69 research outputs found

    Enhanced online programming for industrial robots

    Get PDF
    The use of robots and automation levels in the industrial sector is expected to grow, and is driven by the on-going need for lower costs and enhanced productivity. The manufacturing industry continues to seek ways of realizing enhanced production, and the programming of articulated production robots has been identified as a major area for improvement. However, realizing this automation level increase requires capable programming and control technologies. Many industries employ offline-programming which operates within a manually controlled and specific work environment. This is especially true within the high-volume automotive industry, particularly in high-speed assembly and component handling. For small-batch manufacturing and small to medium-sized enterprises, online programming continues to play an important role, but the complexity of programming remains a major obstacle for automation using industrial robots. Scenarios that rely on manual data input based on real world obstructions require that entire production systems cease for significant time periods while data is being manipulated, leading to financial losses. The application of simulation tools generate discrete portions of the total robot trajectories, while requiring manual inputs to link paths associated with different activities. Human input is also required to correct inaccuracies and errors resulting from unknowns and falsehoods in the environment. This study developed a new supported online robot programming approach, which is implemented as a robot control program. By applying online and offline programming in addition to appropriate manual robot control techniques, disadvantages such as manual pre-processing times and production downtimes have been either reduced or completely eliminated. The industrial requirements were evaluated considering modern manufacturing aspects. A cell-based Voronoi generation algorithm within a probabilistic world model has been introduced, together with a trajectory planner and an appropriate human machine interface. The robot programs so achieved are comparable to manually programmed robot programs and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented. Automated workspace analysis techniques and trajectory smoothing are used to accomplish this. The new robot control program considers the working production environment as a single and complete workspace. Non-productive time is required, but unlike previously reported approaches, this is achieved automatically and in a timely manner. As such, the actual cell-learning time is minimal

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center

    Imitation learning through games: theory, implementation and evaluation

    Get PDF
    Despite a history of games-based research, academia has generally regarded commercial games as a distraction from the serious business of AI, rather than as an opportunity to leverage this existing domain to the advancement of our knowledge. Similarly, the computer game industry still relies on techniques that were developed several decades ago, and has shown little interest in adopting more progressive academic approaches. In recent times, however, these attitudes have begun to change; under- and post-graduate games development courses are increasingly common, while the industry itself is slowly but surely beginning to recognise the potential offered by modern machine-learning approaches, though games which actually implement said approaches on more than a token scale remain scarce. One area which has not yet received much attention from either academia or industry is imitation learning, which seeks to expedite the learning process by exploiting data harvested from demonstrations of a given task. While substantial work has been done in developing imitation techniques for humanoid robot movement, there has been very little exploration of the challenges posed by interactive computer games. Given that such games generally encode reasoning and decision-making behaviours which are inherently more complex and potentially more interesting than limb motion data, that they often provide inbuilt facilities for recording human play, that the generation and collection of training samples is therefore far easier than in robotics, and that many games have vast pre-existing libraries of these recorded demonstrations, it is fair to say that computer games represent an extremely fertile domain for imitation learning research. In this thesis, we argue in favour of using modern, commercial computer games to study, model and reproduce humanlike behaviour. We provide an overview of the biological and robotic imitation literature as well as the current status of game AI, highlighting techniques which may be adapted for the purposes of game-based imitation. We then proceed to describe our contributions to the field of imitation learning itself, which encompass three distinct categories: theory, implementation and evaluation. We first describe the development of a fully-featured Java API - the Quake2 Agent Simulation Environment (QASE) - designed to facilitate both research and education in imitation and general machine-learning, using the game Quake 2 as a testbed. We outline our motivation for developing QASE, discussing the shortcomings of existing APIs and the steps which we have taken to circumvent them. We describe QASE’s network layer, which acts as an interface between the local AI routines and the Quake 2 server on which the game environment is maintained, before detailing the API’s agent architecture, which includes an interface to the MatLab programming environment and the ability to parse and analyse full recordings of game sessions. We conclude the chapter with a discussion of QASE’s adoption by numerous universities as both an undergraduate teaching tool and research platform. We then proceed to describe the various imitative mechanisms which we have developed using QASE and its MatLab integration facilities. We first outline a behaviour model based on a well-known psychological model of human planning. Drawing upon previous research, we also identify a set of believability criteria - elements of agent behaviour which are of particular importance in determining the “humanness” of its in-game appearance. We then detail a reinforcement-learning approach to imitating the human player’s navigation of his environment, centred upon his pursuit of items as strategic goals. In the subsequent section, we describe the integration of this strategic system with a Bayesian mechanism for the imitation of tactical and motion-modelling behaviours. Finally, we outline a model for the imitation of reactive combat behaviours; specifically, weapon-selection and aiming. Experiments are presented in each case to demonstrate the imitative mechanisms’ ability to accurately reproduce observed behaviours. Finally, we criticise the lack of any existing methodology to formally gauge the believability of game agents, and observe that the few previous attempts have been extremely ad-hoc and informal. We therefore propose a generalised approach to such testing; the Bot-Oriented Turing Test (BOTT). This takes the form of an anonymous online questionnaire, an accompanying protocol to which examiners should adhere, and the formulation of a believability index which numerically expresses each agent’s humanness as indicated by its observers, weighted by their experience and the accuracy with which the agents were identified. To both validate the survey approach and to determine the efficacy of our imitative models, we present a series of experiments which use the believability test to evaluate our own imitation agents against both human players and traditional artificial bots. We demonstrate that our imitation agents perform substantially better than even a highly-regarded rule-based agent, and indeed approach the believability of actual human players. Some suggestions for future directions in our research, as well as a broader discussion of open questions, conclude this thesis

