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1. Background

Computers are the dominant technology of the early 21* century: pretty well all aspects of
economic, social and personal life are now unthinkable without them. In turn, computer
hardware is controlled by software, that is, codes written in programming languages.
Programming, the construction of software, is thus a fundamental activity, in which millions of
people are engaged worldwide, and the teaching of programming is long established in
international secondary and higher education. Yet, going on 70 years after the first computers
were built, there is no well-established pedagogy for teaching programming.

There has certainly been no shortage of approaches. However, these have often been driven
by fashion, an enthusiastic amateurism or a wish to follow best industrial practice, which,
while appropriate for mature professionals, is poorly suited to novice programmers. Much of
the difficulty lies in the very close relationship between problem solving and programming.
Once a problem is well characterised it is relatively straightforward to realise a solution in
software. However, teaching problem solving is, if anything, less well understood than
teaching programming.

Problem solving seems to be a creative, holistic, dialectical, multi-dimensional, iterative
process. While there are well established techniques for analysing problems, arbitrary
problems cannot be solved by rote, by mechanically applying techniques in some prescribed
linear order. Furthermore, historically, approaches to teaching programming have failed to
account for this complexity in problem solving, focusing strongly on programming itself and, if
at all, only partially and superficially exploring problem solving.

Recently, an integrated approach to problem solving and programming called Computational
Thinking (CT) (Wing, 2006) has gained considerable currency. CT has the enormous advantage
over prior approaches of strongly emphasising problem solving and of making explicit core
techniques. Nonetheless, there is still a tendency to view CT as prescriptive rather than
creative, engendering scholastic arguments about the nature and status of CT techniques.
Programming at heart is concerned with processing information but many accounts of CT
emphasise processing over information rather than seeing then as intimately related.

In this paper, while acknowledging and building on the strengths of CT, | argue that
understanding the form and structure of information should be primary in any pedagogy of
programming.

2. Computational Thinking, Computer Science and Computing

2.1. Overview

Computing involves making models of the world, to understand it and change it in predictable
ways. We can then write programs that map the abstractions of a conceptual model onto the
concrete behaviours of a physical computer so the behaviour of the program on the computer
tells us about how the world works.
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We make models by solving real world problems. And we realise models as programs by
programming real computers. So should we separate out problem solving, model making and
programming, or are they inextricably linked? We also need languages and notations to solve
problems, make models and write programs. Should these be the same or different? And isn’t
this all just Computing Science?

| think that it’s important to distinguish Computing from Computing Science. Computing
Science is an academic discipline which underpins all ICT, especially model making and tool
making. Computing Science is concerned with the theory and practice of computations, which
involves making models of reality from information structures and algorithms, and then
animating the models on computers. That is, programming bridges models and computers.

It has been argued that everyone needs to learn how to program and that somehow
programming is the ‘new Latin’ (e.g. Naughton, 2012). Shein (2014) offers a useful summary. |
think we need to teach everyone how to think, in particular how to characterise a problem
before realising a solution in some given hardware and software technology.

Computational
Thinking

problems praxis

solutions
concepts

social needs

ICT Computing
Science

tools
Fig 1: Computing triangle

| think we should view ICT, Computing Science and Computational Thinking, of which much
more soon, as forming a Computing triangle — Figure 1 — where:

e Computational Thinking gives us a way of understanding problems;
e ICT offers problems to Computational Thinking in search of solutions;
e Computing Science:
O Provides concepts for Computational Thinking in search of a praxis — that is synergy
between theory and practice;
0 Responds to social needs from ICT with software tools, that is programs.

Thus, to solve problems, | think that we should stand apart from both ICT and Computing
Science, and ask:

e How do we know when the problem is solved?

e What information is relevant to solving the problem?

e How must the information change for the problem to be solved?

e What computation(s) should we perform on the information to reach the solution?

