften bestimmt. Temporale Hypereigenschaften setzen mehrere Berechnungsspuren zueinander in Beziehung und werden in einer temporalen Hyperlogik ausgedrückt. Insbesondere werden entscheidbare Fragmente der hochexpressiven Hyperlogiken HyperQPTL und HyperCTL* identifiziert. Als Anwendung wird ein Enforcement-Mechanismus für temporale Hypereigenschaften erarbeitet. Explizite Enforcement-Algorithmen für Spezifikationen, die als Formeln in universell quantifiziertem HyperLTL angegeben werden, werden untersucht. In Teil II wird ein (mehrschichtiges) neuronales Netz auf den Problemen der Spurgenerierung und Realisierbarkeit von Linear-zeit Temporallogik (LTL) trainiert. Es wird eine Methode betrachtet, um aus praktischen Spezifikationsmustern große Mengen zusätzlicher Trainingsdaten zu generieren. Die Trainingsdaten werden mit klassischen Solvern generiert, die zu jeder Formel nur eine von vielen möglichen Lösungen liefern. Es wird gezeigt, dass es ausreichend ist, an diesen speziellen Lösungen zu trainieren, sodass das neuronale Netz zur Semantik der Logik generalisiert. Das neuronale Netz kann Lösungen sogar für Formeln aus Benchmarks aus der Literatur vorhersagen, bei denen der klassische Solver eine Zeitüberschreitung hatte. Zusätzlich wird gezeigt, dass das neuronale Netz einen erheblichen Teil der Probleme aus dem jährlichen Synthesewettbewerb (SYNTCOMP) und sogar Beispiele außerhalb der Distribution aus einer aktuellen Fallstudie lösen kann

    Set Semantics for Asynchronous TeamLTL: Expressivity and Complexity

    Full text link
    We introduce and develop a set-based semantics for asynchronous TeamLTL. We consider two canonical logics in this setting: the extensions of TeamLTL by the Boolean disjunction and by the Boolean negation. We establish fascinating connections between the original semantics based on multisets and the new set-based semantics as well as show one of the first positive complexity theoretic results in the temporal team semantics setting. In particular we show that both logics enjoy normal forms that can be utilised to obtain results related to expressivity and complexity (decidability) of the new logics. We also relate and apply our results to recently defined logics whose asynchronicity is formalized via time evaluation functions
    • …
    corecore