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Abstract

This thesis studies a central problem in human-robot interaction (HRI): How can non-
expert users specify complex behaviours for autonomous robots? A common technique
for robot task specification that does not require expert knowledge is active preference
learning. The desired behaviour of a robot is learned by iteratively presenting the user with
alternative behaviours of the robot. The user then chooses the alternative they prefer. It
is assumed that they make this decision based on an internal, hidden cost function. From
the user’s choice among the alternatives, the robot learns the hidden user cost function.

We use an interactive framework allowing users to create robot task specifications. The
behaviour of an autonomous robot can be specified by defining constraints on allowable
robot states and actions. For instance, for a mobile robot a user can define traffic rules such
as roads, slow zones or areas of avoidance. These constraints form the user-specified terms
of the cost function. However, inexperienced users might be oblivious to the impact such
constraints have on the robot task performance. Employing an active preference learning
framework we present users with the behaviour of the robot following their specification,
i.e., the constraints, together with an alternative behaviour where some constraints might
be violated. A user cost function trades-off the importance of constraints and the perfor-
mance of the robot. From the user feedback, the robot learns about the importance of
constraints, i.e., parameters in the cost function.

We first introduce an algorithm for specification revision that is based on a deterministic
user model: We assume that the user always follows the proposed cost function. This allows
for dividing the set of possible weights for the user constraints into infeasible and feasible
weights whenever user feedback is obtained. In each iteration we present the path the user
preferred previously again, together with an alternative path that is optimal for a weight
that is feasible with respect to all previous iterations. This path is found with a local search,
iterating over the feasible weights until a new path is found. As the number of paths is
finite for any discrete motion planner, the algorithm is guaranteed to find the optimal
solution within a finite number of iterations. Simulation results show that this approach
is suitable to effectively revise user specifications within few iterations. The practicality of
the framework is investigated in a user study. The algorithm is extended to learn about
multiple tasks for the robot simultaneously, which allows for more realistic scenarios and
another active learning component: The choice of task for which the user is presented
with two alternative solutions. Through the study we show that nearly all users accept
alternative solutions and thus obtain a revised specification through the learning process,
leading to a substantial improvement in robot performance. Also, the users whose initial
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specifications had the largest impact on performance benefit the most from the interactive
learning.

Next, we weaken the assumptions about the user: In a probabilistic model we do not
require the user to always follow our cost function. Based on the sensitivity of a motion
planning problem, we show that different values in the user cost function, i.e., weights
for the user constraints, do not necessarily lead to different robot behaviour. From the
implied discretization of the space of possible parameters we derive an algorithm for effi-
ciently learning a specification revision and demonstrate the performance and robustness
in simulations. We build on the notion of sensitivity to derive an active preference learning
technique based on maximum regret, i.e., the maximum error ratio over all possible solu-
tions. We show that active preference learning based on regret substantially outperforms
other state of the art approaches. Further, regret based preference learning can be used as
an heuristic for both discrete and continuous state and action spaces.

An emerging technique for real-time motion planning are state lattice planners, based
on a regular discrete set of robot states and pre-computed motions connecting the states,
called motion primitives. We study how learning from demonstrations can be used to learn
global preferences for robot movement, such as the trade-off between time and jerkiness of
the motions. We show how to compute a user optimal set of motion primitives of given
size, based on an estimate of the user preferences. We demonstrate that by learning about
the motion primitives of a lattice planner, we can shape the robot’s behaviour to follow
the global user preferences while ensuring good computation time of the motion planner.
Furthermore, we study how a robot can simultaneously learn about user preferences on
both motions of a lattice planner and parts of the environment when a user is iteratively
correcting the robot behaviour. In simulations we demonstrate that this approach is suit-
able to adapt to user preferences even when the features on the environment that a user
considers are not given.
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Chapter 1

Introduction

1.1 Overview

Autonomous robots are being deployed in a growing range of applications, increasing the
number of settings where robots share the environment or even directly interact with hu-
mans. Despite advancements in robot autonomy and capability, specifying the robots’ task
often still requires a high level of expertise, which can hinder their acceptance in practice
[103, 84, 104]. Consequently, a key challenge in the field of human–robot interaction (HRI)
is enabling a broader range of users to supervise robots.

In this work, we study how non-expert users can efficiently deploy autonomous robots.
While users often have a preference for how a robot should accomplish a task, it is difficult
to directly inform a robot about these preferences. A new branch in HRI research –
reward learning – aims to reduce the burden for the user when specifying robot behaviour
[2, 87, 36, 51, 19, 27].

Broadly speaking, reward learning allows a robot to infer the behaviour a user would
find optimal. In extension to classical approaches such as learning from demonstration,
research in reward learning recently explored more interactive methods where users are
iteratively presented with one or more candidate solutions and then provide feedback.
Common methods for user feedback include correction, comparison and critique [51]. Usu-
ally, the decision making of a user is modelled to follow a cost function, which reduces the
problem to one of learning the function’s parameters. In HRI, user cost functions are often
assumed to be linear, i.e., a weighted sum of features that describe a robot’s behaviour
[87, 37, 20, 78]. Figure 1.1 summarizes the framework: A robot is initially only provided

1



Figure 1.1: Interactive reward learning from human feedback.

with potentially incomplete or inaccurate instructions about its task. Over multiple itera-
tions, the robot presents the user with possible solutions, based on the current belief about
the user preferences. The user then provides feedback, allowing the robot to update its
belief.

One reward robot learning framework that has found increasing attention is active
preference learning. The robot iteratively presents the user with two or more possible
trajectories and then asks the user to choose among them. This framework is particularly
attractive since it minimizes the complexity of the user feedback: Users are not required
to describe or demonstrate how they want the robot to behave – which can be highly
challenging in some applications. Instead users simply indicate which of the presented
solutions they like best.

In this thesis we study user preferences in the context of robot motion planning. We
combine planning objectives such as minimizing length or time of a robot trajectory with
user objectives in a cost function. Asking users to define such cost functions would po-
tentially be challenging for them – therefore we investigate how a robot can reason about
user cost functions using reward learning, with a strong focus on active preference learn-
ing. Throughout this thesis we examine the relationship between parameters of user cost
functions, usually weights for trajectory features, and the set of possible robot trajectories.
Due to the underlying sensitivity of motion planning problems (or more generally, opti-
mization problems), different parameters do not necessarily lead to different trajectories.
This induces a discretization of the parameter space which we exploit to design efficient
algorithms based on active preference learning. We explore different learning frameworks,
iteratively relaxing assumptions on user behaviour and allowing for more complex scenar-
ios. As a running example we consider the problem of a revising user specifications, i.e,
learning the importance of user-defined soft constraints on robot movements. We validate
our work in several extensive simulations and demonstrate the practicality in a user study.
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Figure 1.2: Example environment (white) with obstacles (black) and user defined con-
straints. Soft user constraints include roads (green), speed limit zones (yellow) and areas
of avoidance (red). We compare different possible paths a robot could take, depending on
under what circumstance the constraints must be followed.

1.2 Contributions

Specification revision We study active preference learning as a tool for helping users
to create efficient robot task specifications. Here a specification is a user specific set of
constraints on robot behaviour. For instance, in a warehouse or manufacturing environment
where an autonomous robot performs material transport tasks, a facility operator might
define traffic rules. This can include constraints such as areas of avoidance, one way roads
or speed limits. Together with a defined set of start and goal locations, this yields a
complete specification of a robot task. In practice, designing such rules can be challenging,
as users might have little intuition about how their specification will affect the robot’s
behaviour and therefore the performance of the task. Thus, they might be willing to
accept the violation of less important constraints given it is sufficiently beneficial for task
performance. For instance, Figure 1.2 shows an industrial environment with several user
defined constraints. The robot could take different routes between a fixed start and goal,
depending on how a user values each constraint.

A user likely has a preference for which path is a better solution for the given task, based
on the completion time and on the importance of the constraints. The latter can be cap-
tured via weights, numerically describing the importance of a constraint. However, asking
the user to define these weights is an unintuitive and possibly challenging task. Therefore,
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it would be easier for the user to only provide the spatial definitions of constraints, while
the importance of each constraint is latent.

In Chapter 4 we propose a novel framework for specification revision using active pref-
erence learning. By asking the user to rank potential paths to be taken by the robot, the
relative importance of each constraint can be learned. The initial user input is interpreted
as a specification where all user constraints must be followed, if possible. In each iteration,
the previously preferred path is shown again together with a new candidate path. From
this interactive learning, a revised specification is obtained where the learned weights on
the constraints express their importance, i.e., less important constraints might be violated
if at least the learned required performance benefit is achieved. We capture this trade-off
in a user cost function that combines the path traversal time with weighted features de-
scribing the violation of constraints by the path. Thus, in contrast to other work in reward
learning [87, 46, 112], our features, i.e., the violation of constraints, are user specific. That
is, by providing an initial specification the user identifies regions of the robot’s environment
that define features in the user cost function. During the interaction the user is assumed
to provide feedback that always follows the assumed user cost function. The problem of
learning the desired behaviour of the robot then becomes one of efficiently shrinking a
hypothesis set – the set of paths the robot could take. As a method for active selection
of new paths that are presented to the user we propose a heuristic: In each iteration we
greedily show the user the alternative path from the current hypothesis set with minimal
time, i.e., the path that maximizes the robot’s performance. In simulations, we show that
the framework allows for learning the weights for constraints within few iterations.

Furthermore, the practicality of this framework was investigated in a user study. Chap-
ter 5 extends the learning framework to a multi-task scenario where a robot has to navigate
between various start and goal locations. We show how the learned information can be
combined and introduce another greedy strategy for choosing the task for which the user
is presented with paths such that the expected improvement in performance is maximized.
We then present the details of the study and illustrates how learning user weights helps
users to improve the efficiency of their specifications significantly.

Active preference learning techniques In Chapter 6 we relax the assumption of the
above approach about user feedback: Using a probabilistic model we account for users
that do not always follow our assumed cost function. The motivation is to improve the
robustness of the learning process since users might consider aspects that are not part of
the cost function or simply be uncertain in their decision making and thus act noisily. The
hypothesis set is replaced with a probability space, introducing the demand for a different
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heuristic for the active path selection. We propose two novel approaches, both exploiting
the sensitivity of optimization problems, i.e., the circumstance that different parameters
do not necessarily yield different optimal solutions. The first approach discretizes the set
of all weights appearing in the user cost function. We demonstrate how this technique
allows for specification revision under the relaxed, probabilistic user model and compare
the performance with another state of the art algorithm [87].

In Chapter 7 we present a second approach: Learning preferences using min-max regret.
Let A be the solution for parameters wA of some optimization problem. Regret then
describes how sub-optimal A is under some other parameters wB. In preference learning,
regret describes the error if the robot uses solution A while the user preferences are wB.
We then always present users with solutions (A,B) that maximize the mutual regret,
discounted by the learned probability distribution over weights. A similar concept of
always learning about the current worst case has been applied to learning policies using
inverse reinforcement [18]. We demonstrate how using min-max regret allows for highly
efficient learning of user preferences, outperforming other state of the art techniques [20].

State Lattice Motion Planning An emerging new methodology for robot motion plan-
ning are state lattices [83]. The basic idea is to precompute a set of dynamically feasible
trajectories between few regularly spaced robot states. A pair of states together with a
connecting trajectory is called a motion primitive. The set of motion primitives is often
referred to as the control set. Figure 1.3 shows examples for how a robot can navigate in
an environment with two different sets of motion primitives. In Chapter 8 we study how
a state lattice planner can represent user preferences on the robot’s motions. In contrast
to the specification revision problem where the preferences where on the environment, we
consider preferences about the motion itself such as the trade-off between time and com-
fort for autonomous vehicles. While related research has focsed on learning a cost function
for a fixed set of motion primitives [1, 37], we introduce a novel algorithm that computes
optimal user specific control sets of a given size. That is, after learning an estimate of the
user cost function, we compute a user specific discrete subset of the robot’s action space
which is then used for motion planning. In simulations we illustrated that the proposed
approach is suitable to replicate user preferences learned from demonstrations, and that
constraining the size of the control set allows for a substantial reduction in planning time.

Learning from Corrections In our framework for active preference learning for specifi-
cation revision users have to choose among the presented alternatives for robot behaviours.
However, if both alternatives are more or less equally undesired for the user, this framework
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(a) Lattice with 3 motion primi-
tives.

(b) Lattice with 7 motion primi-
tives.

Figure 1.3: Two examples for state lattices used in robot motion planning. The Figure
originally appeared in [15].

can become inefficient and the interaction might be frustrating for the user since they have
to choose the lesser of two evils. In some cases users may be able to improve the robot
behaviour by providing a more direct feedback. In our user study, described in Chapter 5,
some participants stated that they would have found it helpful to either directly tell the
robot what they did not like about a certain trajectory, or to correct the behaviour. In the
specification revision for a mobile robot, a correction of the current behaviour could be a
partial demonstration where the user draws a sub-path for the robot to take instead of a
presented path, or the user defines via-points on a graphical interface.

In Chapter 9 we study how corrections can be used to learn about user preferences. We
propose a framework where a user is iteratively presented with the robot’s behaviour that
is optimal for the current estimate of the user preferences. If that behaviour is not optimal,
a user provides a correction which improves the behaviour, but is not necessarily optimal
with respect to the user’s underlying preferences. While providing corrections is potentially
a more challenging task than choosing among preferences, we do not ask users for an initial
specification. The corrections allow the robot to learn a specification that describes the
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same optimal behaviour. Similar to problems in inverse reinforcement learning, the goal is
to infer about the user’s intentions and generalize the learned behaviour. In detail, when
the user corrects a robot’s path such that a certain area of the environment is avoided,
the robot should not only avoid the swath from the originally presented path that was
bypassed by the correction. Instead, the robot would ideally identify the entire part of
the environment that should be avoided. Moreover, we use corrections to not only learn
about a users preference of the environment, but also about global preferences about robot
motions, like avoiding turns unless necessary.

Unified Framework for Specification Revision Finally, we outline a unified frame-
work for specification revision. We extend the work from our user study (Chapter 5) in
three directions: 1) We employ probabilistic user feedback to increase the robustness of
the learning. 2) To generate more realistic robot motions we use a spatio-temporal state
lattice motion planner with four dimensions: (x, y) position, eight headings and discrete
speed values. 3) Similar to the our earlier work, users are still iteratively presented with
pairs of paths and asked to choose among them. However, in addition to choosing, user
can instead a) provide a correction to one of the presented paths, or b) change their initial
specification.

1.3 Structure

This thesis is structured as follows: In the second chapter we review the relevant literature.
Chapter 3 presents preliminaries and formally defines the problem of learning user prefer-
ences the behaviour of robots as well as our running example of revising user specifications.
Chapters 4 and 5 present an approach for specification revision based on a linear and de-
terministic user model, together with its evaluation in simulations and in a user study. We
generalize the learning framework using a Bayesian model and present improved techniques
for the active selection of the paths that are presented to the user in Chapters 6 and 7.
In Chapter 8 we summarize our work on learning user specific control sets for state lattice
motion planners. As an alternative mode of user feedback, we study how a robot can learn
user preferences from corrections to the current behaviour in Chapter 9.

We conclude in Chapter 10 with a brief summary of the presented work and an outline
of a unified framework for the specification revision problem with more diverse forms of
user feedback. Further, we discuss current and future directions of research.
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Chapter 2

Related Work

We study how non-expert users can efficiently instruct autonomous robots. Our work re-
lates to various branches of research in human-robot interaction (HRI), including reinforce-
ment learning (RL)[96, 56], learning from demonstration (LfD)[7], inverse reinforcement
learning (IRL)[2], learning from corrections [47], and active preference learning [17, 87].
Throughout our work we revisit methodologies for robot motion planning [60] and bor-
row algorithms and tools from convex optimization problems and their sensitivity analysis
[10, 58] as well as statistical inference [105].

In the field of HRI, teaching robots how to perform certain tasks has been studied ex-
tensively over the last decades [103, 12, 90]. Robot behaviour specification can be grouped
into three types of approaches. The “classic” approach involves an expert operator [12, 7].
This includes providing optimal demonstrations, designing a high level specification for
tasks and allowable movements or defining a reward function for autonomous robots. The
second approach takes into consideration that demonstrations and specifications – espe-
cially when provided prior to the robot executing the task – might be sub-optimal [59, 102].
Therefore, initially learned robot behaviour is revised or refined to find a better solution.
More recently, research increasingly focuses on defining robot behaviour using interactive
reward learning frameworks [28, 87, 61, 24]. In these interactive approaches users are
presented with the tentative robot behaviour and provide feedback such as providing ad-
ditional demonstrations or choosing among alternative solutions, allowing the autonomous
robot to learn about their preferences and iteratively improves its strategy. Often such
frameworks employ active learning, i.e., the robot can choose how to query the user (i.e.,
which alternative solutions are shown or for what part of a task more demonstrations are
required).
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Expert Users Arguably the two primary techniques for defining robot tasks are pro-
gramming by demonstration and offline programming [25]. In the majority of industrial
applications these techniques require users with special training. However, developments
in computational abilities increasingly allow for complex demonstration methods such as
teleoperation, kinesthetic teaching (haptic manipulation of the robot), the design of trajec-
tories on graphical user interfaces (GUI), natural language, visual cues or demonstrations
in augmented and virtual realities [12, 103]. Simultaneously, robots are desired to plan and
act with an increasing level of autonomy. This reduces the need for explicitly programming
single actions in the configuration or task space and allows for high-level task definitions.

A common way of specifying the high-level behaviour for autonomous systems is to
specify a reward function and then learn the appropriate policy using reinforcement learning
(RL) [56]. In RL an agent, e.g., a robot, acts autonomously in an environment, often
described by a Markov Decision Process (MDP) [65]. A user defined reward function
maps the states in the MDP to a numerical value, expressing how desired that state is.
This reward function corresponds to a high-level specification for how the robot should
behave; through RL the robot then finds a policy that maximizes the reward. RL has
been extensively studied as a tool to realize a high level description of a robot’s behaviour
[56]. For instance, [91] and [95] apply RL in the domain of mobile robots and robots
competing in soccer games. In both examples the reward function is designed by a human
expert. The practicality of RL approaches has also been investigated in field studies [55].
However, specifying reward functions usually requires a high level of expertise and can be
unintuitive . Moreover, the choice of a reward function has a large impact on the resulting
policy [42, 80].

Alternatively to specifying reward functions, a robot can be taught by demonstrating
the desired behaviour, similar to classic approaches such as teach-in. The field of learning
from demonstration (LfD), investigates various kinds of demonstrations for robot program-
ming [12, 7]. Its application range from high-level task specification [30] to the definition
of precise actions such as grasping [64] or manipulation trajectories [3]. Usually LfD is dis-
tinguished into two categories: Imitation learning and apprenticeship learning. While the
former approach tries to directly replicate the demonstrated behaviour, the goal appren-
ticeship learning is to learn the intentions of the demonstrator. The authors of [2] laid the
foundation for apprenticeship learning using inverse reinforcement learning (IRL). When
providing a demonstration the human demonstrator is assumed to optimize an internal
reward function, which is unknown to the robot. The robot then tries recover the reward
function from the demonstrations allowing it to compute a corresponding optimal policy.
Thereby, IRL leverages the capabilities of autonomous robots since a once learned reward
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function potentially allows for finding good policies even for different scenarios. In the
field of control this problem is also known as inverse optimal control [52]. In IRL reward
functions are often modelled as a linear combination of pre-defined features; the problem
then consists of learning the weights for all features [19, 2, 116].

A different commonly used approach for defining complex robot tasks is using a speci-
fication language such as linear temporal logic (LTL) [11]. LTL allows for abstract speci-
fications including a temporal ordering of robot states, for instance ”First, visit region A
and B, then go to C and finally vist D”, can be expressed easily. As LTL is a mathemat-
ical formalism, intuitive concepts for defining complex LTL formulas are desired. In [93]
a GUI is designed for LTL based mission planning, while [32] proposes a framework for
using natural language to provide LTL specifications. Finally, [88] proposes a framework
for learning an LTL formula from demonstrations.

Similar to the IRL problem, we want to learn a user’s cost function which is a weighted
sum of features of a robot’s trajectory. In case of our specification revision problem (Prob-
lem 3) some features describe the violation of constraints. Then, learning about the im-
portance of constraints is analogous to recovering a user reward function based on these
features. Our work on learning a control set for a lattice planner that represents user
preferences, presented in Chapter 8, is based on learning from demonstrations. Given a set
of demonstrations we find an estimate of the user preferences, for which we then find an
optimal control set. In Chapter 9 we consider users who iteratively correct the current be-
haviour. Similarly to IRL seek to learn about the user’s intention behind their correction,
allowing the robot to generalize the information learned from a correction.

High-level specifications with uncertainty Naturally, when considering specifica-
tions obtained from experts, the following question arises: What if the expert’s specifica-
tions do not correctly reflect their intentions? A user might be oblivious to the impact of
their high-level specification on the performance of the robot task, misjudge the feasibil-
ity of their specification, their priorities might change or they simply make errors when
providing the specification. In the field of LTL, specification revision is studied when the
initial specification leads to suboptimal outcomes [59] or is infeasible [102, 31, 53]. In
[59] a specification is viewed as a set of soft constraints on a robot’s movement, while the
environment is modelled as an MDP. Strictly following the specification might lead to a se-
quence of actions with a low probability of success. An optimal trade-off between closeness
to the original specification and probability of success is then found in a multi-objective
optimization problem. For the application of mobility on demand, [102] and [53] consider
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soft and hard constraints of an LTL formula together with deadlines for certain tasks. In
order to fulfil a deadline, the violation of soft constraints might be acceptable. A minimum
violation trajectory is found such that the deadline is met and all hard constraints are still
satisfied. In a general motion planning problem on some configuration space with spatial
obstacles, [43] considers the case when no feasible path exists. The minimal constraint
removal problem then finds the biggest subset of obstacles such that a feasibility is re-
attained.
Revisions of an initial specification provided of an expert are also studied in LfD [88, 38,
74, 19]. Initial demonstrations can be suboptimal or might be insufficient as a robot might
encounter unforeseen contingencies during execution. The work of [74] automatically seg-
ments the tasks and then efficiently asks for additional demonstrations when needed. The
authors of [19] seek to achieve better than demonstrator performance by automatically
ranking demonstrations. Moreover, [38] focuses on failed demonstrations. Instead of imi-
tating the human, the learning system tries to avoid repeating the mistakes the operator
made.

In a comparable fashion, our specification revision problem (Problem 3) receives a set
of constraints from a user. We obtain an initial specification by setting the weights for
all constraints to a large value such that the resulting path respects all user constraints.
However, we assume that such a path might not necessarily be optimal with respect to
the user as some constraint violations might be allowable. The user agreeing to the viola-
tion of a constraint corresponds to removing or relaxing the constraint in question, which
then leads to a revised specification. Eventually, the proposed procedure finds the optimal
trade-off between increasing performance and closeness to the original specification.

Interactive reward learning While achieving excellent results in certain applications,
the previously mentioned approaches have various drawbacks. For instance, asking a user
for demonstrations is not always desirable, as they might not be applicable [4], difficult
to provide [28, 2], the amount of necessary demonstrations may be prohibitively large [24]
or the demonstration itself requires a high level of expertise [112, 28]. Providing rich and
precise specifications prior to a robot executing a task might also be challenging and more
prone to inaccuracies [2]. A key concept to further improve intuitive HRI methods is
interactiveness. Instead of asking the user for a complete specification in the beginning or
demanding numerous demonstrations, robot tasks can be learned in an iterative, interactive
way. This new branch in HRI research is referred to as reward learning or interactive robot
learning.

A popular framework is active preference learning where the robot presents the user
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with candidate solutions and then learns about the user preferences from their choice
among the candidates [46, 87, 9, 20, 24, 112, 4, 45]. This approach is based on preference
elicitation [40, 35, 22] where the problem input consists of a set of hypotheses, tests and
possible outcomes. By performing tests, some hypotheses become inconsistent with the
observed outcome and are rejected. This can be applied to a robot learning: Hypotheses
are possible reward functions of the user. Tests correspond to presenting the user with
alternative solutions based on these reward functions, while outcomes are the user’s selec-
tions. The user’s internal reward function is then learned by iteratively ruling out reward
functions that become inconsistent with the user’s choices. Active learning allows the
learner to decide what query, i.e., what set of alternative solutions, the user is presented
with next. The authors of [87] present a pioneering, application-independent framework
for learning reward functions from a user choosing between alternative trajectories. The
user is assumed to provide feedback following a probabilistic model, based on a Boltzman
model. Subsequent work introduced a tuning parameter for the user uncertainty [9], and
compared different approaches for query generation [20]. The authors of [28] apply active
preference learning to grasping tasks where experts rank a robot’s demonstrations; in [24]
active preference learning is combined with RL.

Throughout Chapter 4 to 6 we apply active preference learning to revise user speci-
fications (Problem 3). After a user inputs a set of constraints, the robot queries them
about alternative paths to learn about the importance of the user constraints from their
feedback. In contrast to preference elicitation problems, the set of hypothesises, i.e., the
set of all paths the robot could take, is not a problem input. When planning on a graph,
finding the set of all paths from start to goal is computationally intractable since it is a
#P-complete problem [101]. Other work in the field of active preference learning often
considers a predefined set of features that considered in the user cost function [87, 20, 112].
In contrast, the features in the specification revision problem correspond to user defined
constraints and thus are user specific. This can result in high dimensional features and
weight spaces. However, these user specific features come with implicit prior information
about the user’s preferences: We assume users follow two objectives: Minimizing time,
and only allowing constraint violation when sufficiently beneficial. This helps us design-
ing strategies for presenting alternative paths such as greedily maximizing the potential
improvement in performance, i.e., path time.

In Chapter 7 we study active preference learning independent of the application, e.g.,
the specification revision problem. In contrast to the work of [87, 9, 20] we pose the prob-
lem as one of finding a path that is similar to the optimal path – as stated in Problem 2
– instead of finding weights for the user cost function that are as similar to the optimal
weights. The proposed path error is related to the spanning error of minimal control sets
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for state-lattice planners [15, 83]; a comparable error function has also been used in risk-
aware IRL [18]. We show that the path error metric is more robust than the weight error
and allows for a better prediction of test cases. Moreover, we introduce a method for query
generation that greedily minimizes the maximum path error and compare this approach to
the query selection proposed in [20].

An interactive variation of LfD that potentially reduces the complexity of the user
input is learning from corrections (LfC) [47, 115, 66, 41]. Instead of asking the user
to demonstrate the complete task, the robot presents its current guess about optimally
solving the task to the user. They can then correct the presented behaviour, i.e., change
only parts of a robot’s trajectory. This can be done by either physical interaction with the
robot or by using a graphical interface to draw parts of a trajectory or set up via points.
Learning from corrections was proposed as an alternative to IRL in [47], aiming to reduce
the burden on the user by not asking for optimal demonstrations, but only to iteratively
improve the current behaviour of a manipulator robot. Recent work in LfC investigates
how to extrapolate the information obtained from a correction to learn about the user cost
function efficiently [115]. The authors of [66] introduce a Kalman Filter for LfC to express
uncertainty for the learned preferences. In [41] corrective demonstrations are used to learn
about task models described by a finite-state automaton.

In Chapter 9 we propose an LfC framework as an alternative approach for solving
the specification revision problem: We do not require the user to define any constraints
initially, but iteratively show them one path for a specific task to which they provide a
correction if the path is suboptimal. From that correction we can infer constraints on the
robot’s environment, allowing us to learn a specification. Thus, the increased complexity of
the user feedback is trade-off with omitting the need for the user to define constraints. In
the unified framework in Section 10.2 we combine active preference learning with learning
from corrections to enable users to choose the form of feedback that they provide.

User centered learning A common challenge in many learning problems is balanc-
ing between exploration and exploitation. This problem also arises when learning user
preferences for robot behaviour. Generally, learning systems are designed to find opti-
mal solutions as fast as possible; an active learner usually tries to minimize the number
of queries. This is extensively studied in the field of preference elicitation, namely when
constructing an optimal decision tree [22]. Often a learning agent is maximally focused
on exploring. In an HRI scenario however, this behaviour might not always lead to a de-
sired outcome. It can be frustrating for a user if the learning system repetitively presents
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solutions that diverge drastically from the ones the user previously preferred, seemingly
ignoring the feedback given so far. Therefore, exploiting the knowledge about the user’s
preferences might be important to gain acceptance of the user. Furthermore, the authors
of [20] consider the easiness of queries, i.e., the robot presents alternatives where the user
potentially has a strong preference. Similarly, [85] proposes a strategy for active learning
that consider the flow of the queries to reduce the mental effort of the user and thus de-
crease the user’s error rate. More generally, [21] studies what makes good questions from
both - a machine learning and human learning perspective.

We address the user-friendliness of queries when learning specifications (Chapter 4 to
6) by always presenting the user with a pair of paths where one path is the preferred option
from the previous query. This creates a workflow where the current solution, i.e., the one
that was previously preferred, evolves iteratively. Furthermore, the approach implies a
balance between exploration and exploitation [73] since each query gains more information
about the current solution but also shows a path that was chosen actively and thus explores
the solution space. A similar approach where the previously preferred solution constitutes
one of the options in the next iteration is proposed in [77], where active preference learning
is combined with LfD. In Chapter 7 we propose a query selection method that presents
pairs of paths that are maximally different in cost and show in simulations that user can
choose between these paths easily and accurately, outperforming the approach from [20].

Applications The specification revision problem is motivated by scenarios where au-
tonomous mobile robots perform transportation tasks in industrial facilities [76]. As in
any shared environment, robots are required to adjust to human behaviour. Recent re-
search in this domain investigates predictions of human movement [67, 106, 98] to ensure
safe, stable and yet performative workflows. A human aware robot behaviour is also of
interest in non-industrial settings to ensure social acceptance of autonomous systems [57].
Our work looks as these issues from the opposite perspective: How can a user specify a
robot to adapt to existing work flows and act in a way that is natural to the user?

Adapting to user preferences is also of interest in various other applications. For in-
stance, in [79] human preferences are learned to allow personalized generation of routes in
navigation systems. Thereby, paths that are optimal with respect to multiple objectives
including time and various route-related attributes are found. Each user might have indi-
vidual preferences on how to trade-off between these objectives, which can be learned by
observing the user’s choices between alternative route options. A co-active learning ap-
proach has also been applied to manipulator robots [48]. Users are not required to provide
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optimal demonstrations; a robot’s trajectories are improved iteratively through interac-
tion. A similar approach has been applied to marine robot missions [92], where human
experts propose an initial trajectory. A co-active learning system then proposes alternative
solutions based on additional environmental information. From these alternatives the user
then makes a final selection. A hidden cost function for the human preferences is learned
to then find trajectories that match the operator’s objective.

In order to enable practical use of intuitive task specification methods, the design of
graphical user interfaces is studied in [89, 93]. Closely related to the specification learning
problem, [13] presents a GUI for specifying spatial constraints on a known environment.
In Chapter 5 we use an evolution of this GUI: In addition to enabling users to draw
constraints, the revised GUI can show alternative paths and let the user choose between
them. Especially in applications with safety concerns, a presentation on an interface is
preferable to having the actual robot performing a trajectory that the user may not approve.

Finally, adapting to user preferences is actively researcher in autonomous driving. The
objective is that an automated vehicle cannot only navigate safely and drive the shortest
route, but also considers passenger comfort. The most common problem is learning a
human driving style from demonstrations [1, 37, 39]. The work of [23] proposes a set of
features to identify different driving behaviours of human drivers. In Chapter 8 we present
an algorithm for computing an optimal control set for state lattices that represents user
preferences learned from demonstrations. While [1, 37] estimate user preference and then
plan optimal paths using a fixed state lattice planner, our work computes a user specific
lattice planner, based on an estimate of the user preferences given a set of demonstrations.