    Specifying User Preferences for Autonomous Robots through Interactive Learning

    Get PDF
    This thesis studies a central problem in human-robot interaction (HRI): How can non-expert users specify complex behaviours for autonomous robots? A common technique for robot task specification that does not require expert knowledge is active preference learning. The desired behaviour of a robot is learned by iteratively presenting the user with alternative behaviours of the robot. The user then chooses the alternative they prefer. It is assumed that they make this decision based on an internal, hidden cost function. From the user's choice among the alternatives, the robot learns the hidden user cost function. We use an interactive framework allowing users to create robot task specifications. The behaviour of an autonomous robot can be specified by defining constraints on allowable robot states and actions. For instance, for a mobile robot a user can define traffic rules such as roads, slow zones or areas of avoidance. These constraints form the user-specified terms of the cost function. However, inexperienced users might be oblivious to the impact such constraints have on the robot task performance. Employing an active preference learning framework we present users with the behaviour of the robot following their specification, i.e., the constraints, together with an alternative behaviour where some constraints might be violated. A user cost function trades-off the importance of constraints and the performance of the robot. From the user feedback, the robot learns about the importance of constraints, i.e., parameters in the cost function. We first introduce an algorithm for specification revision that is based on a deterministic user model: We assume that the user always follows the proposed cost function. This allows for dividing the set of possible weights for the user constraints into infeasible and feasible weights whenever user feedback is obtained. In each iteration we present the path the user preferred previously again, together with an alternative path that is optimal for a weight that is feasible with respect to all previous iterations. This path is found with a local search, iterating over the feasible weights until a new path is found. As the number of paths is finite for any discrete motion planner, the algorithm is guaranteed to find the optimal solution within a finite number of iterations. Simulation results show that this approach is suitable to effectively revise user specifications within few iterations. The practicality of the framework is investigated in a user study. The algorithm is extended to learn about multiple tasks for the robot simultaneously, which allows for more realistic scenarios and another active learning component: The choice of task for which the user is presented with two alternative solutions. Through the study we show that nearly all users accept alternative solutions and thus obtain a revised specification through the learning process, leading to a substantial improvement in robot performance. Also, the users whose initial specifications had the largest impact on performance benefit the most from the interactive learning. Next, we weaken the assumptions about the user: In a probabilistic model we do not require the user to always follow our cost function. Based on the sensitivity of a motion planning problem, we show that different values in the user cost function, i.e., weights for the user constraints, do not necessarily lead to different robot behaviour. From the implied discretization of the space of possible parameters we derive an algorithm for efficiently learning a specification revision and demonstrate the performance and robustness in simulations. We build on the notion of sensitivity to an active preference learning technique based on maximum regret, i.e., the maximum error ratio over all possible solutions. We show that active preference learning based on regret substantially outperforms other state of the art approaches. Further, regret based preference learning can be used as an heuristic for both discrete and continuous state and action spaces. An emerging technique for real-time motion planning are state lattice planners, based on a regular discrete set of robot states and pre-computed motions connecting the states, called motion primitives. We study how learning from demonstrations can be used to learn global preferences for robot movement, such as the trade-off between time and jerkiness of the motions. We show how to compute a user optimal set of motion primitives of given size, based on an estimate of the user preferences. We demonstrate that by learning about the motion primitives of a lattice planner, we can shape the robot's behaviour to follow the global user preferences while ensuring good computation time of the motion planner. Furthermore, we study how a robot can simultaneously learn about user preferences on both motions of a lattice planner and parts of the environment when a user is iteratively correcting the robot behaviour. We demonstrate in simulations that this approach is suitable to adapt to user preferences even when the features on the environment that a user considers are not given

    The evaluation of a novel haptic machining VR-based process planning system using an original process planning usability method

    Get PDF
    This thesis provides an original piece of work and contribution to knowledge by creating a new process planning system; Haptic Aided Process Planning (HAPP). This system is based on the combination of haptics and virtual reality (VR). HAPP creates a simulative machining environment where Process plans are automatically generated from the real time logging of a user’s interaction. Further, through the application of a novel usability test methodology, a deeper study of how this approach compares to conventional process planning was undertaken. An abductive research approach was selected and an iterative and incremental development methodology chosen. Three development cycles were undertaken with evaluation studies carried out at the end of each. Each study, the pre-pilot, pilot and industrial, identified progressive refinements to both the usability of HAPP and the usability evaluation method itself. HAPP provided process planners with an environment similar to which they are already familiar. Visual images were used to represent tools and material whilst a haptic interface enabled their movement and positioning by an operator in a manner comparable to their native setting. In this way an intuitive interface was developed that allowed users to plan the machining of parts consisting of features that can be machined on a pillar drill, 21/2D axis milling machine or centre lathe. The planning activities included single or multiple set ups, fixturing and sequencing of cutting operations. The logged information was parsed and output to a process plan including route sheets, operation sheets, tool lists and costing information, in a human readable format. The system evaluation revealed that HAPP, from an expert planners perspective is perceived to be 70% more satisfying to use, 66% more efficient in completing process plans, primarily due to the reduced cognitive load, is more effective producing a higher quality output of information and is 20% more learnable than a traditional process planning approach

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty
    • 

    corecore