6,427 research outputs found

    Towards a debugging tutor for object-oriented environments

    Get PDF
    Programming has provided a rich domain for Artificial Intelligence in Education and many systems have been developed to advise students about the bugs in their programs, either during program development or post-hoc. Surprisingly few systems have been developed specifically to teach debugging. Learning environment builders have assumed that either the student will be taught these elsewhere or thatthey will be learnt piecemeal without explicit advice.This paper reports on two experiments on Java debugging strategy by novice programmers and discusses their implications for the design of a debugging tutor for Java that pays particular attention to how students use the variety of program representations available. The experimental results are in agreement with research in the area that suggests that good debugging performance is associated with a balanced use ofthe available representations and a sophisticated use of the debugging step facility which enables programmers to detect and obtain information from critical momentsin the execution of the program. A balanced use of the available representations seemsto be fostered by providing representations with a higher degree of dynamic linkingas well as by explicit instruction about the representation formalism employed in the program visualisations

    An evaluation of a teaching package constructed using a Web‐based lecture recorder

    Get PDF
    This paper describes an evaluation of a teaching package used to replace lectures in two closely related university courses on Discrete Mathematics. The package was developed using Audiograph, a Web‐based lecture recorder developed at the University of Surrey. Two groups of subjects were studied: a group of undergraduates, mostly fresh from schools, and a group of postgraduates, mostly with post‐university work experience. Although the postgraduates with their greater maturity and experience were significantly more positive in their appraisal than the undergraduates, both groups agreed on the beneficial aspects of being able to work at one's own time and pace, and being able to repeat material at will. It is clear, however, that, in the context investigated, where the lecturer was readily available, such a package can never supplant a human teacher, and that considerable effort needs to be expended in order to integrate the package into a rich learning environment

    Critters in the Classroom: A 3D Computer-Game-Like Tool for Teaching Programming to Computer Animation Students

    Get PDF
    The brewing crisis threatening computer science education is a well documented fact. To counter this and to increase enrolment and retention in computer science related degrees, it has been suggested to make programming "more fun" and to offer "multidisciplinary and cross-disciplinary programs" [Carter 2006]. The Computer Visualisation and Animation undergraduate degree at the National Centre for Computer Animation (Bournemouth University) is such a programme. Computer programming forms an integral part of the curriculum of this technical arts degree, and as educators we constantly face the challenge of having to encourage our students to engage with the subject. We intend to address this with our C-Sheep system, a reimagination of the "Karel the Robot" teaching tool [Pattis 1981], using modern 3D computer game graphics that today's students are familiar with. This provides a game-like setting for writing computer programs, using a task-specific set of instructions which allow users to take control of virtual entities acting within a micro world, effectively providing a graphical representation of the algorithms used. Whereas two decades ago, students would be intrigued by a 2D top-down representation of the micro world, the lack of the visual gimmickry found in modern computer games for representing the virtual world now makes it extremely difficult to maintain the interest of students from today's "Plug&Play generation". It is therefore especially important to aim for a 3D game-like representation which is "attractive and highly motivating to today's generation of media-conscious students" [Moskal et al. 2004]. Our system uses a modern, platform independent games engine, capable of presenting a visually rich virtual environment using a state of the art rendering engine of a type usually found in entertainment systems. Our aim is to entice students to spend more time programming, by providing them with an enjoyable experience. This paper provides a discussion of the 3D computer game technology employed in our system and presents examples of how this can be exploited to provide engaging exercises to create a rewarding learning experience for our students

    Frame-Based Editing: Easing the Transition from Blocks to Text-Based Programming

    Get PDF
    Block-based programming systems, such as Scratch or Alice, are the most popular environments for introducing young children to programming. However, mastery of text-based programming continues to be the educational goal for stu- dents who continue to program into their teenage years and beyond. Transitioning across the significant gap between the two editing styles presents a difficult challenge in school- level teaching of programming. We propose a new style of program manipulation to bridge the gap: frame-based edit- ing. Frame-based editing has the resistance to errors and approachability of block-based programming while retaining the flexibility and more conventional programming seman- tics of text-based programming languages. In this paper, we analyse the issues involved in the transition from blocks to text and argue that they can be overcome by using frame- based editing as an intermediate step. A design and imple- mentation of a frame-based editor is provided

    Teaching programming with computational and informational thinking

    Get PDF
    Computers are the dominant technology of the early 21st century: pretty well all aspects of economic, social and personal life are now unthinkable without them. In turn, computer hardware is controlled by software, that is, codes written in programming languages. Programming, the construction of software, is thus a fundamental activity, in which millions of people are engaged worldwide, and the teaching of programming is long established in international secondary and higher education. Yet, going on 70 years after the first computers were built, there is no well-established pedagogy for teaching programming. There has certainly been no shortage of approaches. However, these have often been driven by fashion, an enthusiastic amateurism or a wish to follow best industrial practice, which, while appropriate for mature professionals, is poorly suited to novice programmers. Much of the difficulty lies in the very close relationship between problem solving and programming. Once a problem is well characterised it is relatively straightforward to realise a solution in software. However, teaching problem solving is, if anything, less well understood than teaching programming. Problem solving seems to be a creative, holistic, dialectical, multi-dimensional, iterative process. While there are well established techniques for analysing problems, arbitrary problems cannot be solved by rote, by mechanically applying techniques in some prescribed linear order. Furthermore, historically, approaches to teaching programming have failed to account for this complexity in problem solving, focusing strongly on programming itself and, if at all, only partially and superficially exploring problem solving. Recently, an integrated approach to problem solving and programming called Computational Thinking (CT) (Wing, 2006) has gained considerable currency. CT has the enormous advantage over prior approaches of strongly emphasising problem solving and of making explicit core techniques. Nonetheless, there is still a tendency to view CT as prescriptive rather than creative, engendering scholastic arguments about the nature and status of CT techniques. Programming at heart is concerned with processing information but many accounts of CT emphasise processing over information rather than seeing then as intimately related. In this paper, while acknowledging and building on the strengths of CT, I argue that understanding the form and structure of information should be primary in any pedagogy of programming

    Teaching, Analyzing, Designing and Interactively Simulating of Sliding Mode Control

    Get PDF
    This paper introduces an interactive methodology to analize, design, and simulate sliding model controllers for R2 linear systems. This paper reviews sliding mode basic concepts and design methodologies and describes an interactive tool which has been developed to support teaching in this field. The tool helps students by generating a nice graphical and interactive display of most relevant concepts. This fact can be used so that students build their own intuition about the role of different parameters in a sliding mode controller. Described application has been coded with Sysquake using an event-driven solver technique. The Sysquake allows using precise integration methods in real time and handling interactivity in a simple manner.Peer ReviewedPostprint (published version

    Plyades: A Python Library for Space Mission Design

    Full text link
    Plyades: A Python Library for Space Mission Design Designing a space mission is a computation-heavy task. Software tools that conduct the necessary numerical simulations and optimizations are therefore indispensable. The usability of existing software, written in Fortran and MATLAB, suffers because of high complexity, low levels of abstraction and out-dated programming practices. We propose Python as a viable alternative for astrodynamics tools and demonstrate the proof-of-concept library Plyades which combines powerful features with Pythonic ease of use
    • …
    corecore