Summary: Specification learning The proposed specification learning problem com-
bines several of the discussed approaches. Specifying constraints on a known environment
is similar to a high level task definition provided by an expert user. However, we assume
that the user would accept the violation of constraints for sufficient time benefit. This
makes the provided specification incomplete: The user does not provide information about
under what circumstances constraint violation is accepted. In terms of RL, the reward
function is left undefined, i.e., the weights of constraints are unknown. On the other hand,
by asking only for this truncated expert specification, the burden on the user is reduced.
Moreover, this also allows for the user specification to be uncertain to some extent: If a
user initially misjudges the impact of a constraint, they might allow a robot to violate it
in some tasks. This is equivalent to revising the specification by removing parts of it.
To fill the gap between incomplete or uncertain user input and a complete task specifi-
cation, we apply active learning. Applying LfD to our scenario would require the user to
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design entire paths. Similar to asking for complete specifications, this can be challenging
and might lead to suboptimal outcomes. Active preference learning allows us to present
the user with different paths and ask them for a ranking. This is not just less arduous, but
comparative feedback potentially yields more information about the user cost weights. We
assume that the user evaluates the quality of paths based on a cost function in the form
of a weighted sum of features. As features we consider a path’s time and the constraints
it violates. This is potentially beneficial in comparison to other research on active prefer-
ence learning: Features are often picked manually and are therefore a design choice for the
learning system. In our case, the violation of constraints follows from the user specification
and thus the features are user specific.
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Chapter 3

Problem Formulation

3.1 Preliminaries

Notation We denote vectors with bold, lower case letters v. An element of a vector is
indicated with a subscript index vi, while a superscript index vi identifies some specific
vector. Upper case letters denote a set (G), bold upper case letters represent matrices (A).

3.1.1 Graph Theory

Many motion planning algorithms in robotics discretize the robot’s state space X into a
finite set and then compute dynamically feasible connections between these state [60, 50].
Then, the problem of finding a trajectory between some start and goal state is approxi-
mated by solving a discrete optimization problem on the graph that is induced by the set
of states and the connecting trajectories.

Following [58], a graph is an ordered pair G = (V,E), where V is a set of vertices and
E is a set of edges. Multi-graphs are described as a triple G = (V,E,Ψ), the function
Ψ : E → {(v, u) ∈ V × V : v 6= u} associates each edge with an ordered pair of vertices.
Multi-graphs can feature parallel edges; two edges are called parallel if they connect the
same ordered pair of vertices. In a weighted graph G = (V,E, c) a real value function
associates weights to each edge of the graph: c : E → R. Doubly weighted graphs have
two independent weight functions c1, c2 for all edges. We write a weighted multi-graph as
G = (V,E,Ψ, c) and a doubly weighted graph as G = (V,E,Ψ, c1, c2).
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A walk between two vertices v1 and vk+1 on a graph G is a finite sequence of ver-
tices and edges v1, e1, v2, e2, . . . , ek, vk+1 where e1, e2, . . . ek are distinct. A path P between
two vertices v1 and vk+1 is defined as a graph ({v1, v2, . . . , vk+1}, {e1, e2, . . . , ek}) where
v1, e1, v2, e2, . . . , ek, vk+1 is a walk. On a weighted graph, the cost of a path is defined as
c(P ) =

∑
e∈P c(e). In doubly weighted graphs we can define two costs c1 and c2 where

c1(P ) =
∑
c1(e), e ∈ P, c2(P ) =

∑
c2(e), e ∈ P .

In robotics, planning the shortest or fastest trajectory between two given states can be
approximated with a shortest path problem on the respective graph.

Problem 1 (Shortest path on a graph). Given a weighted graph G = (V,E, c) and a start
(s) and goal (g) vertex on G, find a path P where the cost c(P ) =

∑
e∈P c(e) is minimum.

In this work, we consider cost functions c that do not only represent a physical property
such as length or time, but rather cost functions that also include user preferences. The
computation time of shortest path problems can be enhanced greatly by using heuristic
approaches such as the A∗-algorithm instead of Dijkstra′s-algorithm [60]. This requires
an admissible heuristic, i.e., a function h that always underestimates the cost of a path
between two given vertices. One of the most common heuristics is the euclidean distance.
However, when the cost function on the graph c represents user preferences, finding an
admissible heuristic becomes difficult: In case the cost of an edge can become 0, the only
admissible heuristic will always return 0, effectively rendering A∗ to Dijkstra′s. Therefore,
throughout this work we rely on Dijkstra′s-algorithm to solve shortest path problems.

3.1.2 Spatio-Temporal Lattice Planner

Some of the most well known and widely used motion planning algorithms are probabilistic
motion planners such as Probabilistic Roadmap (PRM), Rapidly Exploring Random Trees
(RRT, RRT∗) and Fast Marching Trees (FMT) [60, 50]. In these techniques, robot states are
sampled randomly and a local planner then finds connection between sampled states. An
alternative approach is a state lattice planner [83]. The basic idea is to choose the discrete
set of robot states such that the states are regularly spaced and then precompute a set of
dynamically feasible trajectories between few robot states. Figure 1.3 shows two examples
for lattice planners for a three-dimensional robot state, consisting of (x, y) position and
heading.

We follow [83] for a formal definition. For a more fundamental description of lattice
using group theory, the interested reader might be referred to [15]. Given the state space
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of a mobile robot X , let V ⊂ X denote a regularly spaced, finite subset of robot states,
also called lattice states, and let s ∈ V denote an arbitrary starting state. Further,
B = {(s, j) : j ∈ V } is the set of tuples of s and all vertices j ∈ V . We call any
E ⊆ B a connection set. Each tuple can be thought of as a start-goal pair of states in
the configuration space. Let T denote a set containing a unique trajectory from s to j for
each (s, j) ∈ B. The key idea is that connections in B – together with their associated
trajectories – can also be applied on other vertices j ∈ V to reach another state i in X . By
pre-computing trajectories from s to j for all j ∈ V , we can construct trajectories from s
to i via successive valid concatenations [15] of the trajectories in T .

Given a set of connections E ⊆ B the tuple (E , T ) is called a control set of the lattice.
For any b = (s, j) ∈ E , and trajectory Tb ∈ T from s to j, we call the tuple (b, Tb) ∈ E × T
a motion primitive. For a given control set (E , T ) with E ⊆ B, we may define a weighted,
directed graph GET = (V,E, c). The edges E are all those pairs (i, j) such that there exists
a connection b = (s, k) ∈ E that takes i to j. The cost c of the edge (i, j) is the cost of the
trajectory from s to k. This cost is assumed to be an almost-metric (that is, it satisfies all
properties of a metric except for the symmetry property). The weighted, directed graph
GET is called a state lattice. Similar to GET we can define a graph GBT = (V,B, c) where B
are all edges defined by connections b ∈ B.

Minimal Size Connection Sets A key challenge when designing a lattice planner is
choosing the size of the connection set. Using a larger set motion primitives increases the
fidelity of planner, since it has to rely on fewer concatenations; using a smaller control set
improves the planning time since the robot has fever controls available at each state, i.e.,
the branching factor of the search problem is smaller.

The problem of finding optimal connection sets with an upper bound on the error has
been studied in [83, 15]. Given GET = (V,E, c) let cEj be the cost of the minimal-cost path
from s to vertex j in GET . This definition together with the assumption that c is an almost
metric (and therefore satisfies the triangle inequality) implies that cBj is the cost of the
direct trajectory s to j, i.e., the trajectory computed without concatenation. To evaluate
the quality of a control set E , we use the t-error of defined here:

Definition 1 (t-error). Given a lattice graph GBT = (V,B, c), the t-error of a subset E ⊆ B
is given by

τ(E) = max
j∈V

cEj/cBj . (3.1)

For each j ∈ V , the value cEj/cBj represents the ratio of the cost-minimal path using connec-
tions only in E to the cost of the direct trajectory from s to j.
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The Minimum t-Spanning Control Set Problem (MTSCSP) is formulated as follows:
Given a state lattice GBT and some real number t ≥ 1, compute a set E ⊆ B of minimal
size such that τ(E) ≤ t. This problem is NP-complete [15].

3.2 Problem Statement

General Problem We consider a robot acting in a known environment with state and
action spaces X and A. Further, let Z be a set of tasks where each task describes a robot’s
initial and goal state s and g in X .

Moreover, we consider a user with an internal cost function F mapping from a trajectory
T to a real number and a motion planner that computes trajectories between a given pair
(s, g) that are optimal with respect to F . However, we consider this cost function to be
hidden, i.e., we do not have direct access to it. For every task (si, gi) ∈ Z we are interested
in finding the optimal trajectory T ∗ with respect to the user’s cost function:

T ∗ = arg min
T
{F(T )} (3.2)

We can learn about the cost function F by presenting the user with alternative trajec-
tories. For a given set {T 1, T 2, . . . }, we obtain a user feedback in the form of a partial
ordering of the trajectories according to the user’s preferences. We can write that as a set
of pairwise relations U ij indicating if F(T i) > F(T j), F(T i) < F(T j) or F(T i) = F(T j)
for any pair (T i, Tj).

We model F(T ) to be a weighted sum of scalar features φ1(T ), φ2(T ), . . . , φn(T ) of the
trajectory. Thus, the cost function is of the form

F(T ) =
∑

φi(T )wi = φ(T )w, (3.3)

where the row vector φ(T ) =
[
φ1(T ) φ2(T ) . . . φn(T )

]
summarizes all features of T

and the column vector w =
[
w1 w2 . . . wn

]T
contains weights for the features. The

problem of learning F in order to find the optimal solution to (3.3) then consists of learning
the user optimal weights wuser. We notice that it might not be possible to learn wuser

exactly. Therefore, let T ′i be the trajectory that minimizes φ(T )w′ for any given w′ and
some task (si, gi). The objective is to find a w′ such that the relative error in cost between
T ′i and T user

i is minimized. This allows us to formally state the problem:
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Problem 2 (Active Preference Learning). Given is a robot’s state and action space (X ,A),
a set of tasks Z = {(s1, g1), (s2, g2), . . . }, a set of feature functions φ1, φ2, . . . , φn, and a user
with hidden user preferences wuser. For up to k iterations, the user can be queried about
an ordering of a set of trajectories {T 1, T 2, . . . }. Find an estimate w′ of the user weights
wuser such that the corresponding optimal trajectories T ′i for all tasks (si, gi) minimize

Err(w′,wuser) =
∑

(si,gi)∈Z

F(T ′i )

F(T user
i )

. (3.4)

Specification Revision Problem The problem of revising a specification is a variation
of Problem 2. The problem input additionally includes a specification Γ = {γ1, γ2, . . . , γd}.
Each constraint γi is a triplet (Xi,Ai, wuser

i ) where Xi ⊆ X , Ai ⊆ A and wuser
i ∈ R is a

weight. That is, a constraint associates a weight wuser
i with a set of actions Ai, if these

actions are taken at states Xi. Hence, γ1, γ2, . . . , γd are potentially soft constraints; the
weights describe rewards or penalties for actions that are encouraged or discouraged by the
user. Furthermore, we assume that the weights wuser

i are hidden, i.e., the user only specifies
states and associated actions Xi and Ai, but not how desirable it is that the robot follows
these constraints. This reduces the complexity of the user input to enable non-experts to
create robot specifications: Choosing weights for constraints potentially requires a high
level of expertise and thus in current industrial practice such constraints are designed
by trained personnel [76]. We pose our problem as one where the weights wuser

i for the
constraints have to be learned from user interaction. Thus, the robot gains information
about which constraints have to be followed at all times, i.e., are hard constraints, and
which ones can be violated, i.e., are soft constraints, and when a violation of these soft
constraints would be acceptable. We then have a user cost function FΓ(T ) that is specific
to the specification Γ, based on features φ(T ) =

[
φ1(T ) φ2(T ) φn(T )

]
where n ≥ d.

The first d features describe how the trajectory T relates to the constraint in Γ, i.e.,
if T uses actions that are associated with some γi. The features φd+1, φd+2, . . . φn are
auxiliary features independent of the specification such as the time it takes to execute
the trajectory. The problem statement is equivalent to Problem 2, but the feature vector
contains d features that depend on the user specific specification Γ in addition to pre-
defined features.

Problem 3 (Specification revision). Given is a robot’s state and action space (X ,A),
a set of tasks Z = {(s1, g1), (s2, g2), . . . }, and a set of feature functions φ1, φ2, . . . , φn.
Furthermore, we have a user providing a specification Γ with hidden user preferences wuser.
For up to k iterations, the user can be queried about an ordering of a set of trajectories
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{T 1, T 2, . . . }. Find an estimate w′ of the user weights wuser such that the corresponding
optimal trajectories T ′i for all tasks (si, gi) minimize

Err(w′,wuser) =
∑

(si,gi)∈Z

FΓ(T ′i )

FΓ(T user
i )

. (3.5)

Relationship of weights and trajectories In equation (3.2) we defined an optimal
trajectory T ∗ as the minimizer of a cost function F which we assume to be linear (3.3) and
hence parametrized by weights w. That is, trajectories are found with a trajectory planner
that takes some weight w′ as an input and computes a corresponding trajectory T ′ that
minimizes F(T ′). Consequently, when solving Problem 2 and 3 we do not search over the
set of all possible robot trajectories. Instead we only consider those trajectories that are
optimal for some weight w and hence can actually be computed using the trajectory plan-
ner. Furthermore, the optimization problem that the trajectory planner solves is sensitive
(or robust) towards its parameters w. That is, small changes in the weights w can still
result in the exact same solution, i.e., trajectory. Thus, in order to find an optimal solution
to Problem 2 one does not need to learn the user weights wuser exactly. Throughout this
thesis we explore the implications of this observation and use the sensitivity of the motion
planner to design efficient learning approaches.
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Chapter 4

Deterministic Preference Learning
Framework for Specification Revision

A version of this chapter was published in the proceedings of the IEEE International Con-
ference on Robotic and Automation (ICRA) 2018 [108].

We introduce a framework to solve the specification revision problem (Problem 3) where
we consider discrete representation of the robot’s state and action space using a graph. A
mobile robot has to accomplish a single task which consists of navigating between a given
a start and goal, i.e., finding a path between two vertices. A user specification consists
of traffic rules, i.e., spatio-temporal constraints, for the robot. We assume that these
might be soft constraints – the robot might be allowed to violate a constraint for sufficient
time benefit. This trade-off can be captured by assigning a weight to each constraint,
expressing for what time benefit a violation would be acceptable for the user. We show
how these constraints can be incorporated into the robot’s motion planning graph and pose
a minimum cost path problem, where the cost combines the robot’s travel time and the
constraint violation. However, we do not ask the user to specify the weights on constraints
since this might be challenging and potentially prone to errors. Instead we learn the
weights for constraints using active preference learning : The user is iteratively presented
with two candidate paths and chooses among them. We assume that this choice is always
consistent with the user cost function, i.e., the user is deterministic. We show how the
robot can efficiently learn from this user feedback and demonstrate the performance of this
framework in a material transport simulation in an industrial facility.
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4.1 Problem Formulation

We consider planning the path from a start to a goal in a robotic roadmap encoded as a
graph. A user specification is given as a set of constraints, however without an explicitly
defined weight. We want to minimize a cost that captures time and constraint violation.
To learn the importance of a constraint relative to the time saved by violating it, we can
ask for user feedback on alternative paths.

The problem takes the following inputs:

• A single weighted strongly connected multi-graph G′ = (V,E,Ψ, t) representing a
robot’s motion in an environment including obstacles. The weight function t : E →
R≥0 describes the traversal time for all edges e ∈ E of the graph. Parallel edges in
G′ express different traversal speeds, e.g., between two nodes u and v there could be
two edges with t1 = 1 and t2 = 3.

• A user specification consisting of n user constraints: Γ = {γ1, γ2, . . . , γn}. A user
constraint is defined as a pair (Ei, wi) where Ei ⊆ E and wi is some constant in R≥0,
defining a second weight for all edges e ∈ Ei. We refer to this weight as the user
preference, which is also in units of time. The values of wi are hidden.

• A start and a goal vertex vstart, vgoal in V .

G′ and Γ can be combined into a doubly weighted multi-graph G = (V,E,Ψ, t, w) if
the hidden weights wi are known. On G, w is defined as follows:

w(e) =
∑

γi∈Γ|e∈Ei

wi (4.1)

Moreover, for all connected pairs of vertices on G we delete all parallel edges where w(e) = 0
with exception of the one with the minimal value for t. On G we want to find an optimal
path from vstart to vgoal minimizing t and w:

min
P

∑
e∈P

w(e) + t(e) (4.2)

We state this objective without a scaling factor as w is in units of time. That is, w
captures the maximum increase in completion time that the user is willing to allow in order
to satisfy the constraint (or inversely, the minimum time saving necessary such that the
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user would allow the violation of a constraint). Even though the values for wi are unknown,
we can pick an estimate for all wi. Then, the graph collapses to a singly-weighted directed
graph, and the shortest path can be efficiently computed with Dijkstra’s algorithm. The
goal is to find estimates for all wi such that the corresponding path is optimal according
to objective (4.2).

Example 1 (Problem setup). In an industrial facility a user specifies a transportation task
with a start and a goal location as well as constraints for the robot’s movement like areas
of avoidance, one-way roads or speed limits. Our problem can describe such a scenario
as follows: The physical environment is represented with the single weighted multi-graph
G′, where the weight describes the traversal time between locations. The user constraints
then define a second cost for some edges according to equation (4.1). Figure 4.1 shows an
example of the resulting graph G, the traversal time t(e) for all edges is some constant
t, with the exception of the outer edges between vertices 3 and 4. The user defines a
no-go area between vertices 2 and 5, resulting in a cost for traversing the respective edges.
Moreover, a one way road is set up between vertices 5 and 8: A user constraint assigns a
cost for moving from 5 to 8, but not for the opposite direction. Finally, there is a speed
limit between 3 and 4 for both directions. In this case, we keep two parallel edges, one
with the normal traversal time and the other with t(e) = 2t. While the edges with half
speed have no user cost, a third user cost is assigned for traversing with full speed. Our
goal is then to plan a path from start to goal that minimizes objective (4.2). To do so, we
need to gain information about the hidden user preferences wi.

4.2 Approach

We wish to learn user preferences by iteratively presenting the user with alternative paths.
Based on the user feedback we learn the weights wi of each constraint.

4.2.1 User Constraints and Cost Function

Let (G′,Γ, vstart, vgoal) be an instance of our problem. We summarize the weights of all

constraints γi ∈ Γ with a column vector w =
[
w1 w2 · · · wn

]T
. Let wuser be the vector

containing the hidden user optimal weights, while w is our estimate of wuser.

Definition 2 (Constraint violation). Consider a path P on G and a user constraint γi.
We say that P violates γi if there exists an edge in P that is in Ei.

25



s

2

3

6

5

4

7

8

g

w1
w1

w3
w3

te = 2t

te = 2t

w2

Figure 4.1: Representation of user constraints on a motion planning graph. The traversal
times te between all edges are t, with exception of the outer pair between vertex 3 and 4.
w1, w2, w3 indicate the cost associated with the constrained edges, shown in red.

We introduce a variable to count the violated edges φi(P ) = |E(P )∩Ei|. Moreover, we
define φ(P ) =

[
φ1(P ) φ2(P ) . . . φn(P )

]
as the row vector summarizing all violations

of P , called the violation vector. If a path P is the shortest path according to equation
(4.2) for some weight wj, we write P j. Moreover, we denote the time of a path t(P j) as tj

and the violation vector as φj. The cost of a path P j, evaluated by weights wi is

c(P j,wi) = φ(P j)wi + t(P j) = φjwi + tj (4.3)

This expresses how good the path P j (that is optimal for a weights wj) is for some other
user with weights wi. We introduced the hidden, optimal user weights as wuser, the cost
of some path P j evaluated by the user then is c(P j,wuser) = φ(P j)wuser + tj.

We now specify the user interaction: Let P best be the currently best path. For a set of
k ≥ 1 different weights the user is presented with the corresponding paths, the violation
vectors and the time improvements compared to P best. They then provide a feedback
in form of a vector u ∈ Rk

≥0. Thereby, ui expresses the user preference for path P i. If
ui < uj, then the user prefers P i over P j. Consequently, u is a ranking of all presented
alternatives. The user behaviour over multiple interactions is considered consistent if and
only if all triplets (u1, u2, u3) have a transitive relation.

26



4.2.2 Equivalence Regions

Shortest paths are sensitive to the edge weights on the graph [10]. As different values for
w do not automatically lead to distinct solutions, we introduce equivalence regions.

Definition 3 (Equivalence region). Let wi and wj be two different user weights and let
P i and P j be their corresponding shortest paths. If t(P i) = t(P j) and φ(P i) = φ(P j),
we call wi and wj equivalent. An equivalence region of a weight wi is then the set of all
weights that are equivalent to wi: Ω(wi) = {wj ∈ Rn

≥0|wj is equivalent to wi}.

We notice that for any two equivalent weights wi and wj with corresponding optimal
paths P i and P j, we have c(P i,w) = c(P j,w) for any w, i.e., the paths have equal cost for
any user weight. However, the paths themselves are not necessarily the same. Moreover, a
weightwi lies in multiple equivalence regions when the shortest path givenwi is not unique.
Equivalence regions are closely related to the sensitivity of the shortest path to changes in
the weights of the graph. According to [86], given a shortest path P ∗ on a weighted graph
G, its sensitivity describes for which disturbances of the weights P ∗ remains optimal. In
our case, the weight of an edge is described by t(e) + w(e), hence an equivalence region
describes the sensitivity towards w.

Lemma 1 (Convexity). Equivalence regions are convex.

Proof. We consider a weighted graph G = (V,E,w) and investigate the sensitivity of the
shortest path between some vstart and vgoal with respect to all edge weights. Let |E| = m.
As a walk is a distinct sequence of vertices and edges, there is a finite number of paths
P 1, P 2, . . . P l on the graph. The set of weights for which a path P i is optimal satisfies∑

e∈P i

w(e) ≤
∑
e∈P j

w(e), ∀i 6= j, i, j = 1, 2, . . . , l. (4.4)

All constraints in (4.4) define a half-space in Rm
≥0. By definition, the intersection of halfs-

paces form a convex set [10]. Equivalence regions describe a special case where only some
edge costs can vary, thus are also convex.

4.2.3 Learning Framework

We now present the procedure for learning user preferences, illustrated in Figure 4.2. As-
suming that there exists a path from start to goal that does not violate any user constraints,
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Figure 4.2: Flowchart of the learning process. j denotes the single iteration, J is the
maximum number of user interactions.

we find such a path and denote it by P 0. In each iteration we select the path that received
the best user feedback in the previous iteration P best and execute it. We then iteratively
generate sets of new paths in accordance to what we have learned about the user weights
w. After requesting user feedback for these alternative paths and P best, we update our
knowledge about the user weights. The process is repeated until the maximum number of
user interactions J is reached or the algorithm converged to a weight that is equivalent to
wuser. The user feedback is on-the-loop: At any time P best is executed, new user feedback
might improve the solution but is provided at the user’s convenience.

User model Let P i and P j be two different paths for some wi and wj. If c(P i,wuser) >
c(P j,wuser) the user always provides a feedback where ui > uj. Conversely, ui > uj implies
that the cost of P j, evaluated by wuser, is smaller than the cost of P i by at least some small
ε > 0. If c(P i,wuser) = c(P j,wuser) the user feedback is ui = uj. Using the definition of c
in Equation (4.3) we can derive the following constraints on the true user weights:

if uj < ui then
(
φj − φi

)
wuser ≤ ti − tj − ε,

if uj = ui then
(
φj − φi

)
wuser ≤ ti − tj, and(

φi − φj
)
wuser ≤ tj − ti.

(4.5)
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From each pair (ui, uj) we learn that the user weight wuser lies either on one side of
the hyperplane described by equation (4.5) if ui 6= uj, or on the hyperplane if ui = uj.

Definition 4 (Feasible Set). Given a user feedback u of length k, we can derive k − 1
non-redundant constraints on the user weightswuser from expression (4.5). The feasible set
is the intersection of all k − 1 half-spaces and hyperplanes described by these inequalities
and is a convex set. It can be written as a polyhedron of the form Aw ≤ b [10].

The initial feasible set before any user feedback is bounded by some finite values wmax

as all paths on G have finite length. If prior information about the user constraints is
available, it can be incorporated by adding rows to Aw ≤ b, which define the feasible set,
given the prior is linear.

Example 2 (Learning constraints of the feasible set). We consider a simplified version of
the introductory example with undirected edges. We define two areas of avoidance both
affecting one edge, shown in Figure 4.3. The traversal time of any edge is 1. The path
P 1 (blue) traverses the vertices {s, 2, 5, 8, g} while P 2 (green) traverses {s, 2, 3, 4, 5, 8, g}.
Hence, φ(P 1) =

[
1 1

]
, t(P 1) = 4 and φ(P 2) =

[
1 0

]
with t(P 2) = 6. Given a user

feedback that u2 ≤ u1 we can infer that
([

1 0
]
−
[
1 1

]) [
w1 w2

]T ≤ 4−6, and therewith

w2 ≥ 2. The feasible set then is defined by
[
0 −1

] [
w1 w2

]T ≤ [−2
]
.

4.2.4 Deterministic Learning Algorithm

Notice that the user ranks paths of equivalent weights equally. Thus, our goal is to find a
weight wbest that lies in the equivalence region of the true user preference wuser. Based on
the flowchart in Figure 4.2, we introduce Algorithm 1.

In line 1 of the algorithm we initialize the feasible set with some finite upper bounds
wmax. We initialize wbest = wmax and find the corresponding path P best, which does not
violate any user constraints. Values for wmax can be found according to the following
lemma:

Lemma 2 (Upper bound). A weight wmax such that the corresponding path does not
violate any constraints can be found as follows: Find the path P∞ that is optimal for
weights w∞ where w∞i = ∞ for all i = 1, . . . , n. Then choose wmax = t(P∞) and wmax =
wmax1T .

Proof. Let P ′ be a path that violates at least one constraint. According to equation (4.3),
we have c(P ′,wmax) ≥ wmax + t(P ′). As t > 0 for all edges, P ′ has a higher cost than
Pmax.
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Figure 4.3: Example: Deterministic learning. (a) illustrates an example environment with
two constraints (red) and two distinct paths (blue and green) from start to goal. (b) shows
how the hyperplane learned from comparing the paths separates the weight space.

In line 4, we iteratively find k new weights according to some admissible policy π, which
is defined as follows:

Definition 5 (Admissible policy.). A policy is a function π that maps from (A, b, k,W ,wbest)
to a set of k weights Wnew. A policy is admissible if each w ∈ Wnew satisfies:

(i) Aw ≤ b, and

(ii) w is not equivalent to any previous weight in W or any other new weights in Wnew.

We discuss two alternative policies in Sections 4.2.5 and 4.2.6. In lines 7-8 we compute
the corresponding paths and present them to the user together with the best path so far.
Based on the user feedback, the feasible set and the path with the best user response so far
are updated (line 9-10) and all new weights are added to the set W (line 11). Eventually,
the policy will not be able to find new weights. Then, an empty set is returned and
the algorithm terminates in line 6. Using equivalence regions we can formally state a
proposition for optimality:

Proposition 1 (Termination). If there exists an equivalence region containing all vertices
of the polyhedron Aw ≤ b, then wbest is equivalent to wuser and the optimal solution is
obtained.
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Algorithm 1: Active learning of constraint weights of user specifications.

Input: G′, Γ, J , k
Output: wbest

1 Initialize A, b, wbest, P best and W = ∅
2 for j = 1 to J do
3 Wnew ← π(A, b, k,W ,wbest)
4 if Wnew = ∅ then
5 return wbest

6 Compute paths P 1, . . . , P k for all w ∈ Wnew

7 Get user feedback uj for paths P best, P 1, . . . , P k

8 Update A and b based on uj (Definition 4)
9 Choose wbest as the element from wbest ∪Wnew with the best user feedback,

P best = P (wbest)
10 W =W ∪Wnew

11 return wbest

Proof. Suppose there exists an equivalence region containing all vertices of Aw ≤ b. By
convexity of the feasible set and the equivalence regions, we conclude that all feasible
weights lie in the equivalence region. As w lies in the feasible set, all feasible weights are
equivalent to w. Trivially, the corresponding path is optimal.

Naively checking if all vertices of the feasible set are equivalent is impractical as the
number of vertices can grow exponentially with the number of user feedback. However, in
the current work we focus on approximating the optimal solution.

Example 3 (Learning user preferences). Again, we consider the graph from Figure 4.3.
We initially find the upper limit wmax = 8 and obtain a path P 0 with t(P 0) = 8, shown in

Figure 4.4. We then pick a new point of the feasible set, say w1 =
[
0 0

]T
. The resulting

path P 1 is the same as the previous example with φ1 =
[
1 1

]
. We present the user with

P 0 and P 1 and they prefer P 1. According to expression (4.5) we learn w1 +w2 ≤ 4. In the
next iteration we present P 2 from the previous example and get the additional constraint
w2 ≥ 2. The resulting polyhedron is shown in Figure 4.5. After three iterations all vertices
of the feasible set are equivalent and result in path P 2.

Using equivalence regions we establish our main result:
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(a) Graph with initial path P 0. (b) Feasible set

Figure 4.4: Deterministic learning, initial iteration(a) shows the initial Path P 0 on the
graph. In (b) we see the initial feasible set with wmax.

Figure 4.5: Deterministic learning, final iteration iteration. We show the feasible set after
three comparison, the solution is now uniquely determined.
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Proposition 2 (Completeness). Suppose that we have an admissible policy π. Then
Algorithm 1 is complete.

Proof. Let wi and wj be non-equivalent weights. From the user model and inequalities
(4.5) we derive the following relation when the user prefers P i over P j:

ui < uj =⇒ wuser /∈ Ω(wj). (4.6)

In each iteration where the user chooses one path over the other, we shrink the feasible set
by at least one equivalence region. Now we consider that the user does not prefer either
path:

ui = uj =⇒ wuser ∈ span
(
Ω(wi) ∩ Ω(wj)

)
. (4.7)

We notice that the interior of Ω(wi) and the interior Ω(wj) are disjoint. Thus, the inter-
section of the equivalence regions is of lower dimensionality. In the case that ui = uj we
reduce the dimension of the feasible set.

As both, the number of equivalence regions and the number of user constraints, i.e.,
dimensions, are finite, the feasible set eventually either consists of only the equivalence
region Ω(wuser), or wuser is uniquely determined by equality constraints. Hence, algorithm
terminates after finite iterations.

Notice that in a worst case the number of iterations of Algorithm 1 equals the number
of paths between the start and goal vertex, which can be exponential in the size of the
input. Nonetheless, in Section 4.3 we show that in practice the number of iterations is
linear in the size of the input.

4.2.5 Vertex Search

We propose the policy πvertexSearch to find new vertices, shown in Algorithm 2. The feasible
set can be understood as an unknown graph, where the vertices are the extreme points of
the polyhedron, connected by its edges. We apply depth first search (DFS) to explore the
feasible set, starting at the previously best solution wbest. Line 5 and lines 8-12 explore
neighbouring vertices, which is computationally inexpensive and similar to the pivot step
in the simplex algorithm for linear programs [10]. If a new vertex is found, it is added to
the set Wnew (line 6-7). The algorithm stops when either k new vertices have been found,
the DFS has exhausted all vertices or a maximum number of iterations is reached. The
policy is a form of pattern search [75], where the set of search directions consists of the
vectors from the current weight to all vertices of the feasible set. Notice that for imax →∞
the policy is admissible. Furthermore, DFS explores a given graph in linear time.
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Algorithm 2: Policy πvertexSearch for finding new weights using depth first search.