In homage to Niklaus Wirth’s insight that Algorithms + Data Structures = Programs (Wirth,
1973), given a problem, we might now say that:

Information + computations = solutions
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Still, the hardest part of problem solving is characterising the problem.

2.2. Computational thinking and information

Since Wing’s (2006) widely welcomed broadside, Computational Thinking (CT) has become
seen as a key approach to problem solving. There are several different formulation of CT
(Curzon, 2014) but Kao et al’s (2011), strongly influenced by Wing, has wide currency. Here CT
is based on four stages:

‘Decomposition: the ability to break down a problem into subproblems.

e Pattern recognition: the ability to notice similarities, differences, properties, or trends in
data.

e Pattern generalization: the ability to extract unnecessary details and generalize those
that are necessary in order to define a concept or idea in general terms.

e Algorithm design: the ability to build a repeatable, step-by-step process to solve a

particular problem.” (Kao, 2011)

While this formulation adds considerable precision to Wing, | think that it nonetheless
presents a number of related difficulties. First of all it is vague, offering little guidance for how
to apply computational thinking in solving concrete problems. Second, it neither distinguishes
sufficiently between informational and computational aspects of CT, nor does it adequately
link these in a unitary approach. Thirdly, the stages seem discrete, with little clear connectivity
across them.

Thus, building on Kao et al, my formulation seeks to place information at the heart of CT and to
link each stage to the next through the use of the interrogation of information to provide
scaffolding for problem solving. | think that CT may be understood as:

1. Decomposition which is based on teasing out the basic building blocks of problems and
involving:
e identifying the information needed to solve the problem;
e breaking the problem up into smaller sub-problems;
e Identifying the sub-information needed to solve sub-problems.

2. Pattern identification which is based on finding differences and involving:

e Looking for patterns amongst problems. This requires us to think about whether we’ve
seen a problem like this before, and, if so, how the new problem is different;

e Looking for patterns in the information. This requires us to consider how the information
is structured, whether there are useful relationships within the information, whether
we’ve seen information organised like this before, and, if so, how the new information is
different.

3. Pattern generalisation and abstraction which are the inverse of pattern identification. They
involve using the differences identified in pattern identification to:
e Find the general cases for our problem. Here we think about what does and doesn’t
change in how the sub-problems are organised;
e Clarify the general organisation of the information? Here we consider what information
does and doesn’t change in the overarching information structure.
That is, we find common templates for the things that don’t change with slots for the things
that do change.

4. Algorithm design, where we think about:
e the sequence of steps from the initial information to the problem being solved;
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e how the sub problems are connected,;
e how the information changes between steps.

2.3. Problem solving techniques

2.3.1. Introduction

Now, it’s easy to write down these stages but harder to see how they apply in practical
problem solving for programming. It’s really not clear where to begin.

Programming isn’t hard when you know how to solve the problem. It then becomes a matter
of battling with the vagaries of language-specific syntax, semantics and tools. For people new
to programming, this language specific detail can become overwhelming, leading to a plethora
of tiny, low level concerns at the expense of understanding how to solve an original problem.

And there is curiously little material on problem solving and programming. For example,
Wienberg’s (1971) classic study of the psychology of programming assumes that programming
is an activity based on a specification that is elaborated from analysis, but says nothing about
analysis itself. This echoes the then prevalent waterfall model of software development with
distinct stages which are never revisited.

One of the few books that ostensibly focuses on problem solving and programming, Dromey’s
How to solve it by computer (Dromey, 1982), draws explicitly on Polya’s 1950 foundational
study How to solve it (Polya, 1990) and on later work by Wickelgren (1974).

Polya (pp5 & 6) characterises problem solving as a four stage process of:

e understanding the problem;

e linking unknowns to data to make a plan;
e carrying out the plan;

e Jlooking back and reviewing the solution.

