13 research outputs found

    Learning relational models with human interaction for planning in robotics

    Get PDF
    Automated planning has proven to be useful to solve problems where an agent has to maximize a reward function by executing actions. As planners have been improved to salve more expressive and difficult problems, there is an increasing interest in using planning to improve efficiency in robotic tasks. However, planners rely on a domain model, which has to be either handcrafted or learned. Although learning domain models can be very costly, recent approaches provide generalization capabilities and integrate human feedback to reduce the amount of experiences required to learn. In this thesis we propase new methods that allow an agent with no previous knowledge to solve certain problems more efficiently by using task planning. First, we show how to apply probabilistic planning to improve robot performance in manipulation tasks (such as cleaning the dirt or clearing the tableware on a table). Planners obtain sequences of actions that get the best result in the long term, beating reactive strategies. Second, we introduce new reinforcement learning algorithms where the agent can actively request demonstrations from a teacher to learn new actions and speed up the learning process. In particular, we propase an algorithm that allows the user to set the mínimum quality to be achieved, where a better quality also implies that a larger number of demonstrations will be requested . Moreover, the learned model is analyzed to extract the unlearned or problematic parts of the model. This information allow the agent to provide guidance to the teacher when a demonstration is requested, and to avoid irrecoverable errors. Finally, a new domain model learner is introduced that, in addition to relational probabilistic action models, can also learn exogenous effects. This learner can be integrated with existing planners and reinforcement learning algorithms to salve a wide range of problems. In summary, we improve the use of learning and task planning to salve unknown tasks. The improvements allow an agent to obtain a larger benefit from planners, learn faster, balance the number of action executions and teacher demonstrations, avoid irrecoverable errors, interact with a teacher to solve difficult problems, and adapt to the behavior of other agents by learning their dynamics. All the proposed methods were compared with state-of-the-art approaches, and were also demonstrated in different scenarios, including challenging robotic tasks.La planificación automática ha probado ser de gran utilidad para resolver problemas en los que un agente tiene que ejecutar acciones para maximizar una función de recompensa. A medida que los planificadores han sido capaces de resolver problemas cada vez más complejos, ha habido un creciente interés por utilizar dichos planificadores para mejorar la eficiencia de tareas robóticas. Sin embargo, los planificadores requieren un modelo del dominio, el cual puede ser creado a mano o aprendido. Aunque aprender modelos automáticamente puede ser costoso, recientemente han aparecido métodos que permiten la interacción persona-máquina y generalizan el conocimiento para reducir la cantidad de experiencias requeridas para aprender. En esta tesis proponemos nuevos métodos que permiten a un agente sin conocimiento previo de la tarea resolver problemas de forma más eficiente mediante el uso de planificación automática. Comenzaremos mostrando cómo aplicar planificación probabilística para mejorar la eficiencia de robots en tareas de manipulación (como limpiar suciedad o recoger una mesa). Los planificadores son capaces de obtener las secuencias de acciones que producen los mejores resultados a largo plazo, superando a las estrategias reactivas. Por otro lado, presentamos nuevos algoritmos de aprendizaje por refuerzo en los que el agente puede solicitar demostraciones a un profesor. Dichas demostraciones permiten al agente acelerar el aprendizaje o aprender nuevas acciones. En particular, proponemos un algoritmo que permite al usuario establecer la mínima suma de recompensas que es aceptable obtener, donde una recompensa más alta implica que se requerirán más demostraciones. Además, el modelo aprendido será analizado para identificar qué partes están incompletas o son problemáticas. Esta información permitirá al agente evitar errores irrecuperables y también guiar al profesor cuando se solicite una demostración. Finalmente, se ha introducido un nuevo método de aprendizaje para modelos de dominios que, además de obtener modelos relacionales de acciones probabilísticas, también puede aprender efectos exógenos. Mostraremos cómo integrar este método en algoritmos de aprendizaje por refuerzo para poder abordar una mayor cantidad de problemas. En resumen, hemos mejorado el uso de técnicas de aprendizaje y planificación para resolver tareas desconocidas a priori. Estas mejoras permiten a un agente aprovechar mejor los planificadores, aprender más rápido, elegir entre reducir el número de acciones ejecutadas o el número de demostraciones solicitadas, evitar errores irrecuperables, interactuar con un profesor para resolver problemas complejos, y adaptarse al comportamiento de otros agentes aprendiendo sus dinámicas. Todos los métodos propuestos han sido comparados con trabajos del estado del arte, y han sido evaluados en distintos escenarios, incluyendo tareas robóticas

    Robot Learning from Demonstration in Robotic Assembly: A Survey

    Get PDF
    Learning from demonstration (LfD) has been used to help robots to implement manipulation tasks autonomously, in particular, to learn manipulation behaviors from observing the motion executed by human demonstrators. This paper reviews recent research and development in the field of LfD. The main focus is placed on how to demonstrate the example behaviors to the robot in assembly operations, and how to extract the manipulation features for robot learning and generating imitative behaviors. Diverse metrics are analyzed to evaluate the performance of robot imitation learning. Specifically, the application of LfD in robotic assembly is a focal point in this paper