Input: A, b, k, W , wbest

Output: Wnew

1 Initialize set Wnew = ∅, openList = {wbest} and maximum iterations imax

2 for i = 0 to imax do
3 if |Wnew| = k or openList is empty then
4 return Wnew

5 w̃ = openList.pop()
6 if w̃ is not equivalent to any w ∈ Wnew ∪W then
7 Add w̃ to Wnew

8 if w̃ is not labelled as discovered then
9 Label w̃ as discovered

10 for all w′ ∈ getAdjacentVertices(w̃) do
11 if w′ /∈ openList and w̃ is not labelled as discovered then
12 openList.insert(w′)

13 return Wnew

4.2.6 Minimal Vertex

As πvertexSearch potentially exhausts an exponentially growing graph, we introduce a heuris-
tic policy. The previous approach did not use any information from the shortest path
problem and explored the feasible et in a naive way. For instance, a user specification may
contain numerous constraints that do not affect the path between a start and goal, which
makes them irrelevant for the problem instance.

Therefore, we propose the heuristic policy πminSearch that always tries to minimize the
weights within the current feasible set, illustrated in Algorithm 3. In lines 2-4, we find
the minimal feasible weight and add it to the set Wnew if it is not equivalent to previous
weights. If k = 1 and the minimal weight was not previously preferred by the user, the
algorithm terminates in line 6. Otherwise, we invert the search direction for all constraints
that the path based on the minimal weight violates (line 7-11) to generate new weights
(line 13-15). Finally, if the heuristic has been unsuccessful, πvertexSearch is called (line 18).
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Algorithm 3: Heuristic policy πminSearch for finding minimal new weights

Input: A, b, k, W ,wbest

Output: Wnew

1 Wnew = ∅
2 w = min 1Tw s.t. Aw ≤ b
3 if w /∈ W then
4 add w to Wnew

5 if |Wnew| = k then
6 return Wnew

7 newSearchDirections = ∅
8 for γi where φi(P (w)) > 0 do
9 c̄ = c

10 c̄i = −1
11 add c̄ to newSearchDirections

12 for c̄ ∈ newSearchDirections do
13 w̃ = min c̄Tw s.t. Aw ≤ b
14 if w̃ /∈ W then
15 add w̃ to Wnew

16 if |Wnew| = k then
17 return Wnew

18 W ′ ← πvertexSearch(A, b, k − |Wnew|,W ∪Wnew,w)
19 return Wnew ∪W ′

4.3 Evaluation

In the experiments we used layouts of real industrial facilities. We generate graphs G′

by uniform grid-based sampling. We use a graph G′ with 3646 vertices and 12456 edges.
User feedback in each iteration is simulated using the user cost c(·), evaluated by the
user as introduced in equation (4.3). Given the learned weight wbest, let P best be the
corresponding optimal path. We use the relative error of the learned path compared to the
optimal path from Chapter 3; which is defined as follows:

Err(P best,wuser) =
c(P best,wuser)

c(P user,wuser)
− 1 (4.8)
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Table 4.1: Different types of user for Experiment 1.

User type description # constraints

low-trust specifies many constraints 20
with a range of weights

moderate specifies fewer constraints 10
with moderate or high weights

high-trust specifies very few constraints, 4
all have high weights

If wbest is equivalent to wuser, then Err(P,wuser) = 0. Algorithm 1 does not have access
to wuser. Therefore, alternative paths can be presented even if the optimal solution was
already found. A classic path planning approach without learning user preferences only
finds paths that do not violate any user constraints, i.e., the path P 0 of our algorithm.
Therefore, P 0 is used as a baseline to highlight the benefit of our approach.

We conduct two experiments: In the first, we propose models for three different types of
users and their weights, while in the second experiment we randomly generate user weights
for a predefined set of constraints. In both experiments, we set the maximum number of
user iterations J to 30. As discussed in the previous chapter, the check for convergence is
approximated. We choose imax = 50 as the number of iterations for πvertexSearch. In each
iteration the user is presented one new as well as the currently best path.

Experiment 1 In this experiment, we consider three user classes to mimic different
realistic users, summarized in Table 4.1. Problem instances are generated from a set of
start-goal configurations. In Figure 4.6 we compare πminSearch and πvertexSearch for learning
the preferences of all three users. We show the relative error of the best path so far P best

in subfigure (a) as well as the relative error of the new path P j in subfigure (b), at each
iteration j averaged over all trials.

In Figure 4.6 we see the most considerable improvement for the low-trust user. We recall
that P 0 respects all user constraints, but as the low-trust user has a relatively low preference
for each, the optimal path is likely to be violating some constraints. In contrast, the high-
trust user seldom accepts any violation. Therefore, P 0 is already the optimal solution in
most cases. Moreover, for the low-trust user πminSearch finds relatively good solutions more
quickly than πvertexSearch. For the moderate user we observe an intermediate result: While
the error evolves similar to the low-trust user, the improvement compared to P 0 is smaller.
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(a) Relative error the current best path P best (b) Relative error of each presented path P j

Figure 4.6: Comparison of the policies πminSearch and πvertexSearch for all three users, de-
scribed in Table 4.1

Although the three users feature different numbers of constraints, the algorithm con-
verges after five to eight iterations. There are two reasons for this. First, additional
constraints are not always relevant for each shortest path problem, the number of equiv-
alence regions does not necessarily increase with an additional constraint. Second, even
though the number of equivalence regions increases, Algorithm 1 does not necessarily
search through them exhaustively. Some hyperplanes according to expression (4.5) reduce
the feasible set by more than one equivalence region.

In summary, the user type has little influence on the number of iterations. Nonetheless,
especially the low-trust user benefits from our approach compared to classic path planning;
the optimal path outperforms P 0 by over 80%.

Experiment 2 User weights are uniformly drawn from [0, λwmax] where 0 < λ ≤ 1 and
wmax is found as in Lemma 2. High values for λ imply that the user has a widely varying
weights, including increasingly more high preferences such that violations are accepted
more rarely. Table 4.2 compares the best solutions each policy finds after j iterations.
Even though in many cases both policies perform equally well, πminSearch still outperforms
πvertexSearch between iteration two and eight.

Consequently, Table 4.3 shows the results of using πminSearch. The number of iterations
until convergence is growing more slowly than the number of constraints. From the I10%

column we see that relatively good solutions are often found before convergence, however,
for λ = 0.5 this is because P 0 is often the optimal path. The improvement of the optimal
path ∆C monotonically increases with the number of constraints. When P 0 has to take
large detours to respect all constraints, violations lead to larger improvements encouraging
the user to accept an alternative path. Overall, the final solution outperforms P 0 in 57.4%
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Table 4.2: . Each row indicates in how many trials (%) each policy achieved a lower
c(P best) at iteration j.

Iteration j 1 2 3 4 5 6 7 8 9

πminSearch 0 27 24 23 20 7 3 1 0
πvertexSearch 0 10 10 9 2 0 0 0 0
Tie 100 63 66 68 78 93 97 99 100

Table 4.3: Notation: n the number of constraints, λ is the range for sampling weights,
I the number of iterations until convergence, I10% the number of iterations until a 10%
approximation is found, ∆C the improvement of the final P best compared to P 0, #A∗ the
number of A* calls and tmean the mean runtime to find a new weight in each iteration.

n λ I I10% ∆C[%] #A∗ tmean[s]

5
0.005 7 1 24.9 59 33.1
0.05 9 9 22.3 66 40.2
0.5 4 1 8.1 28 27.5

10
0.005 6 1 27.6 72 38.3
0.05 9 9 26.1 72 34.7
0.5 12 1 9.7 58 30.6

20
0.005 11 2 38.1 131 54
0.05 11 8 33.5 113 42.9
0.5 11 1 15.4 56 22.5
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of the trials. The number of shortest path problems Algorithm 1 has to solve (#A∗)
increases roughly linearly with the number of constraints. The runtime for finding new
non-equivalent weights tmean in each iteration generally increases with n, however, only for
λ = 0.005 monotonically.

4.4 Summary and Discussion

We proposed a methodology to learn user preferences for spatial and simple temporal con-
straints in a shortest path problem via human-robot interaction. Based on a deterministic
user model, we have shown how information about feasible weights can be derived from
simple user feedback, and introduced equivalence regions to partition the weight space. Us-
ing these results a learning algorithm was proposed followed by its proof for completeness.
After introducing two policies, we showed simulation results based on real world environ-
ments. In our evaluation, the number of iterations grows more slowly than the number
of constraints. Moreover, especially for low user weights the performance of the robot
task improves significantly by learning the user preferences, allowing for a user-on-the-loop
robot task specification in an accessible way.

Nonetheless, the presented framework has three main areas of improvement: First, even
though the proposed algorithm is complete, the runtime for finding new weights might
increase drastically for high dimensions. Second, our work is based on a deterministic,
linear user model. This is a potential shortcoming as real users at least occasionally might
violate these assumptions, i.e., contradict their own choices. In Chapter 6 we address both
issues: We further study equivalence regions and show that determining the extents of
an equivalence region is in general computationally intractable. Moreover, we introduce
a probabilistic user model. We propose a new learning algorithm based on equivalence
regions and demonstrate its robustness in simulations. Third, in the evaluation we used
either manually designed or randomly generated data that do not necessarily reflect real
users. In the next chapter, we present the results of a user study and show that the
proposed framework helps nearly all users to create better specifications, i.e., improves the
task completion time.

39



Chapter 5

Evaluation of the Deterministic
Framework in a User Study

The research in this chapter was conducted in conjunction with a MASc. student of the
University of Waterloo, Alexandru Blidaru1, and was published in the International Journal
on Robotics Research (IJRR) in 2020 [107].

5.1 Overview

We extend the framework from Chapter 4 to a multi-task scenario and evaluate its prac-
ticality in a user study. We show that, using our proposed framework, most users accept
alternative paths and obtain revised specifications, which improve the robot’s performance
by 14% on average, within at most 20 user interactions. Further, we show that while
initially provided specifications vary largely between users, the learning interaction results
in specifications that are more similar. Especially those users whose constraints initially
drastically affect performance, benefit most from the interaction.

We consider an industrial facility where the work space is shared between pedestrians,
human-operated vehicles, and autonomous vehicles. While mobile robots are capable of
navigating safely given a description of the environment, their choice of routes might not
fit the preferences and established rules of humans. Without a further specification, robots

1A. Blidaru and N. Wilde contributed equally unless stated otherwise.
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(a) Initial specification. (b) Revised Specification.

Figure 5.1: Example environment (white) with obstacles (black), user defined constraints
and a task start and goal locations. Roads are drawn in green with an arrow indicating
the direction. Speed limit zones where only half the maximum speed is allowed are drawn
in yellow, while areas of avoidance are illustrated in red. In 5.1a we see the initial path
respecting all user constraints and preferring roads. Following the user interaction, we
obtained the revised specification in 5.1b, in which some of the constraints are less impor-
tant to the user (faded yellow and green). Thus the shortest path for the given task is
significantly shorter, at the cost of a violated speed limit zone, and a violated road zone.

are unaware of the context, e.g. areas that are designated for vehicles or areas where
robot traffic is undesired. Additionally, the behaviour of autonomous vehicles can appear
unpredictable to humans.

To address these issues, users can specify a set of traffic rules to guide robots in such
environments. In current industrial practice such rules for robot behaviour are designed
by trained personnel [76]. We employ an extension of the graphical user interface (GUI)
from [13] where a user can specify traffic rules such as one and two way roads, areas of
avoidance and reduced speed zones by graphically defining polygons on the map of the
environment (we synonymously refer to the user defined traffic rules as user constraints).
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In Chapter 4 we presented a framework for revising specifications, helping inexperienced
users to improve the efficiency of the resulting robot behaviour. An initial specification
assumes that no traffic rules are allowed to be violated. This allows for computing a
path that strictly follows the defined rules, shown in Figure 5.1 (a). Through active
preference learning we try to revise the specification and improve the performance. We
extend our work from Chapter 4 to consider multiple start-goal tasks. In each iteration
of user interaction the preferred path becomes the best path so far. If the same task is
presented to the user in a later interaction, the previously preferred path constitutes one of
the two alternatives. This corresponds to a user–on–the–loop framework: the current best
path can already be executed as the user approved it previously. The idea of showing the
previously preferred solution in the next iteration is also used in [77]. Depending on the
user feedback, the violation of some rules might be acceptable for a certain time benefit.
In the example in Figure 5.1 we show a revised specification following the active learning
process, which decreases the task time. Thereby, one speed limit zone has become less
important and three roads are rewarded less, such that the robot traverses through the
free space, and a one-way road is effectively removed from the specification.

5.2 Problem Description

The proposed approach contains the following two components: First, having obtained a
user specification, we extend the active learning approach from Chapter 4 to a multi-task
scenario. Following this, we apply the metrics proposed in [13] to evaluate the impact of
the specification, and show how the learning system improves the quality of the robot’s
task performance.

5.2.1 Learning User Preferences

Problem setup Similar to the problem in Chapter 4, the robot receives a description of
the environment and a user specification. The environment is represented as a weighted
strongly connected multigraph G′ = (V,E,Ψ, t). The weight t on the graph encodes the
time a robot requires to traverse an edge. Instead of a single task (as in Chapter 4), we
consider a set of tasks given by a set of ordered pairs Z = {(s1, g1), (s2, g2), . . . } where si
and gi are vertices on G′. A single task consists of navigating from a start si to a goal gi.

The user specification is a set of constraints Γ = {γ1, γ2 . . . , γd}. Each constraint γk
is a pair (Ek, w

user
k ), where Ek is a subset of the edges of G′ and wuser

k is a hidden user
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weight for the constraint. We slightly change our convention and allow these weights to
be positive or negative: A positive weight wuser

k expresses a penalty for using edges in Ek
while a negative weight expresses a reward. Notice that a road on the interface entails two
constraints: A reward for using the road in the direction of travel and a penalty for moving
the wrong way. Consequently, a two way road maps to four constraints.

We incorporate the user specification by creating a doubly weighted graphG = (V,E,Ψ,
t, wuser). For each edge e in G the second weight wuser(e) is defined as the sum of all wuser

k

that belong to a constraint containing e. Our objective is to find paths P user
i between all

si and gi that are optimal with respect to

min
Pi

∑
e∈Pi

wuser(e) + t(e). (5.1)

The true user weights wuser
k are latent, i.e., we do not ask the user to define wuser

k during
the specification. Nonetheless, given estimates ŵk of the true user weights, we can also
construct a doubly weighted multigraph Ĝ. Moreover, the weights are defined in units of
time, allowing us to pose the multi-objective optimization as an unweighted sum. To learn
about the weights, we can query the user. In a query we present them with a pair of paths
(P 1

i , P
2
i ) for a selected start-goal pair (si, gi). Considering only pairs instead of more than

two paths at a time is motivated by reducing the burden on the user, as choosing between
numerous alternatives is more demanding [49].

Linear learning model We distinguish penalty and reward constraints. Penalty con-
straints include the edges within an avoid zone, edges within a speed-limit zone where the
traversal time does not correspond to obeying the speed limit and the edges going against
the defined direction of travel in a one-way road. Reward constraints describe the edges
that follow the direction of traffic on a road. Thus, for any penalty constraint the weight
wi is non-negative while for a reward constraint the weight is non-positive. As wuser is
hidden, we initially only know that its values are finite, i.e., li ≤ wuser

i ≤ ui for some real
number lower and upper bounds li and ui.

Let P i and P j be two paths. If the user prefers path P i it implies that c(P i) ≤ c(P j).
We can write this as a half-space in Rd containing wuser

{w ∈ Rd|(φi − φj)wuser ≤ tj − ti}. (5.2)

Thus, obtaining user feedback allows us to iteratively learn inequality constraints on
the user weights. We write the intersection of the learned half-spaces as a polyhedron

F = {w ∈ Rd|li ≤ wi ≤ ui, Aw ≤ b}, (5.3)
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which we refer to as the feasible set. The half-spaces obtained from user feedback can be
used to iteratively shrink the feasible set.

5.2.2 Active Learning Algorithm

The learning algorithm employed in the user study is the same as described in Chapter 4,
using the πminSearch policy (Algorithm 3). In this section we briefly discuss some important
details of the practical application.

After receiving the initial user specification but before the interactive learning, we
want to choose an initial path that follows all user constraints. First, we set the lower
and upper bounds for all weights: For penalty constraints, li = 0, while ui is the sum of
all ti for all edges ei on the graph G′. For reward constraints we have ui = 0. However,
the lower bound li needs to guarantee that there are no negative cycles such that that the
optimization problem is well-defined. Let γi be a constraint containing edges that follow a
road. To obtain the lower bound we choose the negative of the length of the shortest edge
in the constraint, denoted by tmin

i . Further, we subtract a small amount such that a path
planner breaks ties in favor of paths using fewer edges: li = −(1− ε)tmin

i where 0 < ε� 1.
We then pick the initial path P 0 that is optimal for some weight w0 where w0

i = ui if γi
is a penalty constraint and w0

i = li if γi is a reward constraint. Hence, P 0 follows the user
specification, i.e., it does not violate any avoid - or speed -zones, does not traverse roads in
the wrong direction and uses roads as much as possible. In each iteration we then present
the user with the current best path and one alternative. If the user prefers the alternative
it becomes the new current best path P best.

5.2.3 Multiple Tasks

The motivation for a multi-task scenario is two-fold: In practice, an autonomous robot
usually has to perform more than one task, making the multi-task setting more relevant.
Furthermore, learning about several tasks in parallel has potential computational advan-
tages as it allows for an additional degree of freedom in the active learning: Choosing what
task to learn about in the next iteration.

We now discuss how Algorithm 1 from Chapter 4 can be adapted to multiple tasks. A
multi-task scenario is set up from a set of points of interest in the environment yielding
multiple start-goal pairs. We learn about the constraints from each interaction by obtaining
feedback for a single task. We can combine the information from multiple rounds by
intersecting the feasible set of all individual tasks. This leads to a passive learning effect:
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Algorithm 4: Active Selection of the new task for learning.

Input: A, b, L
Output: lmax

1 time saving = −∞
2 l∗ = ∅
3 for (si, gi,w

best
i ) in L do

4 Pick P 1 as the optimal path for ŵbest
i

5 wnew
i = minVertex(A, b, 1,Wi, ŵ

best
i )

6 Compute new path P 2 for wnew
i

7 if t(P 1)− t(P 2) > time saving then
8 time saving = t(P 1)− t(P 2)
9 l∗ = li

10 return l∗

Obtaining feedback about a task (s1, g1) potentially affects the learning for another task
(s2, g2), as some weights corresponding to paths for (s2, g2) might no longer lie in the
feasible set.

In the multiple task setting we additionally have to pick a start-goal pair for which we
want to present new paths. We propose a simple policy for this in Algorithm 4. Let a
learning instance li be the collection (si, gi,w

best
i ) for a task i where wbest

i is the weight
vector corresponding to the current best path. Further, let L be the set containing all li
for all tasks in the scenario. Given L and the current feasible set described by Aw ≤ b,
the algorithm iterates over all li and computes a new alternative path with the minVertex

policy (line 4). Then, it selects the task, i.e., start-goal pair, where the time difference
between the current best path and the tentative alternative is maximized (line 7). As a
result the user is usually presented with those tasks for which the alternatives consist of
very different paths in the first few iterations. After some user feedback is obtained, fewer
paths are feasible and the respective weights are less different. Hence, in later iterations
the two paths presented to the user become more similar.

Remark. The evaluation of Algorithm 4 can take significant computation time in practice.
We can approximate the selection of li by sampling a random subset L′ of L and iterate
over the elements in L′ in line 2 of the algorithm. Further improvements can be achieved
by parallel execution of the for-loop.
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Figure 5.2: Example for increase in task completion time. The initial specification results in
path P init, shown in purple. An alternative solution (yellow) might have a longer traversal
time, but correspond better to the user preferences if they value the avoid zone as less
important and prefer the use of the road.

Impact of learning on performance Note that the interactive learning does not guar-
antee improvements in the completion time of paths. Users accept alternative paths if they
have a lower cost with respect to equation (5.1), which does not necessarily imply a lower
time. Consider the simple example in Figure 5.2. Following the specification leads to the
direct path P init, shown in purple. However, a possible alternative enters into the avoid
zone (shown in red), but also traverses along a user specified road (shown in green). The
alternative path (shown in yellow) might have a lower cost with respect to the user pref-
erence. This effect becomes especially relevant in the multi-task setting due to passive
learning : Obtaining feedback for paths between some s1 and g1 adds inequality constraints
to the feasible set, which then affects the optimal path between s2 and g2. Relating back
to the example from Figure 5.2, the user might not be presented with these two paths as
the learning system might infer about the importance of the avoid zone from a different
task. However, in the results of the user study we analyze the performance in detail and
show that in practice, the interactive learning improves the performance for most users.

5.2.4 Metrics2

To quantitatively measure the quality of specifications, two metrics are employed: Entropy
Ratio and Time Ratio. Similar metrics were originally introduced and applied to user
specifications in [13].

Entropy Ratio Given a graph G′ and a specification Γ, the entropy quantifies the com-
plexity of the robot’s action space, generated by the combination of the environment and

2The research in this section was conducted entirely by the collaborating student Alexandru Blidaru.
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user specification, by considering the number of outgoing edges available at each node,
taking their cost into account. The entropy ratio is expressed as the ratio of entropies
between graph G and graph G′ (See Section 5.2), i.e., the constrained and unconstrained
environment. We measure complexity using entropy, defined similarly to previous work in
[13] and [5]. Given an estimate ŵ of the user weights, let the cost of an edge be the sum of
time and the estimated weight: ĉ(e) = t(e) + ŵ(e). Further, let ĉmin(vi, vj) be the minimal
cost between all parallel edges from vi to vj.

For a given vertex vi on a graph and the set of its neighbours N (vi), the entropy of vi
is given by

H(vi) = −
∑

vj∈N (vi)

p(vi, vj) log2 p(vi, vj), (5.4)

where we define p(vi, vj) as

p(vi, vj) =
1/ĉmin(vi,vj)∑

k,vk∈N (vi)

1/ĉmin(vi,vk)
. (5.5)

To obtain the entropy of a graph, we take the sum over the individual vertex entropies:

HG =
∑
vi∈V

H(vi), (5.6)

where V is the set of vertices of a graph G, and HG is the entropy of a graph. The
entropy ratio is then denoted by η = HG/HG′ . The entropy is maximized for HG′ , when
there are no user specifications the robot can move freely in any obstacle-free regions of
the environment. Adding constraints always decreases entropy as the robot’s movement
becomes more restricted. Thus, small entropy ratios indicate rigorous specifications where
the robot behaves in a more predictable way.

Time Ratio Given a graph G′, a specification Γ and a set of start and goal pairs V ′

where each start and goal is a vertex on G′, the time ratio metric describes the effect of
the constraints Γ on the average duration of the shortest paths with respect to equation
(5.1), i.e., the ratio between the average optimal path durations in graph G and in graph
G′. Thereby, paths for all pairs in V ′ are considered. Similarly to our previous work [13],
we distinguish two forms of the metric: The global time ratio considers all vertices on the
graph, i.e., V ′ = V × V where V is the set of vertices on G′, while the task time ratio
considers only a defined set of start and goal pairs, i.e., V ′ = {(s1, g1), (s2, g2), . . . }.
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5.3 User Study

In this section we detail the study scenario and procedure and propose our main hypotheses.

5.3.1 Scenario

The study scenario describes a simulated industrial environment adapted from the layout
of a real world facility. An autonomous mobile robot is required to fulfill material transport
tasks; a single task consists of navigating from a given start to a given goal location.

Users are provided with a description of the environment detailing different zones as
illustrated in Figure 5.3. This includes areas with high pedestrian traffic, loading docks,
storage space, robot parking and charging, dedicated human work and break areas and,
an assembly line. The tasks consist of navigating between the labeled areas, for instance
traversing from the robot charging zone to the upper end of the assembly line. The user
is asked to generate a specification such that the robots are able to reach any of the areas,
excluding the human break rooms. Further, robots are never allowed to cross through the
assembly line.

Before starting the specification task, users receive an explanation of the traffic rules
and instructions on how to use the interface (For more details see Section 5.3.2). One-way
roads are described as encouraging the robot to traverse them in the direction of traffic and
discouraging the robot from traversing in the opposite direction. Two-way roads function
as two adjacent and opposing one-way roads. Areas of avoidance simply define a part of
the environment where robot traffic is undesired, while speed-limits express that the robot
is required to drive with a reduced speed in a specific area.

Finally, users are told that ”the robot can navigate freely in the environment without
any traffic rules” and has fundamental safety features such as obstacle avoidance. The
traffic rules are ”meant to guide the robot’s behaviour” in a way preferable for the user,
and users are free to specify as few or many rules as they deem necessary.

5.3.2 Procedure

Structure The study was approved by the Office of Research Ethics at the University of
Waterloo. Each study session took approximately 1 hour. The study process is structured
in three parts: overview and introduction, training and main study. In the first part,
the scenario and the role of the participant are briefly explained. A video introduces the
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Figure 5.3: The scenario described in the study. Black corresponds to physical obstacles
while white is the free space. The described areas in the environment are labeled as follows:
High pedestrian traffic – purple, loading docks – yellow, storage – orange, robot parking
and charging –green, human work and break areas – dark blue, assembly line – light blue.

user interface and demonstrates how to create traffic rules in detail. Further, written
information about the traffic rules and the robot’s capabilities is provided.

In the training phase the objective is to familiarize participants with the interface.
They are presented with a smaller example environment including a similar description
as in Figure 5.3 and are asked to create traffic rules until they feel confident in using the
interface. At the end of the training, participants tele-operate the robot in the simulated
environment.

The main study has three phases: specification, interaction and tele-operation. The
first two phases are illustrated in Figure 5.4. In the specification phase, participants are
presented with the environment from Figure 5.3 and the written instructions on the traffic
rules and the robot’s capabilities. It is once more stated that the robot is required to
navigate between all marked areas on the environment (with the exception of the dedicated
human break areas) and that the robot is able to navigate without any traffic rules present.
Participants are then asked to define the traffic rules they find appropriate to achieve the
desired robot behaviour. Once they are satisfied with their set of traffic rules, the first
phase is concluded.

In the interaction phase, users are iteratively presented with two alternative paths for a
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Figure 5.4: Flowchart of the study with the resulting specifications, black arrows are only
executed once while blue arrows are executed multiple times. Participants initially receive
an instruction set and a description of the environment. The environment yields a base
specification, only including obstacles. Using the traffic rules they create the initial user
specification for the robot. During the learning interaction users provide feedback, leading
to a revised, final specification.

task. First, a brief instruction explains the interface: On the map of the environment both
paths are shown simultaneously, a simple menu allows participants to select a path, which is
then highlighted in color. Further, if a path is highlighted and violates a penalty constraint,
the perimeter of the constraint in question is also highlighted. Finally, the menu features
information about the duration of the two paths and lists the violated penalty constraints.
All participants go through 20 iterations of the interaction process, unless the learning
algorithm cannot find a new path for any of the tasks and terminates earlier. The task
for which they are presented with two alternatives is selected by Algorithm 4 using an
approximated set L′ containing five tasks, sampled randomly.

In the last phase of the study, participants are asked to tele-operate the robot from
a given start to a goal location. Thereby, they can choose freely if they follow their own
traffic rules or violate them.
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Questionnaires During the study, participants are also presented with several ques-
tionnaires. Before providing the specifications, users indicate their trust in the robot’s
capabilities to fulfill the described tasks. After each of the main steps users are presented
with a questionnaire where they rate how well they specified the traffic rules and how
confident they feel about using the system. Further, during each step of the interaction
participants are asked how acceptable both paths were and, in every third iteration, what
their reasoning for their choice was. Finally, the study concluded with a longer question-
naire where users evaluate the overall system. We use the standardized system usability
score (SUS)[8] for evaluating the interface design and additional questions focusing on the
warehouse scenario.

Evolution of specifications We define the specifications corresponding to different
stages of the process, detailed in Figure 5.4. Before a user specification is provided, the
environment including the obstacles yields a base specification where the optimal paths
P base
i for each task only minimize time. After receiving the traffic rules but before the

learning we obtain the initial specification. The optimal paths P init
i are the optimal paths

corresponding to wmax, i.e., the paths that categorically follow the initial specification if
possible. After learning, the algorithm has not necessarily converged to the optimal so-
lution due to the limited number of iterations. Therefore, the feasible set might contain
weights that are not equivalent to one another. In our learning model, all paths that are
optimal for a feasible weight are equally good solutions, so the final path is not uniquely
defined. Hence, we need to pick some wfinal from the resulting feasible set Ffinal after
learning (See Section 5.2.1). We propose a conservative approach for determining the final
specification by choosing P final

i to be the optimal paths for the maximum feasible weight,
i.e., wfinal = arg max

w∈Ffinal

{1T ·w}.

Types of evaluation Further, we categorize different evaluations: Interaction-specific
evaluation only considers tasks that were presented to the user during interaction. As
we directly observed the user choosing between given pairs of paths, we have access to
the path characteristics, i.e., time and violation, for each user choice. Task-specific and
global evaluations are based on the metrics from the Definitions in Section 5.2.4. Task-
specific evaluations consider the shortest paths for all tasks defined in the scenario, while
global evaluations are based on the shortest paths between all pairs of vertices on the
graph. As the interaction is limited to 20 iterations, not every user is necessarily presented

51



Figure 5.5: Preference learning UI displaying duration and traffic rule violations for each
path. Additionally, the violated traffic rules are also highlighted on the map.

with alternative paths for all start-goal pairs. Therefore, task-specific changes between the
initial and final specification might result from passive learning.

5.3.3 Interface Design

The interface employed in this study is an evolution of the one used in [13]. It allows users
to create a set of robot constraints by defining polygons on the map of the environment.
The interface allows for the creation of roads, areas of avoidance and reduced speed zones.
Additionally, the interface also accommodates the interaction phase, as well as the embed-
ding of study questionnaires that automatically pop-up at predetermined sections of the
study. Integrating all the elements of system interaction in a single interface results in a
more compact and easy to manage interface, which has been previously correlated to an
increase in the resulting human-robot team performance [113, 94].

During each iteration of the interaction phase, the interface presents the user with a
pair of labeled start and goal points, two alternative paths between these points, the time

52



duration of the two paths, and the constraints that each path violates. The interaction
phase interface elements are illustrated in Figure 5.5. The violated constraints are shown
both in list form, highlighted on the map.

In order to measure how users evaluate the system, they are asked several questions
throughout the study. To minimize the effect that constant interruptions could poten-
tially have on the users’ performance, the questionnaires were integrated directly into the
interface in the form of dialog boxes.

5.3.4 Hypotheses

Finally, we propose the two main hypotheses for the user study.

Hypothesis 1 (H1). The learning process has the following properties: (a) user accept
alternative paths that violate some of the constraints they specified over the course of the
learning process and (b) the task performance improves through the interaction process.

Hypothesis 2 (H2). Users find the specification process, and the interaction with the
learning system intuitive and efficient.

Hypothesis 1 focuses on quantitative analysis of the user interaction. For (a) we analyze
the user feedback from the interaction while (b) is based on the metrics described in
Section 5.2.4. To validate Hypothesis 2 we conduct quantitative analyses based on the
questionnaire, including the SUS score, as well as a qualitative analysis using the free form
user comments.

5.4 Results

5.4.1 Participants

For the study we recruited 31 participants (21 male and 10 female) via mailing lists. In
total 24 participants are affiliated with the Faculty of Engineering at the University of
Waterloo. Moreover, 22 participants are pursuing or have completed a graduate education
while 8 are pursuing or have completed an undergraduate degree. Finally, 6 participants
stated that they have background knowledge in robot motion or urban planning.