He offers a long list of problem solving heuristics, many of which correspond to different
aspects of CT (e.g. analogy, auxiliary problem, decomposing and recombining, do you know a
related problem, specialisation) but doubts any systematic way of deploying them:

‘Rule of discovery. The first rule of discovery is to have brains and good luck. The second
rule of discovery is to sit tight and wait till you get a bright idea. ... To find unfailing rules
applicable to all sorts of problems is an old philosophical dream; but this dream will never
be more than a dream.” (p172)

Nonetheless, Wickelgren attempts to provide a methodical approach to solving what he terms
formal problems that is those couched in some formal notation, typically logical or
mathematical. Wickelgren sees a problem as being specified as a starting state, a set of
allowable operations over states, and a goal state. Thus, a solution is found by a sequence of
state to state transitions leading from the start state to the goal state. Much of the book
focuses on techniques for pruning the space of transitions, in particular reasoning backwards
from the goal, but there is little on problem formulation.

Dromey (1982) is a proponent of top down design and stepwise refinement, linking
decomposition to algorithm, which we will consider briefly below. He also uses logical
statements to capture properties of program stages, typically loop invariants. While he
acknowledges the central role of the choice of data structures in programming, he largely
focuses on algorithm design, suggesting that structures are somehow chosen from a menu of
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options. Despite acknowledging Polya’s and Winkelgren’s influences, Dromey has little to say
about problem formulation.

Still, we already have tried and tested techniques for teaching programming so why can’t we
retrofit CT to what we do already? Let us now consider a range of these in slightly more detail,
in inconsistently chronological order. Please note that much of the following is partial,
anecdotal and superficial.

2.3.2. Programming language oriented

The oldest approach to programming is to just write down code, that is somehow using a
programming language as some language of thought. Arguably, this programming language
oriented approach is what the examples in Lovelace’s 1842 account of Babbage’s Analytic
Engine represent (Morrison, 1961). Today we call this extremely widespread and long lived
approach hacking. From a mathematician’s perspective, using a programming language to
construct algorithms is directly akin to using any mathematical notation to solve problems.

However, ad-hoc language oriented techniques suitable for solving small, well defined
problems scale poorly for even moderately sized problems. Furthermore, effective hacking
requires a deep facility with the programming language.

While language choice for teaching programming remains controversial, it is widely agreed
that high level languages are more suitable for beginners than low level forms like assembly
language and machine code. Nonetheless, programming languages in themselves do not offer
any approach to problem solving beyond a means of formulating algorithms.

Some favour the use of an industrial strength programming language, for example FORTRAN,
COBOL, C/C++, Ada and Java. Skill in an industrial language is seen as attractive to employers
but such languages may be less well suited for conveying key principles to beginners. A more
nuanced approach is to start with a teaching subset of a full strength language, leaving full
detail to more advanced courses.

Others prefer to use a language originally intended for educational purposes, which often have
sounder pedagogic bases than industrial languages. Some, for example Pascal, BASIC and the
ALGOLs have crossed over into industrial use.

It is easy to overlook the use of scripting languages in teaching programming. Such languages,
especially HTML, are widely used in early teaching of ICT skills for web design but, as they are
used to layout and instantiate interface components, this may not be conceived of as
programming.

Another alternative is to deploy a language-neutral pseudocode. This avoids the often
observed problem of an excess focus on specific language syntax, and of first language bias,
which both make it hard to generalise programming concepts for realisation in new languages
(Cutts, 2014). Pseudocode works particularly well for presenting algorithms. For example,
Knuth’s (1968) classic text on fundamental algorithms uses both structured English and the
MIX pseudo-assembly language. However, it is much harder to come up with a language-
neutral notation for data structures, where extant languages show considerably more
variation. For one approach, see Horowitz and Sahni’'s (Horowitz, 1976) structured
pseudocode. Nonetheless, overall, | think that a pseudocode offers a valuable bridge from
fundamental concepts to multiple languages.

2.3.3. Component oriented
Component based programming is based on using a programming language to compose pre-

given elements, typically assembled in libraries. The components themselves represent
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abstractions by domain experts and their use requires problem decomposition to identify
appropriate components.