    Robot Learning From Human Observation Using Deep Neural Networks

    Get PDF
    Industrial robots have gained traction in the last twenty years and have become an integral component in any sector empowering automation. Specifically, the automotive industry implements a wide range of industrial robots in a multitude of assembly lines worldwide. These robots perform tasks with the utmost level of repeatability and incomparable speed. It is that speed and consistency that has always made the robotic task an upgrade over the same task completed by a human. The cost savings is a great return on investment causing corporations to automate and deploy robotic solutions wherever feasible. The cost to commission and set up is the largest deterring factor in any decision regarding robotics and automation. Currently, robots are traditionally programmed by robotic technicians, and this function is carried out in a manual process in a well-structured environment. This thesis dives into the option of eliminating the programming and commissioning portion of the robotic integration. If the environment is dynamic and can undergo various iterations of parts, changes in lighting, and part placement in the cell, then the robot will struggle to function because it is not capable of adapting to these variables. If a couple of cameras can be introduced to help capture the operator’s motions and part variability, then Learning from Demonstration (LfD) can be implemented to potentially solve this prevalent issue in today’s automotive culture. With assistance from machine learning algorithms, deep neural networks, and transfer learning technology, LfD can strive and become a viable solution. This system was developed with a robotic cell that can learn from demonstration (LfD). The proposed approach is based on computer vision to observe human actions and deep learning to perceive the demonstrator’s actions and manipulated objects

    Human-Robot Collaborations in Industrial Automation

    Get PDF
    Technology is changing the manufacturing world. For example, sensors are being used to track inventories from the manufacturing floor up to a retail shelf or a customer’s door. These types of interconnected systems have been called the fourth industrial revolution, also known as Industry 4.0, and are projected to lower manufacturing costs. As industry moves toward these integrated technologies and lower costs, engineers will need to connect these systems via the Internet of Things (IoT). These engineers will also need to design how these connected systems interact with humans. The focus of this Special Issue is the smart sensors used in these human–robot collaborations

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    White Paper 11: Artificial intelligence, robotics & data science

    Get PDF
    198 p. : 17 cmSIC white paper on Artificial Intelligence, Robotics and Data Science sketches a preliminary roadmap for addressing current R&D challenges associated with automated and autonomous machines. More than 50 research challenges investigated all over Spain by more than 150 experts within CSIC are presented in eight chapters. Chapter One introduces key concepts and tackles the issue of the integration of knowledge (representation), reasoning and learning in the design of artificial entities. Chapter Two analyses challenges associated with the development of theories –and supporting technologies– for modelling the behaviour of autonomous agents. Specifically, it pays attention to the interplay between elements at micro level (individual autonomous agent interactions) with the macro world (the properties we seek in large and complex societies). While Chapter Three discusses the variety of data science applications currently used in all fields of science, paying particular attention to Machine Learning (ML) techniques, Chapter Four presents current development in various areas of robotics. Chapter Five explores the challenges associated with computational cognitive models. Chapter Six pays attention to the ethical, legal, economic and social challenges coming alongside the development of smart systems. Chapter Seven engages with the problem of the environmental sustainability of deploying intelligent systems at large scale. Finally, Chapter Eight deals with the complexity of ensuring the security, safety, resilience and privacy-protection of smart systems against cyber threats.18 EXECUTIVE SUMMARY ARTIFICIAL INTELLIGENCE, ROBOTICS AND DATA SCIENCE Topic Coordinators Sara Degli Esposti ( IPP-CCHS, CSIC ) and Carles Sierra ( IIIA, CSIC ) 18 CHALLENGE 1 INTEGRATING KNOWLEDGE, REASONING AND LEARNING Challenge Coordinators Felip Manyà ( IIIA, CSIC ) and Adrià Colomé ( IRI, CSIC – UPC ) 38 CHALLENGE 2 MULTIAGENT SYSTEMS Challenge Coordinators N. Osman ( IIIA, CSIC ) and D. López ( IFS, CSIC ) 54 CHALLENGE 3 MACHINE LEARNING AND DATA SCIENCE Challenge Coordinators J. J. Ramasco Sukia ( IFISC ) and L. Lloret Iglesias ( IFCA, CSIC ) 80 CHALLENGE 4 INTELLIGENT ROBOTICS Topic Coordinators G. Alenyà ( IRI, CSIC – UPC ) and J. Villagra ( CAR, CSIC ) 100 CHALLENGE 5 COMPUTATIONAL COGNITIVE MODELS Challenge Coordinators M. D. del Castillo ( CAR, CSIC) and M. Schorlemmer ( IIIA, CSIC ) 120 CHALLENGE 6 ETHICAL, LEGAL, ECONOMIC, AND SOCIAL IMPLICATIONS Challenge Coordinators P. Noriega ( IIIA, CSIC ) and T. Ausín ( IFS, CSIC ) 142 CHALLENGE 7 LOW-POWER SUSTAINABLE HARDWARE FOR AI Challenge Coordinators T. Serrano ( IMSE-CNM, CSIC – US ) and A. Oyanguren ( IFIC, CSIC - UV ) 160 CHALLENGE 8 SMART CYBERSECURITY Challenge Coordinators D. Arroyo Guardeño ( ITEFI, CSIC ) and P. Brox Jiménez ( IMSE-CNM, CSIC – US )Peer reviewe
    corecore