The population of the study consists of two groups: 21 novice users and 10 repeat
users. The novice users had never interacted with the presented framework before, while
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Table 5.1: Characteristics of the initial user specifications. We show the individual mean,
median, min and max for each type of constraint and the number of traffic rules. Further
we report the characteristics of the overall smallest and largest specification as well as the
example of participant 5 (P 05), shown in Figure 5.6.

Roads Avoidance Speed Traffic Rules

mean 15 4 8 21
median 13 5 7 21
[min,max] [0, 40] [1, 9] [0, 19] [10, 38]
Examples

smallest 10 1 5 10
largest 39 1 13 38
P 05 21 1 17 31

the repeat users had previously used the system once (e.g., during the pilot phase of the
study). No participant is part of both groups. In Sections 5.4.2–5.4.4 we present results
for all users while Section 5.4.5 focuses on differences between the two groups.

5.4.2 Specifications

The initial specifications provided by the users vary in their complexity. We summarize
the characteristics of the initial specifications in Table 5.1. Recall that the number of user
defined roads does not correspond to the number of constraints for the planning problem as
roads constitute a reward and a penalty constraint for each lane. We show three example
specifications, the smallest and largest with respect to the number of traffic rules as well
as the specification from participant 5 that is illustrated in Figure 5.6.

5.4.3 Hypothesis 1

(a) Acceptance of alternative paths For each user we define αjall to be the percent
of iterations in which user j accepted the alternative path. Further, we introduce αjtasks
as the percentage of the tasks presented to the user where user j accepted at least one
alternative, i.e., where they rejected the initial path at some point.

Overall 30 out of the 31 participants accepted at least one alternative path. On av-
erage we found that αall = 0.44, meaning that users accepted alternatives in 44% of the
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Figure 5.6: Example specification from participant 5. Reduced speed rules are marked in
yellow, road rules in green, and avoidance rules in red.

interactions. The task related acceptance has a mean of αtasks = 0.62; thus, for roughly 2
out of 3 tasks users preferred an alternative path over the initial one.

Further, we investigate the correlation of αtasks and the richness of user specifications.
We characterize the richness of a specification in two ways: The number of traffic rules
that the user defined and the number of resulting constraints for the planner. We found
that the Spearman rank correlation of the number of traffic rules and the acceptance rate
is 0.51 while the correlation of constraints and acceptance is 0.60, both with a confidence
of p < 0.005. This corresponds to a moderate correlation, indicating that users who define
a larger set of constraints are more likely to accept alternative paths.

Together with the task specific acceptance rate of αtasks = 0.62 we find strong support
for our first hypothesis: Users are unaware of the impact of their specification and thus
allow robots to violate traffic rules (or use roads less frequently) when presented with
different possible solutions. Further, the obtained revised specification leads to paths
where users chose an alternative path over the initial one in 62% of cases. Moreover, the
correlation of complexity and acceptance shows that this effect becomes more apparent
for users defining many traffic rules. In Chapter 4 we postulated three types of users for
the simulations: A low trust user with many constraints for which the importance varies
drastically, a high trust user with few constraints that all are relatively important and an
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intermediate user. In the user study we do not observe a discrete separation but rather a
continuous distribution for the user behavior. From the difference in the correlation we can
conclude that users defining many traffic rules are more likely to accept deviations from
the initial path.

(b) Increased performance To evaluate the changes in the performance, we compare
the time ratio metric of the initial and the final specification, illustrated with violin plots
in Figure 5.7. Further, we compare the metric for global and task-dependent evaluation.

For both evaluations we observe a decrease in the time ratio after the learning process
as well as a reduction in the standard deviation. A paired-samples one-sided t-test was
conducted on the task time ratio between initial and final specifications. The task time
ratio of initial specifications (M = 1.81, SD = 0.43) was found to be significantly different
(p < 0.01) from that of final specifications (M = 1.55, SD = 0.22).

Unsurprisingly, the initial specifications vary largely in their impact on the performance
as the number of traffic rules users defined range from 10 to 38. However, the decrease in
the population standard deviation following interaction indicates that the learning reduces
the variation in the performance impact of user input and thus helps users to create more
efficient task specifications.

Further, we notice that the task-dependent time ratios are higher than the global ones
for the initial and final specifications. The global metric takes into account locations that
are less relevant in the scenario, e.g., the lower left corner of the environment (shown in
Figure 5.6) is not part of a robot task and therefore neglected by most users. Moreover,
as the global evaluation considers all vertices on the graph, many close-by pairs of vertices
are considered, where the specification often has little influence. While the task specific
performance is worse, the relative change in time ratio is higher in the task specific case
(14.4%) compared to the global metric (11.8%). Hence, the learning effectively improves
the performance of the tasks in the scenario.

Figure 5.8 illustrates the change of the task-dependent time ratio and the entropy ratio
for all user specifications. From the plot, we observe that while the time ratio decreases
the entropy ratio increases. Entropy corresponds to how predictably the robot behaves.
It captures the robot’s degree of freedom with respect to the edge cost on G, which is the
sum of time and user weight. As the learning process initially assumes high weights on the
constraints and thus only reduces weights after obtaining feedback, the entropy increases.
After learning, the robot might be allowed to violate some constraints, which enables more
options to navigate in the environment. This leads to fewer restrictions on robot behavior,
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Figure 5.7: Change in the task-dependent and global time ratio metric of the specification
due to active learning. In both plots the left bar shows the time ratio of the initial
specification, averaged over all users. The right bar illustrates the time ratio of the final
specification, also averaged over all users.

which may not always be desirable. However, this relaxation of the specification is traded-
off with the increase in performance.

Running a paired-samples one-sided t-test, we found the entropy ratio of initial specifi-
cations (M = 0.881, SD = 0.064) to be significantly different (p < 0.01) from the entropy
ratio of final specifications (M = 0.9142, SD = 0.046). Moreover, we notice that while the
mean entropy increases, the standard deviations of the time and entropy ratios decrease
due to the learning. With respect to the metrics, the specifications become more similar
during the learning. Two sample f-tests between the initial and final time ratios show
a significant difference (p < 0.01) in the variances, both in the case of global and task
versions of the metric. However, no significant difference in the variances was found when
performing the two sample f-test between the initial and final entropy ratios of the specifi-
cations. Additionally, Figure 5.8 also suggests that the specifications with low initial values
of entropy and high initial task time ratios generally see more improvement following the
preference learning process. This is verified by a strong Pearson correlation between the
initial values and the difference between the final and initial values, resulting in ρ = −0.88
(p < 0.01) for time ratio, and ρ = −0.85 (p < 0.01) in the case of entropy ratio.

In summary, the learning system leads to a significant improvement in the time ra-
tio metric, especially when measured for the tasks in the scenario. Further, the learning
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Figure 5.8: Change in the task time ratio and entropy ratio metrics of the specifications
due to active learning. Red indicates the metrics for the initial specification, blue shows
the metrics for the final one, and the lines associate the initial and final specifications of
each individual users. The elipses represent the 95% confidence intervals.

revision reduces the variance between the performance of specifications. Moreover, speci-
fications that are initially more inefficient benefit more from the learning process.

5.4.4 Hypothesis 2

We now report on the users’ assessment of the usability of our framework, based on the
system usability score (SUS). While the SUS does not provide a grade for the usability
itself, the work of [8] provides a reference frame based on 2, 324 surveys using the SUS.
In our study, users gave a mean SUS score of 69 while the median is 75. The difference
arises from two outliers in the data set with a difference from the mean of over 2 and over
3 standard deviations. The mean corresponds to the second highest quarter of all surveys
examined in [8]. Specifically for computer based GUIs, [8] reports a mean of SUS of 75.

After the three main parts of the study – constraint specification, learning interaction
and tele-operation – participants were asked to asses how well they specified the robot
behaviour on a 1 to 10 scale. On average, users reported similar ratings at each step,
varying between 7.5 and 7.9, with standard deviations between 1.1 and 1.6. Hence, users
felt relatively confident about how they used the framework. Interestingly, we observe
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an inverse correlation (Spearman coefficient −0.65, p < 0.01) between the second self
assessment and the richness of the specification, i.e., the number of constraints. Users
defining a larger set of constraints tended to view their specification more critically after
the learning. Thus, the interactive framework helps users to better understand the impact
of their specification on the robot’s performance.

5.4.5 Differences in the Population

Acceptance rates When splitting the data into the two populations, we observe only a
minor increase in the acceptance rates for the novice users compared to the repeat ones.
However, the correlation of acceptance rate and complexity of the specifications disappears
for the repeat users while it is stronger for novices. Repeat users are more aware of the
impact of their specifications while novice users benefit from the interaction to improve
the robot’s behaviour.

Time ratio metric Between novice and repeat users the time ratio metric varies. We
recall that the task-dependent metric better reflects the effect of specifications on the task
performance and thus we show the results for the task-dependent time ratio in Figure
5.9. We observe that the initial specifications provided by the novice users show a larger
variance compared to repeat users. While the median values are relatively similar, the
distribution for novice specifications spreads out to higher time ratios. However, the time
ratios of final specifications are much more similar.

A two-sample one-tailed t-test was performed on the difference in time ratio between
the initial and final specifications of novice and repeat users, which revealed that the two
populations are significantly different (p < 0.01). In other words, the changes in the time
ratios differ between the two groups.

We conclude that novice users create more diverse specifications with respect to the
impact on performance. However, the learning process helps them to improve the specifi-
cation and obtain better specifications. Repeat users seem to have a better understanding
of the effect of the traffic rules and thus design specifications more carefully. Consequently,
they allow for fewer violations that effectively render constraints insignificant and therefore
obtain a smaller time benefit.

Entropy ratio Although small differences in the mean entropy ratios across the two
populations were observed for both the initial (0.890 for novice and 0.870 for repeat) and
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Figure 5.9: Change in the task-dependent time ratios of the specification, comparing novice
and repeat users.

final (0.922 for novice and 0.901 for repeat) specifications, these differences were not found
to be statistically significant.

SUS score The mean SUS of repeat users is 70 (median 77) while the mean of novice
users is 68 (median 74). Naturally, participants who have interacted with the UI before
are likely to find it more easy to use. Nonetheless, the reported difference is less than half
of the standard deviation among all users scores and thus is not statistically significant.
This supports our claim that the presented framework enables inexperienced users.

5.5 Discussion

In this chapter we investigated the practicality of the deterministic learning framework.
In a user study we observed that all but one participant accepted alternative paths during
the interaction and therefore the task-specific performance improve on average by 14%.
Further, the specifications became more similar between users with respect to the time
and entropy ratio. In general, users were generally positive regarding the usability of the
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GUI. In this section we discuss additional findings in the study that do not directly relate
to our introductory claims or the proposed hypotheses.

5.5.1 User Feedback

While most users ranked the interaction with our system as positive, participants provided
several suggestions for improving the framework in the questionnaire feedback. Almost
half the users expressed the desire to change their specification during the learning process.
This indicates that although instructed on general robot behaviour, participants found it
somewhat difficult to envision how all of the created traffic rules affect the behaviour of
the robot. They could be well served by visualizations showing robot behaviour during
the specification phase or by allowing them to change their specification later during the
interaction.

Another aspect that could be improved is how the user feedback is incorporated into the
learning. Currently users express their traffic rules preferences by selecting the preferred
path. While this approach is intuitive and simple to use, users occasionally expressed
frustration when both paths presented to a user contain undesirable behaviour, and so users
have to select the lesser of two evils. As a result, future work should investigate additional
forms of feedback that might better reflect a user’s preference, and could potentially lead
to a more efficient learning process. The work of [9] investigates richer forms of feedback
in active preference learning. In addition to ask for the user’s preference, feature queries
give the user the opportunity to express their reasoning, i.e., “Which feature is most
responsible for the difference in your preference between these two trajectories?”. This
aligns with feedback from the questionnaire in our study: Some participants stated that
they rejected alternative paths as they violated both a minor and a major constraint at
the same time; the violation of only the minor constraint would have been acceptable, but
that was unknown to the learning system. In this case richer user feedback would help in
two ways, allowing users to express the reasoning for their path selection, and potentially
reducing the number of iterations of the learning. On the other hand, a drawback of this
approach is the increased complexity of the interaction. A different form of richer feedback
could allow users to manually indicate, and potentially correct, the undesired sections of
presented paths. This idea is investigated by [27] where users segment a robot’s trajectory
into good and bad parts. In Chapter 9 we propose a framework for learning preferences
when the user corrects the current path of the robot.
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5.5.2 Repeat and Novel Users

In Section 5.4.5 we have shown that specifications originating from novice and repeat users
differ in the time ratio metric. This indicates that there are differences in how the two
groups of users specify the robot constraints, and that these metrics could be used to
identify the expertise of a user based on the specification provided. In multi-user systems,
this could be used to combine multiple specifications, emphasizing those of expert users.
Despite the observed differences, the iterative preference learning system was shown to
be capable of improving the specification performance of both types of users. This leads
us to hypothesize that even in the case of specifications designed by domain experts, the
learning framework could still be used to help increase specification performance. To
further investigate this, we currently develop a web-based user interface for remote study
participation, allowing us to recruit more domain experts, i.e., people working in industrial
facilities.

5.5.3 Learning Framework

In Chapter 4 we evaluated the active learning framework in simulation. Validating the ex-
tended algorithm proposed here in the user study allows us to make additional observations
about the practicality of the approach. Unlike the work of [87, 28, 40, 35], our learning
framework is currently based on a deterministic user model. The major drawback is that
our model does not consider users who behave differently than described in the assumed
cost function. Nonetheless, we were able to demonstrate that using a simplified linear user
model, the framework proposes alternative paths that users accept over the initial paths
and revises the specification to improve the task performance within a small number of
iterations. While the resulting final specification does not necessarily correspond to the
optimal solution with respect to the hidden user preferences, the deterministic model al-
lows for quick learning, yielding substantial improvements within only 20 iterations. A
more complex, potentially probabilistic user model would make fewer assumptions about
the user’s behaviour and thus be more robust; however, usually at the cost of performance,
i.e., the number of iterations required for learning in a comparable setting.

Further, due to the multitask scenario we were able to observe some inaccuracies in
the user feedback with respect to our user model. When learning about a single task,
the feasible set can never be empty as the algorithm stops when all feasible weights are
equivalent. However, intersecting the feasible sets for different tasks can lead to an empty
set. In that case, the user feedback to different tasks contradicts one another, assuming
the linear cost function. Notice that an empty intersection of the feasible sets is not a
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necessary but a sufficient condition for inaccurate user feedback. In the study we observe
this phenomenon for a total of 4 out of the 31 users. A more expressive user model could
be used to avoid this issue of converging to a suboptimal solution, however, a richer model
is likely detrimental to the efficiency of the learning.

63



Chapter 6

Bayesian Preference Learning using
Equivalence Regions

A version of this chapter was published in the IEEE Robotics and Automation Letters
(RA-L) in 2019 [109].

We extend the theoretical work presented in Chapter 4 in two ways: First, the assump-
tions on the user are relaxed in order to capture more realistic behaviour. By considering
noisy user feedback and introducing a probabilistic learning approach, we allow users to
not always behave consistently with our user model. Second, based on our formulation of
the problem as an optimization problem, i.e., a shortest path search on a graph, we further
investigate equivalence regions for possible solutions. We propose a new learning algorithm
that exploits the notion of equivalence regions, which are sets of constraint weights that
are indistinguishable to the user. From this we obtain a greedy algorithm that allows for
highly efficient learning, outperforming other state-of-the-art techniques [87, 9].

Previously, we proposed a deterministic user model for learning about weights from
a ranking feedback and proposed a complete algorithm. Using the same framework for
combining path planning with user constraints, we extend the user model. To capture
user feedback inconsistent with our assumed cost function, we propose a Bayesian learning
approach (Section 6.2.1). Thereby, we exploit the discrete properties of our problem,
introducing a partitioning of the weight space based on equivalence regions. We prove
almost sure convergence of the algorithm (Section 6.2.2) and derive a greedy approach
(Section 6.2.3). Finally, we show the performance and robustness of our approach in
comparison with another state-of-the-art technique in extensive simulations (Section 6.3).
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6.1 Problem Formulation

As in Chapter 4 and 5, we are interested in solving the specification revision problem
(Problem 3). In contrast to Chapter 5 we only consider a single task scenario; however,
the presented algorithm could also be adapted to multi-task scenarios. The problem setup
is summarized in Figure 4.2. From the environment and a set of user constraints we
construct an initial specification for the robot. As users might allow the violation of some
of their constraints for sufficient time benefit, we present them with alternative paths
during the interaction and ask for feedback. From this feedback we learn the weights of
the constraints and obtain a revised specification that corresponds to the user preferences.

As before, we consider a fully known, static environment, represented as a weighted
strongly connected multigraph G′ = (V,E,Ψ, t). The weight t on the graph encodes the
time a robot requires to traverse an edge. We use parallel edges with different times to
model speed. A robot task consists of navigating from a start vertex vstart to a goal vertex
vgoal on G′. On the environment, a user specifies a set Γ containing d constraints. Each
constraint is a pair (Ei, w

user
i ), where Ei is a subset of the edges of G′ and wuser

i is a hidden
user cost for the constraint. To incorporate the user specification, we create a doubly
weighted graph G = (V,E,Ψ, t, wuser). For each edge e in G the second weight wuser(e) is
defined as the sum of all wuser

i that belong to a constraint containing e. The problem is to
find a path from vstart to vgoal that minimizes the following objective:

min
P

∑
e∈P

wuser(e) + t(e). (6.1)

The true user weights wuser
i are latent. Moreover, they are defined in units of time, allowing

us to pose the multi-objective optimization as an unweighted sum. To learn about the
weights, we can query the user by presenting them with a set of paths {P 0, P 1, . . . P k}.
The feedback is a vector of length k representing a ranking, i.e., a partial ordering, of the
presented paths. Without loss of generality we focus only on pair-wise comparisons, as the
ranking of additional elements can be expressed with a set of pair-wise relations. This is
also well motivated with respect to the user; ranking more than two alternatives might be
unnecessarily challenging [49].

6.2 Probabilistic Learning

In this section we propose a probabilistic model of user behaviour where the user feedback
may be noisy and thus not deterministic.
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6.2.1 Bayesian Learning

Using definitions for Bayesian inference from [105] we set up a learning model for gaining
information about the hidden (latent) parameter w. We model the user weights to be
positive and finite: wi ∈ [0, wmax]. The cost of a path P is c(P ) = φwuser + t, where
the violation vector φ describes how many edges of each constraint are traversed by P ,
wuser is a column vector containing all latent user weights and t is the time to traverse
P . From each user feedback for a pair (P i, P j) we can derive a hyperplane of the form
(φi−φj)w = tj− ti. This hyperplane defines two subsets of the weight space, Λij and Λji,
where Λij = {w ∈ [0, wmax]d|(φi − φj)w ≤ tj − ti}. Thus Λij is the set of all weights for
which P i has lower cost than P j.

Probabilities of halfpspaces For any pair of paths (P i, P j), the parameter wuser ∈ Λij

holds iff c(P i) ≤ c(P j). Adopting a Bayesian perspective, we treat wuser ∈ Λij as a random
variable and assign an uninformed prior P(wuser ∈ Λij) = 1/2. Notice that the volumes of
Λij and Λji do not correspond to the probability of a path being preferred over another path.
From the user feedback about two paths P i and P j we obtain binary observations. We
denote observations with a random variable U ij, indicating whether the user prefers path P i

or P j. A deterministic user always provides feedback where U ij = 1 ⇐⇒ c(P i) ≤ c(P j),
i.e., U ij = 1 ⇐⇒ wuser ∈ Λij. A probabilistic user is consistent with this model with
some probability pij. Hence, the probability of U ij given wuser ∈ Λij is

P(U ij = 1|wuser ∈ Λij) = pij

P(U ij = 1|wuser /∈ Λij) = 1− pij.
(6.2)

We refer to pij as the accuracy of the user and assume pij > 1/2, i.e., that our user model fits
the user’s decision making better than a random guess. If the parameter pij is hidden, we
can evaluate equation (6.2) with an estimate p̂. To simplify notation we write P(U ij = 1)
as P(U ij). In general, pij is a function of P i and P j. This allows us to model different
levels of the user’s accuracy depending on how similar the paths are.

Probabilities of equivalence regions Equation (6.2) describes an observation model
for a pair of paths, assigning probabilities to halfspaces. We now assign probabilities to
paths instead.

In Chapter 4 we introduced the notion of equivalent weights: If the same path is
optimal for two weights wi and wj, we call wi and wj equivalent. An equivalence region of
a weight wi is then the set of all weights that are equivalent to the weight: Ω(wi) = {wj ∈
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Rn
≥0|wj is equivalent to wi}. We can use equivalence regions to discretize the weight space

[0, wmax]d. Given a comparison of two paths (P i, P j), we introduce a second observation
model that describes the probability of user feedback given that the true user weight wuser

lies in the equivalence region Ω′ of some path P ′ as

P(U ij|wuser ∈ Ω′) =


pij, if Ω′ ⊆ Λij

1− pij, if Ω′ ⊆ Λji

1/2, otherwise.

(6.3)

If an equivalence region lies in both halfspaces Λij and Λji, we obtain no information from
the feedback U ij, since not all weights in Ω′ are either feasible or infeasible with the user
feedback; expressed in the third case. Let O be the set of all equivalence regions for a given
problem instance. The observation model allows us to express a probability for wuser ∈ Ω′

given an observation U ij as a Bayesian posterior

P(wuser ∈ Ω′|U ij) =
P(U ij|wuser ∈ Ω′)P(wuser ∈ Ω′)∑

Ω∈O
P(U ij|wuser ∈ Ω)P(wuser ∈ Ω)

. (6.4)

Following [105], we write the Bayesian posterior for a series of n observations U for
arbitrary pairs of paths as

P(wuser ∈ Ω′|U) =

∏
U ij∈U

P(U ij|wuser ∈ Ω′)P(wuser ∈ Ω′)∑
Ω∈O

∏
U ij∈U

P(U ij|wuser ∈ Ω)P(wuser ∈ Ω)
. (6.5)

Remark. Notice that this general model does not depend on the exact form of the likeli-
hoods pij, we only require pij > 1/2. Therefore, our model could use the likelihood function
from [9]. Alternatively, one could fix all pij to a constant. Then, in contrast to [87, 9], the
accuracy of the user does not depend on the scaling of the features in the cost function.
Moreover, our model increases the robustness towards user feedback that appears inac-
curate because the user is considering context that is not described by our features. For
instance, in a warehouse an operator might have different preferences for different weekdays
or wants a robot to temporarily avoid certain regions. This can not be covered with the
current cost function and thus this user would appear erratic to the learner. Finally, when
the accuracy is set to one, the deterministic learning model from Chapter 4 is recovered.
The key advantage of using equivalence regions in equation (6.5) is that it reduces the
complexity of the probability distribution since we now have a discrete distribution over
regions rather than a continuous one This allows for a significantly faster solving of the
problem, as we will show in Section 6.3.
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Algorithm 5: Probabilistic learning using equivalence regions with presampled
paths.

Input: G′, Γ, N
Output: ŵcurr

1 ŵcurr = wmax, U = ∅
2 Calculate O
3 for n = 1 to N do
4 Update P(wuser ∈ Ω′|U) for all Ω′ ∈ O
5 P (ŵnew)← getNewPath(O, ŵcurr, {P(wuser ∈ Ω1|U),P(wuser ∈ Ω2|U), . . . } )
6 Get user feedback U curr,new for paths P (ŵcurr) and P (ŵnew)
7 U = U ∪ U curr,new

8 if U curr,new = new then
9 ŵcurr = ŵnew

10 return ŵbest = arg max
w′|Ω′∈O

P(wuser ∈ Ω′|U)

6.2.2 Probabilistic Learning Algorithm

In Algorithm 5 we propose a general procedure to iteratively learn about user preferences
from pairwise user feedback with inaccurate users. Initially, we compute the set of all
equivalence regions O (line 2). After updating our current belief about all equivalence
regions (line 4), we iteratively generate new paths (line 5) similar to the deterministic
algorithm from Chapter 4. Then, we request user feedback for the pair (P curr, P new) and
add the user feedback to a set (6-7). After adding the new observation to our set, we update
the weight space and, if necessary, the current weight (8-9). The procedure is repeated
until we reach the iteration budget N in line 2, at the end we return the weight ŵbest

where the posterior belief is maximized. We discuss an implementation of the function
getNewPath(·) in Section 6.2.3.

Convergence We now establish almost surely convergence of Algorithm 5. Let wuser

be the true user weight and pij > 0.5 for all pairs of paths (P i, P j). Without loss of
generality, we only consider i, j pairs that are ordered such that c(P i) ≤ c(P j); hence
wuser ∈ Λij always holds (but this is not known to the algorithm). Moreover, l is the
number of equivalence regions in O and m the number of all pair-wise comparisons. For
the following definition we change our notation and denote the optimal path P user as P 1.
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Definition 6 (Asymptotically completely informative sequence). Let Xn be a sequence
of pairs of paths presented to the user in n iterations, and for each j, let X1j = {X1r1

1 ,

X1r2
2 , . . . , X

1rnj
nj } be the longest subsequence ofXn for which Ωj ⊆ Λ1r1 ,Ωj ⊆ Λ1r2 , . . . ,Ωj ⊆

Λ1rnj . Then the sequence is asymptotically completely informative if as n goes to ∞, we
have nj →∞ for all j.

In other words, if a sequence of pairs of paths contains observations about every
(P user, P j), and the number of observations for each (P user, P j) pair goes to infinity as
the length of the sequence goes to infinity, it is called asymptotically completely informa-
tive. Notice that such a sequence of paths is not required to contain subsequences for
all pairs of paths (P user, P j); it is sufficient if the feedback to the pairs (P user, P j) con-
tains information about all other equivalence regions according to (6.3). Finally, we call U
asymptotically completely informative if the corresponding sequence of paths is asymptot-
ically completely informative and treat the probability that the true user weight wuser or
an estimate ŵ lie in an equivalence region Ω as a random variable.

Proposition 3 (Convergence). Let Ωuser be the equivalence region containing wuser.
Given asymptotically completely informative user feedback U , the probability that the
best estimate ŵbest of Algorithm 1 lies in Ωuser converges almost surely to 1 as all nj go
to infinity:

P(ŵbest ∈ Ωuser|U) = 1, nj →∞, for all j. (6.6)

Proof. At first consider the comparison of an arbitrary pair (P i, P j) and fix P i = P user.
Let U be a sequence of user feedback of length nij and kij be the number of times the
user chooses P i, i.e., chooses accurately. Moreover, let p̂ij be our estimate of pij. For
simplification we drop the ij superscript. From p > 1/2, we can conclude that k > n/2 as
n → ∞, using Hoeffding’s inequality [44]. We notice that the probability for a sequence
of user feedback given wuser ∈ Λij depends on p, while our belief about wuser ∈ Λij given
some user feedback is based on p̂. Given user feedback U with known n and k, the posterior
probability is

P(wuser ∈ Λij|U) =
p̂k(1− p̂)n−k

p̂k(1− p̂)n−k + p̂n−k(1− p̂)k

=
1

1 + p̂
1−p̂

n−2k
.

(6.7)

We take the limit as n goes to ∞:

lim
n→∞

P(wuser ∈ Λij|U) = 1 = lim
n→∞

1

1 + p̂
1−p̂

n−2k
. (6.8)
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Using p̂ > 1/2 leads to p̂
1−p̂ > 1. The term n− 2k is strictly negative if k > n/2. Hence,

p̂/(1−p̂)n−2k approaches zero as n goes to infinity. We conclude that lim
n→∞

P(wuser ∈ Λij|U) =

1. As we only have two paths, we only have two equivalence regions. Following our ordering
of i and j, Ωuser = Λij. Hence, P(ŵ ∈ Ωuser|U) = 1, as nij →∞ for a single, fixed pair of
paths P i and P j.
Finally, we extend the result to comparisons for multiple pairs. Equation (6.5) expresses
the probability of wuser lying in a given equivalence region. Notice that

⋂
j 6=iΛ

ij ⊆ Ωuser,

as well as lim
n→∞

P(wuser ∈ Λij|U) = 1. As P(wbest ∈ Λij|U) → 1 for all j 6= i, we have

P(wbest ∈
⋂
j 6=iΛ

ij|U)→ 1. Hence, P(ŵbest ∈ Ωuser|U)→ 1 and the statement holds.

From Proposition 3 we conclude that Algorithm 5 always elicits the true user weight
if an asymptotically completely informative sequence of paths is presented to the user for
feedback, and if the user’s accuracy with respect to our model is greater than 1/2. However
this does not include any guarantees on the speed of convergence. In the next section we
derive a greedy approach to maximize convergence speed.

6.2.3 Greedy Policy

We now show how to find new paths in each iteration of Algorithm 5, i.e., the function
getNewPath. We notice that computing the set of all equivalence regions for a given prob-
lem instance is computationally intractable, as characterized in the following proposition.

Proposition 4 (Hardness of finding all paths). Finding the number of non-equivalent
paths between vstart and vgoal on the graph G is #P hard.

Proof. To prove the statement we reduce the S-T-paths problem to our problem. The S-T
paths problem finds the number of all paths from a start to a goal vertex on an unweighted
graph and is known to be #P complete [101]. Let (GST , S, T ) be an instance of S-T-paths
where GST = (V ST , EST ,ΨST ) is a non-weighted graph without parallel edges and ΨST

maps a pair of vertices to each edge. We construct an instance of our problem where
G′ = (V,E,Ψ) with V = V ST , E = EST , Ψ = ΨST and vstart = S and vgoal = T . We
choose ti for all ei ∈ E such that G′ is metric. We then pick a user specification consisting
of |E| user constraints, each defining a weight for exactly one edge such that each edge ei
in E is associated with a single hidden weight wuser

i . We obtain a doubly weighted graph
G = (V,E,Ψ, t, wuser). Every path on GST then has a corresponding path on G and vice
versa. Moreover, any path P between vstart and vgoal on G is a shortest path for some
realization of all wi as we can choose wuser

i = 0 if ei ∈ P and wuser
j =

∑
k tk for all ej /∈ P

70



and k = 1, . . . , |E| otherwise. Hence, the number of equivalence regions of our problem
equals the number of all paths on G, which corresponds to the number of S-T paths on
GST . We conclude that a solution to finding all equivalent paths solves S-T paths.

The complexity class of #P includes problems such as counting the number of solu-
tions of NP-hard problems; however, even for many problems solvable in polynomial time,
counting the solutions is nonetheless #P hard [101]. If a polynomial time algorithm for
solving a #P hard problem exists, it would imply P = NP. Furthermore, in Appendix A
we study the sensitivity of shortest path problems on graphs, which is a generalization
of equivalence regions. In addition to Proposition 4 we show that describing one single
equivalence region is in general #P complete.

Nonetheless, we propose a greedy algorithm for finding new paths. Since the set of all
paths can be of exponential size in relation to the number of constraints, this approach
is only practicable for a an approximated set of paths O′ where the size is bounded by a
polynomial of the number of constraints. We define q(wuser ∈ Ω|U) as the unnormalized
posterior, i.e., the numerator of equation (6.5). As q is not a probability we refer to it as
the posterior measure. The decrease in the posterior measure is captured as

f(Xn) = 1−
∑
Ωi∈O

q(wuser ∈ Ωi|Un). (6.9)

Our primary motivating application is one in which the user is “on-the-loop”. We do
not require them to constantly provide feedback and already execute the current solution
P curr (as in Chapter 4. Therefore, we keep the current best path and fix P curr to be one
of the two alternative paths comprising the next query (Algorithm 5). Thus, our greedy
algorithm returns the path maximizing the posterior measure

P new
n = arg max

P j

E
[
f
(

(P curr, P j)
⋃

Xn−1

)]
. (6.10)

In this optimization we only need to consider one P j for each equivalence region. How-
ever, if we would present two new paths in each iteration, i.e., we do not fix one path in
each query to be P curr, it can be shown that equation (6.10) is an adaptive submodular
function.