This approach also has a long history. For example, Wilkes (1951) describes the predominantly
mathematical program library for the late 1940’s EDSAC computer. Enormous libraries are
available for contemporary programming languages, but, as in Wilkes’ day, intimate
understanding of library contents is crucial for effective component use. Indeed, an original
problem decomposition may have to be modified, and additional algorithmic glue contrived, to
make the problem specific components fit the library components.

Of considerable contemporary interest for initial teaching of programming are component
based languages where learning is based on composing problem domain specific components.
Thus, Logo (Papert, 1980) provides turtle graphics operations. More recent visual languages,
like Alice, Scratch, BYOB, Snap and Applnventor, offer richer component sets, augmenting
graphics with sound and animation. These are increasingly used in very early learning of
programming, say at primary level. A disadvantage is that such languages take up more space
than their textual equivalents, markedly limiting what can be presented. Once again, there is a
tendency to revert to language oriented teaching.

2.3.4. Flowcharts

Diagrams have long been used in designing software and teaching programming. The use of
flowcharts to design software is almost as old as digital computers, originating in von
Neumann and Goldstine’s reports from 1947 and 1948 (Haigh, 2014), and is still surprisingly
wide today. At simplest, flowcharts are based on boxes for decisions and commands, linked by
arcs indicating flow of control. As such, they combine the decomposition and algorithm CT
stages. Flowcharting has long been an adjunct to learning a programming language. However,
flowcharts are greedy of space, there is no clear discipline for their use, and, at worst, there
may be one box for each command.

2.3.5. Structured programming

Early programming languages relied heavily on constructs oriented to the underlying platform,
in particular the ability to branch to different instructions in memory, abstracted as GOTOs and
labels in high level languages. Following Dijkstra’s (1968) highly influential critique of
branching, the use of structured programming (Dijkstra, 1969) was widely advocated, based on
the use of the basic constructs of sequence, choice and repetition. Like flowcharting, this
combines the decomposition and algorithm CT stages.

Structured programming was complemented by modular programming (Parnas, 1972), an
approach where programs are composed from identified components. Parnas suggested that
techniques for identifying modules are to decompose ‘major steps’, starting from flowcharts,
and ‘information hiding’, where a module abstracts away from underlying detail, typically
formed from a data structure and associated operations, prefiguring object-orientation.
However, no methodology is offered for so doing.

Wirth’s (1971) stepwise refinement, a systematisation of top down design for structured
programming, was widely used as a teaching approach from the late 1970s. Here, a broad top
level specification is refined to lower and lower levels, systematically identifying modules and
structured programming constructs. However, refinement decisions tend to be driven by
algorithmic considerations and based largely on criteria of efficiency and aesthetics.
Subsequently, Wirth (1973) further emphasised the need to identify and deploy both standard
and novel data structures and algorithms, but again offering no clear advice on how these may
be selected.
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In the same period, there were a number of techniques that augmented and extended
modular structured programming, making strong use of diagrams, in particular Yourdon and
Constantine’s structured design with structure charts (Yourdon, 1979) and Constantine’s data
flow diagrams (Stevens, 1974). Where structure charts reflect a modular hierarchy of
algorithmic components, data flow diagrams focus on the movement of information between
algorithmic components. Once again, no method is offered for identifying the components in
modular hierarchies or the information that flows between them.

In contrast, Jackson’s (1975) structured programming (JSP) linked the structure of the data
stream to the structure of the program that processed it. JSP was widely used as the
methodology for teaching commercial data processing techniques in COBOL. However, JSP was
only applicable to a highly constrained class of programs and gave no support for identifying
intermediate information structures.

2.3.6. Declarative programming

Following the announcement of the Japanese 5" Generation Computer Systems Project in
1982 (McCorduck,1983), there was renewed pedagogic interest in the use of declarative
languages for initial teaching of programming. Broadly, such languages are rooted in
mathematical logic formalisms, with a distinction made between functional languages, based
on lambda calculus and recursive function theory (Michaelson, 1989), for example Standard
ML and Haskell, and logic languages based on predicate calculus, for example Prolog (Clocksin,
1981). Unlike other approaches, declarative programming strongly emphasises the CT
techniques of abstraction, and pattern identification and generalisation, enabling a close link
between algorithm and data structure. And polymorphic functional programming encouraged
the complementary use of types and higher order functions for abstraction in structuring
programs. However, the core declarative trope of recursion makes progress beyond
elementary programming challenging, especially for those already used to
procedural/structured approaches. Furthermore, declarative programming represented a
reversion to a language oriented approach.

2.3.7. Object oriented programming

The leading contemporary approach to initial teaching of programming, at least in Higher
Education, is object orientated (00) where components (classes) encapsulate both data
structures and algorithms (methods) to manipulate them. While OO languages have a long
pedigree (e.g. Simula, Smalltalk), today Java predominates for teaching, followed by C++ and
Python.

One popular contemporary approach to OO teaching is the components based objects first
(Barnes,2012), where learners are given libraries of classes and are taught how to instantiate
and compose them. This is reminiscent of Logo and visual languages mentioned above.

00 programming is complemented by the Unified Modelling Language (UML) (Stevens, 2000),
a rich, multi-faceted diagrammatic approach, drawing on earlier structured approaches. UML is
well suited to problem decomposition and identification of composable components for
realisation as objects. However, it has little to say about information structures.

Design patterns (Gamma, 1995) are abstractions from common computations and offer
standard templates that may be instantiated with problem specific components, providing a
bridge from decomposition to algorithm. Design patterns are widely used for OO. Once again,
considerable facility with the patterns is required for their effective use.
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2.3.8. Parallel programming approaches

One domain where systematic problem solving is vital for efficient use of computational
resources, and where problem taxonomies are widely used, is parallel programming. We will
next briefly consider three methodologies for constructing parallel programs which have
strong resonances with CT and which explicitly consider information decomposition.

Foster’s approach (Foster, 1995) has partitioning and communication stages concerned with
identifying tasks for subsequent optimal placement on processors in agglomeration and
mapping stages. The partitioning phase involves information centric domain decomposition
and computation centric functional decomposition, both to atomic components. Subsequently,
these components are grouped to optimise allocation of tasks to available processors and to
minimise inter-processor information communication.

Mattson et al’s (2005) parallel design patterns strongly complement Foster’s approach. As with
Foster, the first stage, finding concurrency, involves task and information decomposition to
atomic components. Subsequently, components are grouped using standard patterns for
parallelism with known coordination and processing properties.

Finally, Cole’s algorithmic skeletons (Cole, 1989) offer abstract constructs with well
characterised properties for coordinating multi-processor computations. Skeletons may be
provided in libraries and design patterns used to select them.

2.3.9. Problem based programming and problem based learning

It would be misleading to present the above approaches as somehow abstracted from the
process of solving real problems. Indeed, the teaching of programming is perhaps unique in
being so thoroughly grounded in, and driven by, seemingly endless open-ended concrete
exemplars, often chosen to be motivational.

In such problem based programming, learners are typically encouraged to understand, modify
and extend extant solutions to problems or sub-problems. Here, the emphasis is strongly on
comprehension of the specific solution in context, not on either how the solution was derived
or how it might be generalised to other solutions. The latter would require some taxonomy of
problems.