A similar approach is presented in the active learning framework of [87], where the
objective is the reduction of the unnormalized integrated posterior of the weight space,
referred to as the removed volume. The authors show that this volume removal function
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is adaptive submodular. In contrast, equation (6.10) sums over the posterior measure of
all equivalence regions. This indicates how the belief over paths changes instead of over
all weights. When P i is not fixed to be P curr, our greedy objective function f(Xn) can
also be shown to be normalized, adaptive monotone, and adaptive submodular. Adaptive
monotonicity follows from q(wuser ∈ Ω|U) being multiplied with pij, 1−pij or 1/2 when user
feedback is observed. Further, adaptive submodularity follows since the marginal reward of
an element X ij, as defined in [34], is smaller for a set Xm than for a set Xn, where |Xm| ≥
|Xn| as the decrease in the posterior measure has an upper bound of q(wuser ∈ Ωi|Un, U ij).
Adaptive submularity provides strong performance guarantees for a greedy approach: At
any given iteration, the greedy solution achieves 1− 1/e ≈ 0.63 times the optimal solution
and is the best polynomial time approximation [34].

Nonetheless, we can establish convergence for the greedy approach. For this, we use
the notion of asymptotically completely informative sequences from Definition 6:

Lemma 3 (Convergence of the greedy algorithm). The greedy algorithm equation (6.10)
returns an asymptotically completely informative sequence of paths if the number of iter-
ations goes to infinity and thus the probability of the true user weight converges to one
almost surely.

Proof. To prove the statement we show two properties: 1) The greedy algorithm eventually
returns P user and 2) if P curr = P user it eventually returns all paths necessary to constitute
an asymptotically completely informative sequence. To show the first statement let P curr 6=
P user. If a path P j 6= P user is returned we either do not learn about P user and the
posterior of either Ωcurr or Ωj decreases relatively to the posterior of Ωuser (see equation
(6.3)). Otherwise, the comparison of (P curr, P j) contains information about Ωuser and
thus is expected to increase the posterior of Ωuser. While P curr 6= P user, the expected
marginal reward of presenting P user, i.e., E [f ( (P curr, P user)

⋃
Xn−1 )]−f(Xn−1), increases

monotonically, relatively to the reward of any other path. Thus, P user will eventually be
the maximizer of equation (6.10). Then, the greedy algorithm returns P user and the user
will prefer P user over the current P curr in expectation.

For the second statement, assume we already have P curr = P user. Due to inaccurate
user feedback another path P i becomes P curr. However, as shown above, the algorithm
eventually presents P user again. Consider the path P j where nj is minimal among all paths
(nj is defined in Definition 6). Case 1: q(wuser ∈ Ωj|U) is the maximizer of equation (6.10),
thus P j is presented and nj increments. Case 2: Some q(wuser ∈ Ωr|U) is the maximizer
and (P curr, P r) is presented. If the corresponding feedback contains information about P j,
nj increments as well. According to equation (6.3), if no information about P j is obtained,
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q(wuser ∈ Ωj|U) increases by a ratio of 0.5/(1−p) (where p is the user accuracy) relative to
all q(wuser ∈ Ω′|U), where Ω′ gets rejected by the feedback to (P curr, P r). As this holds
for all other paths and the number of paths is finite, q(wuser ∈ Ωj|U) increases relative
to all other posterior measures until, after a finite number of iterations, either information
about P j is obtained and nj increments, or case 1 applies. Hence, we are guaranteed to
increment the minimal nj and thus all nj must go to infinity.

Performing an exact greedy step is hard, as finding the set of all equivalence regions
O is intractable. In practice, a polynomial sized estimate O′ can be found via sampling
which allows for an approximate greedy step.

6.3 Evaluation

To generate realistic simulations, we recruited users to create specifications, using the same
graphical user interface as employed in the user study in Chapter 5. Given the layout of
a real industrial facility, users defined constraints as described in [13]. To systematically
evaluate our approach, we simulate user feedback in the active learning. This allows us to
pick different ground truths wuser and generate the user feedback with varying accuracy
levels. Further, for an outdoor scenario we conducted experiments using graphs generated
by a probabilistic method [60] and random specifications.

Our primary interest is how the posterior belief about wuser evolves. In the evaluation
we have two objectives: Showing the robustness of our user model and comparing our work
with [87]. We refer to their approach as the Maximum Volume Removal (MVR) and name
our approach the Maximum Equivalence Region Removal (MERR) 1.

In our implementation of MVR, we modify the query selection: As we consider a discrete
space, queries are found by iterating over O′ rather then solving a continuous optimization
problem. To ensure comparability with our framework, we fix one path in the pair that
comprises a query as the current path. Moreover, MVR requires a scaling of the features.
The user’s accuracy is modelled as an exponential function of the difference in the cost of
two paths [87]. Thus the user’s accuracy depends on the scaling of the cost function. The
model is extended by a linear parameter β in [9] to describe different levels of accuracy.
However, as no restriction on the scale of the features is made, these β values do not yield
similar results for different scenarios. In our experiments we manually determined β for
each scenario such that the user’s accuracy is approximately 0.9.

1Note: In both approaches neither volume nor equivalence regions are removed, we rather assign a
lower posterior probability to the rejected items.
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To investigate the performance we used three different specifications that vary in com-
plexity. The first specification consists of 26 constraints, covering 33% of the free space,
the second has 41 constraints covering 40% while the third consists of 52 constraints cov-
ering 73%2. For each specification we varied between two start and goal pairs and three
randomly selected true user weights wuser. As finding the set of all equivalence regions O is
intractable, we generate estimates O′ via sampling. The graph G′ for these experiments is
based on a grid layout and has of 5185 vertices. MERR and MVR differ in three components:
The model for the simulated user feedback, the user model assumed by the learning system
and the strategy for presenting new paths, i.e., the query selection.

6.3.1 Performance of MERR and MVR Query Selections

Experiment 1 In the first experiment, we compare the performance for the different
active query selections - either MVR or MERR - for a user following the MVR model. Figure
6.1 shows the result for a total of 180 trials (10 repetitions for each configuration of user,
start-goal pair and true user weight) with a budget of 30 iterations.

The left plot of Figure 6.1 illustrates the percentage of trials that achieved a given
final posterior value for the true user weight wuser within the iteration budget. A critical
threshold for the posterior is 0.5, as then ŵbest = wuser and ŵbest is the unique maximizer
of the posterior distribution. The MERR query selection has a higher success rate: 70% of
the trials converge within 30 iterations, while only 40% do so for MVR queries. Interestingly,
both approaches always converge once the posterior of wuser surpasses 0.5. In the right
sub plot we illustrate the evolution of the median posterior of wuser over the iterations.
Further, at iterations 10, 20 and 30 we show the distribution of the data. We observe
that between iterations 10 and 20 the MERR posterior median starts to increase quickly,
passing the 0.5 threshold at iteration 17 and getting past 0.9 after 21 iterations. MVR

shows a slower increase and does not pass 0.2 within the 30 iterations. The violin plots at
three stages of the process illustrate a further detail: The distributions are nearly bimodal.
Both approaches succeed for some instances very quickly while the posterior stays low for
harder instances. However, we observe that the low end of the distribution shrinks more
quickly for MERR and eventually becomes completely bimodal. In some hard instances, the
algorithm takes longer to initially show P user to the user and does not learn about wuser

until then. However, once P user is shown, the belief about wuser is maximized quickly,
leading to the bimodal distribution.

2When a user specifies a road on the interface it counts as 2 constraints for the planner: A reward for
following the road, i.e., a constraint with a negative weight, and a penalty for going against the direction
of travel.
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Figure 6.1: Results from experiment 1. For different values of the posterior of the optimal
weight wuser the left plot shows the percentage of trials that achieved that value within 30
iterations. In the right plot we show median values of the posterior over all 30 iterations
together with violin plots of the distribution of the posterior of wuser at iterations 10, 20
and 30.

To explain the better performance of MERR, we recall that equivalence regions vary
drastically in volume. MVR often proposes queries that reduce the integral of the posterior
but do not significantly change the posterior of equivalence regions and thus makes little
progress.

Experiment 2 The second experiment focuses on the performance of both query selec-
tion methods, assuming the user generates responses according to the MERR model, i.e.,
equation (6.3). In Experiment 1 we simulated the user according to [87, 9]. In that model,
the accuracy depends on how different the presented paths are and therefore is influenced
by the query selection. In order to ensure comparability with our user model, we fixed
the accuracy to the average of Experiment 1, thus p = 0.9. Additionally, a second dataset
shows the results for lower accuracies of p = 0.8. Notice that the range for meaningful
values is (0.5, 1]; users with p = 0.5 act completely independently of our model. Further,
p = 0.9 corresponds to 10% misleading feedback, p = 0.8 doubles the error rate to 20% of
cases. In Figure 6.2 we summarize the data as done for Experiment 1.

In contrast to Experiment 1, both query selection methods achieve a lower convergence
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Figure 6.2: Results for experiment 2. The same analysis as in Figure 6.1 is shown, but for
the MERR user two different values for accuracy, p = 0.9 and p = 0.8, are depicted.

rate for p = 0.9. MERR reaches a posterior median of 0.6 in 80% of the trials, while with
MVR less than 45% of trials reach the 0.5 threshold. For the lower accuracy of p = 0.8,
both query selection methods perform worse: MERR converges only in 42% and MVR 20% of
cases. The graphs illustrating the mean posteriors over the iterations show a similar result
for p = 0.9 compared to Experiment 1. For p = 0.8, the median of the posterior for MERR

makes substantially better progress than MVR. The distributions confirm this observation:
MERR shrinks the bottom lobe and gains on the upper end more quickly.

In summary, the first two experiments highlight the performance benefit when max-
imizing the decrease in the posterior summed over equivalence regions compared to the
decrease in the integral of the posterior (i.e., the removed volume), irrespective of the user
model.

6.3.2 Robustness of MERR

We further investigate how sensitive the proposed approach is to knowledge of the user’s
accuracy. We simulate the user according to the MERR model with a constant accuracy p,
but the learning system only has access to an estimate p̂. We fixed p = 0.7 and p = 0.85
and picked either p̂ = p, or p̂ = p ± 0.1. The experiment is based on the smallest and
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Figure 6.3: Experiment 3: Robustness of the MERR user model for two specification (26 and
52 constraints) and different accuracies p in the simulated user and different estimates p′

for the learning.

largest specifications with 26 and 52 constraints, respectively. For each p, p̂ configuration
we average over 20 trials.

Figure 6.3 shows that an estimation error of 0.1 for the user accuracy has very little
influence on the performance. In all 4 plots the over- and underestimates behave similarly
to when the learner knows the user’s accuracy exactly. As expected, the accuracy itself
has an impact on the performance: For p = 0.7 the learning system performs worse for
both specifications. Especially for the large specification, there is only little progress over
the 20 iterations. In a more complicated setting additional feedback is needed to elicit the
true user weight, the higher amount of inaccurate feedback then has a larger impact. On
the other hand, for p = 0.85 the final result is relatively similar for both specifications.
We conclude that a richer specification has a smaller impact on the performance when the
user feedback is more accurate.
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6.3.3 Extension to other Scenarios

Finally, we applied the approach to a different setting: An environment described by a
graph based on a k-nearest probabilistic roadmap (PRM) [60]. User specifications are
generated randomly by sampling polygons in the environment; for each region a constraint
is formulated over all edges incident with a vertex in the region. Using the layout of the
campus of the University of Waterloo, we generated a PRM graph with 2000 vertices and
k = 10, the number of sampled constraints is 50. In Figure 6.4 we show the map together
with the generated graph. Further, we compare the initial path of the learning which
does not violate any constraints, and the user optimal path P user that is learned through
interaction. We conducted a similar analysis as in Experiments 1 and 2, averaged for 20
different specifications. Overall 50% of the trials achieve a posterior of at least 0.9 within
50 iterations. Moreover, after 15 iterations the median passes the 0.5 threshold, while 0.9
is reached after 40 interactions.

6.4 Discussion

We presented an interactive framework for robot task specification. Based on Bayesian
active leaning we derived a greedy algorithm for generating queries. Our approach exploits
the fact that different weights for constraints do not necessarily lead to different optimal
paths. Using equivalence regions allows for a discrete Bayesian learning model that does
not require the user to always provide feedback consistent with the assumed cost function.
The probability of an inconsistent user feedback is of a general form and scale-invariant.
In simulations, we demonstrated that our approach outperforms a related state-of-the-art
technique [87] and showed robustness of our user model.

User models Generally, both models, MVR and MERR, assume that the user evaluates
paths based on a weighted sum of features. MVR uses model where the user’s accuracy
depends on how similar the presented paths are. This approach is well motivated and
promises good performance when the features are adequate. On the other hand, it has
disadvantages with the scaling of features and lacks robustness when users do not follow
the model. In contrast, our approach generally models inaccuracies as a random noise
and is agnostic towards their exact form. In the simulations we fixed p to a constant and
demonstrated the robustness. Therefore, our learning system is less dependent on our user
model exactly capturing the real user behaviour. A limitation of the MERR user model
with constant accuracy values is that accurate user feedback is potentially not exploited
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efficiently as the noise then is query-independent. This approach is investigated in [45].
Moreover, both learning models depend on sampling to perform the greedy step. Even
though the accuracy can be increased arbitrarily with more samples, finding the optimal
solution is computationally intractable.

Performance in experiments In the first two experiments we showed data that was
collected for different user weights and different user specifications (and thus features).
Both have a direct influence on the algorithm’s performance. Usually, more complex spec-
ifications have a larger set of equivalence regions, which affects the convergence. Maybe
surprisingly, the true user preference wuser can also influence the performance, especially
in the MERR model: The learning system makes little progress if most of the hyperplanes
learned from a sequence of user feedback intersect Ωuser. Moreover, in single trials both
models can perform relatively poorly by random chance. An inaccurate user feedback for
a query containing P user leads to decrease in the posterior of wuser. Then, the learning
system might need multiple iterations to present P user again and thus elicit wuser. This
effect is enhanced when the accuracy of the user is low. Nonetheless, the MERR learning
model is still guaranteed to converge. In Chapter 7 we propose a different way of measuring
the quality of the learning: We consider the path that is optimal for the expected weight,
and compute its relative error, compared to the optimal solution.

Extension to continuous space We studied an active preference learning technique
based on equivalence regions, i.e, the discretization of the weight space into sets of weights
where a motion planner returns the same path for all weights in each set. The concept
of equivalence regions is based on the sensitivity of optimization problems and thus is not
limited to discrete motion planners, i.e., graphs. However, for a continuous space planner
the number of equivalence regions can become arbitrarily large while the regions themselves
become very small. Thus, the presented algorithm might learn less efficiently. In an extreme
case where all equivalence regions are singletons, the presented approach is equivalent to the
maximum volume removal approach from [87]. The concept of equivalence regions could
be better adapted to continuous spaces by introducing a notion of path similarity instead
of strict equivalence. This is related to the work of [14], which proposed a formalism for
probability distributions over a continuum of trajectories based on the trajectories’ feature
similarity.
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(a) (b)

Figure 6.4: Results for Experiment 4. (a) shows the outdoor environment (buildings in
black and freespace in white) with the generated PRM-graph. Red indicates edges that
belong to a randomly generated constraint, orange shows the optimal path between a start
and goal location of a task when not violating any constraints. (b) shows the optimal
path P user and the updated weights on the constraints – red indicates high and blue low
weights.
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Chapter 7

Maximum Regret Learning

The work in this chapter was accepted for publication in the proceedings of the IEEE In-
ternational Conference on Intelligent Robots and Systems (IROS) 2020 [110].

Thus far, we studied the specification revision problem (Problem 3) with deterministic
and a probabilistic user models, showing strong results in simulations and demonstrat-
ing the practicality of the deterministic setting in a user study. Generally, the proposed
techniques are not limited to Problem 3 and could be extended to different settings.

In this chapter we further investigate the dichotomy of active preference learning tech-
niques that we discovered with the equivalence regions in Chapter 6: Learning about
weights of the cost function, or learning about robot paths that are computed with these
weights. We study two different measures for learning user preferences: 1) the path error
which we introduced in our initial problem statement in equation (3.4), i.e., the error ratio
between the learned and the optimal (hidden) path, and 2) the weight alignment error
used in [87, 9, 20] which is described by the cosine of angle between the learned weights of
the user cost function and the user optimal weights wuser.

In Chapter 6 we compared a query selection method that purely learned about the
weight space (Maximum Volume Removal) with our approach that groups weights for which
the motion planner returns the same path (Maximum Equivalence Region Removal). We
further build on our insights into the relationship of weights and paths to derive another
novel query selection method that directly tries to remove worst case solutions, i.e., paths,
from the belief space. Users are presented with the pair of solutions that has the maximum
error ratio among all paths, discounted by the learned posterior belief. We demonstrate the
performance of our approach by comparing it to a competing state of the art technique and
show that our proposed method learns the desired behaviour more efficiently. Moreover,
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the queries the user is presented with are easier to answer and thus lead to more reliable
user feedback. Finally, we demonstrate how our measure based on solutions gives better
predictions about the behaviour of the robot in different scenarios that were not part of
the learning.

7.1 Problem Statement

Preliminaries We now study active preference learning in a more general setting, i.e.,
solving Problem 2, instead of the specification revision problem. Thus, there is no user
specification and thereby features are no longer bound to user defined constraints. Further-
more, we do not pose our problem on a discrete space motion planner specifically, removing
the motion planning graph from the problem statement. Therefore, we briefly refresh our
mathematical conventions.

Let X be the state space of a robot and the environment it is acting in and x0 some
start state. Further, we have an action space A where each a ∈ A potentially only affect
parts of the state, i.e., there might be static or dynamic obstacles unaffected by the robot’s
actions. Further let P be a path of finite length starting at x0. A path is evaluated by a
column vector of predefined features φ(P ) = [φ1(P ), φ2(P ), . . . , φd(P )]T . Together with a
row vector of weights w we define the cost of a path as

c(P,w) = φ(P )w. (7.1)

Given some weight w′ let the optimal path be P ′ = arg minP c(P,w
′). The optimal cost

for a weight is
c∗(w′) = c(P ′,w′). (7.2)

For any other weight w, we call c(P ′,w) the cost of P ′ evaluated by w.

Problem Formulation We consider a robot’s state and action space (X ,A) and some
start state x0. Further, let a vector of weights wuser, describing a user’s preference for
the robot’s behaviour and the corresponding optimal path P user. Each weight wuser

i has
a lower and upper bound li and ui. However, wuser itself is hidden. We can learn about
wuser by presenting the user with pairs of paths (P,Q) over k iterations. The objective is
to find an estimated path P k that reflects the user preferences wuser, i.e., is as similar to
P user as possible.

To evaluate the result of learning wuser the authors of [87] propose the weight alignment
metric, i.e., the cosine of the angle between the learned weight vector wk and wuser. We
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adapt this metric and transform it to a normalized error between 0 and 1, which we call
the weight error :

ErrWeight(w
k,wuser) =

1

2

(
1− w ·wuser

||wk||2||wuser||2

)
. (7.3)

The alignment metric was also used in [9, 20]. However, this metric has two potential
shortcomings: 1) It does not consider the sensitivity of the optimization problem that
finds an optimal path for a given weight vector. Thus, an error in ErrWeight might actually
not result in a different optimal path. Moreover, even if the learned weight has a relatively
small error, the corresponding path might be suboptimal to the user. 2) The weight error
is not suitable as a test error (i.e., to test whether the learned user preferences generalize
well to new task instances not encountered during learning) since it does not consider the
robot’s resulting behaviour: ErrWeight(w,w

user) is equal for all training and test instances.
Hence, the weight error gives no insight into how well the estimated preferences translate
into different scenarios, unless ErrWeight(w,w

user) = 0, i.e,. the optimal weights are found.
Therefore, we choose a different metric for evaluating the learned behaviour: Instead of the
learned weight wk we consider the learned path P k. We compare the cost of P k, evaluated
by the user’s true cost wuser to the optimal cost path of wuser:

ErrPath(P
k,wuser) =

c(P k,wuser)

c∗(wuser)
− 1. (7.4)

We refer to ErrPath(P
k,wuser) as the path error, as proposed in Chapter 3. It is related to

the spanning error of minimal control sets for state-lattice planners [15, 83]. Similarly, the
authors of [18] use a policy error in risk-aware inverse reinforcement learning, the difference
is that the error is a difference between the cost of the computed and the optimal solution
instead of a ratio. Based on this metric we can now formally pose the learning problem.

Problem 4. Given (X ,A) and x0, and a user with hidden weights wuser who can be
queried over k iterations about their preference between two paths P and Q, find a weight
wk with the corresponding optimal path P k starting at x0 that minimizes ErrPath(P,w

user).

7.2 Active Preference Learning Framework

We introduce the user model and learning framework of our active preference learning
approach and then discuss several approaches for selecting new solutions in each iteration.
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7.2.1 User Model

To learn about wuser and thus find P ′, we can iteratively present the user with a pair of
paths (P,Q) and they return the one they prefer:

c(P,wuser) ≤ c(Q,wuser) =⇒ the user returns P,

c(P,wuser) > c(Q,wuser) =⇒ the user returns Q.
(7.5)

However, a user might not always follow this model exactly. For instance, they might
consider features that are not in the model or they are uncertain in their decision when
P and Q are relatively similar. Thus, we extend equation (7.5) to a probabilistic model,
similar to Chapter 6. Let IP,Q be a binary random variable where IP,Q = 1 if the user
prefers path P over Q, and −1 otherwise. Then we have

P
(
IP,Q = 1|c(P,wuser) ≤ c(Q,wuser)

)
= p,

P
(
IP,Q = −1|c(P,wuser) ≤ c(Q,wuser)

)
= 1− p,

(7.6)

where 1/2 < p ≤ 1. If p = 1 we recover the deterministic case from equation (7.5). In
this very simple model the user’s choice does not depend on how similar the paths P and
Q are. In the experiments we simulate the user with the more complex model from [20],
which poses the user’s error rate as a function of the similarity between alternatives, and
show that equation (7.6) nonetheless allows us to achieve strong performance.

7.2.2 Learning Framework

Over multiple iterations, equation (7.5) yields a collection of inequalities of the form
(φP − φQ)w ≤ 0. We write the feedback obtained after k iterations as a sequence
Uk = {(P 1, Q1), (P 2, Q2), . . . , (P k, Qk)}. Without loss of generality, we assume that for
any pair (P,Q) in Uk the path P was preferred over the path Q. We then summarize the
left-hand-sides (φP − φQ) for all k iterations using a matrix Ak. Based on the sequence
Uk we can compute an estimate wk of wuser using a maximum likelihood estimator.

Deterministic case In the deterministic case, i.e., p = 1, the estimate wk must satisfy
Akwk ≤ 0 to be consistent with the user feedback obtained thus far. The set of all such
weights constitutes the feasible set F = {w ∈ Rd|li ≤ wi ≤ ui, A

kw ≤ 0}.
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7.2.3 Active Query Selection

In active preference learning we can choose a pair of paths (P,Q) to present to the user in
each iteration k. Throughout this work we only consider paths P and Q that are optimal
for some weights wP and wQ. Given the user feedback obtained until iteration k, a new
pair (P k, Qk) is then found by maximizing some measure f(wP ,wQ, Uk−1) describing the
expected learning effect from showing (P k, Qk) to the user.

In the literature, several approaches have been discussed: Removing the Volume, i.e.,
minimizing the integral of the unnormalized posterior over the weights [87, 9], maximizing
the information entropy over the weights [20] and removing equivalence regions, i.e., sets
of weights where for each weight has the same optimal path [109].

Parameter space and solution space The first two approaches ([87, 9] and [20]) max-
imize information about the parameter space, i.e., the weights w, instead of the solution
space, i.e., the set of all possible paths P . Despite its motivation based on inverse rein-
forcement learning, this has a major drawback: The difference in the parameters does not
map linearly to the difference in the features of corresponding optimal solutions. Given
some wP and wQ, we can compute optimal paths P and Q with features φP and φQ,
respectively. Then ||wP − wQ|| ∝ ||φP − φQ|| does not necessarily hold. Thus, learning
efficiently aboutw does not guarantee efficient or effective learning about paths. Moreover,
learning about w might allow for disregarding a large number of weights. However, the
corresponding optimal paths might be very similar and thus the learning step is potentially
less informative in the solution space.

Example 4. We consider the autonomous driving example from [20] which is posed in
a continuous state and action space, illustrated in Figure 7.2. In Figure 7.1 we compare
the weight error ErrWeight(w,w

user) and the path error ErrPath(P,w
user) of 200 uniformly

random samples, where every weight has a unique optimal path, i.e., there are no two
weights where the corresponding optimal paths have identical features. While the weight
error is distributed uniformly, the path error distribution takes nearly a discrete form,
despite the continuous action space. This illustrates how different weights do not lead to
different solutions, making the solution space more structured than the parameter space.

In our previous work [109] we proposed a query selection based on a discretization
of the weight space: Sets of weights that have the same optimal path are labeled as
equivalence regions. The objective then is to maximally reduce the posterior belief over
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Figure 7.1: Example of the sensitivity of a continuous motion planning problem. We
show the histogram of the normalized weight error ErrWeight and the normalized path error
ErrPath for 3000 uniformly sampled random weights.

equivalence regions, i.e, to reject as many equivalence regions as possible. A drawback of
this approach is that there exists cases where any query only allows for updating the belief
of few equivalence regions, resulting in slow convergence. Because of these limitations of
the existing approaches we study a new measure f(wP ,wQ, Uk) based on the solution
space.

7.3 Min-Max Regret Learning

We now propose a new measure f(wP ,wQ, Uk) called the maximum regret, which we seek
to minimize.

Definition 7 (Regret of a path relative to a weight). Given a path P that is optimal for
wP and some weight wQ, the regret of P under wQ is

r(wP ,wQ) =
c(P,wQ)

c∗(wQ)
. (7.7)

Regret expresses how sub-optimal a path P is when evaluated by some weights wQ. In
active learning, this can be interpreted as follows: If P is the final estimate, but Q is the
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optimal solution, how large is the ratio between the cost of P , evaluated by wQ, and the
optimal cost? We now formulate an approach for selecting which alternatives to show to
the user by using regret.

7.3.1 Deterministic Regret

When assuming a deterministic user, we need to assure that wP ∈ Fk and wQ ∈ Fk, such
that the presented paths reflect the user feedback obtained so far. Given wP we pose the
Maximum Regret under Constraints Problem (MRuC) as

Problem 5 (Maximum Regret under Constraints Problem (MRuC)). Given weightswP =
[wP1 , w

P
2 , . . . , w

P
n ] with a corresponding optimal path P , and a feasible set {w ∈ Rn|li ≤

wi ≤ ui, A
kw ≤ 0}, find a weight that maximizes the following:

max
wQ

r(wP ,wQ)

s.t. AkwQ ≤ 0,

li ≤ wQi ≤ ui.

(7.8)

The objective can be written in the form maxwQ,φQ φQwQ− c∗(wP ). This is a bi-linear
program, which are a generalization of quadratic programs. Unfortunately, in our case the
objective function is non-convex; generally, such problems are hard to solve. In Appendix
B we study the special case that paths are computed with a discrete motion planner and
show that finding an exact solution is computationally intractable.

Symmetric Regret In equation (7.8) we have defined the maximum regret problem
when one path is given. While presenting users with a new pair of paths (P,Q), we
want to find paths where the regret of wP under wQ is maximized and vice versa. Thus,
we rewrite the objective in (7.8) to r(wP ,wQ) + r(wQ,wP ), which we call the symmetric
regret. The maximum symmetric regret of a feasible set Fk can be found with the following
bi-linear program:

max
wP ,wQ

r(wP ,wQ) + r(wQ,wP )

s.t. AkwP ≤ 0,

AkwQ ≤ 0,

li ≤ wPi ≤ ui, li ≤ wQi ≤ ui.

(7.9)
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Similar to equation (7.8) this is a non-convex optimization problem. In the evaluation
we solve this problem by sampling a set of weights and pre-computing the corresponding
optimal paths, following the approach in [87].

7.3.2 Probabilistic Regret

We now formulate regret with consideration of the user’s uncertainty when choosing among
paths. Taking a Bayesian perspective we treat wuser as a random vector. This allows us
to express a posterior belief over wuser given an observation IP,Q. Let cP = c(P,wuser)
and cQ = c(Q,wuser), respectively. Further, we assume a uniform prior over wuser. For
any estimate w where (φP − φQ)w ≤ 0 we have

P(wuser = w|IP,Q) ∝ P
(
IP,Q|cP ≤ cQ

)
. (7.10)

Let P(w|IP,Q) denote P((wuser = w|IP,Q = 1). We calculate the posterior given a sequence
of user feedback Uk = {(P 1, Q1), (P 2, Q2), . . . , (P k−1, Qk−1)} as

P(w|Uk) ∝
∏

(P,Q)∈Uk

P(w|IP,Q). (7.11)

We formulate the symmetric regret in the probabilistic case by weighting the regret by
the posterior of wP and wQ:

Rk(wP ,wQ|Uk)

= P(wP |Uk)P(wQ|Uk)

(
c(P,wQ)

c∗(wQ)
+
c(Q,wP )

c∗(wP )

)
.

(7.12)

That is, we discount the symmetric regret such that we only consider pairs (P,Q) where
both wuser = wP and wuser = wQ are likely given the user feedback Uk.

Finally, we adapt the problem of finding the maximum symmetric regret from equation
(7.9) to the probabilistic case. As we cannot formulate a feasible set F for a probabilistic
user, we consider a finite set Ω where each w ∈ Ω is uniformly randomly sampled from the
set {w ∈ Rd|li ≤ wi ≤ ui}. We then take the maximum over all w ∈ Ω to compute the
probabilistic maximum regret

Rk
max(Uk) = max

wP ,wQ∈Ω
Rk(wP ,wQ|Uk). (7.13)

In min-max regret learning, we choose the pair of paths (P,Q) that is the maximizer
of equation (7.13).
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Algorithm 6: Maximum Regret Learning with presampled paths.

Input: (X ,A), x0, K
Output: P best

1 Initialize U0 = ∅
2 Sample a set of weights Ω
3 for k = 1 to K do
4 wP ,wQ ← max regret((X ,A), x0, U

k−1,Ω)
5 P ← shortest path(wP )
6 Q← shortest path(wQ)
7 Ik ← user feedback(P,Q)
8 if Ik = −1 then
9 Uk = Uk−1 ∪ (P,Q)

10 else
11 Uk = Uk−1 ∪ (Q,P )

12 wbest ← Ew[w|Uk]
13 return P best

7.3.3 Preference Learning with Probabilistic Maximum Regret

Our proposed solution for active preference learning using probabilistic maximum regret is
summarized in Algorithm 6. In each iteration we find the pair (wp,wQ) that maximizes
the probabilistic symmetric regret as in equation (7.13) over a set of samples Ω (line 4).
We then obtain user feedback Ik = 1 if the user prefers path P and Ik = −1 otherwise (line
7) and add the feedback to a sequence (line 8-11). After K iterations, we choose wbest as
the expected weight and return the corresponding shortest path (line 11,12). Using the
maximum regret in the query selection is a greedy approach to minimize the maximum
error. Given the current belief over the weights, we choose the pair P,Q with the maximum
error ratio, discounted by the likelihoods of wP and wQ.

7.4 Evaluation

We first evaluate the proposed approach using the simulation environment from [20], allow-
ing us to compare our approach to theirs in the same experimental setup. We use the label
Entropy to denote the maximum entropy learning from [20] and Regret for our maximum
regret learning.
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(a) Optimal behaviour. (b) Learned behaviour.

Figure 7.2: ’Driver’ simulation scenario with different robot trajectories. Behaviour of
an autonomous car (red) in the presence of another vehicle (white). In (a) we show the
optimal behaviour for some user. In (b) we show alternative paths presented during active
preference learning. Darker shades of red indicate behaviour that was presented later. The
figure was created using code from [20].

Learning experiments First, we consider one of the experiments in [20]: The au-
tonomous driving scenario (Driver) where an autonomous car moves on a three lane road
in the presence of a human-driven vehicle as shown in Figure 7.2. Paths are described
by four features: Heading relative to the road, staying in the lane, vehicle speed, and the
distance to the other car. Every feature is averaged over the entire path. Furthermore,
we introduce the Extended Driver experiment with additional features to create a more
complex scenario. In addition to the above features we add the distance travelled along
the road, the summed lateral movement, summed and maximum lateral and angular ac-
celeration, the minimal speed, and the minimum distance to the other vehicle. We choose
the Driver example because the entropy approach from [20] showed strong results and this
scenario was already previously investigated in [87]. The extension aims to show how the
learning techniques behave in higher dimensions.

Next we consider the specification revision problem, as described in Problem 3 and in
Chapters 4 to 6. Here the feature vector φ is of length n+ 1, where the first n entries are
the features describing the length of path P in the i-th constraint for all i = 1, 2, . . . , n.
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The n + 1-th feature is the time it takes the robot to execute path P . We will refer to
this experiment as Mobile. The instance of the problem used for evaluation consists of 18
areas; thus, the dimensionality of the feature and weight space is 19.

Optimal paths Given a weight w we need to find the corresponding optimal path P in
order to evaluate the path error (and to compute regret in Algorithm 6). In [20] no motion
planner is given; in the experiments we rely on the generic non-linear optimizer L-BFGS

[6] in the Driver and Extended Driver experiments. However, depending on the problem,
this solver can return suboptimal solutions. To mitigate this effect, we presample paths,
which are then used as a look-up-table, i.e., given a path that was found using L-BFGS,
we iterate over all presampled paths; if a sampled path yields a better cost for the given
weight, we use that path instead. In both experiments, the entropy approach uses the
implementation provided by [20] where queries are chosen from 500, 000 presampled pairs
of random paths. Since regret requires optimal paths, the regret approach uses a set of 200
weights with their corresponding optimal paths, yielding 40, 000 possible pairs of paths1.
Finally, in these experiments the behaviour is actually captured by a reward and not a
cost. Thus, an optimal path is found by minimizing the negative cost and we change the
definition of regret to r(wP ,wQ) = 1− c(P,wQ)/c∗(wQ).

In the Mobile experiment the robot moves using a state lattice planner [83]; given a
weightw we can always find an optimal path in polynomial time. We varied the problem set
up by choosing three different start and goal locations for the robot to navigate between.
For each start goal pair we need to presample paths individually. The discrete state
space led to a significantly smaller set of presamples, varying between 5 and 32. However,
using randomly generated paths as in [20] for Entropy led to very poor performance.
Therefore, we slightly modified the Entropy approach for this experiment, such that the
same presamples were used as for the Regret approach.

Simulated users We simulate user feedback using the probabilistic user model from
[20]. Given two paths, the user’s uncertainty depends on how similar the paths are with
respect to the cost function evaluated for wuser:

P (I = 1|(P,Q),wuser) =
ec(P,w

user)

ec(P,wuser) + ec(Q,wuser)
. (7.14)

1Using sampled optimal paths for the entropy approach did not lead to different results in the experi-
ments, therefore we show the results using the original implementation.
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The probabilistic regret is computed using pre-sampled weights as described in Al-
gorithm 6, with an uncertainty of p = 0.85 in equation (7.6). Similar to [20] for each
experiment we sample a user preference wuser uniformly randomly from the unit circle,
i.e., ||wuser||2 = 1. We notice that this can include irrational user behaviour: A negative
weight on heading for instance would encourage the autonomous car to not follow the road.

7.4.1 Learning Error

In Figure 7.3 we compare Entropy to Regret on both metrics over 10 iterations for the two
experiments, each repeated 200 times. In the boxplots the center line shows the median
and the green triangle shows the mean.

In the driver example, Entropy overall achieves a smaller weight error and smaller
deviations from the mean, reproducing the results from [20]. In the path space we observe
that Entropy achieves a slightly better result in the last two iterations. However, between
iteration 2 and 8, the Regret approach performs better, i.e., learns more quickly. Overall,
both approaches perform equally well with Regret showing a small benefit in convergence
speed.

For the Extended Driver example in Figure 7.3b, both approaches make limited progress
on the weight metric and exhibit large deviations. For the path error we observe that
Entropy performs better initially, but makes little progress after iteration 6. The final
median lies at ≈ 0.05 at iteration 10, but the highest quartile still reaches up to 0.2. The
Regret approach achieves a lower mean and median error in iteration 4 and subsequently
improves further. At iteration 8 the mean and median are close to 0, the box plot also
shows that three quarters of all trials are very close to convergence.

Figure 7.3c illustrates the result for the Mobile experiment. Here, the weight error shows
no difference between the two approaches; both perform equally poorly and inconsistently.
At the same time the path error shows a large difference. Regret achieves convergence for
nearly all trials after just 5 iterations (some outliers cause the mean value to still be at
≈ 0.5). At the same time the performance of Entropy is inferior: Even though the median
error becomes 0 in iteration 8, the mean value is still ≈ 0.15 with large deviations.

In conclusion, Regret achieves an equally good result as Entropy on the path error for
the Driver experiment, despite having a larger weight error. That is, while the weights
found by Entropy are more similar to wuser based on the alignment metric, the resulting
behaviour of Regret and Entropy are equally good. Moreover, the Extended Driver and
Mobile experiments have shown that the performance of Entropy deteriorates for higher
dimensions, i.e., larger sets of features. In contrast, Regret still achieves a very strong
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(a) Driver (b) Extended Driver

(c) Mobile robot

Figure 7.3: Comparison weight and path error in active preference learning with minimizing
entropy or minimizing regret.

performance on the path error. In Section 7.4.3 we compare the two metrics in terms of
robustness under different scenarios.

7.4.2 Easiness of Queries

A major contribution of [20] is the design of queries that are easy for the user to answer,
i.e., the probability that the user choice is inconsistent with the assumed cost function
from equation (7.14) is low. In maximum regret learning we do not directly consider the
user’s uncertainty when choosing a new pair of paths. However, as the paths maximizing
the probabilistic symmetric regret have a large difference on cost, our approach implicitly
selects paths P,Q that are easy for a user to answer, where wuser = wP or wuser = wQ.
To compare the easiness of the queries presented to the user, we consider the probability
that the user would choose the path with lower cost, evaluated by wuser (7.14). In Figure
7.4 we compare the probability of correct user answers for Entropy and Regret.
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In the Driver experiment, we recorded 84% correct answers for Entropy, which is
slightly worse than reported for the strict queries in [20], where correct answers occurred
in 87% of cases (3.5 wrong answers over 30 iterations on average). Nonetheless, with Regret

the simulated answers were correct in 94% of cases, outperforming Entropy. In Figure 7.4,
we observe that both approaches achieve very high probabilities for correct user answers in
the first iteration, i.e., ask an easy question. Afterwards, the probabilities get smaller: The
median of Entropy decreases to 0.9 in iteration 3 and the deviations increase significantly.
The Regret approach maintains higher median values for all iterations. Interestingly, we
observe cyclic decreases of the mean (and increases for the deviations) in iterations 4, 8
and 10. According to the user model the presented paths were very similar, indicating that
the learning already might have gotten close to convergence. This aligns with the small
errors of the expected weight reported in Figure 7.3a.

In the Extended Driver experiment the user behaviour is much more accurate for both
approaches, indicating that the sampled paths differ more in cost. The user accuracy
was 92% for Entropy and 96% for Regret. From iteration 7 onwards, Entropy starts
to show larger deviations, i.e., questions become more difficult to answer, implying that
the presented paths are very similar. Together with the very small decrease in path error
the we observed in Experiment 1 (Figure 7.3b) at the same iteration, this leads to the
conjecture that Entropy is converging to a local optimum.

Finally, the Mobile experiment did not show any difference between the two approaches,
both achieving a very high accuracy of 99%. Overall, these results strongly support our
claim that maximizing regret implicitly creates queries that are easy for the user to answer.

7.4.3 Generalization of the Error

Finally, we investigate how the two error metrics generalize to different scenarios, inde-
pendent of whether the error is a result of learning with Entropy or Regret. That is, we
investigate how useful each error metric is for predicting the learning performance when
the robot needs to generalise to a new instance of the problem not encountered during
active preference learning. Therefore, we consider the driver scenario from Figure 7.2 as a
training case and construct 5 test cases by changing the initial state of the human driven
vehicle (white). The weight error is scenario independent, it directly describes how similar
the estimated weight is to wuser. Thus, the weight error is the same in training and test
cases and cannot be used as test error, as this would contain no additional information
about performance on the test case. Hence, we use the path error as the test error. Further,
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Figure 7.4: The likelihood that the simulated user gives the ’correct’ answer, i.e., the
probability in equation (7.14).

we notice that if the weight error is zero, i.e., the weights have been learned perfectly, then
the path error is zero in all scenarios. However, as shown in Figure 7.3 and in [87, 20] the
weights typically do not converge to the true user weight within a few iterations. Given
some weight error, the path errors will differ for every test scenario. We are now interested
in how well the weight error and the path error of the training scenario predict the path
error of the test scenario.

We generate 40 different random user weights wuser and then generate 200 estimates
of each of these weights. For every estimate we find the optimal path and compute the
path and weight error which are used as training errors for the estimate. In Figure 7.5 we
show how these training errors relate to the test error. We compare the path and weight
error as a measure of generalisation performance (i.e., how well the weight and path errors
predict the test case performance).

We observe that the path error translates linearly between training and test scenarios:
Given a weight with a certain path error in the training scenario, the weight yields paths
in the test scenarios that have a similar path error, on average. The relationship between
weight error and test error is more complex. For a weight error of 0− 0.01 during training,
we observe a test error of 0, i.e., if the weights are very close to the optimum, the optimal
solution is found in every scenario. However, the test error shows large deviations, implying
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Figure 7.5: Relationship between training errors measured by the path and weight metric
to test errors in the path metric.

that a low weight error in training is not a robust measure of how good the resulting
behaviour is in test cases. The observation is supported by a strong Pearson correlation of
p = 0.92 between training and test error for the path error, but a much weaker correlation
of p = 0.28 for the weight error. This lends support to the claim that the path error is
better suited for making predictions of the performance in scenarios that were not part of
the training.

We conducted a the same experiment for the Extended Driver scenario. The correlation
of the path error is weaker, but with p = 0.80 still substantially stronger than for the
weight error where we observed p = 0.28. To conduct the same experiment for the Mobile
scenario, we defined multiple start goal pairs in the environment, with one pair serving as
the training task and the others as test tasks. However, we observed no correlation for
both path error and weight error. The features in this scenario are local, i.e., describe if
the robot visits a certain part of the environment. Learning about one task does only gain
information about some features, and thus does not always provide sufficient information
to find a good path for a different task.

In summary, we observe that the path error is more suitable than the weight error for
reliable predictions of the test performance in scenarios with global features. However,
higher dimensions can weaken the reliability, and local features may not allow for any
predictions.
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7.5 Discussion

Summary We investigated a new technique for generating queries in active preference
learning for robot tasks. We have shown that competing state of the art techniques have
shortcomings as they focus on the weight space only. As an alternative, we introduced the
regret of the cost of paths as a heuristic for the query selection, which allows to greedily
minimize the maximum error. Further, we studied the differences of our error function
based on the cost of paths and an alternative error function based on the difference on
weights from the literature. In simulations we demonstrated that using regret in the query
selection leads to faster convergence than entropy while the queries are even easier for the
user to answer. Moreover, we have shown that the path error allows for better predictions
for other scenarios.

Computation time considerations Both query generation methods used in the eval-
uation, Entropy and Regret, require a discrete approximation of the set of all possible
paths, which is obtained via pre-sampling. This is a major hindrance for practical applica-
tion, since pre-sampling can take significant time. In Section 10.3 we further discuss this
issue and outline a regret based learning method that does not rely on computing sample
paths prior to learning and thus allows for practical use in new scenarios.

Nonetheless, even with pre-sampling we already observed a substantial computational
advantage of the regret approach: An Entropy query takes ≈ 6s on average while a Regret

query runs in ≈ 0.3s on average 2. Calculating the expected change in entropy for a query
candidate (P,Q) requires a tentative update of the posterior probability density functions
(pdf) for the case that the user would like P over Q and vice versa. For each of these
two tentative pdfs the information entropy is then approximated via sampling. For a
large set of sampled queries (P,Q) this can result in a significant computational effort.
In contrast, Regret is much simpler: For a query candidate (P,Q), we only require the
regrets r(wP ,wQ) and r(wQ,wP ), which are just dot products in the dimension of the
number of features, multiplied with the posterior of wP and wQ. That is, Regret does
not require a look-ahead for the possible new posterior distributions over w for the two
possible outcomes of user feedback, resulting in the observed computation time benefit.

Theoretical guarantees Unlike the Entropy approach, our Regret approach does not
come with a theoretical guarantee for the learning efficiency, i.e., given some iterations K,

2Computation times for single threaded execution on a i7-4710 2.5GHz.

97



how well is the measure for learning f(wP ,wQ, Uk) optimized compared to an optimal
(but computationally intractable) algorithm. In [20] a sub-optimality bound for Entropy

learning was established by showing that information entropy is an adaptive sub-modular
set function [34]. However, information entropy is a surrogate measure for learning, i.e.,
the weight error in equation (7.3); thus, the sub-optimality bound for minimizing entropy
gives only indirect information about how well the weight error is minimized.

In the proposed regret learning approach, we greedily minimize the maximum regret.
Therefore, a sub-optimality bound would relate directly to the path error. However, mini-
mizing the maximum discounted symmetric regret (7.12) is, unfortunately, not an adaptive
submodular function.

Alternatively, the objective could be to minimize the expected discounted symmetric
regret. This would be adaptive submodular and thus a greedy algorithm would be the best
possible approximation algorithm for minimizing the expected regret over K iterations.
Nonetheless, using the expected regret comes with two major drawbacks: (1) The maximum
regret, i.e., path error, is an attractive measure since the user feedback to such a query will
eliminate one of the worst possible paths from the set of candidates (or in a probabilistic
sense decrease the belief over it). This property gets lost when using expectation: For
example the expected regret can be relatively low if the current belief space contains some
very good solutions, but also at least one that is highly suboptimal. (2) The question is
whether the expectation is taken over weights or paths: If taken over weights, the sensitivity
of the optimization problem can result in misleading results, since one path can be optimal
for a large set of weights while another path is optimal for only a small set of weights.
Thereby, some path that leads to high regret and still has a high posterior can be further
disguised. On the other hand, taking the expectation over paths requires pre-sampling
these paths. As discussed above, a major improvement to the presented work would be a
query generation without pre-sampling, which conflicts with taking the expectation over
paths.
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Chapter 8

User Preferences on State lattices

The research in this chapter was conducted in conjunction with another PhD. student of
the University of Waterloo, Alexander Botros, and was published in the proceedings of The
14th International Workshop on the Algorithmic Foundations of Robotics (WAFR) 2020
[16]. A. Botros and N. Wilde contributed equally to all parts of the presented work.

In the previous chapters, we studied the problem of learning user preferences given a
motion planner, i.e., the robots state and action space is fixed. Especially in the specifi-
cation revision problem this is well justified: The features (expect path time) were based
on user constraints on the environment and thus applied locally. However, trajectories
features can also be global, i.e., apply on all parts of the environments. Such features
can include passenger comfort in autonomous driving or avoiding high accelerations in
autonomous material transport to reduce risks.

In this chapter, we investigate the design of a motion planner that represents user
preferences. Broadly speaking, instead of just learning a cost function that represents user
preferences, we also find a subset of the robot’s action space that is optimized for this
cost function. Only considering these optimized robot actions gives a motion planner a
substantial performance benefit. We focus on lattice planners, where the problem becomes
one of learning a control set. Lattice planners are widely used in autonomous driving
[82, 83, 63, 69, 99]. The key idea is to pre-compute feasible trajectories between a discrete
set of robot states. A pair of states together with a trajectory between the states is called
a motion primitive; a collection of motion primitives forms a control set . Thus, the robot’s
dynamics do not need to be accounted for during the actual path planning. In Figure
8.1 we illustrate an example of a state lattice using clothoid trajectories [33], as well as
a set of different trajectories between two fixed states obtained by varying the maximum
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(a) Clothoid trajectory control set. (b) Sample clothoid trajectories.

Figure 8.1: Examples of a lattice control set and different trajectories.

curvature and maximum derivative of curvature. There are two aspects to consider when
designing a control set: 1) the set of states the motion primitives should connect (i.e., the
endpoints of each primitive), and 2) the actual trajectory used to make the connections.
We address the second aspect by estimating the trajectories that a user would take to each
goal configuration in a discretization of the configuration space. Generally, the time to
compute a motion plan and the quality of the resulting plan increase with the number of
primitives [82, 15]. Thus we address the first aspect by selecting a subset of the estimated
trajectories with a given size. To estimate the user trajectories, we consider that the quality
of a plan is evaluated by a user who has preferences with respect to the robot’s motion.
In autonomous driving, some users may prefer the vehicle to drive more aggressively,
making sharp turns and maintaining high speeds, while others may prefer slower speeds
and smoother turns [37, 39]. To find trajectories that reflect user preferences, we assume
that users evaluate a robot’s behaviour based on a weighted sum of features, similar to
[87, 37].

The preferred behaviour of an autonomous robot often depends on situational context,
like type of road or obstacles. Thus, a lattice planner based on trajectories that reflect
the user preferences might only be applicable in certain scenarios. Complete planners that
encompass many scenarios often use specialized lattices [1, 37, 29]. Our methodology is not
limited to a specific scenario like driving on a highway or navigating in close proximity to
an obstacle: for any of these scenarios we can learn a respective control set that captures
the user preferences. Thus, we only consider global features such as trajectory length
or maximum jerk, which are common in autonomous driving [37]. We learn the relative
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importance of features from demonstrations from a single user, i.e., estimate the weights
and the user’s cost function. The cost function is then used as an input to a trajectory
planner, e.g., for a ground vehicle a Dubins path, clothoid [33] or polynomial spiral [70], that
computes the optimal trajectories between lattice states. Thus, our approach is agnostic
to the employed local planner.

A major restriction for the performance of lattice planners in high-dimensional states
is the branching factor (the number of connections in the control set). Higher dimensional
states are common in autonomous driving applications where the set of states can extend
to (x, y) position, orientation, curvature, and speed [69]. To improve runtime of the motion
planner, we set an upper bound on the branching factor. Hence, there might not be a pre-
computed trajectory to every state in the lattice; such states are reached by executing a
sequence of trajectories. A lattice should then be constructed such that over all states for
which no precomputed direct trajectory is in the control set, the sub-optimality of the best
trajectory sequence is minimized. This problem is closely related to the minimal t-spanning
control set problem (MTSCSP) [82, 15]. Here, we find an estimate of the user cost function
and compute a lattice with a given maximum branching factor best suited for the user.
Restricting the size of the control set vastly improves planning time but at the expense of
path quality. We introduce a novel methodology for designing a state lattice planner that
considers user preferences. We pose the problem of simultaneously learning trajectories
and a connection set of fixed size given demonstrations from a single user. The major
contribution of this work is showing that an optimal solution to this problem can be found
by applying a separation principle: First, we find the best estimate of the user preferences
given data, which defines trajectories for all states in the lattice. Then we compute a
connection set of given size that minimizes the error compared to using all connections in
the lattice. We show that the proposed approach minimizes the maximum relative error of
the expected optimal trajectories. Finally, we demonstrate the performance in simulations
where the average cost of the paths computed with the learned control set is 1.4 of the
optimum. Moreover, we obtain a substantial planning time speedup of more than factor
10 when using the learned connection set compared to planning with the entire lattice.

8.1 Problem Statement

In the preliminaries, we discussed the problem of computing a minimal t-spanning control
set of a lattice GBT = (V,B, c). However, the formulation of this problem requires that
the set of trajectories T , and thus the costs c, are known. Different users might have
individual preferences for trajectories, which can be described by a respective cost function
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c. We model users who evaluate a trajectory Tj from s to j as a weighted sum of features
φ(Tj) =

[
φ1(Tj) φ2(Tj) . . . φn(Tj)

]
:

c(Tj,w) = φ(Tj) ·w (8.1)

where w is a vector of weights
[
w1 w2 . . . wn

]
. The features can represent properties

such as travel time, lateral acceleration, maximum jerk, etc. Similar user cost functions
have been used in [71, 2, 87, 77] Without loss of generality, we assume that w ∈ [0, 1]n.
Given a user weight w, we denote the cost of the optimal trajectory from s to j with
respect to the weights w as

c∗j(w) = min
Tj

φ(Tj) ·w. (8.2)

For a given set of weights w ∈ [0, 1]n, and a given set of connections E ⊆ B, let GE,w =
(V,E, c∗). Here, E is the set of all pairs (i, j) such that there exists a connection b = (s, k) ∈
E taking i to j, and c∗(i, j) = c∗k(w). For any weight w ∈ [0, 1]n, let P Ej be a path from s to
j on graph GE,w. For every edge e in a path P Ej there is an associated connection b ∈ E ,
and for every connection b ∈ E , there is an associated trajectory Tb ∈ T . Thus a path P Ej
from s to j defines a trajectory from s to j which is the sequence of trajectories associated
with each edge in the path. Let (T1, T2, . . . ) be the sequence of trajectories associated with
the edges (e1, e2, . . . ) in a path P Ej . We extend the cost function c for trajectories to a cost
function u of paths: For each feature φl there exists a feature function

fl(P
E
j ) = fl({φl(T1), φl(T2), . . . }). (8.3)

Here fl depends of the trajectories associated with the edges in e1, e2, · · · ∈ P Ej . Further,
we only consider functions fl(·) that are monotone, i.e., fl(P

1) ≤ fl(P
2) if P 1 ⊆ P 2. For

example, let φl be the length of a trajectory, then fl describing the length of a path sums
over all φl(T1), φl(T2), . . . . Furthermore, for other features we might require a non-linear
mapping, e.g., the maximum curvature of a path is the maximum curvature among its
trajectories. The user cost function of a path is then given by the weighted sum of all
features

u(P Ej ,w) = w1f1(P Ej ) + · · ·+ wnfn(P Ej ). (8.4)

We notice that u is a generalization of the cost function c, i.e., c evaluates a single trajectory
while u is a function of a set of trajectories which form a path. The user cost function u is
similar to a reward function in reinforcement learning. However, it is challenging for users
– especially non-experts – to specify weights for such a reward function [87]. Summarizing
all weights in a row vector w and all features in a column vector f(P Ej ) allows us to write
u(P Ej ,w) = wf(P Ej ). Given weights w, we define the optimal path as

P E,wj = arg min
PEj

u(P Ej ,w). (8.5)
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Observe that this definition implies that

u(PB,wj ,w) = c∗j(w). (8.6)

Indeed, for connection set B there exists a direct connection taking s to j for all j ∈ V ,
and the cost of the minimal trajectory given w is given by c∗j(w).

Given a set of connections E , and weights w, let T = {Tb : b ∈ E} where Tb solves (8.2)
for each b ∈ E . That is, T is the set of minimal cost trajectories with respect to w for
each connection in E . We observe that a control set (E , T ) can thus be determined by the
tuple (E ,w). For the remainder of this chapter, we focus on computing the tuple (E ,w).
Based on our cost function, the user-optimal behavior between all connections in B can be
described by a control set (B,w∗) where w∗ denotes the true user weights. Users cannot
provide w∗ directly, and we learn about w∗ from demonstrations. The true user weights
may be dependent on the situation (e.g. highway vs city driving). This work focuses on
a single situation but could be extended to account for multiple situations with the result
being several control sets, one for each situation. For a given situation, we treat w∗ as a
hidden parameter which we have to estimate. Consider a path P E,w1

j that is optimal for

a control set (E ,w1), and a second weight w2. The cost of path P E,w1

j can be evaluated by
w2, which we write as:

uj(E ,w1|w2) = w2 · f(P E,w1

j ) = u(P E,w1

j ,w2). (8.7)

We read this as the cost to j using control set (E ,w1), evaluated by weights w2, i.e., the
cost of the path that is optimal given weights w1, for a user whose weights are w2. This
error is similar to the relative error from Problem 2. Based on this notation, we can now
pose the main problem statement:

Problem 6 (User control set). Given a finite set of lattice states V with start state s ∈ V ,
hidden user preferences w∗, and a budget on the number of allowable connections, k ∈ Z>0,
find a control set (E ,w), with E ⊆ B,w ∈ [0, 1]n such that

(E ,w) = arg min
E ′,w′

max
j∈V

uj(E ′,w′|w∗)
c∗j(w

∗)

s.t. |E ′| ≤ k, w′ ∈ [0, 1]n.

(8.8)

The control set (E ,w) minimizes the maximum ratio of path costs evaluated by w∗ to
the cost of the optimal direct trajectory to j, given a budget of k connections. In essence
(E ,w) is the control set with the minimal t-error and is therefore the most robust control
set.
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8.2 Approach

Problem 6 consists determining a control set (E ,w) that minimizes the maximum ratio
between path cost and optimal cost. We introduce a model for how users provide demon-
strations and then analyse how the unknown parameter w∗ in equation (8.8) can be sub-
stituted by an estimate of the user weights given data. We show that the optimal solution
is a pair (E ,w) where w is the best available estimate of w∗ and E can be computed via
a mixed-integer linear program. This allows for a simple, yet effective method for solving
Problem 6.

8.2.1 User model

We consider a user with a preference w∗. Let d be a demonstrated trajectory from a
start state s to a goal state j ∈ X. We do not require j to be a lattice point as we
can still evaluate features f(d) and thus assign a cost uj(d,w) as in (8.4). We denote
dw
∗

the minimal-cost demonstration from s to j given weights w∗. Users cannot perfectly
demonstrate dw

∗
. Thus we use the features of demonstrations to formulate a probabilistic

user model:

Assumption 1 (User Model). A user with a preference w∗ provides a demonstration d
from s to j with features f(d) where the density p(f(d)|w∗) is:

p(f(d)|w∗) ∼ N (f(dw
∗
),σ). (8.9)

Similar user models have been used in [78, 71]. Thus, users provide demonstrations
such that the features follow a normal distribution centred at the features of the optimal
demonstration. That is the user demonstrations are unbiased and, given a large enough
data set, the average features of demonstrations equal the optimal features. Following
(8.4), two demonstrations with equal features have the same cost for any user and thus
are indistinguishable with respect to the cost function. Hence, we consider only features
of demonstrations. Let D = (d1, d2, . . . ) be a sequence of demonstrations. We then find
the conditional expectation of w given D by taking the Bayesian posterior:

Ew[w|D] =
1

|D|
∑
d∈D

E[w|f(d)]p(f(d))

=
1

|D|
∑
d∈D

∫
w∈[0,1]n

w p(f(d)|w) p(w)dw.
(8.10)
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Finally, we can approximate the integral by summing over a set of N samples:

Ew[w|D] ≈ 1

|D|
∑
d∈D

1

N

N∑
i=1

wi p(f(d)|wi) p(wi). (8.11)

8.2.2 Estimation of the Loss Function

We now use the user model to find a solution to Problem 6, given a set of user demonstra-
tions D. We consider two approaches. The first is taking the conditional expectation over
equation (8.8), given D:

(Ē , w̄) = arg min
E ′,w′

Ew
[
max
j∈V

uj(E ′,w′|w)

c∗j(w)

∣∣∣D]
s.t. |E ′| ≤ k, w′ ∈ [0, 1]n.

(8.12)

The second approach is to use the expectation ŵ = E[w|D] to compute (Ē , w̄), also known
as the plug-in estimator [105]:

(Ē , w̄) = arg min
E ′,w′

max
j∈V

uj(E ′,w′|ŵ)

c∗j(ŵ)

s.t. |E ′| ≤ k, w′ ∈ [0, 1]n.

(8.13)

While it is an approximation, (8.13) approaches the desired Problem 6 as |D| → ∞. Thus,
this work focuses on solving (8.13).

8.2.3 Main Results

In this section, we present the main theorem of this chapter that proposes a solution to
the minimization problem in (8.13). The high-level idea is: given demonstrations D, the
expected user weight ŵ is computed. This user weight is used to calculate trajectories that
minimize the user cost for all connections in B. Finally, a set E ⊆ B of size ≤ k is found to
produce a control set (E , ŵ). In order to illustrate how the connection set E is computed,
we present a variant of the MTSCSP from [83, 15] that is used in the main results of this
chapter.
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Problem 7 (Minimum k-spanning Connection set Problem (MKSCSP)). Given a tuple
(V,B, c), and an integer k > 0, compute a set E such that

E = arg min
E ′⊆B
|E|≤k

τ(E ′), (8.14)

where τ(E) is defined in (3.1) with c(j) = cBj for all j ∈ V . If E solves (8.14), and τ(E) <∞
we say that E is a minimal k-spanning connection set (MKSCS).

We make an observation about the cost function u, that motivates our main results.

Observation 1 (Weight Choice). For any set of connections E , any vertex j ∈ V , and any
pair of weights w,w′ ∈ [0, 1]n, it must hold that

uj(E ,w|w) ≤ uj(E ,w′|w). (8.15)

Indeed, from the definition of paths PB,wj and user costs in (8.5), and the definition of user
costs evaluated by other weights in (8.7), we observe that

uj(E ,w|w) = u(P E,wj ,w) ≤ u(P E,w
′

j ,w) = uj(E ,w′|w). (8.16)

Theorem 1 (Problem Solution). If the tuple (Ē , w̄) is a solution to minimization problem
(8.13), then w̄ = ŵ, and Ē is a MKSCS of the lattice whose costs are computed using
weights ŵ (i.e., the lattice GB,ŵ).

Proof. Let Ê denote a MKSCS of the lattice GB,ŵ. Note that Observation 1 implies that the
optimal value for w̄ in equation (8.13) is given by ŵ for any set of connections E ′. Indeed,
for any weightsw′ ∈ [0, 1]n, equation (8.15) implies that uj(E ′,w′|ŵ) ≥ uj(E ′, ŵ|ŵ). Thus,
for any E ′, the pair (E ′,w′) must result in paths whose cost is at least (E ′, ŵ). This allows
us to simplify equation (8.13) to

Ē = arg min
E ′

max
j∈V

uj(E ′, ŵ|ŵ)

c∗j(ŵ)
.

s.t. |E ′| ≤ k.

(8.17)

We will now show that Ê solves (8.17). Observe that the t-error for any set E ′ given
the lattice GB,ŵ is exactly uj(E ′,ŵ|ŵ)/c∗j (ŵ) which appears in the minimization in (8.17).

Therefore, it must hold that if t̂ = τ(Ê) given the lattice GB,ŵ, then for any other set of
primitives Ē ⊆ B such that |Ē | ≤ k we have

τ(Ê) ≤ τ(Ē). (8.18)
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This follows from the assumption that Ê is a MKSCS for the lattice GB,ŵ. Thus Ē solves
the minimization problem (8.17). Finally, let Ē be any solution to (8.17). Then, it must
hold that τ(Ē) = t̂, implying Ē is also a MKSCS of the lattice GB,ŵ. Therefore, we have
that w′ is a weight that solves (8.13) if and only if w′ = ŵ. Given that w′ = ŵ, we may
reduce (8.13) to (8.17) which is solved by a connection set Ē , if and only if Ē is a MKSCS
of the lattice GB,ŵ.