It is interesting to contrast problem based programming with the application of problem based
learning (PBL) to programming. PBL originated in medical education and is widely deployed in
professional training. Nuutila et al (2005), who have applied PBL to teaching programming, cite
Schmidt (Schmidt, 1983) in observing that:

‘PBL refers to learning that is stimulated by descriptions of real world problems. Students
do not necessarily try to solve a problem but rather define learning goals to better
understand it.”(p125)

They distinguish PBL from problem-oriented learning, where ‘learning takes place as a
side effect of the solution process’ and project-based learning, where ‘the size of the
problem becomes larger’. For example, Sierra et al (2013) explicitly conflate problem and
project based learning in teaching programming. Here, the project is very precisely specified
and sculptured to guide the learner to well defined outcomes.

| suspect that, as Nuutila et al suggest for two studies they cite, much teaching of
programming that is claimed to be based on PBL is actually problem-oriented or project-based
learning.
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Furthermore, PBL must be fuelled by at least some ground knowledge. For example, Ma et al’s
(2005) approach combines pair programming with PBL. In what they call the initial ‘explore
phase’, students are already equipped with ‘basic concepts, library classes and relevant
algorithms’. Similarly, while O’Kelly et al’s (2004) PBL-based approach uses stepwise
refinement for problem decomposition, it builds on basic programming concepts such as
‘looping, recursion, conditional statements’ for solving ‘problems of increasing difficulty’. Once
again, in both cases there is some emphasis on the later stages of programming.

2.3.10. Summary

We have seen that each of the approaches corresponds to a subset of CT stages, with
decomposition and algorithms predominating. The emphasis on algorithms is reflected in
Curzon et al’s (2014) contemporary account of CT.

Thus, in terms of which programming oriented approach to choose, really, all we can say is
that fashions change. There are too many possibilities and none work easily beyond simple
cases. More to the point, they all have a strong focus on the final program.

Nonetheless, in the following attempt to formulate an information-driven approach to
problem solving through CT, the reader will spot the direct influence and opportunistic use of
diverse aspects of the approaches discussed above.

3. Information driven computational thinking

3.1. Information structures

Our familiar approaches are certainly useful at the end of problem solving when we come to
implement a solution, but at the start it’s vital to focus on the problem without regard for the
implementation. | think that the key is to work out how to characterise the information and
computations. And it’s best to start with the information, not the computation.

We can characterise information as:
information = base elements + structure

Note that we are not concerned with type or class, which are programming concepts to do
with representing and implementing problem information.

Here, the base elements are the names of real-world things. At simplest, these are
represented as sequences of characters to form meaningful unitary entities like words and
numbers. Our things may also be built out of sub-elements, that is, things themselves may be
structured.

Thus, we find:

e sequences: things before and after each other, either unordered or ordered on some
property;

e tables: things arranged in rows of columns;

e arrays: things accessed by indices;

e records: things accessed by field name;

e lists: things arranged in chains, accessed by heads and tails;

e trees: things arranged in branching structures, accessed by branches;

e graphs: things arranged as nodes linked by arcs.

Note again that we are not concerned with data structures which are programming concepts
to do with representing and implementing problem information structures.
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Note also that structures have equivalences. Thus, a table is an array or records of row/column
contents; an array is a list of index/value records; a list is an array of records of heads and tails.
That is there are different, equally valid ways of characterising an information structure.
Ultimately, the choice of structure is pragmatic: what gives the best characterisation of the
problem in terms of, say, comprehension or abstraction.

3.2. Finding information structures

Alas, it’s still no clearer where we should begin. It is tempting to go back to good old fashioned
Computer Science. But there’s no need. Rather, we should think about how real-world things
are organised, and look at lots of concrete examples. Once we adopt an informational thinking
approach, we can see information structures everywhere, often in how physical things are
arranged but more conventionally in how data is organised.

For example, try thinking about how we interact with:

e parked cars;

e numbered houses;

e supermarket queues;
e English v Scottish bank queues;
e shopping lists;

® receipts;

o Dhills;

e account statements;
e tineraries;

e diaries;

e calendars;

e invitation lists;

e address books;

e seating diagrams;

e shop catalogues;

e library catalogues;

o family trees;

e cladistic trees;

e decision trees;

e underground maps;
e road maps;

e lottery tickets;

e Dbetting slips;

e sports league tables;
e mobile contacts;

e browser favourites;
e social media friends;
e digital photo albums.