Corollary 1.1. If the control set (E ,w) is a solution to equation (8.8), then w = w∗, and
E is a MKSCS on the lattice GB,w

∗
.

The proof of Corollary (1.1) follows closely the proof of Theorem 1, and is therefore
omitted. Letting Ê denote a MKSCS of the lattice GB,ŵ, Theorem 1 shows that (Ê , ŵ)
solves (8.13). The next theorem extends this result to a lattice whose trajectory costs
are given by their expected costs, given D, if the features fi, i ∈ {1, . . . , n} are piece-
wise continuous functions of w. We say that a multivariate function fi(w) is piece-wise
continuous on the compact set [0, 1]n if for any two weight vectors w1,w2 ∈ [0, 1]n, the
function fi is piece-wise continuous on the line-segment connecting w1,w2.

Theorem 2 (Solution for the Expected Cost Lattice). Let (Ê , ŵ) be a solution to problem
(8.13). If the features fi are piece-wise continuous functions of w for all i ∈ {1, . . . , n}
then it holds that

(Ê , ŵ) = arg min
E ′,w′

max
j∈V

Ew[uj(E ′,w′|w)|D]

Ew[c∗j(w)|D]
. (8.19)

That is, the control set (Ê , ŵ) minimizes the t-error given a lattice whose trajectory costs
are defined by their expected costs given D.

Proof. We first show that for any fixed E ′ ⊆ B and j ∈ V , the function uj(E ′,w|w) is a
piece-wise linear function of w. If we fix the first argument as w = w′, the cost function
uj(E ′,w′|w) becomes linear in w. Indeed, from (8.4) and (8.7), we have uj(E ′,w′|w) =

w · f(P E
′,w′

j ), where f(P E
′,w′

j ) is constant for a fixed control set (E ′,w′). Because the
features f are assumed to be piece-wise continuous, we can conclude from (8.7) that
u(E ′,w|w) is also piece-wise continuous. Let ε > 0,w1,w2 be such that u(E ′,w|w) is
continuous on a line-segment

L = {λ1w1 + λ2w2 : λ1 ∈ [−ε, 1 + ε], λ2 = (1− λ1)}. (8.20)

That is, u(E ′,w|w) is continuous on a line segment containing and extending a small
distance depending on ε past w1,w2. Observe that the linearity of u(E ′,w′|w) for any
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fixed weights w′, together with Observation 1 imply that

uj(E ′,λ1w1 + λ2w2|λ1w1 + λ2w2)

=λ1uj(E ′, λ1w1 + λ2w2|w1) + λ2uj(E ′, λ1w1 + λ2w2|w2)

≥λ1uj(E ′,w1|w1) + λ2uj(E ′,w2|w2).

(8.21)

Thus, the function uj lies above the line passing through uj(E ′,w1|w1), and uj(E ′,w2|w2).
Since this holds for all w′1,w

′
2 ∈ L, and uj(E ′,w|w) is continuous on the line connect-

ing w′1,w
′
2, it must be linear there. Thus, if f(w) is continuous on any line segment,

then uj(E ′,w|w) is linear there. Were the values of λ1, λ2 in (8.21) restricted to [0, 1],
it would only imply concavity, but (8.21) holds for all λ1, λ2 ∈ R≥0, implying piece-wise
linearity. By the linearity of the cost function, uj(E ′,w′|w) in w for fixed w′, we have
Ew[uj(E ′,w′|w)|D] = uj(E ′,w′|ŵ). By the linearity of uj(E ′,w|w) in w for any E ′ ⊆ B,
and (8.6) we have Ew[c∗j(w)|D] = c∗j(ŵ). Thus the minimization problem (8.19) reduces to

(8.13), the solution to which is given by (Ê ,w) in Theorem 1.

8.2.4 Computational Complexity

In this section we prove the NP-completeness of the decision version of the minimization
(8.8). We begin by stating the decision version of Problem 7.

Problem 8 (Decision version of MKSCSP). Given tuple (V,B, c), integer k > 0, and a
real number t ≥ 1, does there exist a set E ⊆ B with |E| ≤ k and τ(E) ≤ t?

Theorem 3 (NP-completeness). Problem 8 is NP-complete.

Proof. The MTSCSP in the preliminary section was shown to be NP-complete in [15]. Its
decition version is: Given a lattice GB,w, a real number t ≥ 1 and an integer k > 0, does
there exist a set E ⊆ B where τ(E) ≤ t and |E| ≤ k? We reduce the MTSCSP decision
problem to Problem 8. Given a lattice GB,w, and t ≥ 1, k > 0, we construct an instance
of the MKSCSP as follows: let V = {j : (s, j) ∈ B}, and let c(j) = c∗j(w) for all j ∈ V .
Then we observe that Problem 8 on this instance is identical to the decision version of the
MTSCSP. Thus, Problem 8 is NP-hard because the MTSCSP decision problem is. Observe
that a potential solution E ⊆ B to Problem 8 can be verified in time polynomial |V | by
iterating over all vertices j ∈ V to check τ(E) ≤ t, and additionally checking that |E| ≤ k.
Hence, Problem 8 is in NP and thus NP-complete.
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8.2.5 Computing an Optimal Control Set

We now briefly summarize the proposed solution to problem (8.13). By Theorem 1, the
solution is a tuple (Ê , ŵ), where ŵ can be approximated using (8.11), and the MKSCS, Ê
is computed via a variant of the MTSCSP mixed-integer linear program from [15]. This
is done by adding the constraint that |Ê | ≤ k, and changing the objective of the problem
from minimizing |Ê | to minimizing τ(Ê).

8.3 Evaluation

We now demonstrate the performance of the proposed approach in simulations. We con-
sider a known, static environment, discretized into four-dimensional states. Each state
consists of a (x, y) position, an orientation θ and the current speed v. We considered 3
discrete values of speed, and 8 discrete headings (cardinal and ordinal). All used environ-
ments consisted of 15 × 15 grid of (x, y) positions and hence of 15 × 15 × 8 × 3 = 5400
states (vertices). The lattice had pre-computed trajectories for x-values between 0 and
4, y-values between −3 and 3, all 8 headings and all 3 speed values. Trajectories were
computed using clothoids, a subset of the used lattice is illustrated in Figure 8.1. Each
vertex has to be reached from a start for every discrete speed value and from a cardinal and
ordinal orientation, yielding 6 different starts (0, 0, j, vi), j ∈ {0, π/4}, i ∈ {1, 2, 3}. Thus,
the connection set B for each start contains up to 672 connections.

We model users who evaluate trajectories based on three features: travel time, longitudi-
nal acceleration and lateral acceleration. User demonstration were simulated by sampling
features from the distribution in (8.9). We consider three preferences corresponding to
different driving styles: An aggressive style which prefers short travel times, a cautious
style that favours low accelerations, and a moderate style that balances the features more
equally. For all user types we set the covariance in (8.9) to 0.1. We illustrate an example
demonstration of each user in Figure 8.2a. Finally, the experiment comprises one training
environment, shown in Figure 8.2 and two test environments.

8.3.1 Training Error

For each of the three driving style, we obtain three demonstrations for different start-goal
pairs. We show that we can effectively learn user preferences despite this small number of
demonstrations. We estimate ŵ for each user by computing the expectation in equation
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(a) Demonstrated behaviour.

(b) Learned behaviour.

Figure 8.2: Demonstrated and learned behaviour in the training environment. The color
of the path indicates speed, where blue corresponds to slow and red corresponds to fast.

(8.11) using N = 10 samples and assuming a covariance of 0.05, i.e., we overestimate how
accurately the user demonstration match their optimal trajectories. Finally, we run the
experiment for minimal k-spanning connection sets of size 25, 50 and 100 over 40 trials
each. Figure 8.2 shows one of the training demonstrations starting at the bottom at high
speed and going to the top left corner. We compare the optimal paths for the three different
users, together with the paths that were planned using the learned control set (Ê , ŵ). While
the shape of the paths is slightly different from the demonstrations, key characteristics of
the user preferences are replicated. The aggressive user only breaks for sharp turns and
immediately accelerates again. The moderate user avoids breaking too abruptly and thus
cannot take the shortcut. Finally, the cautious user minimizes lateral and longitudinal
acceleration and thus drives with minimal speed whenever possible. Figure 8.3a shows
the t-error over all users and k values for the control set (Ê , ŵ) together with the error of
the control set using all connections (B, ŵ) in the lattice. We include a naive approach
as a reference, where wnaive is sampled randomly and independent to the demonstrations.
This serves as a baseline to illustrate the advantage of estimating driver behavior, i.e., the
sensitivity of the cost function to user preferences w. For the naive approach we show the
error of a MKSCS (Enaive,wnaive) and of (Bnaive,wnaive). We observe that (B, ŵ) achieves
an average error of 1.16, with a median of 1.02. The MKSCS solution has a mean and
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(a) Training Error. (b) Test error.

Figure 8.3: The t-error for all connections B and the MKSCS connections E compared to
a naive approach with Bnaive and Enaive, respectively.

median error of 1.34 and 1.13, respectively. Thus, the limited size of the control set leads
to a mean cost that is 34% higher than the optimum, but for half of all cases the cost is at
most 13% higher. In comparison, we observe that the naive approach yields a mean error
of 1.81 with a median of 1.52 when using all connections, and a slightly higher error for a
MKSCS.

In Figure 8.4 we compare how different values for k influence the t-error and the plan-
ning time speedup when using a MKSCS. Generally, the t-error decreases as k increases,
though we observe large differences between user types. For the cautious user the error
does not exceed 1.1 on average, independent of k. While the aggressive user type achieves
comparable values for k = 100, the error increases drastically for smaller k, reaching an
average of ≈ 2.2 for k = 25 with a large deviation from the mean. The moderate user
shows a more balanced result with the average not surpassing 1.5 for small k. Yet, the
planning time speedup is less affected by the user type. For k = 25 we observe the highest
speedup of ≈ 35 on the median for all three user types. For higher values of k the speedup
decreases, but even using a connection set with |E| = 100, the median path planning is
at least 10 times faster than when using all connections B. We conclude that using a
MKSCS drastically decreases planning time though the cost increases 34% compared to the
optimum (twice the error of the best estimate). However, in half of all training examples
the increase in cost is less than 10%. Between users, the performance benefit is similar,
while the path quality differs.
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Figure 8.4: Training data: The t-error and planning time speedup for different sizes of the
MKSCS and the different user types.

8.3.2 Test Error

The test error is evaluated on three different start–goal pairs for which no demonstrations
were obtained in two different environments. In Figure 8.3b we show a similar analysis
as we did for the training error. The error of the learned control set (Ê , ŵ) is slightly
higher than in the training with a mean of 1.38 and a median of 1.17 while the deviation is
smaller. The naive approach performs slightly better than in the training, with mean and
median values for (Bnaive,wnaive) of 1.72 and 1.31, respectively. This indicates that the
user behaviour might be less sensitive in the test scenarios. Figure 8.5 shows a comparable
relationship between k and the t-error (left) and planning time speedup (right). The overall
t-error is comparable in mean to the training, but increases with smaller k for the cautious
user type. The aggressive user shows the highest error, with a mean of 1.8 for k = 50.
The planning speedup shows a similar trend as the training data. However, the deviations
differ more between user types. All three users yield median speedup factors of ≈ 30 for
k = 25, but are still above 10 for k = 100.

We conclude that the learned control set (Ê , ŵ) achieves good t-errors in both training
and test environments while allowing for a substantial planning time speedup. Increasing
k, the t-error tends to decrease, approaching the error of the estimation. Even though the
performance also decreases with growing k, we still obtain an improvement of more than a

112



Figure 8.5: Test data: The t-error and planning time speedup for different sizes of the
MKSCS and the different user types.

factor of 10 for k = 100 compared to paths planned using the complete connection set B.

8.4 Discussion

We studied a novel approach for computing a control set that captures user preferences.
First we find an estimate ŵ of the user weights, given data. Based on the estimate weights
trajectories for all pairs (s, j) ∈ B are computed. These trajectories are calculated to
minimize a user cost function that is a linear combination of weights ŵ and trajectory
features. Next, a set of connections Ê ⊆ B and its associated trajectories is determined.
This control set minimizes the relative error of trajectories generated. We illustrate how
both ŵ and Ê are computed, and validate our findings using a clothoid trajectory planner.
The results illustrate that the control set (Ê , ŵ) is able to capture a user’s preferences
while greatly reducing online computation time relative to using the full connection set.

In future, this approach should be tested with real-world data, e.g., recorded driving
behaviour. The use of other trajectory planners such as polynomial splines or Bezier curves
could be used to investigate generalizability. Finally, these results should be extended to
account for situational user weights.
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Chapter 9

Learning User Preferences from
Corrections on State Lattices

A version of this chapter was published in the proceedings of the IEEE International Con-
ference on Robotic and Automation (ICRA) 2020 [111].

In this chapter we return to the specification revision problem that we studied through-
out Chapter 4 to 6. We address one of the main problem of the employed active preference
learning framework: What if the user does not like either of the presented paths? Forcing
the user to choose among two equally bad choices can be frustrating for the users, since
they might feel impotent to tell the robot what they want – which was reported by some
participants in our user study in Chapter 5. can lead to inefficient learning since it does
not learn much about the user preferences, and users might be more inaccurate in their
choice.

To address this issue we study a richer form of user feedback: Corrections. Given
a potentially suboptimal candidate solution a user changes parts of the trajectory such
that it better fits their preferences. This approach is a compromise between learning from
demonstrations and active preference learning: Users are not required to show the entire
trajectory to the robot since this be challenging in complex environments. On the other
hand, the robot presents the user with their current best solution and gives the user the
opportunity to correct the behaviour, which might allow for much quicker convergence
than if the user would have to go through many iterations of active preference learning.

Similar to Problem 3, we consider user preferences for how a robot should accomplish
its task that can be described by constraints on the robot’s task and action space. A set
of such constraints defines rewards and penalties for corresponding parts of the task space,
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usually expressed by weights, which can then be considered by the robot’s motion planner.
In our previous framework (Chapter 4) we ask users to provide an initial specification, i.e.,
define constraints, and then revise the specification through active preference learning. We
now modify the problem setup: User do not provide a specification, but we still assume that
their preferences for robot motions could be expressed by a set of constraints. Following an
interactive learning approach, we iteratively suggest a solution for a task, i.e., a path from
a start to a goal location, and then ask the user to provide a correction if that solution
does not fit their preferences.

The corrections can be provided on an interface showing a map of the environment
together with the presented path. The user can choose to correct the parts of the presented
path they dislike by either setting via-points or by drawing an alternative sub-path. From
the difference between the presented solution and its correction we learn about the user’s
preferences for robot behavior in different parts of the environment. We illustrate this in
Figure 9.1. In (a) the environment is shown together with a penalty area, i.e., the user
prefers that a robot does not traverse the red-shaded area on the right. We do not ask the
user to specify this region, but rather show them the current optimal solution computed by
the motion planner. The user then provides a correction, as shown in (b), from which the
planner learns that there must be some user preference making the presented path inferior.

Given a set of tasks, users are queried for corrections over multiple iterations. From
the user feedback, we learn about user preferences about the robot’s state relative to the
environment, e.g., areas where robot traffic is encouraged or discouraged, and preferences
about the robot’s motion describing control actions that should be avoided such as sharp
turn maneuvers. It is neither necessary nor realistic to expect that the learned preferences
exactly equal the hidden ones. Rather, the objective is that the learned preferences result
in a similar behaviour, i.e., the planner finds paths that are similar to the ones the planner
would find after a user had precisely defined constraints. Further, the learning should
generalize the information obtained from the corrections, as illustrated in Figure 9.1 (c)
and (d). When updating preferences without any generalization, the planner might only
avoid the exact part of the environment traversed by the presented path, or prefer to use
the part of environment used by the correction, shown in sub-figure (c). As a result, in the
next iteration it might propose a path that is only slightly different than the one presented
previously. The goal of generalizing the learned information is to infer the user’s intent
when they provide a correction. This can be done by updating the weights for the area
around the presented path and the correction, as illustrated in sub-figure (d). This poten-
tially allows for faster learning and might improve the performance on tasks for which no
corrections were obtained, i.e., that were not available during the interaction with the user.
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(a) Hidden user preferences on
the environment.

(b) Suggested path (blue) and
user correction (purple).

(c) Sparse preferences learned
from one correction.

(d) Generalizing preferences
learned from one correction.

Figure 9.1: Example of the learning from correction framework, with an environment with
obstacles (black), avoidance areas (red) and areas where robot traffic is encouraged (green).

Contributions We study a novel framework for learning user preferences from correc-
tions for a state lattice motion planner. In our previous work on specification revision
(Chapters 4 to 6), our linear cost function considered only environment features character-
izing robot behaviour based on its current location in the environment (i.e., local features).
Using a lattice planner allows us to include motion features that allow us to model pref-
erences about control actions across the entire state lattice (i.e., global features). From a
user’s correction to a presented path we derive inequalities about weights for both types of
features. Given a sequence of presented paths and their corrections, we update the weights
to satisfy the user’s preferences while generalizing the information learned about weights
to improve the performance. We prove completeness of our algorithm and demonstrate its
performance in simulations. Thereby, we show the weights learned over 20 iterations result
in paths similar to the optimal paths for tasks used during learning as well as for a set of
test tasks.
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9.1 Problem Formulation

In the problem we consider the following input:

• A directed graph G = (V,E, t) induced by a state lattice [81] with a control set, i.e.,
motion primitives, B. The graph G encodes a robotic road-map of the environment.
The travel times ti are non-negative for all ei ∈ E.

• A set of training tasks, Ztrain and a set of hidden test tasks Ztest. Both contain
ordered pairs {(s1, g1), (s2, g2), . . . } where sj and gj are vertices on G and constitute
the start and goal, for which we want to find the shortest path that satisfies all user
preferences.

• A grid-based cost map M [81] of the environment. Each cell µi ∈ M has a hidden
user weight w∗i where w∗i ∈ [0, wmax]. Weights wi > 1 express that it is undesired for
robots to visit cell µi while wi < 1 correspond to a reward. We collect all weights in
a vector w∗ ∈ R|M |≥0 .

• A hidden vector u∗ ∈ R|B|≥1 where each u∗l describes the user’s preference for the robot
using the motion primitive bl ∈ B.

• Vectors w0 and u0 with prior weights.

• A user providing feedback: Given a path P for a task (si, gi) the user provides a
corrected path Q.

The graph G can be combined with weights w and u to obtain the graph Gw,u =
(V,E, c). Given an edge e and its primitive path, let φj(e) be the length of the section of
its primitive path in the cell µj. Further, let ηl(e) be a binary function indicating if the
edge e is an instance of the primitive bl. The cost ci of an edge ei is then defined as

ci =
∑
µj∈M

φj(ei) · wj +
∑
bl∈B

tl · ηl(ei) · ul. (9.1)

Thus, each wj expresses a relative reward or penalty for an edge passing through the
cell µj. The weight ul describes a preference for using the corresponding motion primitive.
As wj ≥ 0 for all µj and ul ≥ 1 for all bl, we ensure that ci ≥ 0 always holds. As a
consequence, the graph cannot contain negative cycles. As w∗ and u∗ are hidden we can
only obtain the graph G0, composed of G, w0 and u0. The objective is to learn about all
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weights w and u such that the behaviour of a robot planning with the learned weights is
equivalent to the behaviour described by w∗ and u∗, i.e., that the optimal solution for all
tasks is the same.

9.1.1 User Cost Function

We model the user to have an internal linear cost function for paths, extending our prior
work in [107] to incorporate both environment and motion features. Given a graph Gw,u

combined from G with some w and u, the cost of a path is

c(P,w,u) =
∑
ei∈P

ci. (9.2)

Let φ(P ) be the vector summarizing the path length for each cell µ ∈M , defined as

φ(P ) =

[∑
e∈P

φ1(e)
∑
e∈P

φ2(e) . . .
∑
e∈P

φ|M |(e)

]
. (9.3)

Similarly, η(P ) counts how often each primitive b ∈ B is used on the path P and multiplies
it with the duration of b:

η(P ) =

[∑
e∈P

t1η1(e)
∑
e∈P

t2η2(e) . . .
∑
e∈P

t|B|η|B|(e)

]
. (9.4)

This allows us to rewrite the cost function as

c(P,w,u) = φ(P )w + η(P )u. (9.5)

Similar to reward functions in reinforcement learning, φ(P ) and η(P ) describe features
of a path, which are then weighted by w and u, respectively. We call φ(P ) environment
features as they describe a preference for the robot’s behaviour in particular regions of
the environment. The vector η(P ) expresses motion features for the robot; they describe
preferences over the motion primitives in the lattice and apply globally. For instance a
user might want the robot to avoid sharp curves to reduce risk, or left turns as they can
affect performance in dense traffic.
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9.1.2 Problem Statement

We consider arbitrary weightsw and u defining a graph Gw,u, as well as the hidden optimal
weights w∗ and u∗ defining a graph G∗. The graphs Gw,u and G∗ have the same vertices
and edges, but different costs c on the edges. For any task (sj, gj) we can find a shortest
path on Gw,u, denoted by Pj and a shortest path on G∗, denoted by P ∗j . Finally, let
c(Pj,w

∗,u∗) denote the cost of a path Pj on G∗. This allows us to define the loss function
for a set of tasks Z as the summed relative error in cost:

Err(Z,w,u) =
∑

(sj ,gj)∈Z

c(Pj,w
∗,u∗)

c(P ∗j ,w
∗,u∗)

− 1. (9.6)

This error is a special case of our general error function (3.4), we now explicitly distinguish
between local and global features and thus weights w and u. We notice that this error
cannot be calculated as w∗ and u∗ are hidden. Nonetheless, the objective is to find weights
w and u that minimize the error for all tasks.

Problem 9 (Learning user preference ). Given G and Ztrain and a budget of K user
interactions, find weights

[
wK uK

]
where[

wK uK
]

= arg min
[w′ u′]

Err(Ztrain ∪ Ztest,w′,u′)

s.t. 0 ≤ w′j, j = 1, 2, . . . , |M |
1 ≤ u′l, l = 1, 2, . . . , |B|.

(9.7)

9.2 Approach

We present our framework for solving Problem 9 in Algorithm 7. The approach is similar
to active preference learning [87, 109], but while an active preference learning algorithm
proposes at least two new paths in each iteration, LfC presents only one path and asks the
user for a correction. In contrast to our previous work [109, 107], the user is not required to
provide any initial input such as specifying constraints. In each iteration k we maintain an
estimate of the weights

[
wk uk

]
, based on the user corrections obtained so far. A planner

can compute shortest paths for all tasks based on
[
wk uk

]
, from which we randomly select

one path that is shown to the user (line 5). After the user provides a correction (line 6),
the weights are updated (line 11).

In the next sections we describe our user model for how they provide corrections and
show how weights are updated. Finally, we prove completeness of the algorithm.
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Algorithm 7: Learning from Corrections.

Input: G, Ztrain, [w0 u0], K
Output:

[
wk uk

]
1 Initialize Ψ = ∅, Z = Ztrain

2 for k = 1 to K do
3 if Z = ∅ then
4 return

[
wk uk

]
5 P k, (sj, gj)← Sample new path(Z)
6 Qk ← Get user correction(P k)
7 if Qk = ∅ then
8 Z = Z \ (sj, gj)
9 continue

10 Ψ← Ψ ∪ {P k, Qk}
11

[
wk uk

]
← Update(w0,u0,wk−1uk−1,Ψ)

12 return
[
wk uk

]
9.2.1 User Model

In our framework users are presented with a path for a task (sj, gj) and provide feedback in
the form of corrections: Given a path P they return a corrected path Q. We assume that
the correction fits the user preferences better than P , i.e., has a lower cost with respect to
the hidden weights, as summarized in the following Assumption:

Assumption 2 (User feedback). Given a path P with c(P,w∗,u∗) > c(P ∗,w∗,u∗) the
user returns a corrected path Q such that

c(Q,w∗,u∗) < c(P,w∗,u∗). (9.8)

If c(P,w∗,u∗) = c(P ∗,w∗,u∗) an empty set is returned.

In case the presented path is optimal and thus an empty set was returned the algorithm
cannot learn about the weights any more from that task and discards it (line 8).

9.2.2 Learning from Corrections

In order to update the weights in line 11 of Algorithm 7 we show how information about
weights is derived from user corrections. Using the user cost function from equation (9.5)
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allows us to rewrite inequality (9.8) as

(φ(Q)− φ(P ))w∗ + (η(Q)− η(P ))u∗ < 0. (9.9)

To avoid a strict inequality we use some small ε:

(φ(Q)− φ(P ))w∗ + (η(Q)− η(P ))u∗ ≤ −ε. (9.10)

This then defines a half-space for feasible weights for each (P k, Qk). Hence, any weight
[w u] within that half-space guarantees that Qk has a lower cost than P k. Further, as we
can only observe corrections, all weights within the half-space are indistinguishable from
[w∗ u∗] with respect to the user cost function, and thus we can pick any such [w u].

9.2.3 Updating Weights

Feasible weights Our primary objective is to find weights wk and uk that minimize the
error Err(wk,uk). However, as w∗ and u∗ are hidden Err(wk,uk) cannot be computed.
Nonetheless, we say weights are feasible if they are consistent with the user feedback, i.e.,
satisfy the inequalities based on Assumption 2. Given a sequence of paths and their user
corrections Ψ =

(
P 1, Q1, P 2, Q2, . . . , P k, Qk

)
, we can intersect the half-spaces described

in equation (9.10) to define a convex set of feasible weights. This allows us to write the
objective as a constraint in the optimization problem: To minimize Err(wk,uk) we have
to pick weights wk and uk such that equation (9.10) holds for all k = 1, 2, . . . , K.

Generalization Among all weights that satisfy the inequalities from Assumption 2, we
want to choose wk and uk that generalize the information we obtain for each (P,Q). As
we express the objective from equation (9.7) as constraints, we can choose a new objective
function g(w,u), leading to the optimization problem[

wK uK
]

= arg min
[w′ u′]

g(w′,u′)

s.t.
(
φ(Qk)− φ(P k)

)
w′

+
(
η(Qk)− η(P k)

)
u′

≤ −ε, for k = 1, 2, . . . , K

0 ≤ w′j, for j = 1, 2, . . . , |M |
1 ≤ u′l, for l = 1, 2, . . . , |B|.

(9.11)
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The idea of generalization is that the learned weights do not only affect edges that
belong to the presented path or the obtained correction, but to rather obtain more homo-
geneous environment weights, i.e., encourage neighbouring cells to have the same weight.
This is motivated by observations from previous user studies, where users typically have
preferences for areas in the environment instead of single locations [107]. Let N(µj) be
the set of cells in M that are adjacent to µj. We want to minimize the mean square dif-
ference in weights between neighbours. On the other hand, it is desirable to avoid weights
wj 6= 1. This can be captured by an l2-norm regularization as used in machine learning
[73]. Combining the generalization with the regularization, we obtain

g(w) = λ
∑
µi∈M

∑
µj∈N(µi)

(wi − wj)2 + (1− λ)
∑
µi∈M

(wi − 1)2. (9.12)

Thereby, λ takes values in [0, 1) and balances between generalization and regularization.
We do not allow λ = 1 as this would result in all weights being close to zero. For the
motion features we only use a regularization g(u) =

∑
bl∈B(ul − 1)2. Finally, we define

the objective in equation (9.7) as g(w,u) = g(w) + g(u). We notice that g(w,u) is a
convex quadratic function implying that the optimization problem in equation (9.11) can
be solved in polynomial time.

9.2.4 Completeness

Based on the user model and the proposed weight update we now show that Algorithm 7
is complete.

Proposition 5 (Completeness). For each problem instance there exists a finite K such
that Algorithm 7 finds an optimal solution, i.e., returns weights

[
wK uK

]
such that the

error Err(wK ,uK) = 0.

Proof. Consider the case that the path P k presented to the user is optimal. Then the
corresponding task (sj, gj) gets removed from Z and c(Pk

j ,w
∗,u∗)/c(P ∗j ,w∗,u∗)− 1 = 0 (line 8 in

Algorithm 7).
If P k is not optimal, a correction Qk satisfying Assumption 2 is obtained from which we
derive an inequality as in equation (9.10). Then all weights

[
wl ul

]
where l > k satisfy

this inequality, implying that for any l > k the path P k is never optimal for any feasible
weight vector

[
wl ul

]
and thus cannot be presented again. That guarantees that each

update removes at least one path from the set of all paths that could be shown for the
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same task in a later iteration. For every pair (sj, gj) there exists only a finite number of
paths; hence, a path P l where c(P l

j ,w
∗,u∗) = c(P ∗j ,w

∗,u∗) must be presented to the user
after a finite number of iterations, and c(P l

j ,w
∗,u∗)/c(P ∗j ,w∗,u∗) − 1 = 0 for every task (sj, gj)

is achieved.

Proposition 5 ensures that the presented framework learns weights for robot motion
planning that result in the same behaviour as described by the hidden optimal weights w∗.
In the next section we evaluate the performance in a realistic transportation scenario.

9.3 Evaluation

In the evaluation we use a state lattice with 11, 008 vertices, based on the layout of the
campus of the University of Waterloo, and a cost map with 2, 752 quadratic cells. The
user corrections are simulated. Each simulated user has a hidden cost map with weights
w∗ such that the map is structured into neighbourhoods of multiple cells that have equal
weights. This allows to define areas in the environment that are rewarded or penalized, i.e.,
have a weight different than one, which we call constraints. In each trial the user weights
are generated by randomly drawing from a subset of 60 constraints. These constraints
were predefined such that narrow gaps on the environment might be blocked by penalty
constraints while wide open areas are usually rewarded. An example specification with 25
constraints is illustrated in Figure 9.2 (a), Further, in the experiments we use the control set
B = {(0, 1, 0), (1, 1, π/2), (−1, 1−π/2), (2, 1, π/2), (−2, 1, −π/2), (1, 2, π/2), (−1, 2, −π/2)}, always
with motion user preferences that heavily penalize left turns and slightly penalize right
turns, as shown in sub-figure (c).

We consider two types of user behaviour: Optimal users that always provide a correction
that is an optimal solution for the task, and uniform users who randomly generate a
correction satisfying Assumption 2. As the optimal weights w∗ and u∗ are known to the
simulated user, optimal paths can be computed using shortest path search. For uniform
users, the correction is the shortest path Q for some weights w̄ and ū. We generate w̄ using
a random walk: Let w be the weight for which the presented path P is optimal. Then, the
random walk to find w̄ is constrained by the polyhedron {w′ ∈ [0, wmax|min{wi, w∗i } ≤
wi ≤ max{wi, w∗i }, ∀µi ∈M}. This ensures that Q has a lower cost than P .

All experiments were repeated for 24 trials where each trial runs Algorithm 7 with
K = 20 and a uniform prior for w and u. In every trial the set of training and test tasks
are randomly generated pairs of vertices. The run time for the quadratic program with
2752 variables is ≈ 9s; finding a new query takes ≈ 11s for 5 training tasks and up to 20s
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(a) Hidden user weights w∗

with initially presented path
and optimal correction.

(b) Learned weights w20 us-
ing λ = 0.5 with learned path
and optimal correction.

(c) Hidden environment user
weights u∗.

(d) Learned motion user
weights u20.

Figure 9.2: Environment with learned environment and motion weights. Red cells indicate
a weight of wj > 1, i.e., a penalty. Green cells correspond to weights wj < 1 belonging
to a reward while grey cells have a weight of wj = 1. The blue and purple lines show
the learned path and the optimal path for an example task. In (c) and (d) red indicates
weights ul > 1. Even though the learned cost map in (b) has different weights on many
cells than the optimal cost map in (a), they lead to similar optimal paths on the training
and test task set.

for 10 training tasks. However, the query generation can potentially be sped up using a
parallel implementation.

Experiment 1 - Generalization First, we investigate how different values for λ affect
the algorithm. We use an optimal user, 25 constraints, 5 training and 20 test tasks. We
illustrate the relative errors Err(Ztest ,wK ,uK) and Err(Ztrain,wK ,uK) before and after
learning in Figure 9.3.

We observe no conclusive difference in the test error between λ = 0.0 and λ = 0.5.
However, the final median training error is 0.09 for λ = 0.0, i.e., paths generated with the
learned weights have 9% higher cost than those with the hidden user weight. The final
median training error for λ = 0.5 is 0.01. Thus, using a generalization allows for more
efficient learning on the training set, as it avoids presenting paths that are too similar to

124



Figure 9.3: Learning from corrections with different values for λ.

those previously presented. On the other hand, the training and test error is worse for
λ = 0.99 than for λ = 0.5. A large generalization overestimates the size of user constraints
and leads to poor behaviour. In the subsequent experiments we use λ = 0.5.

Experiment 2 - Naive algorithm In the second experiment we compare the presented
algorithm to a naive approach. Given a pair (P,Q) the naive approach updates the weights
on the cost map by directly penalizing cells that are traversed by the presented path but
not in the correction and rewarding cells which are traversed by only the correction. Hence,

wk+1
j =


2wkj if φj(P ) > 0 and φj(Q) = 0,
1/2wkj if φj(P ) = 0 and φj(Q) > 0,

wkj otherwise.

(9.13)

We use the same experimental setup as before, but with 10 training tasks to reduce the
risk of over-fitting for the naive approach. The results are illustrated in Figure 9.4.

The naive approach shows moderate results for the training data with a final median
error of 0.19. However, the progress on the test error is marginal with a final median of
0.41. In contrast, our algorithm improves on both sets of tasks, achieving a final median
error of 0.06 on the training and 0.07 on the test set. We conclude by noting that the op-
timization problem in equation (9.11) generalizes about environment weights and achieves
good performance on training instances. Moreover, the algorithm successfully generalizes
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the information obtained from the corrections and thus achieves good results on the test
tasks.

Figure 9.4: Comparison between the naive and the proposed approach, with λ = 0.5.

Experiment 3 - User types In this experiment we investigate how our algorithm
behaves for the two different types of users, using the same setup as for the previous
experiment. The results are summarized in Figure 9.5. Overall we observe that the learning
behaves similarly for both user types. The optimal user shows a better result on the training
data where 42% of trials achieve a final error of 0, compared to 31% for the uniform user.
However, the final median values are 0.02 and 0.01 for the test and training error of the
optimal user and 0.03 and 0.02 for the uniform user, respectively. Hence, the optimal user
leads to only marginally better results. In conclusion, the third experiment shows that the
presented algorithm learns about the user’s preferences efficiently even when the user is
not always providing optimal corrections.

9.4 Discussion

Summary We propose an LfC framework for a state lattice planner that learns about
environment and motion user preferences. We update weights using a quadratic program,
which is constrained by the assumption that users provide corrections that fit their prefer-
ences better than the presented path, while the objective function combines generalization
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Figure 9.5: Relative error when using λ = 0.5 for optimal and uniform user corrections.

with regularization. In simulations we show that the proposed approach generates paths
that closely approximate user preferences for both training and test tasks after only a few
corrections, with either optimal or non-optimal user corrections.
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Chapter 10

Discussion and future directions

A major challenge in human robot interaction is enabling inexperienced users to efficiently
deploy autonomous robots. This thesis has studied interactive learning frameworks for
instructing robots on how they can accomplish their tasks such that their behaviour meets
user preferences. Common models assume that users evaluate robot behaviour based on
a fixed set of features; learning the relative importance of such features allows a robot’s
motion planner to compute a corresponding optimal motion. We characterized an under-
lying structural property of such learning problems: The sensitivity of motion planners,
i.e., changes in a cost function do not linearly relate to changes in the corresponding op-
timal trajectory. Thus, a robot does not need to recover the user’s cost function exactly
in order to find a user optimal trajectory. Therefore, we investigate learning techniques
that hypothesize over different trajectories instead of different parameters in the cost func-
tion. We demonstrated the performance of our algorithms in several simulations, including
comparisons to other state-of-the-art techniques. Moreover, a user study has shown the
practicality of our work and highlighted that the proposed methods can help inexperienced
users to deploy robots more efficiently.

10.1 Summary

In Chapters 4 to 6, we studied how active preference learning can be used to revise user
specifications, i.e., learn the weights of user defined soft constraints on robot motions.
After providing the initial specification, the user is iteratively presented with alternative
robot paths and chooses the preferred one. We first considered a deterministic user model,
where the user’s choice always follows a linear cost function. This allows the robot to
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iteratively collect inequality constraints on the user weights and thus shrink the set of
candidate solutions. We extended the framework to a multi-task scenario and investigated
its practicality in a user study in Chapter 5. Moreover, in Chapter 6 we introduced a
probabilistic learning framework to relax the assumptions of the user model, and derived
an efficient learning heuristic based on equivalence regions.

In Chapter 7 we extended our concept of learning about trajectories instead of weights of
cost functions to general active preference learning problems. We study differences between
an error metric based on cost function weights and our metric based on trajectory cost and
propose a new heuristic for learning that always presents paths with the largest mutual
relative error, discounted by the learned belief. We show that this approach outperforms
another state-of-the-art method in simulations, especially for high dimensional problems,
and that the generated queries are also easy to answer for the user.

In Chapter 8 we studied a more extensive framework for robots to adapt to user prefer-
ences: Instead of only learning a cost function and then planning optimal trajectories, we
compute an optimal control set for the robot, i.e., subset of the robot’s action space. Given
a maximum number of controls a robot can use, we show how to optimally choose these
controls, given an estimate of the cost function for the user preferences. In simulations
we show that this method is suitable to design user specific motion planners, and that the
limited size of the control set leads to substantial planning time benefits.

In chapter 9 we considered users correcting robot trajectories instead of choosing among
presented alternatives. Expanding on our previous problem formulations, we distinguished
between local and global user preferences and proposed an algorithm that learns about
both simultaneously. Further, our approach generalizes the learned information, yielding
good results in both training and test cases.

10.2 Unified Framework

An interesting future work direction for the specification learning problem is combining
different methods of user feedback. Presented with a pair of paths (PA, PB) the user could:
(1) choose PA or PB, or (2) provide a corrected path Q if both PA and PB are undesired,
or (3) modify the specification, i.e., remove or add constraints.

The new forms of user feedback, correction and modification, are motivated from com-
ments by participants of our user study in Chapter 5. Corrections are particularly useful
when both presented paths are poor options for the user, or when one of the paths is mostly
a good solution, but the user dislikes a relatively short part of it. Modifications on the
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other hand give the user the option to change their specification when the user realises
that the set of constraints they initially specified is incomplete or incorrect, or the robot
interprets their constraints much differently than they expected.

Choice feedback When the user chooses option 1, we can learn from a user choosing
path PA over PB (or vice versa) following our probabilistic models in Chapter 6 or 7. That
is, we assume that path PA has lower cost than path PB, with some probability pAB.

Correction feedback In the second form of user feedback, they design a correction Q
of path PA or PB themselves. The path Q might share edges with PA or PB and thus
be a correction of one of the presented alternatives instead of an entirely new path. If a
correction is provided, we assume that it has a lower cost than both PA and PB. Thus,
from a correction feedback, we learn two inequalities: Q is a better path than PA and Q is a
better path than PB. Similarly to the choice feedback, we take a probabilistic perspective,
i.e., assume that the cost of Q being lower than the cost of PA and PB holds with some
probability pQA and pQB, respectively.

However, correction feedback in the context of specification revision brings up a new
challenge: a correction might not be explainable with the current user specification, i.e., no
weights exist such that Q has a lower cost than PA and PB. In that case the robot needs
to propose a constraint that should be added to the specification. In Chapter 9 we showed
how a cost map can be updated to incorporate corrections feedback. This approach could
be adapted to propose new constraints. To accommodate for the correction it is desired
that the cells whose weights are updated form a connected component and that these cells
then all have the same weight. This would allow for grouping the updated cells into one
new constraint.

Specification modification In the third form of user feedback, a user can also modify
their specification. This form of user feedback is motivated from the study in Chapter
5 where some users stated that they would have liked to change their specification once
they were presented with the resulting robot behaviour. Changes in the specification can
be summarized by removing a subset of constraints or adding a set of new constraints.
When the specification gets modified, the feedback obtained before is still assumed to be
valid. Each path P that was presented so far can be re-evaluated with respect to the new
specification. This allows us to derive inequalities on the weights and thus update the
belief space.
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In the future, the outlined unified framework needs to be formalized and validated. The
methodology of constraint proposal after corrections requires a more detailed analysis to
ensure the practicality of the approach: For instance if the proposed constraints drastically
over- or under-fit the user preferences, users might reject them and may decide to modify
the specification themselves. In this case the framework may be unappealing for the user.
Finally, the unified framework would ideally be validated in practice by conducting a second
user study.

10.3 Sample-free Active Preference Learning

Throughout this thesis we have studied various approaches for active preference learning:
Vertex search for deterministic user feedback (Chapter 4), posterior minimization over
equivalence regions (Chapter 6), regret minimization (Chapter 7) as well as the volume
and entropy minimization proposed in [87] and [20]. Except for the first one (which only
works for deterministic user models), all these approaches have in common that they require
a finite set of paths as an input. That is, the set of all paths needs to be pre-sampled.
This does not only hold for continuous state and action spaces, but also for the discrete
case, since the number of all paths for a discrete planner can be exponential in the size of
the number of discrete states, as shown in Chapter 6. The necessity of pre-sampling the
solution space is a major hindrance for applying these techniques to new scenarios since
pre-sampling can require significant computation time.

A potential method for avoiding pre-sampling is to approximate the query selection.
Thereby we trade-off two objectives: (1) Fast computation of new queries to minimize the
user wait time between iterations, and (2) ensuring a high quality of the approximation to
still learn efficiently. The maximum regret approach proposed in Section 7 is particularly
promising for an approximate solution since it already has a strong computational advan-
tage compared to the equivalence region, volume or entropy approaches. Given a candidate
query (P,Q), it does not require the computation of the tentative posterior distributions
for the possible outcomes, i.e., the case the user prefers P over Q or vice versa.

Search space reduction Independent of the measure that is used to find a new pair of
paths, we have seen two different frameworks for query generation: Selecting any two new
paths (P,Q) as in [87, 20] or Chapter 7, or fixing one path of a query to be the one that the
user preferred in the previous iteration, i.e., keeping the current path as in Chapter 4 to 6.
In the latter case, the query selection consists of finding one new path Q such that some
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measure for learning is optimized, given the current path P . We observe that, independent
of the measure (volume, entropy, regret, etc.), keeping the current path can lead at most
to the same greedy improvement of the measure as selecting two new paths, since the
current path is available to the optimization for finding a new pair (P,Q). Further, when
P is fixed to the previously preferred path, the query selection cannot be a submodular
function, even when minimizing volume or entropy: The domain, i.e., the set of paths that
can be presented to the user, changes in each iteration; thus, the maximum is chosen over
a different set in each iteration. Nonetheless, fixing P to the previously preferred path
also comes with the desirable property of simultaneous exploration and exploitation: By
keeping P in the query more information about wP will be gained; at the same time Q can
be chosen freely and thus enables further exploration of the weight space. The regret based
query selection can then be simplified to finding some path Q, given the current path P :

Q(P ) = arg max
wQ∈Ω

Rk(wP ,wQ|Uk). (10.1)

Incremental sampling algorithm A potential approximation that avoids pre-sampling
paths could be incremental sampling. The idea is to iteratively build a set of sampled
paths instead of computing a large set prior to the interactive learning. In each iteration
the motion planning problem is solved for l sampled weights. Thus the set of paths over
which (10.1) optimizes grows in each iteration. At the same time the runtime of each query
generation is limited by the number of new samples in each iteration l.

Future work should further study the outlined approach to propose an algorithm for
finding queries (P,Q) without pre-sampling. A key component of such an algorithm is
drawing the new samples in each iteration. Instead of naively sampling from a uniform
distribution, a heuristic for informative samples should be investigated, which could have
great impact on the performance.

10.4 Other Future Work Directions

In addition to the unified framework and the sample free learning method, a major future
direction is to further investigate the regret based learning method. This includes studying
special cases of the presented problems such as discrete motion planners to potentially pro-
pose an approximation algorithm for Problem 2. Moreover, the min-max regret approach
could be extended to more general problems such as the one of finding an optimal decision
tree [22, 35].
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Another extension to the presented work is allowing for richer user feedback such as an
equal preference option in active preference learning. The work of [20] showed that giving
users the option to not choose one of the presented paths can improve learning while [9]
demonstrated that asking users for the reason behind their choice can increase the learning
efficiency and the user trust. It would be interesting to investigate if such forms of richer
user feedback are also beneficial for min-max regret queries.

In Chapter 8 we proposed a method for computing user optimal control sets for lattice
planners based on an estimate of the user cost function. Future work should further val-
idate the practicality of the proposed framework; in the scenario of autonomous driving
this could be done with recorded real world driving data or using a driving simulator.
Additionally, the approach should be validated for other scenarios such as motion planning
for a manipulator robot. Moreover, the concept of learning a user specific motion planner
(i.e., control set) instead of only learning the user cost function could also be applied to
other interactive learning frameworks. In active preference learning the proposed trajec-
tories could convey different user preferences more clearly when they are computed with
respective control sets.
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Appendix A

Sensitivity of Shortest Path Problems

In this section we study the sensitivity of the shortest path problem on graphs. Broadly
speaking, given is a weighted graph G, a fixed start and goal vertex on G and some path
P between the start and goal. We call the set of all edge weights for which P is a shortest
path between the start and goal the sensitivity region of P . This is closely related to
the notion of equivalence regions that we introduced in Chapter 4 and further studied in
Chapter 6. In fact, in Proposition 4 and its proof, we considered specifications that put
a single constraint on every edge of the graph, effectively rendering equivalence regions to
sensitivity regions. Thus, equivalence regions are a generalization of sensitivity regions.
Proposition 4 stated that finding all equivalence regions is computationally intractable
since the problem of finding all paths between a fixed start and goal on a graph can be
reduced to it. We now show that finding a description of just one single equivalence region
is also #P-hard.

Overview

We consider a weighted graph G = (V,E,w) with n vertices and m edges and positive edge
weights. The edge weights w do not necessarily satisfy the triangle inequality. We denote
the set of all paths from a start vertex s to a goal vertex g in V with Psg.

Definition 8 (Sensitive region). Let G = (V,E,w) be a graph, s and g vertices in V and
P an element of Psg Given a set of allowable weights for all edgesQ ⊆ Rm, the sensitive
region of P is then the subset of Q for which P is a shortest path from start to goal. In
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other words, any other path P j ∈ Psg has an equal or higher cost than P for any weight
w in the sensitive region S(P ). More formally we have:

S(P ) = {w ∈ Q|φw ≤ φjw, ∀j} (A.1)

Related Work The sensitivity of shortest path problems has been study for the case that
only one edge weight changes at a time in[97, 86]. Similarly, sensitivity has been studied
for the traveling saleman problem (TSP)[62]. Changes or uncertainty in edge weights are
also considered in robust shortest path problems [114, 72].

To characterize the hardness of describing a sensitive region, we consider the complexity
class of counting problems [100, 101, 26]. Generally, #P-hard counting problems are at
least as hard as NP -hard decision problems. Typical counting problems include finding
the number of solutions of optimization problems, such as the TSP tours or SAT solutions,
but also finding the number of shortest paths is #P-hard, even though finding a shortest
path can be done in polynomial time.

Characteristics of Sensitivity Regions

Generally, we assume that all weights are positive and finite; hence, Q = [0, 1]m. We now
further characterize sensitive regions and derive their representation. From the definition
of paths follows that Psg is of finite size. Initially, we introduce two lemmas.

Lemma 4 (Zero weights). For each P ∈ Psg, the point w = 0 lies in S(P ), as c(P,0) = 0.

Lemma 5 (Convexity). Sensitive regions are convex.

Proof. The set of weights for which a path P i is optimal satisfies

φiw ≤ φjw, ∀j 6= i, i, j = 1, 2, . . . , |Psg|. (A.2)

As |Psg| is finite, there exists only a finite number of paths P j. Each constraint in (A.2)
defines a half-space in Rm

≥0. By definition, the intersection of halfspaces form a convex
set.

For a more sparse notation we write S(P i) as Si.The hyperplane separating two sensitive
regions Si and Sj is given by the set H ij where P i and P j have equal cost, i.e., H ij =
{w ∈ Q : (φi−φj)w = 0}. We notice that H ij = Si ∩Sj. All weights w ∈ Si then satisfy
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aijw ≤ 0 for all i, j where aij = φi − φj. By definition, aij takes values in {−1, 0, 1}m .
Moreover, H ij is a vector hyperplane, i.e., it passes through the origin.
Given any graph G = (V,E,w) and a shortest path P , the sensitive region S(P ) can be
described by a set of hyperplanes aijw ≤ 0. It can be written as a polyhedron Aw ≤ 0.
To further characterize the hyperplanes aij we use some basic properties of paths and
introduce the following lemma.

Lemma 6 (Exclusive edges). Consider a Graph G = (V,E,w), a start and a goal vertex
s and g and any two paths P i and P j from Psg. Then there exists at least one edge in P i

that is not in P j.

Proof. Assume that all edges that are in P i are also traversed by P j. Then either Ei = Ej

and the paths are identical or P j visits at least one vertex twice, which contradicts the
definition of a path. Hence, the statement holds.

From Lemma 6, we conclude that aij has at least one entry equal to 1 and one entry
equal to −1. This property is crucial to the proof of Theorem 4. As we consider a closed
space Q, the set S is a convex polytope and can be written in either a vertex or hyperplane
representation.

Proposition 6 (Representation with hyperplanes). Sensitive regions can be represented
with at most as many hyperplanes as vertices.

Proof. We prove the statement by showing that number of vertices of S is always an
exponential function of m while the number of hyperplanes is at most of the same size.
Given a graph G and a path P i, let Q = [0, 1]m. For any hyperplane given by aij, let rij be
the number of 1 entries in aij. Then 0 < rij ≤ |E(P i)| as the path P j cannot traverse all
edges that P i traverses by the definition of a path. Then, the number of vertices of Q that
satisfy aijw ≤ 0 is at least 2m−r

ij
as we can pick either 0 or 1 for each wk where aijk 6= 1.

Given a set of hyperplanes {ai0,ai1 . . . } at least 2m−|E(P i)| vertices satisfy all inequality
constraints.
The number of vertices is exponential in the size of m. Let E ′(P i) be the set of edges P i

does not traverse implying |E ′(P i)| = m− |E(P i)|. Each path P j has to use at least one
edge in E ′(P i). For each subset of E ′(P i) there exists at most one P j that traverses it
and no other edges in E ′(P i). This implies that there exists at most 2|E

′(P i)| = 2m−|E(P i)|

paths P j and therewith hyperplanes H ij. Hence, the number of hyperplanes is at most the
number of vertices. On the other hand, we can easily construct examples, where the number
of hyperplanes is linear while the number vertices is exponential. We conclude that the
hyperplane representation of Si is always at least as efficient as the vertex representation.
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Even though sensitive regions S can be represented by a set of |Psg| − 1 inequality
constraints, there might exist graphs where fewer are necessary to uniquely define S, i.e.,
some rows of A are redundant with respect to others. Therefore, we introduce the notion
of domination.

Definition 9 (Domination). Let A be a k×m-matrix and b be a vector in Rm where each
element takes values in {−1, 0, 1} and all rows of A as well as b have at least one entry
equal to 1 and one entry equal to −1. We say that A dominates b if for all w ≥ 0 where
Aw ≤ 0 is satisfied, bw ≤ 0 also holds.

Definition 10 (Neighbours). On a graph G = (V,E,w) we call two sensitive regions Si

and Sj neighbours if their intersection forms a non-zero dimensional subspace, i.e., their
intersection does not only consist of the origin. Then, the vector aij is not dominated by
any collection of other vectors defining Si, or Sj respectively.

Using the notion of domination we can now establish one of the main result of this
work: Specifying how many hyperplanes are required to describe a sensitive regions.

Theorem 4 (Number of hyperplanes). There exist at least one class of graphs where the
number of hyperplanes that are necessary to define a sensitive region S is equal to the
number of paths between the start and the goal vertex.

Proof. In Lemma 5 we have shown that S can be defined by the hyperplanes obtained
from comparing a path to all other paths from s to g. Using the notion of domination, we
construct an example where in fact all hyperplanes obtained from comparing a path to all
other paths is necessary as no hyperplane is redundant with respect to the others.

Choose any graph G where the direct edge between s and g is in the edge set. We then
fix P 0 as the path only using this edge. We observe that every other path P j has a disjoint
edge set. From Lemma 6 we conclude that any third path P u then must traverse at least
one edge that neither P 0 nor P j traverse. We define A to be the matrix containing all
comparisons of P 0 and P j for all paths P j on G, where j > 0. So each row is of the form
a0j.

We pick some arbitrary r and denote the matrix A with the r-th row removed as Ar.
We now show that Ar does not dominate the removed row a0r by constructing a w̄ ≥ 0
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Figure A.1: Example of a graph where not all paths are required to characterize a sensitive
region S

such that Arw̄ ≤ 0 but a0rw̄ > 0. Let k be the smallest integer where a0r
k = 1. Then

w̄i =


1, if i = k

1, if a0r
i = 0, and ei /∈ P 0

0, otherwise.

(A.3)

By construction, a0rw̄ > 0 always holds. Moreover, for any j 6= r there exists only one
i where a0j

i w̄i can become 1, namely for i = k. On the other hand, each vector a0j has at
least one −1 entry for some i where a0r

i = 0 and ei is not in P 0. This is due to the fact,
that every path P j must traverse at least one edge that P 0 and P r did not traverse. As we
picked w̄i to be 1 in that case, there exists at least one i such that a0j

i w̄i = −1. Hence, the
sum

∑
i a

0j
i w̄i is guaranteed to be non-positive, so Arw̄ ≤ 0 holds. We conclude that Ar

does not dominate a0r and therefore all comparisons a0j are necessary to describe S.

From a different point of view Theorem 4 can be summarized as follows: In some graphs
all paths from start to goal have to be computed in order to characterize a sensitive region.
However, this does not apply to any graph in general.

Example 5 (Simple sensitive regions). Let l be the number of paths from a start to a
goal on a given graph. There exists at least one graph, where fewer than l− 1 hyperplanes
are necessary to characterize a sensitive region. We consider the example graph from
Figure A.1. All possible s − g paths then are P 0 = {s, 2, 4, 5, g}, P 1 = {s, 2, 4, 6, g},
P 2 = {s, 3, 4, 5, g} and P 3 = {s, 3, 4, 6, g}. Then, given the comparisons a01 and a02, the
third one a03 is redundant, which can be verified numerically.

Summary In summary, we have shown that 1) sensitivity regions can be described most
efficiently with hyperplanes, and 2) in a worst case, the number of hyperplanes equals
|Psg| − 1 – the number of paths from s to g, minus one for the given path P .
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Complexity of finding Sensitive Regions

In order to characterize the complexity of finding a sensitive region of a shortest path we
introduce a precise problem formulation and a counting version of it.

Problem 10 (Find sensitive region). Given a graph G = (V,E,w), a start and a goal
vertex s and g and a shortest path P from s to g, find S(P ), i.e., find all weights w in Q
where P still is a shortest path.

From the previous analysis of sensitive regions we know that Si is characterized by the
hyperplanes obtained from comparing P i with other paths P j and the bounds given by the
hypercube [0, 1]m. We formulate a counting problem for finding the number of hyperplanes
we need in order to characterize S(P ).

Problem 11 (Find neighbours). Given a graph G = (V,E,w), a start and a goal vertex s
and g and a shortest path P from s to g, find the number of hyperplanes that characterize
S(P ).

Reduction from S-T-Paths

A related problem is S-T-Paths. Given a graph and a start and goal vertex, it returns the
number of paths connecting a start and a goal vertex. The problem is known to be #P
complete [101]. We now reduce Problem S-T-Paths to Problem 11 to show hardness of
finding S(P ).

Theorem 5 (Hardness). The problem of finding the number of hyperplanes that define a
sensitive region is #P -complete.

Proof. We consider an instance of S-T Paths with a graph G = (V,E) and a start and goal
vertex s and g. We generate a weighted graph G′ = (V ′, E ′,w′) where V ′ = V . Let esg be
the direct edge between s and g. The set E ′ is then defined as E ′ = E ∪ esg. We choose
w′ such that the corresponding shortest path P 0 only traverses esg.

We then solve Problem 11 given G′, s, g and P 0. We denote the output with k, which
is the number of vector hyperplanes that describe S(P 0). From Theorem 4 we know that
S is described by the comparisons of P 0 to all other paths P j on G′. Hence, k equals the
number of S-T-paths on G′ minus one. If the edge esg is in the original edge set E, the
solution to S-T Paths on G then is k and is k + 1 otherwise.
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Furthermore, we observe that the problem of finding the number of hyperplanes that
define a sensitive region lies in #P . According to [100] ”#P is the class of functions that
can be computed by counting TMs [Turing Machines] of polynomial time complexity.”
We can pose a decision version of our problem of the form does S(P ) have at least/most
k neighbours? This problem can be solved by a nondeterministic touring machine and
therefore lies in NP. We conclude that the counting problem lies in #P .

As Problem 11 is the counting version of Problem 10, Problem 10 is also #P complete.
Together with Proposition 6, stating that S is represented most efficiently with hyperplanes,
we conclude that finding S is also #P complete.

Summary With Theorem 5 we have shown that finding a description of a sensitive
region is computationally intractable. This implies that finding an equivalence region
for the preference learning problem is also intractable, since equivalence regions are a
generalisation of sensitivity regions.
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Appendix B

Hardness of Maximum Regret
Computation for Deterministic
Motion Planners

In this section we provide further insight into the Maximum Regret under Constraints
Problem (MRuCP). We analyse the hardness of solving this problem when paths are com-
puted with a discrete motion planner, i.e., the set of all possible paths is of finite size. In
that case the motion planner can be represented with a graph and the planning problem
becomes one of finding a minimum cost path on a graph. We consider a graph where paths
are described by features that indicate which edges are visited by the path: φPi = 1 if
ei ∈ P and 0 otherwise. We notice that this is a generalization of any discrete planning
problem, where features are (1) a functions of sets of state-action pairs, and (2) theses
feature functions are modular. This allows us to define the discrete version of MRuCP:

Problem 12 (Discrete Maximum Regret under Constraints Problem - DMRuCP). Given
a graph G = (V,E,w), a start and goal vertex s and g, a set of feasible weights F = {w ∈
R|E|≥0 | li ≤ wi ≤ ui and Aw ≤ b} and some weight wP ∈ F , find the weight wQ ∈ F that
maximizes the regret r(wP ,wQ).

First, we observe that if we remove the constraints, i.e., A = 0 and b = 0, then finding
wQ is trivial [54]: Let P be the optimal path for wP , then wQi = li if ei ∈ P and ui
otherwise. That is, the weights of all edges used by the path P are at the upper bound
and all other weights are at the lower bound. We now characterize the computational
complexity of DMRuCP.
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Theorem 6 (Hardness of DMRuCP). The Discrete Maximum Regret under Constraints
Problem (DMRuCP) is NP-complete.

Proof. We prove hardness by reducing the Subset-Sum Problem (SSP) [68] to DMRuC.
SSP is a special case of the 1-0 Knapsack problem, where the value vi of each item equals
its weight wi. Consider the following SSP instance:

max
x

n∑
i

w̄ixi

s.t.

n∑
i

w̄ixi ≤ W,

xi ∈ {0, 1}∀i = 1, 2, . . . , n.

(B.1)

Thereby, all wi and W are assumed to be integers [68]. We now construct a graph G as
illustrated in Figure B.1 where we choose V0 as the start and Vn as the goal vertex. In
the graph, all edges going from Vi−1 to Vi have a cost of zero. For edges ei we define the
lower bound of the weight wi is li = −w̄i, and the respective upper bounds ui = 0 for all
i = 1, 2, . . . , n. The bounds for the direct edge en+1 are ln+1 = un+1 = −1/2. For the edges
e′ the weights w′i are unbounded, but we define an equality constrain w′i = M(wi+ w̄i). We
set M = 2n · w̄max with w̄max = maxi{w̄i}. Moreover, we complete the DMRuC instance
by adding a budget constraints on the weights: −(w1 + w2 + · · · + wn) ≤ W . Finally, we
choose wP such that wPi = 0 for all i = 1, 2, . . . , n and wPn+1 = −1/2: thus, the path P uses
the direct edge from V1 to Vn.

Let wQ be an optimal solution of the DMRuC instance and Q be the shortest path
for wQ. We observe that Q must be distinct from P and thus traverse all vertices
V0, V1, V2, . . . Vn−1. This implies that Q is the path with the minimal cost among all paths
that (1) are optimal for some feasible weight and (2) traverse all vertices, i.e., are not
equal to P . Thus, finding the maximum regret path Q simplifies to finding the path with
minimal cost other than P .

Claim 1. If Q visits V ′i then wQi = −w̄i.

Proof. First, let c′i be the cost for going from Vi−1 to Vi via V ′i . We observe that a shortest
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Figure B.1: Graph constructed from SSP instance. Visiting vertex V ′i corresponds to
putting the i-th item into the knapsack. The input path P of the DMRuC instance takes
the direct edge from V0 to Vn.

path only traverses V ′i if c′i ≤ 0. Thus,

c′i ≤ 0

wQi +M(wQi + w̄i) ≤ 0

wQi ≤ −w̄i
M

1 +M
.

(B.2)

We call −w̄iM/1+M the threshold τi. We observe that the difference between −w̄i and
the threshold τi is always less than 1, as M = 2n · w̄max. Further,

n∑
i=1

−w̄i − τi <
M

1 +M
. (B.3)

Notice that M
1+M

≤ −mini τi as the smallest weight w̄i = 1. Thus, the sum of all differences
between w̄i and the thresholds τi is less then the minimal threshold.

For the solution wQ let I be the set of indices {i|− w̄i ≥ wQi ≥ τi}, i.e., for all i ∈ I the
path Q visits V ′i as the cost is no more than the threshold, as described in equation (B.2).
Following equation (B.3), there does not exist a set I ′ ⊂ I where |I ′| = |I| − 1 such that∑

i∈I′(−w̄i− τi) ≤ τj where j is in I but not in I ′. That is, setting any collection of wQi to

τi instead of wQi = −w̄i does not allow for Q to visit an additional vertex V ′j . Thus, when

choosing some wQi > −w̄i, the solution has a slack of wQi + w̄i. As the slack cannot be used
to visit and additional V ′j , and wQi = −w̄i leads to a smaller cost of Q than wQi > −w̄i, an

optimal solution always has wQi = −w̄i if wQi ≤ τi, i.e., if Q visits V ′i .
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We can transform the DMRCuP solution to a solution of the SSP: The decision variable
xi = 1 if Q visits V ′i and 0 otherwise. Thereby, Claim 1 ensures that c(Q) = −

∑
i w̄ixi,

concluding the reduction. Finally, we show membership in NP. The decision version of
DRMuCP takes the same input, but additionally some number τ ∈ R≥0. The problem
then is deciding if there exists some wQ ∈ F such that r(wP ,wQ) >= τ . Given some
candidate solution wQ the regret r(wP ,wQ) can be computed in polynomial time by once
computing the shortest paths P and Q; hence the solution can be verified in polynomial
time establishing membership in NP and NP-completeness of DRMuCP.
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