To characterise the information structure we need to interrogate the information. We need to
ask how the information is organised, that is if it is:

e simple or composite;
e linear or grid or branching or cyclical;
e unordered or ordered;
o fixed or changeable in content or size or shape.
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We can approach this by thinking about how to access the elements of the information
structure by asking:

e why do we want to access the elements?

e which elements do we want to access?

e how do why/which affect access?

e where do we start the access?

e how do we continue access?

e how do we know if we’ve been successful or unsuccessful?
e what do we do if we're unsuccessful?

In the same way, we can ask how, if at all, we can add or delete or modify elements.

3.3. Generalising information structures

We now have some vague inkling about how to identify a concrete information structure that
fits some specific real-world problem scenario. Applying computational thinking, we can now
try to generalise by comparing apparently disparate information structures. Thus we can ask
what stays the same and what changes. We can also look for similarities in concrete detail and
in gross structure, ignoring the elements. In particular, are there commonalities in how to
access, update, add and delete elements. Ultimately, we can use these comparisons to draw
out the abstract structures we identified above.

For example, what do a car park and tables in a café, a bank statement and a utility bill, an
allocated seat in an aircraft and in a cinema, a road map and an underground map, have in
common? What are their differences? What common abstract information structure is suitable
for both of them?

Finally, we can start to formalise the idea of an information structure as an abstract data type,
with ways to:

e make a new structure;

e add information;

e check if information is present;

e find information;

e change information;

e remove information.
Not all information structures need have all these capabilities. For example, in many real world
information structures, the information cannot easily be changed.

3.4. From information to computation

We can view these operations on abstract data types as being like the verbs of a language. We
then make sentences by apply the verbs to nouns. That is, computation structures operations
on information structures into algorithms. The key here is to make the structure of the
computation follow the structure of the information. Note that we’re making algorithms;
we’re not yet programming.

Once again, we should be driven by the problem scenario. We know that a computation solves
a problem by turning old information into new information. So in the problem scenario we
need to explore the sequences of information change.

Typically, we want to traverse the information structure, often visiting each element once, and
stopping when some condition is met. On the way, we might do something to each element
and accumulate some intermediate information.
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For information arranged in fixed sequences, we typically want to traverse from some first
element to some last element. So we need a notion of the next or current element. This is
termed bounded iteration.

In other cases, we might want to continue traversal until some more general property is
satisfied, and this might involve repeatedly visiting the same information or the same locations
in the structure. This is termed unbounded iteration.

In both cases, we need to know how to start, continue and end the iteration, and this will be
intimately associated with how we access and modify the information structure.

An alternative to iteration is recursion. Here, if we’ve got to the end of the structure, we stop
traversal and maybe return a final value. Otherwise, we do something with the current
element and then traverse the rest of the structure. Here we can distinguish the base case,
where we stop, from the recursion case where we do the same thing to the rest of the
structure.

As with iteration, we need to know how to start, continue and end the recursion, again closely
following the information structure’s properties.

Recursion and iteration are equivalent in expressive power. Alas, recursion is often seen as
scary and advanced. In fact, in my experience, if you introduce recursion before iteration,
students find it natural. One way is through children’s counting songs like:

e Ten green bottles;
e On man went to mow;
e Twelve days of Christmas.

..where the counting structure lends itself naturally to thinking about the rest of the song in
terms of how it follows from the current verse.

During information structure traversal, we often need to keep track of intermediate stages.
We may wish to remember different positions in a structure, for example where we last found
something or partial results, for example the value of the last element we found satisfying
some property.

We can now introduce the idea of a variable as a general name/value association, where we
can change the value associated with the name from a computation, often using the previous
value.

| think that introducing variables should be delayed until they are needed to manage the
stages of information structure traversal.

Coming back to accessing or changing an element in an information structure, we need to
know how we can uniquely identify an element. Typically, we use what we might think of as a
compound variable, for example the name of the structure qualified by a named field identifier
or a numeric index.

Sometimes, we want to change an element regardless of its properties. But we may only want
to change it if it satisfies some criteria. So now we can introduce notions of condition and
choice. Similarly, we may want to change what we do next depending on properties of
elements. That is, we can use conditions and choice to manage the stages of traversal.

Finally, we can stand back and think about whether the computation is necessarily:
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e terative, or could it be recursive?

e sequential, or could it be concurrent?

e linear, or could it be backtracking?

e deterministic, could it be non-deterministic?
e bounded, or could it be unbounded?

3.5. Notation

| have quite deliberately talked about problem solving in very general terms, without using any
notation. But we do need to describe all these aspects of solving a specific problem in a
concrete, consistent manner, so why don’t we just use a programming language? After all,
programming and seeing things working at an early stage are both highly motivating.

One problem is that the choice of language affects what can be described. Furthermore, the
fine detail of a specific language can get in the way of understanding fundamental concepts.
Finally, as noted above, the language-centric techniques used to knock up quick hit, small
programs usually don’t scale well to larger problems and this can prove frustrating and
demotivating.

| think that, for problem solving, we should use a neutral notation like a pseudo code, for
example the Haggis pseudo code (Michaelson, 2104).

4. Conclusions
To conclude, in trying to elaborate a pedagogy of programming, | think that we should be
driven by problem solving. We’'ve seen that:

Computational thinking =
Decomposition+ abstraction + patterns + algorithms

Now, CT is a framework not a recipe. In CT, the components overlap and interact. It just isn’t
possible to separate out definite stages of decomposition, abstraction, patterns and
algorithms. Finding these is itself a creative, iterative activity.

I've argued that that classic CT overemphasises computation over information. For me:
solution = information + computation

| think that we should let the information structure the computation, and we should start with
concrete instances of our problem scenario. We should then use CT to ask good questions, to
tease out well known information structures and to guide computation design.

Finally, | think that, as with all education, we should view our students as active subjects and
try to ground our practice in solving substantial problems drawn from their real world
experiences, and expressed in terms they are likely to find familiar and engaging.
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Raising Awareness of Diversity and Social (In)justice Issues in
Undergraduate Research Writing: Understanding Students and their
Lives via Connecting Teaching and Research

Gloria Park, English Department, Indiana University of Pennsylvania

Abstract

Inspired by my own experiences as an undergraduate writing student who did not see a
connection between my life and the topics of the courses, this article details my first ventures
into designing and teaching sections of a research writing class, entitled Researching Writing:
Raising Awareness of Diversity and Social Justice Issues within and Beyond our Lives. The
purpose of this course was to promote issues of diversity and social (in)justice in a required
liberal studies course. Interview data from undergraduate women students who participated
in this research writing course from 2009-2011 were explored in order to uncover their
experiences in the class and understand what they found effective or ineffective. The findings
indicated that most of the students appreciated being able to choose their own research topic,
and also found chunking parts of the research project more effective for understanding the
research process. Although engaging students in research and course activities related to
controversial issues is difficult, there is a need for more liberal studies courses to incorporate
topics related to diversity and social (in)justice.

Key Words: Social (in)justice, diversity, research writing, liberal studies, curriculum

How it All Began

Beginning in fall 2008, my first semester as an assistant professor in the English Department
housed in a university located in Western Pennsylvania, | was assigned three sections of
Undergraduate Research Writing. Although | did not know everything | needed to know about
how Undergraduate Liberal Studies Program courses (such as writing, literature, and other
English department courses) were positioned in the department and the university, | was
excited to teach my first undergraduate writing course.

As a way to put my Self into Pedagogy, | reflected on how writing, specifically research writing,
in different points of my educational journey, has influenced me as a learner, teacher, and
teacher educator. | went back as far as my undergraduate years at a university in Boston. As a
pre-med student, my focus was to get through writing requirements in different disciplines. |
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never really focused on how a writing course in my undergraduate years would impact the
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